WO2010095668A1 - Machine tool and machining method - Google Patents

Machine tool and machining method Download PDF

Info

Publication number
WO2010095668A1
WO2010095668A1 PCT/JP2010/052381 JP2010052381W WO2010095668A1 WO 2010095668 A1 WO2010095668 A1 WO 2010095668A1 JP 2010052381 W JP2010052381 W JP 2010052381W WO 2010095668 A1 WO2010095668 A1 WO 2010095668A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback gain
speed feedback
angle
speed
workpiece
Prior art date
Application number
PCT/JP2010/052381
Other languages
French (fr)
Japanese (ja)
Inventor
淳司 井上
博文 鹿毛
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2010095668A1 publication Critical patent/WO2010095668A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/232Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude with speed feedback only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F23/00Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
    • B23F23/12Other devices, e.g. tool holders; Checking devices for controlling workpieces in machines for manufacturing gear teeth
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42077Position, speed or current, combined with vibration feedback

Definitions

  • the present invention relates to a machine tool and a machining method, and more particularly to a machine tool and a machining method used when machining gears.
  • FIG. 1 shows a known machine tool.
  • the machine tool 101 includes a machine tool main body 102 and a machine tool control device 103.
  • the machine tool main body 102 includes a table 105, a cutter 106, a motor 107, a worm gear 108, and an encoder 109.
  • the table 105 is supported by a base so as to be rotatable about a rotation axis parallel to the vertical direction.
  • the table 105 has a support surface that is perpendicular to the rotation axis thereof, and supports the workpiece 110 that contacts the support surface.
  • the workpiece 110 is generally formed in a disc shape.
  • the cutter 106 is a hob, and is rotated by being controlled by a numerical control device (not shown) to cut the edge of the workpiece 110 and form teeth on the edge of the workpiece 110 to form the workpiece 110 into a gear.
  • the motor 107 includes a shaft that is rotatably supported, and rotates the shaft based on an operation amount output from the machine tool control device 103.
  • the worm gear 108 transmits the rotational power of the shaft of the motor 107 to the table 105 to rotate the table 105.
  • the encoder 109 measures the rotational speed of the shaft of the motor 107 and outputs the rotational speed to the machine tool control device 103.
  • the machine tool control device 103 includes a target value calculation unit 114, an integrator 115, and a control device 117.
  • the target value calculation unit 114 collects numerical control data for processing the workpiece 110 into a gear and the operation of the cutter 106, and calculates a target angle based on the numerical control data and the operation.
  • the integrator 115 calculates the angle of the table 105 by integrating the rotational speed of the shaft of the motor 107 measured by the encoder 109.
  • the control device 117 includes an angle difference calculation unit 121, an angle feedback gain multiplication unit 122, a rotation speed difference calculation unit 123, a speed feedback gain multiplication unit 124, a proportional control unit 125, an integration control unit 126, and an addition unit 127. .
  • the angle difference calculation unit 121 calculates the angle difference by subtracting the angle of the table 105 calculated by the integrator 115 from the target angle calculated by the target value calculation unit 114.
  • the angle feedback gain multiplication unit 122 multiplies the angle difference calculated by the angle difference calculation unit 121 by a constant angle feedback gain to calculate the rotation speed amount.
  • the rotation speed difference calculation unit 123 calculates the rotation speed difference by subtracting the rotation speed of the shaft of the motor 107 measured by the encoder 109 from the rotation speed amount calculated by the angle feedback gain multiplication unit 122.
  • the speed feedback gain multiplication unit 124 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 123 by a constant speed feedback gain.
  • the proportional control unit 125 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 124 by a constant proportional feedback gain.
  • the integral control unit 126 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 124, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the integral operation amount. Is calculated.
  • the adding unit 127 calculates an operation amount by multiplying the proportional operation amount calculated by the proportional control unit 125 by the integral operation amount calculated by the integration control unit 126.
  • the worker places the workpiece 110 on the table 105 and inputs numerical control data for processing the workpiece 110 into a gear into a numerical control device (not shown).
  • the numerical control device outputs the numerical control data to the machine tool control device 103, and rotates the cutter 106 based on the numerical control data.
  • the target value calculation unit 114 of the machine tool control device 103 calculates a target angle based on the numerical control data.
  • the integrator 115 of the machine tool control device 103 calculates the angle of the table 105 based on the rotational speed of the shaft of the motor 107 measured by the encoder 109.
  • the angle difference calculation unit 121 of the control device 117 calculates the angle difference by subtracting the angle of the table 105 calculated by the integrator 115 from the target angle calculated by the target value calculation unit 114.
  • the angle feedback gain multiplication unit 122 multiplies the angle difference calculated by the angle difference calculation unit 121 by a constant angle feedback gain to calculate the rotation speed amount.
  • the rotation speed difference calculation unit 123 calculates the rotation speed difference by subtracting the rotation speed of the shaft of the motor 107 measured by the encoder 109 from the rotation speed amount calculated by the angle feedback gain multiplication unit 122.
  • the speed feedback gain multiplication unit 124 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 123 by a constant speed feedback gain.
  • the proportional control unit 125 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 124 by a constant proportional feedback gain.
  • the integral control unit 126 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 124, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the integral operation amount. Is calculated.
  • the adding unit 127 calculates an operation amount by multiplying the proportional operation amount calculated by the proportional control unit 125 by the integral operation amount calculated by the integration control unit 126.
  • the motor 107 rotates the shaft based on the operation amount calculated by the adding unit 127.
  • the worm gear 108 transmits the rotational power of the shaft of the motor 107 to the table 105 to rotate the table 105.
  • the machine tool 101 forms the workpiece 110 into a gear by the cutter 106 cutting the edge of the workpiece 110 and forming teeth on the edge of the workpiece 110 as indicated by the numerical control data.
  • FIG. 2 shows another known machine tool.
  • the machine tool 131 includes a machine tool main body 132 and a machine tool control device 133.
  • the machine tool main body 132 includes a table 135, a cutter 136, a direct drive motor 137, and a rotary encoder 138.
  • the table 135 is supported by a base so as to be rotatable about a rotation axis parallel to the vertical direction.
  • the table 135 has a support surface that is perpendicular to the rotation axis thereof, and supports the work 139 that contacts the support surface.
  • the work 139 is formed in a generally disc shape.
  • the cutter 136 is controlled by a numerical control device (not shown) to rotate, thereby cutting the edge of the work 139 and forming teeth on the edge of the work 139 to form the work 139 into a gear.
  • the direct drive motor 137 includes a direct drive motor rotor 141 and a direct drive motor stator 142.
  • the direct drive motor rotor 141 is fixed to the table 135.
  • the direct drive motor stator 142 is fixed to the base.
  • the direct drive motor 137 rotates the table 135 based on the operation amount output from the machine tool control device 133.
  • the rotary encoder 138 measures the angle of the table 135 and outputs the angle to
  • the machine tool control device 133 includes a target value calculation unit 114, a differentiator 145, and a control device 117.
  • the target value calculation unit 114 calculates a target angle based on the numerical control data in order to process the workpiece 139 into a gear.
  • the differentiator 145 calculates the rotational speed of the table 135 by differentiating the angle of the table 135 measured by the rotary encoder 138.
  • the control device 117 includes an angle difference calculation unit 121, an angle feedback gain multiplication unit 122, a rotation speed difference calculation unit 123, a speed feedback gain multiplication unit 124, a proportional control unit 125, an integration control unit 126, and an addition unit 127. .
  • the angle difference calculation unit 121 calculates the angle difference by subtracting the angle of the table 135 measured by the rotary encoder 138 from the target angle calculated by the target value calculation unit 114.
  • the angle feedback gain multiplication unit 122 multiplies the angle difference calculated by the angle difference calculation unit 121 by a constant angle feedback gain to calculate the rotation speed amount.
  • the rotation speed difference calculation unit 123 calculates the rotation speed difference by subtracting the rotation speed of the table 135 calculated by the differentiator 145 from the rotation speed amount calculated by the angle feedback gain multiplication unit 122.
  • the speed feedback gain multiplication unit 124 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 123 by a constant speed feedback gain.
  • the proportional control unit 125 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 124 by a constant proportional feedback gain.
  • the integral control unit 126 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 124, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the integral operation amount. Is calculated.
  • the adding unit 127 calculates an operation amount by multiplying the proportional operation amount calculated by the proportional control unit 125 by the integral operation amount calculated by the integration control unit 126.
  • the machining method according to the present invention is executed using the machine tool 131.
  • the operator places the work 139 on the table 135 and inputs numerical control data for processing the work 139 into a gear into a numerical control device (not shown).
  • the numerical control device outputs the numerical control data to the machine tool control device 133, and rotates the cutter 136 based on the numerical control data.
  • the target value calculation unit 114 of the machine tool control device 133 calculates a target angle based on the numerical control data.
  • the differentiator 145 of the machine tool control device 133 calculates the rotation speed of the table 135 based on the rotation angle of the table 135 measured by the rotary encoder 138.
  • the angle difference calculation unit 121 of the control device 117 calculates the angle difference by subtracting the angle of the table 135 calculated by the differentiator 145 from the target angle calculated by the target value calculation unit 114.
  • the angle feedback gain multiplication unit 122 multiplies the angle difference calculated by the angle difference calculation unit 121 by a constant angle feedback gain to calculate the rotation speed amount.
  • the rotation speed difference calculation unit 123 calculates the rotation speed difference by subtracting the rotation speed of the table 135 calculated by the differentiator 145 from the rotation speed amount calculated by the angle feedback gain multiplication unit 122.
  • the speed feedback gain multiplication unit 124 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 123 by a constant speed feedback gain.
  • the proportional control unit 125 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 124 by a constant proportional feedback gain.
  • the integral control unit 126 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 124, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the integral operation amount. Is calculated.
  • the adding unit 127 calculates an operation amount by multiplying the proportional operation amount calculated by the proportional control unit 125 by the integral operation amount calculated by the integration control unit 126.
  • the direct drive motor 137 rotates the table 135 based on the operation amount calculated by the adding unit 127. With such an operation, the machine tool 131 forms the workpiece 139 into a gear by the cutter 136 cutting the edge of the workpiece 139 and forming teeth on the edge of the workpiece 139 as indicated by the numerical control data.
  • Such machine tools can secure the rigidity in the table rotation direction against an external force acting on the workpiece by adjusting the constant of the feedback control system, for example, by increasing the gain of the speed feedback.
  • the gain is set high, a vibration phenomenon caused by the control system occurs.
  • machine tools such as these set constants so that vibration phenomena caused by the control system do not occur when machining all target workpieces, and all control constants are fixed at the time of shipment. Yes.
  • a machine tool is desired to ensure the rigidity in the rotational direction of the table against an external force acting on the workpiece and to prevent an oscillation phenomenon.
  • Japanese Patent No. 2996943 discloses a gear machining apparatus that increases machining efficiency by accurately detecting the completion of machining of a gear to be machined and ending the machining.
  • the gear machining apparatus includes a motor for driving a cutter gear and a gear to be machined, an encoder for detecting rotation of each of the motors, PLL control means for controlling the motors to rotate in synchronization with each other, a cutter
  • the PLL control unit includes a shift unit that sequentially shifts the rotational phases of the two motors according to a processing amount of the gear to be processed by the gear, and a unit that detects vibration in the processing unit. It is a jitter amount detecting means for detecting a phase fluctuation state of an input pulse from the encoder with respect to a command reference pulse given to each of the motors.
  • Japanese Patent Application Laid-Open No. 07-88746 discloses in-process abnormalities during cutting (for example, increased wear or damage to the cutting edge of the tool) by detecting the machine with a simple device and with simple modifications.
  • a cutting abnormality detection and emergency return method is disclosed in a gear processing machine, which measures the damage of the tool and machine and prevents the defect of the workpiece.
  • the cutting abnormality detection and emergency return method in the gear processing machine is a gear processing machine that performs cutting while rotating a tool and a gear material to be processed at a constant rotation ratio. And a magnetoelectric or photoelectric detector, and by measuring fluctuations in the rotational frequency of the tool drive shaft, it is compared with the rotational frequency during normal cutting to detect abnormalities in the cutting state.
  • An object of the present invention is to provide a machine tool and a machining method that ensure rigidity in the rotation direction of a table against an external force acting on a workpiece and prevent an oscillation phenomenon.
  • a machine tool includes a speed feedback gain automatic setting device that automatically updates a speed feedback gain, a sensor that measures a sensor value related to rotation of a table that supports a workpiece, and the angle of the table matches a target angle.
  • a control device that feedback-controls a motor that rotates the table based on the sensor value based on the speed feedback gain.
  • Such a machine tool has a variable speed feedback gain, and when the appropriate value is substituted for the speed feedback gain, it ensures the rigidity in the rotational direction of the table against the external force acting on the workpiece. In addition, the oscillation phenomenon can be prevented.
  • the speed feedback gain automatic setting device includes a vibration measuring unit that calculates the degree of vibration based on the sensor value, and a speed feedback gain calculating unit that calculates the speed feedback gain based on the degree of vibration. It is preferable.
  • the speed feedback gain is preferably increased when the degree of vibration is greater than a predetermined threshold.
  • the sensor preferably includes a rotary encoder that measures the angle of the table. At this time, the sensor value indicates the angle of the table.
  • the machine tool according to the present invention further includes a target value calculation unit that calculates a target angle based on numerical control data for forming a gear on the workpiece. That is, such a machine tool is suitable for a gear processing machine that creates gears.
  • the speed feedback gain automatic setting device refers to a workpiece material type collection unit that collects the material type of the workpiece, and a table that associates a plurality of material types with a plurality of speed feedback gains, and determines the speed feedback gain from the plurality of speed feedback gains. And a speed feedback gain calculating unit that calculates the speed feedback gain corresponding to the material type.
  • the workpiece material type collection unit extracts the material type from the data for processing the workpiece.
  • the machining method includes a step of automatically updating a speed feedback gain, a step of measuring a sensor value related to rotation of a table supporting a workpiece, and a speed of the table so that the angle of the table matches a target angle. Feedback control of a motor for rotating the table based on the feedback gain based on the sensor value.
  • the speed feedback gain is variable, and when an appropriate value is substituted for the speed feedback gain, the rigidity in the rotational direction of the table is secured against the external force acting on the workpiece. In addition, the oscillation phenomenon can be prevented.
  • the processing method according to the present invention further includes a step of calculating the degree of vibration based on the sensor value and a step of calculating the speed feedback gain based on the degree of vibration.
  • the speed feedback gain is preferably increased when the degree of vibration is greater than a predetermined threshold.
  • the sensor preferably includes a rotary encoder that measures the angle of the table. At this time, the sensor value indicates the angle of the table.
  • the machining method according to the present invention further includes a step of calculating the target angle based on numerical control data for forming a gear on the workpiece. That is, such a machine tool is suitable for a gear processing machine that creates gears.
  • the machining method according to the present invention refers to a step of collecting the material type of the workpiece and a table associating a plurality of material types and a plurality of speed feedback gains, and corresponding to the material type out of the plurality of speed feedback gains.
  • the method further comprises a step of calculating a speed feedback gain.
  • the machining method according to the present invention preferably further includes a step of extracting the material type from data for machining the workpiece.
  • the machine tool and the machining method according to the present invention can ensure the rigidity in the rotation direction of the table against an external force acting on the workpiece and can prevent an oscillation phenomenon.
  • FIG. 1 is a block diagram showing a known machine tool.
  • FIG. 2 is a block diagram showing another known machine tool.
  • FIG. 3 is a block diagram showing an embodiment of a machine tool according to the present invention.
  • FIG. 4 is a graph showing changes in rigidity (compliance) when the table rotates when feedback controlling the motor using various speed feedback gains.
  • FIG. 5 is a block diagram showing another embodiment of the machine tool according to the present invention.
  • FIG. 6 is a block diagram showing another embodiment of the machine tool according to the present invention.
  • the machine tool 1 includes a machine tool body 2 and a machine tool control device 3 as shown in FIG.
  • the machine tool main body 2 includes a table 5, a cutter 6, a motor 7, a worm gear 8, a rotary encoder 9, and an encoder 10.
  • the table 5 is supported by a base so as to be rotatable about a rotation axis parallel to the vertical direction.
  • the table 5 has a support surface that is perpendicular to the rotation axis thereof, and supports the workpiece 11 that contacts the support surface.
  • the workpiece 11 is generally formed in a disc shape.
  • the cutter 6 is controlled and rotated by a numerical control device (not shown) to cut the edge of the workpiece 11 and form teeth on the edge of the workpiece 11 to form the workpiece 11 into a gear.
  • the motor 7 includes a shaft that is rotatably supported, and rotates the shaft based on an operation amount output from the machine tool control device 3.
  • the worm gear 8 transmits the rotational power of the shaft of the motor 7 to the table 5 and rotates the table 5.
  • the rotary encoder 9 measures the angle of the table 5 and outputs the angle to the machine tool control device 3.
  • the encoder 10 measures the rotational speed of the shaft of the motor 7 and outputs the rotational speed to the machine tool
  • the machine tool control device 3 includes a target value calculation unit 14, an integrator 15, a speed feedback gain setting device 16, and a control device 17.
  • the target value calculation unit 14 collects numerical control data for processing the workpiece 11 into a gear and the operation of the cutter 6 and calculates a target angle based on the numerical control data and the operation.
  • the integrator 15 calculates the angle of the table 5 by integrating the rotational speed of the shaft of the motor 7 measured by the encoder 10.
  • the speed feedback gain setting device 16 updates the speed feedback gain based on the angle of the table 5 measured by the rotary encoder 9. That is, the speed feedback gain setting device 16 includes a vibration measuring unit 28 and a speed feedback gain calculating unit 29.
  • the vibration measuring unit 28 calculates the degree of vibration of the table 5 based on the angle of the table 5 measured by the rotary encoder 9.
  • the speed feedback gain calculation unit 29 calculates a speed feedback gain based on the degree of vibration calculated by the vibration measurement unit 28.
  • the speed feedback gain calculation unit 29 includes a storage device that records a threshold value and a plurality of speed feedback gains.
  • the speed feedback gain calculation unit 29 initially outputs the minimum speed feedback gain among the plurality of speed feedback gains.
  • the speed feedback gain calculating unit 29 is larger by one step than the currently output speed feedback gain among the plurality of speed feedback gains when the degree of vibration calculated by the vibration measuring unit 28 exceeds the threshold.
  • Output speed feedback gain That is, the speed feedback gain setting device 16 outputs only one of the plurality of speed feedback gains, and the speed feedback gain output by the speed feedback gain setting device 16 has an upper limit value and a lower limit value. .
  • the speed feedback gain calculation unit 29 further selects a speed feedback gain that is greater than the speed feedback gain that the plurality of speed feedback gains are currently output and the degree of vibration calculated by the vibration measurement unit 28 exceeds the threshold value. When not included, it is determined as abnormal and the machine tool body 2 is stopped.
  • the control device 17 uses the target angle calculated by the target value calculation unit 14, the angle of the table 5 calculated by the integrator 15, the rotational speed of the shaft of the motor 7 measured by the encoder 10, and the speed feedback gain setting device 16. Based on the set speed feedback gain, the motor 7 is feedback-controlled so that the angle of the table 5 matches the target angle calculated by the target value calculation unit 14.
  • control device 17 includes an angle difference calculation unit 21, an angle feedback gain multiplication unit 22, a rotation speed difference calculation unit 23, a speed feedback gain multiplication unit 24, a proportional control unit 25, an integration control unit 26, and an addition unit 27. ing.
  • the angle difference calculation unit 21 calculates the angle difference by subtracting the angle of the table 5 calculated by the integrator 15 from the target angle calculated by the target value calculation unit 14.
  • the angle feedback gain multiplication unit 22 calculates the rotation speed amount by multiplying the angle difference calculated by the angle difference calculation unit 21 by an angle feedback gain that is a constant.
  • the rotation speed difference calculation unit 23 calculates the rotation speed difference by subtracting the rotation speed of the shaft of the motor 7 measured by the encoder 10 from the rotation speed amount calculated by the angle feedback gain multiplication unit 22.
  • the speed feedback gain multiplication unit 24 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 23 by the speed feedback gain set by the speed feedback gain setting device 16.
  • the proportional control unit 25 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 24 by a constant proportional feedback gain.
  • the integration control unit 26 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 24, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the operation amount. Is calculated.
  • the adding unit 27 calculates the operation amount by multiplying the proportional operation amount calculated by the proportional control unit 25 by the integral operation amount calculated by the integration control unit 26. The amount of operation matches the amount of operation output by the control device 17.
  • the embodiment of the machining method according to the present invention is executed using the machine tool 1.
  • the worker places the workpiece 11 on the table 5 and inputs numerical control data for processing the workpiece 11 into a gear into a numerical control device (not shown).
  • the numerical control device outputs the numerical control data to the machine tool control device 3, and rotates the cutter 6 based on the numerical control data.
  • the target value calculation unit 14 of the machine tool control device 3 collects the numerical control data and the operation of the cutter 6 and calculates a target angle based on the numerical control data and the operation.
  • the integrator 15 of the machine tool control device 3 calculates the angle of the table 5 based on the rotational speed of the shaft of the motor 7 measured by the encoder 10.
  • the vibration measuring unit 28 of the speed feedback gain setting device 16 calculates the degree of vibration of the table 5 based on the angle of the table 5 measured by the rotary encoder 9.
  • the speed feedback gain calculation unit 29 initially outputs the minimum speed feedback gain among a plurality of speed feedback gains recorded in advance in the storage device.
  • the speed feedback gain calculating unit 29 is larger by one step than the currently output speed feedback gain among the plurality of speed feedback gains when the degree of vibration calculated by the vibration measuring unit 28 exceeds the threshold. Output speed feedback gain.
  • the angle difference calculation unit 21 of the control device 17 calculates the angle difference by subtracting the angle of the table 5 calculated by the integrator 15 from the target angle calculated by the target value calculation unit 14.
  • the angle feedback gain multiplication unit 22 calculates the rotation speed amount by multiplying the angle difference calculated by the angle difference calculation unit 21 by an angle feedback gain that is a constant.
  • the rotation speed difference calculation unit 23 calculates the rotation speed difference by subtracting the rotation speed of the shaft of the motor 7 measured by the encoder 10 from the rotation speed amount calculated by the angle feedback gain multiplication unit 22.
  • the speed feedback gain multiplication unit 24 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 23 by the speed feedback gain set by the speed feedback gain setting device 16.
  • the proportional control unit 25 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 24 by a constant proportional feedback gain.
  • the integration control unit 26 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 24, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the operation amount. Is calculated.
  • the adding unit 27 calculates the operation amount by multiplying the proportional operation amount calculated by the proportional control unit 25 by the integral operation amount calculated by the integration control unit 26.
  • the motor 7 rotates the shaft based on the operation amount calculated by the adding unit 27.
  • the worm gear 8 transmits the rotational power of the shaft of the motor 7 to the table 5 and rotates the table 5. With this operation, the machine tool 1 forms the workpiece 11 into a gear by the cutter 6 cutting the edge of the workpiece 11 and forming teeth on the edge of the workpiece 11 as shown in the numerical control data.
  • the speed feedback gain calculation unit 29 has a speed feedback gain that is greater than the speed feedback gain that the plurality of speed feedback gains are currently output, and the degree of vibration calculated by the vibration measurement unit 28 exceeds the threshold value.
  • the machine tool control device 3 can prevent the table drive system from causing an oscillation phenomenon and becoming uncontrollable.
  • FIG. 4 shows a change in rigidity (compliance) when the table 5 rotates when the motor 7 is feedback-controlled using a plurality of speed feedback gains.
  • the change 31 indicates the rigidity related to the rotation of the table 5 when the motor 7 is feedback-controlled using a speed feedback gain indicating a certain value.
  • the change 32 indicates the rigidity related to the rotation of the table 5 when the motor 7 is feedback-controlled using a speed feedback gain larger than the speed feedback gain when the rigidity of the change 31 is indicated.
  • the change 33 indicates the rigidity related to the rotation of the table 5 when the motor 7 is feedback-controlled using a speed feedback gain larger than the speed feedback gain when the rigidity of the change 32 is indicated.
  • the change 34 indicates the rigidity related to the rotation of the table 5 when the motor 7 is feedback-controlled using a speed feedback gain larger than the speed feedback gain when the rigidity of the change 33 is indicated.
  • the change 35 indicates the rigidity related to the rotation of the table 5 when the motor 7 is feedback-controlled using a speed feedback gain larger than the speed feedback gain when the rigidity of the change 34 is indicated.
  • Changes 31 to 35 indicate that the velocity feedback gain used for feedback control changes with respect to the frequency of the disturbance when the value is a certain value.
  • the changes 31 to 35 further indicate that the rigidity when the table 5 rotates when the speed feedback gain is increased, and that the rotation of the table 5 is less affected by disturbance. .
  • the machine tool 1 can automatically adjust the control constant (speed feedback gain) until the vibration of the workpiece 11 generated during gear machining falls within the threshold value by executing such an operation. For this reason, the machine tool 1 can ensure the rigidity of the rotation direction of the table 5 with respect to the external force acting on the workpiece 11, and can prevent an oscillation phenomenon caused by the control system.
  • the vibration measurement unit 28 can be replaced with another vibration measurement unit that calculates the degree of vibration of the table 5 based on the angle of the table 5 calculated by the integrator 15.
  • Such a machine tool can ensure the rigidity in the rotation direction of the table 5 with respect to the external force acting on the workpiece 11 as well as the machine tool 1 in the above-described embodiment, and is caused by the control system. Oscillation phenomenon can be prevented.
  • Such a machine tool can further omit the rotary encoder 9 and can be manufactured at a lower cost.
  • the speed feedback gain calculation unit 29 can be replaced with another speed feedback gain calculation unit that calculates a speed feedback gain corresponding to the degree of vibration calculated by the vibration measurement unit 28.
  • Such a machine tool can ensure the rigidity in the rotation direction of the table 5 with respect to the external force acting on the workpiece 11 as well as the machine tool 1 in the above-described embodiment, and is caused by the control system. Oscillation phenomenon can be prevented.
  • FIG. 5 shows another embodiment of the machine tool according to the present invention.
  • the machine tool 41 includes a machine tool main body 42 and a machine tool control device 43.
  • the machine tool main body 42 includes a table 45, a cutter 46, a direct drive motor 47, and a rotary encoder 48.
  • the table 45 is supported by a base so as to be rotatable about a rotation axis parallel to the vertical direction.
  • the table 45 has a support surface that is perpendicular to the rotation axis thereof, and supports a work 49 that contacts the support surface.
  • the work 49 is formed in a generally disc shape.
  • the cutter 46 is formed of a hob-type grindstone, and is rotated by being controlled by a numerical control device (not shown) to cut the edge of the workpiece 49, and by forming teeth on the edge of the workpiece 49, the workpiece 49 is turned into a gear.
  • the direct drive motor 47 includes a direct drive motor rotor 51 and a direct drive motor stator 52.
  • the direct drive motor rotor 51 is fixed to the table 45.
  • the direct drive motor stator 52 is fixed to the base.
  • the direct drive motor 47 rotates the table 45 based on the operation amount output from the machine tool control device 43.
  • the rotary encoder 48 measures the angle of the table 45 and outputs the angle to the machine tool control device 43.
  • the machine tool control device 43 includes a target value calculation unit 14, a differentiator 55, a speed feedback gain setting device 16, and a control device 17.
  • the target value calculation unit 14 collects numerical control data for processing the workpiece 49 into a gear and the operation of the cutter 46, and calculates a target angle based on the numerical control data and the operation.
  • the differentiator 55 calculates the rotational speed of the table 45 by differentiating the angle of the table 45 measured by the rotary encoder 48.
  • the speed feedback gain setting device 16 includes a vibration measuring unit 28 and a speed feedback gain calculating unit 29.
  • the vibration measuring unit 28 calculates the degree of vibration of the table 45 based on the angle of the table 45 measured by the rotary encoder 48.
  • the speed feedback gain calculation unit 29 includes a storage device that records a threshold value and a plurality of speed feedback gains.
  • the speed feedback gain calculation unit 29 initially outputs the minimum speed feedback gain among the plurality of speed feedback gains.
  • the speed feedback gain calculating unit 29 is larger by one step than the currently output speed feedback gain among the plurality of speed feedback gains when the degree of vibration calculated by the vibration measuring unit 28 exceeds the threshold.
  • Output speed feedback gain That is, the speed feedback gain setting device 16 outputs only one of the plurality of speed feedback gains, and the speed feedback gain output by the speed feedback gain setting device 16 has an upper limit value and a lower limit value. .
  • the speed feedback gain calculation unit 29 further selects a speed feedback gain that is greater than the speed feedback gain that the plurality of speed feedback gains are currently output and the degree of vibration calculated by the vibration measurement unit 28 exceeds the threshold value. When not included, it is determined as abnormal and the machine tool main body 42 is stopped.
  • the control device 17 includes an angle difference calculation unit 21, an angle feedback gain multiplication unit 22, a rotational speed difference calculation unit 23, a speed feedback gain multiplication unit 24, a proportional control unit 25, an integration control unit 26, and an addition unit 27. .
  • the angle difference calculation unit 21 calculates the angle difference by subtracting the angle of the table 45 measured by the rotary encoder 48 from the target angle calculated by the target value calculation unit 14.
  • the angle feedback gain multiplication unit 22 calculates the rotation speed amount by multiplying the angle difference calculated by the angle difference calculation unit 21 by an angle feedback gain that is a constant.
  • the rotation speed difference calculation unit 23 calculates the rotation speed difference by subtracting the rotation speed of the table 45 calculated by the differentiator 55 from the rotation speed amount calculated by the angle feedback gain multiplication unit 22.
  • the speed feedback gain multiplication unit 24 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 23 by the speed feedback gain set by the speed feedback gain setting device 16.
  • the proportional control unit 25 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 24 by a constant proportional feedback gain.
  • the integration control unit 26 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 24, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the operation amount. Is calculated.
  • the adding unit 27 calculates the operation amount by multiplying the proportional operation amount calculated by the proportional control unit 25 by the integral operation amount calculated by the integration control unit 26.
  • the embodiment of the machining method according to the present invention is executed using the machine tool 41.
  • the worker places the workpiece 49 on the table 45, and inputs numerical control data for processing the workpiece 49 into a gear into a numerical controller (not shown).
  • the numerical control device outputs the numerical control data to the machine tool control device 43, and rotates the cutter 46 based on the numerical control data.
  • the target value calculation unit 14 of the machine tool control device 43 calculates a target angle based on the numerical control data.
  • the differentiator 55 of the machine tool control device 43 calculates the rotation speed of the table 45 based on the rotation angle of the table 45 measured by the rotary encoder 48.
  • the vibration measuring unit 28 of the speed feedback gain setting device 16 calculates the degree of vibration of the table 45 based on the angle of the table 45 measured by the rotary encoder 48.
  • the speed feedback gain calculation unit 29 initially outputs the minimum speed feedback gain among a plurality of speed feedback gains recorded in advance in the storage device.
  • the speed feedback gain calculating unit 29 is larger by one step than the currently output speed feedback gain among the plurality of speed feedback gains when the degree of vibration calculated by the vibration measuring unit 28 exceeds the threshold. Output speed feedback gain.
  • the angle difference calculation unit 21 of the control device 17 calculates the angle difference by subtracting the angle of the table 45 calculated by the differentiator 55 from the target angle calculated by the target value calculation unit 14.
  • the angle feedback gain multiplication unit 22 calculates the rotation speed amount by multiplying the angle difference calculated by the angle difference calculation unit 21 by an angle feedback gain that is a constant.
  • the rotation speed difference calculation unit 23 calculates the rotation speed difference by subtracting the rotation speed of the table 45 calculated by the differentiator 55 from the rotation speed amount calculated by the angle feedback gain multiplication unit 22.
  • the speed feedback gain multiplication unit 24 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 23 by the speed feedback gain set by the speed feedback gain setting device 16.
  • the proportional control unit 25 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 24 by a constant proportional feedback gain.
  • the integration control unit 26 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 24, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the operation amount. Is calculated.
  • the adding unit 27 calculates the operation amount by multiplying the proportional operation amount calculated by the proportional control unit 25 by the integral operation amount calculated by the integration control unit 26.
  • the direct drive motor 47 rotates the table 45 based on the operation amount calculated by the adding unit 27. With this operation, the machine tool 41 forms the workpiece 49 into a gear by the cutter 46 cutting the edge of the workpiece 49 and forming teeth on the edge of the workpiece 49 as shown in the numerical control data.
  • the speed feedback gain calculation unit 29 has a speed feedback gain that is greater than the speed feedback gain that the plurality of speed feedback gains are currently output, and the degree of vibration calculated by the vibration measurement unit 28 exceeds the threshold value.
  • the machine tool control device 43 can prevent the table drive system from causing an oscillation phenomenon and becoming uncontrollable.
  • such a machine tool 41 performs such an operation, and in the same manner as the machine tool 1 in the above-described embodiment, provides the rigidity in the rotation direction of the table 45 with respect to the external force acting on the workpiece 49.
  • the oscillation phenomenon caused by the control system can be prevented. That is, such a processing method can also be applied to control of the direct drive motor 47 that is directly connected to the table 45 and rotates the table 45.
  • FIG. 6 shows still another embodiment of the machine tool according to the present invention.
  • the machine tool 61 includes a machine tool main body 62 and a machine tool control device 63.
  • the machine tool main body 62 includes a table 65, a cutter 66, a motor 67, a worm gear 68, and an encoder 69.
  • the table 65 is supported by a base so as to be rotatable about a rotation axis parallel to the vertical direction.
  • the table 65 has a support surface that is perpendicular to the rotation axis thereof, and supports the work 70 that contacts the support surface.
  • the workpiece 70 is generally formed in a disc shape.
  • the cutter 66 is controlled and rotated by a numerical control device (not shown) to cut the edge of the work 70 and form teeth on the edge of the work 70 to form the work 70 into a gear.
  • the motor 67 includes a shaft that is rotatably supported, and rotates the shaft based on an operation amount output from the machine tool control device 63.
  • the worm gear 68 transmits the rotational power of the shaft of the motor 67 to the table 65 to rotate the table 65.
  • the encoder 69 measures the rotational speed of the shaft of the motor 67 and outputs the rotational speed to the machine tool control device 63.
  • the machine tool control device 63 includes a target value calculation unit 14, an integrator 15, a speed feedback gain setting device 71, and a control device 17.
  • the target value calculation unit 14 collects numerical control data for processing the workpiece 70 into a gear and the operation of the cutter 66, and calculates a target angle based on the numerical control data and the operation.
  • the integrator 15 calculates the angle of the table 65 by integrating the rotational speed of the shaft of the motor 67 measured by the encoder 69.
  • the speed feedback gain setting device 71 calculates a speed feedback gain based on the numerical control data. That is, the speed feedback gain setting device 71 includes a workpiece material type collection unit 72 and a speed feedback gain calculation unit 73.
  • the workpiece material type collecting unit 72 analyzes the numerical control data and extracts the material type of the workpiece 70 from the numerical control data.
  • the speed feedback gain calculation unit 73 includes a storage device that records a table associating the material type set and the speed feedback gain set. That is, an arbitrary element in the grade set corresponds to one element in the speed feedback gain set. Each element of the material type set indicates the material type of the material applied to the workpiece 70. Each element of the speed feedback gain set indicates the value of the speed feedback gain used in the control device 17.
  • the speed feedback gain calculation unit 73 refers to the table and calculates a speed feedback gain corresponding to the material type extracted by the workpiece material type collection unit 72 from the speed feedback gain set.
  • the control device 17 includes an angle difference calculation unit 21, an angle feedback gain multiplication unit 22, a rotational speed difference calculation unit 23, a speed feedback gain multiplication unit 24, a proportional control unit 25, an integration control unit 26, and an addition unit 27. .
  • the angle difference calculation unit 21 calculates the angle difference by subtracting the angle of the table 65 calculated by the integrator 15 from the target angle calculated by the target value calculation unit 14.
  • the angle feedback gain multiplication unit 22 calculates the rotation speed amount by multiplying the angle difference calculated by the angle difference calculation unit 21 by an angle feedback gain that is a constant.
  • the rotation speed difference calculation unit 23 calculates the rotation speed difference by subtracting the rotation speed of the shaft of the motor 67 measured by the encoder 69 from the rotation speed amount calculated by the angle feedback gain multiplication unit 22.
  • the speed feedback gain multiplication unit 24 multiplies the rotation speed difference calculated by the rotation speed difference calculation unit 23 by the speed feedback gain calculated by the speed feedback gain calculation unit 73 to calculate the speed operation amount.
  • the proportional control unit 25 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 24 by a constant proportional feedback gain.
  • the integration control unit 26 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 24, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the operation amount. Is calculated.
  • the adding unit 27 calculates the operation amount by multiplying the proportional operation amount calculated by the proportional control unit 25 by the integral operation amount calculated by the integration control unit 26.
  • the embodiment of the machining method according to the present invention is executed using the machine tool 61.
  • the operator places the work 70 on the table 65, and inputs numerical control data for processing the work 70 into a gear into a numerical control device (not shown).
  • the numerical control device outputs the numerical control data to the machine tool control device 63, and rotates the cutter 66 based on the numerical control data.
  • the target value calculation unit 14 of the machine tool control device 63 collects the numerical control data and the operation of the cutter 66 and calculates a target angle based on the numerical control data and the operation of the cutter 66.
  • the integrator 15 of the machine tool control device 63 calculates the angle of the table 65 based on the rotational speed of the shaft of the motor 67 measured by the encoder 69.
  • the workpiece material type collection unit 72 of the speed feedback gain setting device 71 calculates the material type of the material of the workpiece 70 based on the numerical control data.
  • the speed feedback gain calculation unit 73 refers to a table associating the material type set with the speed feedback gain set, and the material extracted from the speed feedback gain set by the work material type collection unit 72 is referred to by the speed feedback gain calculation unit 73. The speed feedback gain corresponding to the seed is calculated.
  • the angle difference calculation unit 21 of the control device 17 calculates the angle difference by subtracting the angle of the table 65 calculated by the integrator 15 from the target angle calculated by the target value calculation unit 14.
  • the angle feedback gain multiplication unit 22 calculates the rotation speed amount by multiplying the angle difference calculated by the angle difference calculation unit 21 by an angle feedback gain that is a constant.
  • the rotation speed difference calculation unit 23 calculates the rotation speed difference by subtracting the rotation speed of the shaft of the motor 67 measured by the encoder 69 from the rotation speed amount calculated by the angle feedback gain multiplication unit 22.
  • the speed feedback gain multiplication unit 24 calculates the speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 23 by the speed feedback gain set by the speed feedback gain setting device 71.
  • the proportional control unit 25 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 24 by a constant proportional feedback gain.
  • the integration control unit 26 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 24, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the operation amount. Is calculated.
  • the adding unit 27 calculates the operation amount by multiplying the proportional operation amount calculated by the proportional control unit 25 by the integral operation amount calculated by the integration control unit 26.
  • the motor 67 rotates the shaft based on the operation amount calculated by the adding unit 27.
  • the worm gear 68 transmits the rotational power of the shaft of the motor 67 to the table 65 to rotate the table 65.
  • the machine tool 61 forms the workpiece 70 into a gear by the cutter 66 cutting the edge of the workpiece 70 and forming teeth on the edge of the workpiece 70 as shown in the numerical control data.
  • the rigidity in the rotational direction of the table 65 with respect to the external force acting on the work 70 varies depending on the machinability and grindability of the work 70.
  • the machinability and grindability are specific to the material type of the material forming the workpiece 70.
  • the machine tool 61 can set the speed feedback gain more appropriately by appropriately creating the table recorded by the speed feedback gain calculator 73.
  • the speed feedback gain is appropriately set in this way, the machine tool 61 can ensure the rigidity in the rotational direction of the table 65 with respect to the external force acting on the workpiece 70, and oscillation caused by the control system The phenomenon can be prevented.
  • the workpiece material type collecting unit 72 can be replaced with another workpiece material type collecting unit that collects the material type input via the input device included in the machine tool control device 63 from the input device.
  • the speed feedback gain can be set more appropriately in the same manner as the machine tool 61 in the above-described embodiment, and the rigidity in the rotation direction of the table 65 with respect to the external force acting on the workpiece 70 can be increased. The oscillation phenomenon caused by the control system can be prevented.
  • the speed feedback gain setting device 71 initially calculates the speed feedback gain based on the material type of the workpiece 70, and thereafter, based on the vibration of the table 65, as in the above-described embodiment. A speed feedback gain can also be calculated. Also in the calculation of the speed feedback gain, the oscillation phenomenon can be prevented in the same manner as in the above-described embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Gear Processing (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

A machine tool is equipped with an automatic speed feedback gain setter which updates the speed feedback gain automatically, a sensor which measures the rotational speed of a motor which rotates a table supporting a work, and a controller performing feedback control of the motor based on the rotational speed thereof so that the angle of the table coincides with a target angle based on the speed feedback gain. The machine tool has a variable speed feedback gain and when a proper value is substituted in the speed feedback gain, rigidity in the rotational direction of the table is ensured against the external force acting on the work and oscillation phenomenon can be prevented.

Description

工作機械および加工方法Machine tool and processing method
 本発明は、工作機械および加工方法に関し、特に、歯車を加工するときに利用される工作機械および加工方法に関する。 The present invention relates to a machine tool and a machining method, and more particularly to a machine tool and a machining method used when machining gears.
 ホブを利用して歯車を形成する工作機械が知られている。ホブ加工では、ホブカッタと同期してワークを回転させることで、ワークの全周に歯車が形成される。すなわち、ホブカッタとワークとを駆動する両駆動装置とも、目標値に対し変位と速度をフィードバックすることで、目標値に追従させている。 Machine tools that form gears using hobbs are known. In hobbing, a gear is formed on the entire circumference of the workpiece by rotating the workpiece in synchronization with the hob cutter. That is, both the drive devices for driving the hob cutter and the workpiece are made to follow the target value by feeding back the displacement and speed to the target value.
 図1は、公知の工作機械を示している。その工作機械101は、工作機械本体102と工作機械制御装置103とを備えている。工作機械本体102は、テーブル105とカッター106とモータ107とウォームギア108とエンコーダ109とを備えている。 FIG. 1 shows a known machine tool. The machine tool 101 includes a machine tool main body 102 and a machine tool control device 103. The machine tool main body 102 includes a table 105, a cutter 106, a motor 107, a worm gear 108, and an encoder 109.
 テーブル105は、鉛直方向に平行である回転軸を中心に回転可能に土台に支持されている。テーブル105は、その回転軸に垂直である支持面を有し、その支持面に接触するワーク110を支持する。ワーク110は、概ね円盤状に形成されている。カッター106は、ホブであり、図示されていない数値制御装置により制御されて回転することによりワーク110の縁を切削し、ワーク110の縁に歯を形成することによりワーク110を歯車に形成する。モータ107は、回転可能に支持されるシャフトを備え、工作機械制御装置103から出力される操作量に基づいてそのシャフトを回転させる。ウォームギア108は、モータ107のシャフトの回転動力をテーブル105に伝達し、テーブル105を回転させる。エンコーダ109は、モータ107のシャフトの回転速度を計測し、その回転速度を工作機械制御装置103に出力する。 The table 105 is supported by a base so as to be rotatable about a rotation axis parallel to the vertical direction. The table 105 has a support surface that is perpendicular to the rotation axis thereof, and supports the workpiece 110 that contacts the support surface. The workpiece 110 is generally formed in a disc shape. The cutter 106 is a hob, and is rotated by being controlled by a numerical control device (not shown) to cut the edge of the workpiece 110 and form teeth on the edge of the workpiece 110 to form the workpiece 110 into a gear. The motor 107 includes a shaft that is rotatably supported, and rotates the shaft based on an operation amount output from the machine tool control device 103. The worm gear 108 transmits the rotational power of the shaft of the motor 107 to the table 105 to rotate the table 105. The encoder 109 measures the rotational speed of the shaft of the motor 107 and outputs the rotational speed to the machine tool control device 103.
 工作機械制御装置103は、目標値算出部114と積分器115と制御装置117とを備えている。目標値算出部114は、ワーク110を歯車に加工するための数値制御データとカッター106の動作とを収集し、その数値制御データと動作とに基づいて目標角度を算出する。積分器115は、エンコーダ109により計測されるモータ107のシャフトの回転速度を積分することにより、テーブル105の角度を算出する。 The machine tool control device 103 includes a target value calculation unit 114, an integrator 115, and a control device 117. The target value calculation unit 114 collects numerical control data for processing the workpiece 110 into a gear and the operation of the cutter 106, and calculates a target angle based on the numerical control data and the operation. The integrator 115 calculates the angle of the table 105 by integrating the rotational speed of the shaft of the motor 107 measured by the encoder 109.
 制御装置117は、角度差分算出部121と角度フィードバックゲイン乗算部122と回転速度差分算出部123と速度フィードバックゲイン乗算部124と比例制御部125と積分制御部126と加算部127とを備えている。 The control device 117 includes an angle difference calculation unit 121, an angle feedback gain multiplication unit 122, a rotation speed difference calculation unit 123, a speed feedback gain multiplication unit 124, a proportional control unit 125, an integration control unit 126, and an addition unit 127. .
 角度差分算出部121は、目標値算出部114により算出された目標角度から積分器115により算出されたテーブル105の角度を減算することにより角度差分を算出する。角度フィードバックゲイン乗算部122は、角度差分算出部121により算出された角度差分に定数である角度フィードバックゲインを乗算して回転速度量を算出する。回転速度差分算出部123は、角度フィードバックゲイン乗算部122により算出された回転速度量からエンコーダ109により計測されるモータ107のシャフトの回転速度を減算することにより回転速度差分を算出する。速度フィードバックゲイン乗算部124は、回転速度差分算出部123により算出された回転速度差分に定数である速度フィードバックゲインを乗算することにより速度操作量を算出する。比例制御部125は、速度フィードバックゲイン乗算部124により算出された速度操作量に定数である比例フィードバックゲインを乗算して比例操作量を算出する。積分制御部126は、速度フィードバックゲイン乗算部124により算出された速度操作量を積分することにより積分制御量を算出し、その積分制御量に定数である積分フィードバックゲインを乗算することにより積分操作量を算出する。加算部127は、比例制御部125により算出された比例操作量に積分制御部126により算出された積分操作量を乗算することにより操作量を算出する。 The angle difference calculation unit 121 calculates the angle difference by subtracting the angle of the table 105 calculated by the integrator 115 from the target angle calculated by the target value calculation unit 114. The angle feedback gain multiplication unit 122 multiplies the angle difference calculated by the angle difference calculation unit 121 by a constant angle feedback gain to calculate the rotation speed amount. The rotation speed difference calculation unit 123 calculates the rotation speed difference by subtracting the rotation speed of the shaft of the motor 107 measured by the encoder 109 from the rotation speed amount calculated by the angle feedback gain multiplication unit 122. The speed feedback gain multiplication unit 124 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 123 by a constant speed feedback gain. The proportional control unit 125 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 124 by a constant proportional feedback gain. The integral control unit 126 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 124, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the integral operation amount. Is calculated. The adding unit 127 calculates an operation amount by multiplying the proportional operation amount calculated by the proportional control unit 125 by the integral operation amount calculated by the integration control unit 126.
 作業者は、まず、ワーク110をテーブル105に設置し、図示されていない数値制御装置にワーク110を歯車に加工するための数値制御データを入力する。その数値制御装置は、その数値制御データを工作機械制御装置103に出力し、その数値制御データに基づいてカッター106を回転させる。工作機械制御装置103の目標値算出部114は、数値制御データに基づいて目標角度を算出する。工作機械制御装置103の積分器115は、エンコーダ109により計測されるモータ107のシャフトの回転速度に基づいてテーブル105の角度を算出する。 First, the worker places the workpiece 110 on the table 105 and inputs numerical control data for processing the workpiece 110 into a gear into a numerical control device (not shown). The numerical control device outputs the numerical control data to the machine tool control device 103, and rotates the cutter 106 based on the numerical control data. The target value calculation unit 114 of the machine tool control device 103 calculates a target angle based on the numerical control data. The integrator 115 of the machine tool control device 103 calculates the angle of the table 105 based on the rotational speed of the shaft of the motor 107 measured by the encoder 109.
 制御装置117の角度差分算出部121は、目標値算出部114により算出された目標角度から積分器115により算出されたテーブル105の角度を減算することにより角度差分を算出する。角度フィードバックゲイン乗算部122は、角度差分算出部121により算出された角度差分に定数である角度フィードバックゲインを乗算して回転速度量を算出する。回転速度差分算出部123は、角度フィードバックゲイン乗算部122により算出された回転速度量からエンコーダ109により計測されるモータ107のシャフトの回転速度を減算することにより回転速度差分を算出する。速度フィードバックゲイン乗算部124は、回転速度差分算出部123により算出された回転速度差分に定数である速度フィードバックゲインを乗算することにより速度操作量を算出する。比例制御部125は、速度フィードバックゲイン乗算部124により算出された速度操作量に定数である比例フィードバックゲインを乗算して比例操作量を算出する。積分制御部126は、速度フィードバックゲイン乗算部124により算出された速度操作量を積分することにより積分制御量を算出し、その積分制御量に定数である積分フィードバックゲインを乗算することにより積分操作量を算出する。加算部127は、比例制御部125により算出された比例操作量に積分制御部126により算出された積分操作量を乗算することにより操作量を算出する。 The angle difference calculation unit 121 of the control device 117 calculates the angle difference by subtracting the angle of the table 105 calculated by the integrator 115 from the target angle calculated by the target value calculation unit 114. The angle feedback gain multiplication unit 122 multiplies the angle difference calculated by the angle difference calculation unit 121 by a constant angle feedback gain to calculate the rotation speed amount. The rotation speed difference calculation unit 123 calculates the rotation speed difference by subtracting the rotation speed of the shaft of the motor 107 measured by the encoder 109 from the rotation speed amount calculated by the angle feedback gain multiplication unit 122. The speed feedback gain multiplication unit 124 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 123 by a constant speed feedback gain. The proportional control unit 125 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 124 by a constant proportional feedback gain. The integral control unit 126 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 124, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the integral operation amount. Is calculated. The adding unit 127 calculates an operation amount by multiplying the proportional operation amount calculated by the proportional control unit 125 by the integral operation amount calculated by the integration control unit 126.
 モータ107は、加算部127により算出された操作量に基づいてシャフトを回転させる。ウォームギア108は、モータ107のシャフトの回転動力をテーブル105に伝達し、テーブル105を回転させる。工作機械101は、このような動作により、その数値制御データに示されるようにカッター106がワーク110の縁を切削し、ワーク110の縁に歯を形成することによりワーク110を歯車に形成する。 The motor 107 rotates the shaft based on the operation amount calculated by the adding unit 127. The worm gear 108 transmits the rotational power of the shaft of the motor 107 to the table 105 to rotate the table 105. With such an operation, the machine tool 101 forms the workpiece 110 into a gear by the cutter 106 cutting the edge of the workpiece 110 and forming teeth on the edge of the workpiece 110 as indicated by the numerical control data.
 図2は、公知の他の工作機械を示している。その工作機械131は、工作機械本体132と工作機械制御装置133とを備えている。工作機械本体132は、テーブル135とカッター136とダイレクトドライブモータ137とロータリーエンコーダ138とを備えている。 FIG. 2 shows another known machine tool. The machine tool 131 includes a machine tool main body 132 and a machine tool control device 133. The machine tool main body 132 includes a table 135, a cutter 136, a direct drive motor 137, and a rotary encoder 138.
 テーブル135は、鉛直方向に平行である回転軸を中心に回転可能に土台に支持されている。テーブル135は、その回転軸に垂直である支持面を有し、その支持面に接触するワーク139を支持する。ワーク139は、概ね円盤状に形成されている。カッター136は、図示されていない数値制御装置により制御されて回転することによりワーク139の縁を切削し、ワーク139の縁に歯を形成することによりワーク139を歯車に形成する。ダイレクトドライブモータ137は、ダイレクトドライブモータロータ141とダイレクトドライブモータステータ142とを備えている。ダイレクトドライブモータロータ141は、テーブル135に固定されている。ダイレクトドライブモータステータ142は、その土台に固定されている。ダイレクトドライブモータ137は、工作機械制御装置133から出力される操作量に基づいてテーブル135を回転させる。ロータリーエンコーダ138は、テーブル135の角度を計測し、その角度を工作機械制御装置133に出力する。 The table 135 is supported by a base so as to be rotatable about a rotation axis parallel to the vertical direction. The table 135 has a support surface that is perpendicular to the rotation axis thereof, and supports the work 139 that contacts the support surface. The work 139 is formed in a generally disc shape. The cutter 136 is controlled by a numerical control device (not shown) to rotate, thereby cutting the edge of the work 139 and forming teeth on the edge of the work 139 to form the work 139 into a gear. The direct drive motor 137 includes a direct drive motor rotor 141 and a direct drive motor stator 142. The direct drive motor rotor 141 is fixed to the table 135. The direct drive motor stator 142 is fixed to the base. The direct drive motor 137 rotates the table 135 based on the operation amount output from the machine tool control device 133. The rotary encoder 138 measures the angle of the table 135 and outputs the angle to the machine tool control device 133.
 工作機械制御装置133は、目標値算出部114と微分器145と制御装置117とを備えている。目標値算出部114は、ワーク139を歯車に加工するために、数値制御データに基づいて目標角度を算出する。微分器145は、ロータリーエンコーダ138により計測されるテーブル135の角度を微分することにより、テーブル135の回転速度を算出する。 The machine tool control device 133 includes a target value calculation unit 114, a differentiator 145, and a control device 117. The target value calculation unit 114 calculates a target angle based on the numerical control data in order to process the workpiece 139 into a gear. The differentiator 145 calculates the rotational speed of the table 135 by differentiating the angle of the table 135 measured by the rotary encoder 138.
 制御装置117は、角度差分算出部121と角度フィードバックゲイン乗算部122と回転速度差分算出部123と速度フィードバックゲイン乗算部124と比例制御部125と積分制御部126と加算部127とを備えている。 The control device 117 includes an angle difference calculation unit 121, an angle feedback gain multiplication unit 122, a rotation speed difference calculation unit 123, a speed feedback gain multiplication unit 124, a proportional control unit 125, an integration control unit 126, and an addition unit 127. .
 角度差分算出部121は、目標値算出部114により算出された目標角度からロータリーエンコーダ138により計測されるテーブル135の角度を減算することにより角度差分を算出する。角度フィードバックゲイン乗算部122は、角度差分算出部121により算出された角度差分に定数である角度フィードバックゲインを乗算して回転速度量を算出する。回転速度差分算出部123は、角度フィードバックゲイン乗算部122により算出された回転速度量から微分器145により算出されたテーブル135の回転速度を減算することにより回転速度差分を算出する。速度フィードバックゲイン乗算部124は、回転速度差分算出部123により算出された回転速度差分に定数である速度フィードバックゲインを乗算することにより速度操作量を算出する。比例制御部125は、速度フィードバックゲイン乗算部124により算出された速度操作量に定数である比例フィードバックゲインを乗算して比例操作量を算出する。積分制御部126は、速度フィードバックゲイン乗算部124により算出された速度操作量を積分することにより積分制御量を算出し、その積分制御量に定数である積分フィードバックゲインを乗算することにより積分操作量を算出する。加算部127は、比例制御部125により算出された比例操作量に積分制御部126により算出された積分操作量を乗算することにより操作量を算出する。 The angle difference calculation unit 121 calculates the angle difference by subtracting the angle of the table 135 measured by the rotary encoder 138 from the target angle calculated by the target value calculation unit 114. The angle feedback gain multiplication unit 122 multiplies the angle difference calculated by the angle difference calculation unit 121 by a constant angle feedback gain to calculate the rotation speed amount. The rotation speed difference calculation unit 123 calculates the rotation speed difference by subtracting the rotation speed of the table 135 calculated by the differentiator 145 from the rotation speed amount calculated by the angle feedback gain multiplication unit 122. The speed feedback gain multiplication unit 124 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 123 by a constant speed feedback gain. The proportional control unit 125 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 124 by a constant proportional feedback gain. The integral control unit 126 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 124, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the integral operation amount. Is calculated. The adding unit 127 calculates an operation amount by multiplying the proportional operation amount calculated by the proportional control unit 125 by the integral operation amount calculated by the integration control unit 126.
 本発明による加工方法は、工作機械131を用いて実行される。作業者は、まず、ワーク139をテーブル135に設置し、図示されていない数値制御装置にワーク139を歯車に加工するための数値制御データを入力する。その数値制御装置は、その数値制御データを工作機械制御装置133に出力し、その数値制御データに基づいてカッター136を回転させる。工作機械制御装置133の目標値算出部114は、数値制御データに基づいて目標角度を算出する。工作機械制御装置133の微分器145は、ロータリーエンコーダ138により計測されたテーブル135の回転角度に基づいてテーブル135の回転速度を算出する。 The machining method according to the present invention is executed using the machine tool 131. First, the operator places the work 139 on the table 135 and inputs numerical control data for processing the work 139 into a gear into a numerical control device (not shown). The numerical control device outputs the numerical control data to the machine tool control device 133, and rotates the cutter 136 based on the numerical control data. The target value calculation unit 114 of the machine tool control device 133 calculates a target angle based on the numerical control data. The differentiator 145 of the machine tool control device 133 calculates the rotation speed of the table 135 based on the rotation angle of the table 135 measured by the rotary encoder 138.
 制御装置117の角度差分算出部121は、目標値算出部114により算出された目標角度から微分器145により算出されたテーブル135の角度を減算することにより角度差分を算出する。角度フィードバックゲイン乗算部122は、角度差分算出部121により算出された角度差分に定数である角度フィードバックゲインを乗算して回転速度量を算出する。回転速度差分算出部123は、角度フィードバックゲイン乗算部122により算出された回転速度量から微分器145により算出されるテーブル135の回転速度を減算することにより回転速度差分を算出する。速度フィードバックゲイン乗算部124は、回転速度差分算出部123により算出された回転速度差分に定数である速度フィードバックゲインを乗算することにより速度操作量を算出する。比例制御部125は、速度フィードバックゲイン乗算部124により算出された速度操作量に定数である比例フィードバックゲインを乗算して比例操作量を算出する。積分制御部126は、速度フィードバックゲイン乗算部124により算出された速度操作量を積分することにより積分制御量を算出し、その積分制御量に定数である積分フィードバックゲインを乗算することにより積分操作量を算出する。加算部127は、比例制御部125により算出された比例操作量に積分制御部126により算出された積分操作量を乗算することにより操作量を算出する。 The angle difference calculation unit 121 of the control device 117 calculates the angle difference by subtracting the angle of the table 135 calculated by the differentiator 145 from the target angle calculated by the target value calculation unit 114. The angle feedback gain multiplication unit 122 multiplies the angle difference calculated by the angle difference calculation unit 121 by a constant angle feedback gain to calculate the rotation speed amount. The rotation speed difference calculation unit 123 calculates the rotation speed difference by subtracting the rotation speed of the table 135 calculated by the differentiator 145 from the rotation speed amount calculated by the angle feedback gain multiplication unit 122. The speed feedback gain multiplication unit 124 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 123 by a constant speed feedback gain. The proportional control unit 125 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 124 by a constant proportional feedback gain. The integral control unit 126 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 124, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the integral operation amount. Is calculated. The adding unit 127 calculates an operation amount by multiplying the proportional operation amount calculated by the proportional control unit 125 by the integral operation amount calculated by the integration control unit 126.
 ダイレクトドライブモータ137は、加算部127により算出された操作量に基づいてテーブル135を回転させる。工作機械131は、このような動作により、その数値制御データに示されるようにカッター136がワーク139の縁を切削し、ワーク139の縁に歯を形成することによりワーク139を歯車に形成する。 The direct drive motor 137 rotates the table 135 based on the operation amount calculated by the adding unit 127. With such an operation, the machine tool 131 forms the workpiece 139 into a gear by the cutter 136 cutting the edge of the workpiece 139 and forming teeth on the edge of the workpiece 139 as indicated by the numerical control data.
 これらのような工作機械は、フィードバック制御系の定数を調整することで、たとえば、速度フィードバックのゲインを高くすることでワークに作用する外力に対するテーブル回転方向の剛性が確保することができる。しかし、ゲインを高く設定すると、制御系を起因とする振動現象が発生する。このため、これらのような工作機械は、対象とする全てのワークを加工する際に制御系を起因とする振動現象が発生しないように定数をセットし、全ての制御定数は出荷時に固定されている。工作機械は、ワークに作用する外力に対してテーブルの回転方向の剛性を確保し、かつ、発振現象を防止することが望まれている。 Such machine tools can secure the rigidity in the table rotation direction against an external force acting on the workpiece by adjusting the constant of the feedback control system, for example, by increasing the gain of the speed feedback. However, when the gain is set high, a vibration phenomenon caused by the control system occurs. For this reason, machine tools such as these set constants so that vibration phenomena caused by the control system do not occur when machining all target workpieces, and all control constants are fixed at the time of shipment. Yes. A machine tool is desired to ensure the rigidity in the rotational direction of the table against an external force acting on the workpiece and to prevent an oscillation phenomenon.
 特許第2969643号公報には、被加工歯車の加工完了時点を的確に検出して加工を終了することにより、加工能率を高めた歯車加工装置が開示されている。その歯車加工装置は、カッター歯車と被加工歯車をそれぞれ駆動するモータと、前記それぞれのモータの回転を検出するエンコーダと、これらモータをそれぞれ同期して回転するように制御するPLL制御手段と、カッター歯車による被加工歯車に対する加工量に応じて前記両モータの回転位相を逐次シフトさせるシフト手段と、加工部における振動を検出する手段とを備え、前記振動を検出する手段は、前記PLL制御手段において前記それぞれのモータに与える指令基準パルスに対する前記エンコーダからの入力パルスの位相振れ状態を検出するジッタ量検出手段であることを特徴とする。 Japanese Patent No. 2996943 discloses a gear machining apparatus that increases machining efficiency by accurately detecting the completion of machining of a gear to be machined and ending the machining. The gear machining apparatus includes a motor for driving a cutter gear and a gear to be machined, an encoder for detecting rotation of each of the motors, PLL control means for controlling the motors to rotate in synchronization with each other, a cutter The PLL control unit includes a shift unit that sequentially shifts the rotational phases of the two motors according to a processing amount of the gear to be processed by the gear, and a unit that detects vibration in the processing unit. It is a jitter amount detecting means for detecting a phase fluctuation state of an input pulse from the encoder with respect to a command reference pulse given to each of the motors.
 特開平07-88746号公報には、簡易な装置で既存の機械に対しても簡単な改造で、検出を行うことにより切削中の異常(例えば工具切り刃摩耗の増加や破損など)をインプロセスで計測し、工具や機械の損傷と加工物の不良を防止する歯車加工機械における切削異常検出と非常戻し方法が開示されている。その歯車加工機械における切削異常検出と非常戻し方法は、工具と被加工歯車材を一定の回転比率で回転させながら切削加工を行う歯車加工機において、前記工具の駆動軸に回転周波数検出用の歯車と磁電式あるいは光電式検出器を設け、前記工具駆動軸の回転周波数変動を測定することにより、正常切削時の回転周波数と比較判定し切削状態の異常を検出することを特徴とする。 Japanese Patent Application Laid-Open No. 07-88746 discloses in-process abnormalities during cutting (for example, increased wear or damage to the cutting edge of the tool) by detecting the machine with a simple device and with simple modifications. A cutting abnormality detection and emergency return method is disclosed in a gear processing machine, which measures the damage of the tool and machine and prevents the defect of the workpiece. The cutting abnormality detection and emergency return method in the gear processing machine is a gear processing machine that performs cutting while rotating a tool and a gear material to be processed at a constant rotation ratio. And a magnetoelectric or photoelectric detector, and by measuring fluctuations in the rotational frequency of the tool drive shaft, it is compared with the rotational frequency during normal cutting to detect abnormalities in the cutting state.
特許第2969643号公報Japanese Patent No. 2969643 特開平07-88746号公報JP 07-88746 A
 本発明の課題は、ワークに作用する外力に対してテーブルの回転方向の剛性を確保し、かつ、発振現象を防止する工作機械および加工方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a machine tool and a machining method that ensure rigidity in the rotation direction of a table against an external force acting on a workpiece and prevent an oscillation phenomenon.
 本発明による工作機械は、速度フィードバックゲインを自動的に更新する速度フィードバックゲイン自動設定装置と、ワークを支持するテーブルの回転に関するセンサ値を計測するセンサと、そのテーブルの角度が目標角度に一致するように、その速度フィードバックゲインに基づいて、そのテーブルを回転させるモータをそのセンサ値に基づいてフィードバック制御する制御装置とを備えている。このような工作機械は、その速度フィードバックゲインが可変であり、その速度フィードバックゲインに適正な値が代入されたときに、そのワークに作用する外力に対してそのテーブルの回転方向の剛性を確保し、かつ、発振現象を防止することができる。 A machine tool according to the present invention includes a speed feedback gain automatic setting device that automatically updates a speed feedback gain, a sensor that measures a sensor value related to rotation of a table that supports a workpiece, and the angle of the table matches a target angle. As described above, a control device that feedback-controls a motor that rotates the table based on the sensor value based on the speed feedback gain. Such a machine tool has a variable speed feedback gain, and when the appropriate value is substituted for the speed feedback gain, it ensures the rigidity in the rotational direction of the table against the external force acting on the workpiece. In addition, the oscillation phenomenon can be prevented.
 その速度フィードバックゲイン自動設定装置は、そのセンサ値に基づいて振動の程度を算出する振動計測部と、その振動の程度に基づいてその速度フィードバックゲインを算出する速度フィードバックゲイン算出部とを備えていることが好ましい。 The speed feedback gain automatic setting device includes a vibration measuring unit that calculates the degree of vibration based on the sensor value, and a speed feedback gain calculating unit that calculates the speed feedback gain based on the degree of vibration. It is preferable.
 その速度フィードバックゲインは、その振動の程度が所定の閾値より大きいときに増加することが好ましい。 The speed feedback gain is preferably increased when the degree of vibration is greater than a predetermined threshold.
 そのセンサは、そのテーブルの角度を計測するロータリーエンコーダを含んでいることが好ましい。このとき、センサ値は、そのテーブルの角度を示している。 The sensor preferably includes a rotary encoder that measures the angle of the table. At this time, the sensor value indicates the angle of the table.
 本発明による工作機械は、そのワークに歯車に形成するための数値制御データに基づいてその目標角度を算出する目標値算出部をさらに備えている。すなわち、このような工作機械は、歯車を作成する歯車加工機に好適である。 The machine tool according to the present invention further includes a target value calculation unit that calculates a target angle based on numerical control data for forming a gear on the workpiece. That is, such a machine tool is suitable for a gear processing machine that creates gears.
 その速度フィードバックゲイン自動設定装置は、そのワークの材種を収集するワーク材種収集部と、複数材種と複数速度フィードバックゲインとを対応付けるテーブルを参照して、その複数速度フィードバックゲインのうちからその材種に対応するその速度フィードバックゲインを算出する速度フィードバックゲイン算出部とをさらに備えている。 The speed feedback gain automatic setting device refers to a workpiece material type collection unit that collects the material type of the workpiece, and a table that associates a plurality of material types with a plurality of speed feedback gains, and determines the speed feedback gain from the plurality of speed feedback gains. And a speed feedback gain calculating unit that calculates the speed feedback gain corresponding to the material type.
 そのワーク材種収集部は、そのワークを加工するためのデータからその材種を抽出する。 The workpiece material type collection unit extracts the material type from the data for processing the workpiece.
 本発明による加工方法は、速度フィードバックゲインを自動的に更新するステップと、ワークを支持するテーブルの回転に関するセンサ値を計測するステップと、そのテーブルの角度が目標角度に一致するように、その速度フィードバックゲインに基づいて、そのテーブルを回転させるモータをセンサ値に基づいてフィードバック制御するステップとを備えている。このような加工方法は、その速度フィードバックゲインが可変であり、その速度フィードバックゲインに適正な値が代入されたときに、そのワークに作用する外力に対してそのテーブルの回転方向の剛性を確保し、かつ、発振現象を防止することができる。 The machining method according to the present invention includes a step of automatically updating a speed feedback gain, a step of measuring a sensor value related to rotation of a table supporting a workpiece, and a speed of the table so that the angle of the table matches a target angle. Feedback control of a motor for rotating the table based on the feedback gain based on the sensor value. In such a machining method, the speed feedback gain is variable, and when an appropriate value is substituted for the speed feedback gain, the rigidity in the rotational direction of the table is secured against the external force acting on the workpiece. In addition, the oscillation phenomenon can be prevented.
 本発明による加工方法は、そのセンサ値に基づいて振動の程度を算出するステップと、その振動の程度に基づいてその速度フィードバックゲインを算出するステップとをさらに備えていることが好ましい。 Preferably, the processing method according to the present invention further includes a step of calculating the degree of vibration based on the sensor value and a step of calculating the speed feedback gain based on the degree of vibration.
 その速度フィードバックゲインは、その振動の程度が所定の閾値より大きいときに増加することが好ましい。 The speed feedback gain is preferably increased when the degree of vibration is greater than a predetermined threshold.
 そのセンサは、そのテーブルの角度を計測するロータリーエンコーダを含んでいることが好ましい。このとき、そのセンサ値は、そのテーブルの角度を示している。 The sensor preferably includes a rotary encoder that measures the angle of the table. At this time, the sensor value indicates the angle of the table.
 本発明による加工方法は、そのワークに歯車に形成するための数値制御データに基づいてその目標角度を算出するステップをさらに備えている。すなわち、このような工作機械は、歯車を作成する歯車加工機に好適である。 The machining method according to the present invention further includes a step of calculating the target angle based on numerical control data for forming a gear on the workpiece. That is, such a machine tool is suitable for a gear processing machine that creates gears.
 本発明による加工方法は、そのワークの材種を収集するステップと、複数材種と複数速度フィードバックゲインとを対応付けるテーブルを参照して、その複数速度フィードバックゲインのうちからその材種に対応するその速度フィードバックゲインを算出するステップとをさらに備えていることが好ましい。 The machining method according to the present invention refers to a step of collecting the material type of the workpiece and a table associating a plurality of material types and a plurality of speed feedback gains, and corresponding to the material type out of the plurality of speed feedback gains. Preferably, the method further comprises a step of calculating a speed feedback gain.
 本発明による加工方法は、そのワークを加工するためのデータからその材種を抽出するステップをさらに備えていることが好ましい。 The machining method according to the present invention preferably further includes a step of extracting the material type from data for machining the workpiece.
 本発明による工作機械および加工方法は、ワークに作用する外力に対してテーブルの回転方向の剛性を確保し、かつ、発振現象を防止することができる。 The machine tool and the machining method according to the present invention can ensure the rigidity in the rotation direction of the table against an external force acting on the workpiece and can prevent an oscillation phenomenon.
図1は、公知の工作機械を示すブロック図である。FIG. 1 is a block diagram showing a known machine tool. 図2は、公知の他の工作機械を示すブロック図である。FIG. 2 is a block diagram showing another known machine tool. 図3は、本発明による工作機械の実施の形態を示すブロック図である。FIG. 3 is a block diagram showing an embodiment of a machine tool according to the present invention. 図4は、様々な速度フィードバックゲインを用いてモータをフィードバック制御するときにテーブルが回転するときの剛性(コンプライアンス)の変化を示すグラフである。FIG. 4 is a graph showing changes in rigidity (compliance) when the table rotates when feedback controlling the motor using various speed feedback gains. 図5は、本発明による工作機械の実施の他の形態を示すブロック図である。FIG. 5 is a block diagram showing another embodiment of the machine tool according to the present invention. 図6は、本発明による工作機械の実施の他の形態を示すブロック図である。FIG. 6 is a block diagram showing another embodiment of the machine tool according to the present invention.
 図面を参照して、本発明による工作機械の実施の形態を記載する。その工作機械1は、図3に示されているように、工作機械本体2と工作機械制御装置3とを備えている。工作機械本体2は、テーブル5とカッター6とモータ7とウォームギア8とロータリーエンコーダ9とエンコーダ10とを備えている。 Embodiments of a machine tool according to the present invention will be described with reference to the drawings. The machine tool 1 includes a machine tool body 2 and a machine tool control device 3 as shown in FIG. The machine tool main body 2 includes a table 5, a cutter 6, a motor 7, a worm gear 8, a rotary encoder 9, and an encoder 10.
 テーブル5は、鉛直方向に平行である回転軸を中心に回転可能に土台に支持されている。テーブル5は、その回転軸に垂直である支持面を有し、その支持面に接触するワーク11を支持する。ワーク11は、概ね円盤状に形成されている。カッター6は、図示されていない数値制御装置により制御されて回転することによりワーク11の縁を切削し、ワーク11の縁に歯を形成することによりワーク11を歯車に形成する。モータ7は、回転可能に支持されるシャフトを備え、工作機械制御装置3から出力される操作量に基づいてそのシャフトを回転させる。ウォームギア8は、モータ7のシャフトの回転動力をテーブル5に伝達し、テーブル5を回転させる。ロータリーエンコーダ9は、テーブル5の角度を計測し、その角度を工作機械制御装置3に出力する。エンコーダ10は、モータ7のシャフトの回転速度を計測し、その回転速度を工作機械制御装置3に出力する。 The table 5 is supported by a base so as to be rotatable about a rotation axis parallel to the vertical direction. The table 5 has a support surface that is perpendicular to the rotation axis thereof, and supports the workpiece 11 that contacts the support surface. The workpiece 11 is generally formed in a disc shape. The cutter 6 is controlled and rotated by a numerical control device (not shown) to cut the edge of the workpiece 11 and form teeth on the edge of the workpiece 11 to form the workpiece 11 into a gear. The motor 7 includes a shaft that is rotatably supported, and rotates the shaft based on an operation amount output from the machine tool control device 3. The worm gear 8 transmits the rotational power of the shaft of the motor 7 to the table 5 and rotates the table 5. The rotary encoder 9 measures the angle of the table 5 and outputs the angle to the machine tool control device 3. The encoder 10 measures the rotational speed of the shaft of the motor 7 and outputs the rotational speed to the machine tool control device 3.
 工作機械制御装置3は、目標値算出部14と積分器15と速度フィードバックゲイン設定装置16と制御装置17とを備えている。目標値算出部14は、ワーク11を歯車に加工するための数値制御データとカッター6の動作とを収集し、その数値制御データと動作とに基づいて目標角度を算出する。積分器15は、エンコーダ10により計測されるモータ7のシャフトの回転速度を積分することにより、テーブル5の角度を算出する。 The machine tool control device 3 includes a target value calculation unit 14, an integrator 15, a speed feedback gain setting device 16, and a control device 17. The target value calculation unit 14 collects numerical control data for processing the workpiece 11 into a gear and the operation of the cutter 6 and calculates a target angle based on the numerical control data and the operation. The integrator 15 calculates the angle of the table 5 by integrating the rotational speed of the shaft of the motor 7 measured by the encoder 10.
 速度フィードバックゲイン設定装置16は、ロータリーエンコーダ9により計測されるテーブル5の角度に基づいて速度フィードバックゲインを更新する。すなわち、速度フィードバックゲイン設定装置16は、振動計測部28と速度フィードバックゲイン算出部29とを備えている。振動計測部28は、ロータリーエンコーダ9により計測されるテーブル5の角度に基づいて、テーブル5の振動の程度を算出する。速度フィードバックゲイン算出部29は、振動計測部28により算出される振動の程度に基づいて速度フィードバックゲインを算出する。 The speed feedback gain setting device 16 updates the speed feedback gain based on the angle of the table 5 measured by the rotary encoder 9. That is, the speed feedback gain setting device 16 includes a vibration measuring unit 28 and a speed feedback gain calculating unit 29. The vibration measuring unit 28 calculates the degree of vibration of the table 5 based on the angle of the table 5 measured by the rotary encoder 9. The speed feedback gain calculation unit 29 calculates a speed feedback gain based on the degree of vibration calculated by the vibration measurement unit 28.
 速度フィードバックゲイン算出部29は、詳細には、閾値と複数の速度フィードバックゲインとを記録する記憶装置を備えている。速度フィードバックゲイン算出部29は、初期的には、その複数の速度フィードバックゲインのうちの最小の速度フィードバックゲインを出力する。速度フィードバックゲイン算出部29は、振動計測部28により算出される振動の程度がその閾値を越えたときに、その複数の速度フィードバックゲインのうちの現在出力している速度フィードバックゲインより1段階だけ大きい速度フィードバックゲインを出力する。すなわち、速度フィードバックゲイン設定装置16は、その複数の速度フィードバックゲインのいずれかのみを出力し、速度フィードバックゲイン設定装置16により出力される速度フィードバックゲインは、上限値と下限値とを有している。速度フィードバックゲイン算出部29は、さらに、振動計測部28により算出される振動の程度がその閾値を越え、かつ、その複数の速度フィードバックゲインが現在出力している速度フィードバックゲインより大きい速度フィードバックゲインを含んでいないときに、異常と判断して、工作機械本体2を停止させる。 Specifically, the speed feedback gain calculation unit 29 includes a storage device that records a threshold value and a plurality of speed feedback gains. The speed feedback gain calculation unit 29 initially outputs the minimum speed feedback gain among the plurality of speed feedback gains. The speed feedback gain calculating unit 29 is larger by one step than the currently output speed feedback gain among the plurality of speed feedback gains when the degree of vibration calculated by the vibration measuring unit 28 exceeds the threshold. Output speed feedback gain. That is, the speed feedback gain setting device 16 outputs only one of the plurality of speed feedback gains, and the speed feedback gain output by the speed feedback gain setting device 16 has an upper limit value and a lower limit value. . The speed feedback gain calculation unit 29 further selects a speed feedback gain that is greater than the speed feedback gain that the plurality of speed feedback gains are currently output and the degree of vibration calculated by the vibration measurement unit 28 exceeds the threshold value. When not included, it is determined as abnormal and the machine tool body 2 is stopped.
 制御装置17は、目標値算出部14により算出された目標角度と積分器15により算出されたテーブル5の角度とエンコーダ10により計測されるモータ7のシャフトの回転速度と速度フィードバックゲイン設定装置16により設定される速度フィードバックゲインとに基づいて、テーブル5の角度が目標値算出部14により算出された目標角度に一致するように、モータ7をフィードバック制御する。 The control device 17 uses the target angle calculated by the target value calculation unit 14, the angle of the table 5 calculated by the integrator 15, the rotational speed of the shaft of the motor 7 measured by the encoder 10, and the speed feedback gain setting device 16. Based on the set speed feedback gain, the motor 7 is feedback-controlled so that the angle of the table 5 matches the target angle calculated by the target value calculation unit 14.
 すなわち、制御装置17は、角度差分算出部21と角度フィードバックゲイン乗算部22と回転速度差分算出部23と速度フィードバックゲイン乗算部24と比例制御部25と積分制御部26と加算部27とを備えている。 That is, the control device 17 includes an angle difference calculation unit 21, an angle feedback gain multiplication unit 22, a rotation speed difference calculation unit 23, a speed feedback gain multiplication unit 24, a proportional control unit 25, an integration control unit 26, and an addition unit 27. ing.
 角度差分算出部21は、目標値算出部14により算出された目標角度から積分器15により算出されたテーブル5の角度を減算することにより角度差分を算出する。角度フィードバックゲイン乗算部22は、角度差分算出部21により算出された角度差分に定数である角度フィードバックゲインを乗算して回転速度量を算出する。回転速度差分算出部23は、角度フィードバックゲイン乗算部22により算出された回転速度量からエンコーダ10により計測されるモータ7のシャフトの回転速度を減算することにより回転速度差分を算出する。速度フィードバックゲイン乗算部24は、回転速度差分算出部23により算出された回転速度差分に速度フィードバックゲイン設定装置16により設定される速度フィードバックゲインを乗算することにより速度操作量を算出する。比例制御部25は、速度フィードバックゲイン乗算部24により算出された速度操作量に定数である比例フィードバックゲインを乗算して比例操作量を算出する。積分制御部26は、速度フィードバックゲイン乗算部24により算出された速度操作量を積分することにより積分制御量を算出し、その積分制御量に定数である積分フィードバックゲインを乗算することにより積分操作量を算出する。加算部27は、比例制御部25により算出された比例操作量に積分制御部26により算出された積分操作量を乗算することにより操作量を算出する。その操作量は、制御装置17により出力される操作量に一致している。 The angle difference calculation unit 21 calculates the angle difference by subtracting the angle of the table 5 calculated by the integrator 15 from the target angle calculated by the target value calculation unit 14. The angle feedback gain multiplication unit 22 calculates the rotation speed amount by multiplying the angle difference calculated by the angle difference calculation unit 21 by an angle feedback gain that is a constant. The rotation speed difference calculation unit 23 calculates the rotation speed difference by subtracting the rotation speed of the shaft of the motor 7 measured by the encoder 10 from the rotation speed amount calculated by the angle feedback gain multiplication unit 22. The speed feedback gain multiplication unit 24 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 23 by the speed feedback gain set by the speed feedback gain setting device 16. The proportional control unit 25 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 24 by a constant proportional feedback gain. The integration control unit 26 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 24, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the operation amount. Is calculated. The adding unit 27 calculates the operation amount by multiplying the proportional operation amount calculated by the proportional control unit 25 by the integral operation amount calculated by the integration control unit 26. The amount of operation matches the amount of operation output by the control device 17.
 本発明による加工方法の実施の形態は、工作機械1を用いて実行される。作業者は、まず、ワーク11をテーブル5に設置し、図示されていない数値制御装置にワーク11を歯車に加工するための数値制御データを入力する。その数値制御装置は、その数値制御データを工作機械制御装置3に出力し、その数値制御データに基づいてカッター6を回転させる。工作機械制御装置3の目標値算出部14は、その数値制御データとカッター6の動作とを収集し、その数値制御データと動作とに基づいて目標角度を算出する。工作機械制御装置3の積分器15は、エンコーダ10により計測されるモータ7のシャフトの回転速度に基づいてテーブル5の角度を算出する。 The embodiment of the machining method according to the present invention is executed using the machine tool 1. First, the worker places the workpiece 11 on the table 5 and inputs numerical control data for processing the workpiece 11 into a gear into a numerical control device (not shown). The numerical control device outputs the numerical control data to the machine tool control device 3, and rotates the cutter 6 based on the numerical control data. The target value calculation unit 14 of the machine tool control device 3 collects the numerical control data and the operation of the cutter 6 and calculates a target angle based on the numerical control data and the operation. The integrator 15 of the machine tool control device 3 calculates the angle of the table 5 based on the rotational speed of the shaft of the motor 7 measured by the encoder 10.
 速度フィードバックゲイン設定装置16の振動計測部28は、ロータリーエンコーダ9により計測されるテーブル5の角度に基づいてテーブル5の振動の程度を算出する。速度フィードバックゲイン算出部29は、記憶装置に予め記録されている複数の速度フィードバックゲインのうちの最小の速度フィードバックゲインを初期的に出力する。速度フィードバックゲイン算出部29は、振動計測部28により算出される振動の程度がその閾値を越えたときに、その複数の速度フィードバックゲインのうちの現在出力している速度フィードバックゲインより1段階だけ大きい速度フィードバックゲインを出力する。 The vibration measuring unit 28 of the speed feedback gain setting device 16 calculates the degree of vibration of the table 5 based on the angle of the table 5 measured by the rotary encoder 9. The speed feedback gain calculation unit 29 initially outputs the minimum speed feedback gain among a plurality of speed feedback gains recorded in advance in the storage device. The speed feedback gain calculating unit 29 is larger by one step than the currently output speed feedback gain among the plurality of speed feedback gains when the degree of vibration calculated by the vibration measuring unit 28 exceeds the threshold. Output speed feedback gain.
 制御装置17の角度差分算出部21は、目標値算出部14により算出された目標角度から積分器15により算出されたテーブル5の角度を減算することにより角度差分を算出する。角度フィードバックゲイン乗算部22は、角度差分算出部21により算出された角度差分に定数である角度フィードバックゲインを乗算して回転速度量を算出する。回転速度差分算出部23は、角度フィードバックゲイン乗算部22により算出された回転速度量からエンコーダ10により計測されるモータ7のシャフトの回転速度を減算することにより回転速度差分を算出する。速度フィードバックゲイン乗算部24は、回転速度差分算出部23により算出された回転速度差分に速度フィードバックゲイン設定装置16により設定される速度フィードバックゲインを乗算することにより速度操作量を算出する。比例制御部25は、速度フィードバックゲイン乗算部24により算出された速度操作量に定数である比例フィードバックゲインを乗算して比例操作量を算出する。積分制御部26は、速度フィードバックゲイン乗算部24により算出された速度操作量を積分することにより積分制御量を算出し、その積分制御量に定数である積分フィードバックゲインを乗算することにより積分操作量を算出する。加算部27は、比例制御部25により算出された比例操作量に積分制御部26により算出された積分操作量を乗算することにより操作量を算出する。 The angle difference calculation unit 21 of the control device 17 calculates the angle difference by subtracting the angle of the table 5 calculated by the integrator 15 from the target angle calculated by the target value calculation unit 14. The angle feedback gain multiplication unit 22 calculates the rotation speed amount by multiplying the angle difference calculated by the angle difference calculation unit 21 by an angle feedback gain that is a constant. The rotation speed difference calculation unit 23 calculates the rotation speed difference by subtracting the rotation speed of the shaft of the motor 7 measured by the encoder 10 from the rotation speed amount calculated by the angle feedback gain multiplication unit 22. The speed feedback gain multiplication unit 24 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 23 by the speed feedback gain set by the speed feedback gain setting device 16. The proportional control unit 25 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 24 by a constant proportional feedback gain. The integration control unit 26 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 24, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the operation amount. Is calculated. The adding unit 27 calculates the operation amount by multiplying the proportional operation amount calculated by the proportional control unit 25 by the integral operation amount calculated by the integration control unit 26.
 モータ7は、加算部27により算出された操作量に基づいてシャフトを回転させる。ウォームギア8は、モータ7のシャフトの回転動力をテーブル5に伝達し、テーブル5を回転させる。工作機械1は、このような動作により、その数値制御データに示されるようにカッター6がワーク11の縁を切削し、ワーク11の縁に歯を形成することによりワーク11を歯車に形成する。 The motor 7 rotates the shaft based on the operation amount calculated by the adding unit 27. The worm gear 8 transmits the rotational power of the shaft of the motor 7 to the table 5 and rotates the table 5. With this operation, the machine tool 1 forms the workpiece 11 into a gear by the cutter 6 cutting the edge of the workpiece 11 and forming teeth on the edge of the workpiece 11 as shown in the numerical control data.
 さらに、速度フィードバックゲイン算出部29は、振動計測部28により算出される振動の程度がその閾値を越え、かつ、その複数の速度フィードバックゲインが現在出力している速度フィードバックゲインより大きい速度フィードバックゲインを含んでいないときに、異常と判断して、カッター6の回転とテーブル5の回転とを停止させる。このような停止によれば、工作機械制御装置3は、テーブル駆動系が発振現象を起こし制御不能に陥ることを防止することができる。 Furthermore, the speed feedback gain calculation unit 29 has a speed feedback gain that is greater than the speed feedback gain that the plurality of speed feedback gains are currently output, and the degree of vibration calculated by the vibration measurement unit 28 exceeds the threshold value. When not included, it is determined as abnormal, and the rotation of the cutter 6 and the rotation of the table 5 are stopped. According to such a stop, the machine tool control device 3 can prevent the table drive system from causing an oscillation phenomenon and becoming uncontrollable.
 図4は、複数の速度フィードバックゲインを用いてモータ7をフィードバック制御するときにテーブル5が回転するときの剛性(コンプライアンス)の変化を示している。その変化31は、ある値を示す速度フィードバックゲインを用いてモータ7をフィードバック制御するときのテーブル5の回転に関する剛性を示している。その変化32は、変化31の剛性を示すときの速度フィードバックゲインより大きい速度フィードバックゲインを用いてモータ7をフィードバック制御するときのテーブル5の回転に関する剛性を示している。その変化33は、変化32の剛性を示すときの速度フィードバックゲインより大きい速度フィードバックゲインを用いてモータ7をフィードバック制御するときのテーブル5の回転に関する剛性を示している。その変化34は、変化33の剛性を示すときの速度フィードバックゲインより大きい速度フィードバックゲインを用いてモータ7をフィードバック制御するときのテーブル5の回転に関する剛性を示している。その変化35は、変化34の剛性を示すときの速度フィードバックゲインより大きい速度フィードバックゲインを用いてモータ7をフィードバック制御するときのテーブル5の回転に関する剛性を示している。 FIG. 4 shows a change in rigidity (compliance) when the table 5 rotates when the motor 7 is feedback-controlled using a plurality of speed feedback gains. The change 31 indicates the rigidity related to the rotation of the table 5 when the motor 7 is feedback-controlled using a speed feedback gain indicating a certain value. The change 32 indicates the rigidity related to the rotation of the table 5 when the motor 7 is feedback-controlled using a speed feedback gain larger than the speed feedback gain when the rigidity of the change 31 is indicated. The change 33 indicates the rigidity related to the rotation of the table 5 when the motor 7 is feedback-controlled using a speed feedback gain larger than the speed feedback gain when the rigidity of the change 32 is indicated. The change 34 indicates the rigidity related to the rotation of the table 5 when the motor 7 is feedback-controlled using a speed feedback gain larger than the speed feedback gain when the rigidity of the change 33 is indicated. The change 35 indicates the rigidity related to the rotation of the table 5 when the motor 7 is feedback-controlled using a speed feedback gain larger than the speed feedback gain when the rigidity of the change 34 is indicated.
 変化31~変化35は、フィードバック制御に用いられる速度フィードバックゲインがある値であるときに、外乱の周波数に対して変化することを示している。変化31~変化35は、さらに、速度フィードバックゲインを大きくしたときにテーブル5が回転するときの剛性が大きくなることを示し、テーブル5の回転が外乱に対して影響されにくくなることを示している。 Changes 31 to 35 indicate that the velocity feedback gain used for feedback control changes with respect to the frequency of the disturbance when the value is a certain value. The changes 31 to 35 further indicate that the rigidity when the table 5 rotates when the speed feedback gain is increased, and that the rotation of the table 5 is less affected by disturbance. .
 すなわち、工作機械1は、このような動作を実行することにより、歯車加工中に発生するワーク11の振動が閾値内に収まるまで、制御定数(速度フィードバックゲイン)を自動調整することができる。このため、工作機械1は、ワーク11に作用する外力に対するテーブル5の回転方向の剛性を確保することができ、かつ、制御系を起因とする発振現象を防止することができる。 That is, the machine tool 1 can automatically adjust the control constant (speed feedback gain) until the vibration of the workpiece 11 generated during gear machining falls within the threshold value by executing such an operation. For this reason, the machine tool 1 can ensure the rigidity of the rotation direction of the table 5 with respect to the external force acting on the workpiece 11, and can prevent an oscillation phenomenon caused by the control system.
 なお、振動計測部28は、積分器15により算出されるテーブル5の角度に基づいてテーブル5の振動の程度を算出する他の振動計測部に置換されることができる。このような工作機械は、既述の実施の形態における工作機械1と同様にして、ワーク11に作用する外力に対するテーブル5の回転方向の剛性を確保することができ、かつ、制御系を起因とする発振現象を防止することができる。このような工作機械は、さらに、ロータリーエンコーダ9を省略することができ、より安価に作製されることができる。 The vibration measurement unit 28 can be replaced with another vibration measurement unit that calculates the degree of vibration of the table 5 based on the angle of the table 5 calculated by the integrator 15. Such a machine tool can ensure the rigidity in the rotation direction of the table 5 with respect to the external force acting on the workpiece 11 as well as the machine tool 1 in the above-described embodiment, and is caused by the control system. Oscillation phenomenon can be prevented. Such a machine tool can further omit the rotary encoder 9 and can be manufactured at a lower cost.
 なお、速度フィードバックゲイン算出部29は、振動計測部28により算出される振動の程度に対応する速度フィードバックゲインを算出する他の速度フィードバックゲイン算出部に置換されることもできる。このような工作機械は、既述の実施の形態における工作機械1と同様にして、ワーク11に作用する外力に対するテーブル5の回転方向の剛性を確保することができ、かつ、制御系を起因とする発振現象を防止することができる。 The speed feedback gain calculation unit 29 can be replaced with another speed feedback gain calculation unit that calculates a speed feedback gain corresponding to the degree of vibration calculated by the vibration measurement unit 28. Such a machine tool can ensure the rigidity in the rotation direction of the table 5 with respect to the external force acting on the workpiece 11 as well as the machine tool 1 in the above-described embodiment, and is caused by the control system. Oscillation phenomenon can be prevented.
 図5は、本発明による工作機械の実施の他の形態を示している。その工作機械41は、工作機械本体42と工作機械制御装置43とを備えている。工作機械本体42は、テーブル45とカッター46とダイレクトドライブモータ47とロータリーエンコーダ48とを備えている。 FIG. 5 shows another embodiment of the machine tool according to the present invention. The machine tool 41 includes a machine tool main body 42 and a machine tool control device 43. The machine tool main body 42 includes a table 45, a cutter 46, a direct drive motor 47, and a rotary encoder 48.
 テーブル45は、鉛直方向に平行である回転軸を中心に回転可能に土台に支持されている。テーブル45は、その回転軸に垂直である支持面を有し、その支持面に接触するワーク49を支持する。ワーク49は、概ね円盤状に形成されている。カッター46は、ホブ型砥石から形成され、図示されていない数値制御装置により制御されて回転することによりワーク49の縁を切削し、ワーク49の縁に歯を形成することによりワーク49を歯車に形成する。ダイレクトドライブモータ47は、ダイレクトドライブモータロータ51とダイレクトドライブモータステータ52とを備えている。ダイレクトドライブモータロータ51は、テーブル45に固定されている。ダイレクトドライブモータステータ52は、その土台に固定されている。ダイレクトドライブモータ47は、工作機械制御装置43から出力される操作量に基づいてテーブル45を回転させる。ロータリーエンコーダ48は、テーブル45の角度を計測し、その角度を工作機械制御装置43に出力する。 The table 45 is supported by a base so as to be rotatable about a rotation axis parallel to the vertical direction. The table 45 has a support surface that is perpendicular to the rotation axis thereof, and supports a work 49 that contacts the support surface. The work 49 is formed in a generally disc shape. The cutter 46 is formed of a hob-type grindstone, and is rotated by being controlled by a numerical control device (not shown) to cut the edge of the workpiece 49, and by forming teeth on the edge of the workpiece 49, the workpiece 49 is turned into a gear. Form. The direct drive motor 47 includes a direct drive motor rotor 51 and a direct drive motor stator 52. The direct drive motor rotor 51 is fixed to the table 45. The direct drive motor stator 52 is fixed to the base. The direct drive motor 47 rotates the table 45 based on the operation amount output from the machine tool control device 43. The rotary encoder 48 measures the angle of the table 45 and outputs the angle to the machine tool control device 43.
 工作機械制御装置43は、目標値算出部14と微分器55と速度フィードバックゲイン設定装置16と制御装置17とを備えている。目標値算出部14は、ワーク49を歯車に加工するための数値制御データとカッター46の動作とを収集し、その数値制御データと動作とに基づいて目標角度を算出する。微分器55は、ロータリーエンコーダ48により計測されるテーブル45の角度を微分することにより、テーブル45の回転速度を算出する。 The machine tool control device 43 includes a target value calculation unit 14, a differentiator 55, a speed feedback gain setting device 16, and a control device 17. The target value calculation unit 14 collects numerical control data for processing the workpiece 49 into a gear and the operation of the cutter 46, and calculates a target angle based on the numerical control data and the operation. The differentiator 55 calculates the rotational speed of the table 45 by differentiating the angle of the table 45 measured by the rotary encoder 48.
 速度フィードバックゲイン設定装置16は、振動計測部28と速度フィードバックゲイン算出部29とを備えている。振動計測部28は、ロータリーエンコーダ48により計測されるテーブル45の角度に基づいて、テーブル45の振動の程度を算出する。 The speed feedback gain setting device 16 includes a vibration measuring unit 28 and a speed feedback gain calculating unit 29. The vibration measuring unit 28 calculates the degree of vibration of the table 45 based on the angle of the table 45 measured by the rotary encoder 48.
 速度フィードバックゲイン算出部29は、閾値と複数の速度フィードバックゲインとを記録する記憶装置を備えている。速度フィードバックゲイン算出部29は、初期的には、その複数の速度フィードバックゲインのうちの最小の速度フィードバックゲインを出力する。速度フィードバックゲイン算出部29は、振動計測部28により算出される振動の程度がその閾値を越えたときに、その複数の速度フィードバックゲインのうちの現在出力している速度フィードバックゲインより1段階だけ大きい速度フィードバックゲインを出力する。すなわち、速度フィードバックゲイン設定装置16は、その複数の速度フィードバックゲインのいずれかのみを出力し、速度フィードバックゲイン設定装置16により出力される速度フィードバックゲインは、上限値と下限値とを有している。速度フィードバックゲイン算出部29は、さらに、振動計測部28により算出される振動の程度がその閾値を越え、かつ、その複数の速度フィードバックゲインが現在出力している速度フィードバックゲインより大きい速度フィードバックゲインを含んでいないときに、異常と判断して、工作機械本体42を停止させる。 The speed feedback gain calculation unit 29 includes a storage device that records a threshold value and a plurality of speed feedback gains. The speed feedback gain calculation unit 29 initially outputs the minimum speed feedback gain among the plurality of speed feedback gains. The speed feedback gain calculating unit 29 is larger by one step than the currently output speed feedback gain among the plurality of speed feedback gains when the degree of vibration calculated by the vibration measuring unit 28 exceeds the threshold. Output speed feedback gain. That is, the speed feedback gain setting device 16 outputs only one of the plurality of speed feedback gains, and the speed feedback gain output by the speed feedback gain setting device 16 has an upper limit value and a lower limit value. . The speed feedback gain calculation unit 29 further selects a speed feedback gain that is greater than the speed feedback gain that the plurality of speed feedback gains are currently output and the degree of vibration calculated by the vibration measurement unit 28 exceeds the threshold value. When not included, it is determined as abnormal and the machine tool main body 42 is stopped.
 制御装置17は、角度差分算出部21と角度フィードバックゲイン乗算部22と回転速度差分算出部23と速度フィードバックゲイン乗算部24と比例制御部25と積分制御部26と加算部27とを備えている。 The control device 17 includes an angle difference calculation unit 21, an angle feedback gain multiplication unit 22, a rotational speed difference calculation unit 23, a speed feedback gain multiplication unit 24, a proportional control unit 25, an integration control unit 26, and an addition unit 27. .
 角度差分算出部21は、目標値算出部14により算出された目標角度からロータリーエンコーダ48により計測されるテーブル45の角度を減算することにより角度差分を算出する。角度フィードバックゲイン乗算部22は、角度差分算出部21により算出された角度差分に定数である角度フィードバックゲインを乗算して回転速度量を算出する。回転速度差分算出部23は、角度フィードバックゲイン乗算部22により算出された回転速度量から微分器55により算出されたテーブル45の回転速度を減算することにより回転速度差分を算出する。速度フィードバックゲイン乗算部24は、回転速度差分算出部23により算出された回転速度差分に速度フィードバックゲイン設定装置16により設定される速度フィードバックゲインを乗算することにより速度操作量を算出する。比例制御部25は、速度フィードバックゲイン乗算部24により算出された速度操作量に定数である比例フィードバックゲインを乗算して比例操作量を算出する。積分制御部26は、速度フィードバックゲイン乗算部24により算出された速度操作量を積分することにより積分制御量を算出し、その積分制御量に定数である積分フィードバックゲインを乗算することにより積分操作量を算出する。加算部27は、比例制御部25により算出された比例操作量に積分制御部26により算出された積分操作量を乗算することにより操作量を算出する。 The angle difference calculation unit 21 calculates the angle difference by subtracting the angle of the table 45 measured by the rotary encoder 48 from the target angle calculated by the target value calculation unit 14. The angle feedback gain multiplication unit 22 calculates the rotation speed amount by multiplying the angle difference calculated by the angle difference calculation unit 21 by an angle feedback gain that is a constant. The rotation speed difference calculation unit 23 calculates the rotation speed difference by subtracting the rotation speed of the table 45 calculated by the differentiator 55 from the rotation speed amount calculated by the angle feedback gain multiplication unit 22. The speed feedback gain multiplication unit 24 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 23 by the speed feedback gain set by the speed feedback gain setting device 16. The proportional control unit 25 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 24 by a constant proportional feedback gain. The integration control unit 26 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 24, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the operation amount. Is calculated. The adding unit 27 calculates the operation amount by multiplying the proportional operation amount calculated by the proportional control unit 25 by the integral operation amount calculated by the integration control unit 26.
 本発明による加工方法の実施の形態は、工作機械41を用いて実行される。作業者は、まず、ワーク49をテーブル45に設置し、図示されていない数値制御装置にワーク49を歯車に加工するための数値制御データを入力する。その数値制御装置は、その数値制御データを工作機械制御装置43に出力し、その数値制御データに基づいてカッター46を回転させる。工作機械制御装置43の目標値算出部14は、数値制御データに基づいて目標角度を算出する。工作機械制御装置43の微分器55は、ロータリーエンコーダ48により計測されたテーブル45の回転角度に基づいてテーブル45の回転速度を算出する。 The embodiment of the machining method according to the present invention is executed using the machine tool 41. First, the worker places the workpiece 49 on the table 45, and inputs numerical control data for processing the workpiece 49 into a gear into a numerical controller (not shown). The numerical control device outputs the numerical control data to the machine tool control device 43, and rotates the cutter 46 based on the numerical control data. The target value calculation unit 14 of the machine tool control device 43 calculates a target angle based on the numerical control data. The differentiator 55 of the machine tool control device 43 calculates the rotation speed of the table 45 based on the rotation angle of the table 45 measured by the rotary encoder 48.
 速度フィードバックゲイン設定装置16の振動計測部28は、ロータリーエンコーダ48により計測されるテーブル45の角度に基づいてテーブル45の振動の程度を算出する。速度フィードバックゲイン算出部29は、記憶装置に予め記録されている複数の速度フィードバックゲインのうちの最小の速度フィードバックゲインを初期的に出力する。速度フィードバックゲイン算出部29は、振動計測部28により算出される振動の程度がその閾値を越えたときに、その複数の速度フィードバックゲインのうちの現在出力している速度フィードバックゲインより1段階だけ大きい速度フィードバックゲインを出力する。 The vibration measuring unit 28 of the speed feedback gain setting device 16 calculates the degree of vibration of the table 45 based on the angle of the table 45 measured by the rotary encoder 48. The speed feedback gain calculation unit 29 initially outputs the minimum speed feedback gain among a plurality of speed feedback gains recorded in advance in the storage device. The speed feedback gain calculating unit 29 is larger by one step than the currently output speed feedback gain among the plurality of speed feedback gains when the degree of vibration calculated by the vibration measuring unit 28 exceeds the threshold. Output speed feedback gain.
 制御装置17の角度差分算出部21は、目標値算出部14により算出された目標角度から微分器55により算出されたテーブル45の角度を減算することにより角度差分を算出する。角度フィードバックゲイン乗算部22は、角度差分算出部21により算出された角度差分に定数である角度フィードバックゲインを乗算して回転速度量を算出する。回転速度差分算出部23は、角度フィードバックゲイン乗算部22により算出された回転速度量から微分器55により算出されるテーブル45の回転速度を減算することにより回転速度差分を算出する。速度フィードバックゲイン乗算部24は、回転速度差分算出部23により算出された回転速度差分に速度フィードバックゲイン設定装置16により設定される速度フィードバックゲインを乗算することにより速度操作量を算出する。比例制御部25は、速度フィードバックゲイン乗算部24により算出された速度操作量に定数である比例フィードバックゲインを乗算して比例操作量を算出する。積分制御部26は、速度フィードバックゲイン乗算部24により算出された速度操作量を積分することにより積分制御量を算出し、その積分制御量に定数である積分フィードバックゲインを乗算することにより積分操作量を算出する。加算部27は、比例制御部25により算出された比例操作量に積分制御部26により算出された積分操作量を乗算することにより操作量を算出する。 The angle difference calculation unit 21 of the control device 17 calculates the angle difference by subtracting the angle of the table 45 calculated by the differentiator 55 from the target angle calculated by the target value calculation unit 14. The angle feedback gain multiplication unit 22 calculates the rotation speed amount by multiplying the angle difference calculated by the angle difference calculation unit 21 by an angle feedback gain that is a constant. The rotation speed difference calculation unit 23 calculates the rotation speed difference by subtracting the rotation speed of the table 45 calculated by the differentiator 55 from the rotation speed amount calculated by the angle feedback gain multiplication unit 22. The speed feedback gain multiplication unit 24 calculates a speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 23 by the speed feedback gain set by the speed feedback gain setting device 16. The proportional control unit 25 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 24 by a constant proportional feedback gain. The integration control unit 26 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 24, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the operation amount. Is calculated. The adding unit 27 calculates the operation amount by multiplying the proportional operation amount calculated by the proportional control unit 25 by the integral operation amount calculated by the integration control unit 26.
 ダイレクトドライブモータ47は、加算部27により算出された操作量に基づいてテーブル45を回転させる。工作機械41は、このような動作により、その数値制御データに示されるようにカッター46がワーク49の縁を切削し、ワーク49の縁に歯を形成することによりワーク49を歯車に形成する。 The direct drive motor 47 rotates the table 45 based on the operation amount calculated by the adding unit 27. With this operation, the machine tool 41 forms the workpiece 49 into a gear by the cutter 46 cutting the edge of the workpiece 49 and forming teeth on the edge of the workpiece 49 as shown in the numerical control data.
 さらに、速度フィードバックゲイン算出部29は、振動計測部28により算出される振動の程度がその閾値を越え、かつ、その複数の速度フィードバックゲインが現在出力している速度フィードバックゲインより大きい速度フィードバックゲインを含んでいないときに、異常と判断して、カッター46の回転とテーブル45の回転とを停止させる。このような停止によれば、工作機械制御装置43は、テーブル駆動系が発振現象を起こし制御不能に陥ることを防止することができる。 Furthermore, the speed feedback gain calculation unit 29 has a speed feedback gain that is greater than the speed feedback gain that the plurality of speed feedback gains are currently output, and the degree of vibration calculated by the vibration measurement unit 28 exceeds the threshold value. When not included, it is determined as abnormal, and the rotation of the cutter 46 and the rotation of the table 45 are stopped. According to such a stop, the machine tool control device 43 can prevent the table drive system from causing an oscillation phenomenon and becoming uncontrollable.
 すなわち、このような工作機械41は、このような動作を実行することにより、既述の実施の形態における工作機械1と同様にして、ワーク49に作用する外力に対するテーブル45の回転方向の剛性を確保することができ、かつ、制御系を起因とする発振現象を防止することができる。すなわち、このような加工方法は、テーブル45に直結してテーブル45を回転させるダイレクトドライブモータ47の制御にも適用されることができる。 That is, such a machine tool 41 performs such an operation, and in the same manner as the machine tool 1 in the above-described embodiment, provides the rigidity in the rotation direction of the table 45 with respect to the external force acting on the workpiece 49. The oscillation phenomenon caused by the control system can be prevented. That is, such a processing method can also be applied to control of the direct drive motor 47 that is directly connected to the table 45 and rotates the table 45.
 図6は、本発明による工作機械の実施のさらに他の形態を示している。その工作機械61は、工作機械本体62と工作機械制御装置63とを備えている。工作機械本体62は、テーブル65とカッター66とモータ67とウォームギア68とエンコーダ69とを備えている。 FIG. 6 shows still another embodiment of the machine tool according to the present invention. The machine tool 61 includes a machine tool main body 62 and a machine tool control device 63. The machine tool main body 62 includes a table 65, a cutter 66, a motor 67, a worm gear 68, and an encoder 69.
 テーブル65は、鉛直方向に平行である回転軸を中心に回転可能に土台に支持されている。テーブル65は、その回転軸に垂直である支持面を有し、その支持面に接触するワーク70を支持する。ワーク70は、概ね円盤状に形成されている。カッター66は、図示されていない数値制御装置により制御されて回転することによりワーク70の縁を切削し、ワーク70の縁に歯を形成することによりワーク70を歯車に形成する。モータ67は、回転可能に支持されるシャフトを備え、工作機械制御装置63から出力される操作量に基づいてそのシャフトを回転させる。ウォームギア68は、モータ67のシャフトの回転動力をテーブル65に伝達し、テーブル65を回転させる。エンコーダ69は、モータ67のシャフトの回転速度を計測し、その回転速度を工作機械制御装置63に出力する。 The table 65 is supported by a base so as to be rotatable about a rotation axis parallel to the vertical direction. The table 65 has a support surface that is perpendicular to the rotation axis thereof, and supports the work 70 that contacts the support surface. The workpiece 70 is generally formed in a disc shape. The cutter 66 is controlled and rotated by a numerical control device (not shown) to cut the edge of the work 70 and form teeth on the edge of the work 70 to form the work 70 into a gear. The motor 67 includes a shaft that is rotatably supported, and rotates the shaft based on an operation amount output from the machine tool control device 63. The worm gear 68 transmits the rotational power of the shaft of the motor 67 to the table 65 to rotate the table 65. The encoder 69 measures the rotational speed of the shaft of the motor 67 and outputs the rotational speed to the machine tool control device 63.
 工作機械制御装置63は、目標値算出部14と積分器15と速度フィードバックゲイン設定装置71と制御装置17とを備えている。目標値算出部14は、ワーク70を歯車に加工するための数値制御データとカッター66の動作とを収集し、その数値制御データと動作とに基づいて目標角度を算出する。積分器15は、エンコーダ69により計測されるモータ67のシャフトの回転速度を積分することにより、テーブル65の角度を算出する。 The machine tool control device 63 includes a target value calculation unit 14, an integrator 15, a speed feedback gain setting device 71, and a control device 17. The target value calculation unit 14 collects numerical control data for processing the workpiece 70 into a gear and the operation of the cutter 66, and calculates a target angle based on the numerical control data and the operation. The integrator 15 calculates the angle of the table 65 by integrating the rotational speed of the shaft of the motor 67 measured by the encoder 69.
 速度フィードバックゲイン設定装置71は、その数値制御データに基づいて速度フィードバックゲインを算出する。すなわち、速度フィードバックゲイン設定装置71は、ワーク材種収集部72と速度フィードバックゲイン算出部73とを備えている。ワーク材種収集部72は、その数値制御データを解析して、その数値制御データからワーク70の材種を抽出する。 The speed feedback gain setting device 71 calculates a speed feedback gain based on the numerical control data. That is, the speed feedback gain setting device 71 includes a workpiece material type collection unit 72 and a speed feedback gain calculation unit 73. The workpiece material type collecting unit 72 analyzes the numerical control data and extracts the material type of the workpiece 70 from the numerical control data.
 速度フィードバックゲイン算出部73は、材種集合と速度フィードバックゲイン集合とを対応付けるテーブルを記録する記憶装置を備えている。すなわち、その材種集合のうちの任意の要素は、その速度フィードバックゲイン集合のうちの1つの要素に対応している。その材種集合の要素は、それぞれ、ワーク70に適用される材料の材種を示している。その速度フィードバックゲイン集合の要素は、それぞれ、制御装置17で用いられる速度フィードバックゲインの値を示している。速度フィードバックゲイン算出部73は、そのテーブルを参照して、その速度フィードバックゲイン集合からワーク材種収集部72により抽出される材種に対応する速度フィードバックゲインを算出する。 The speed feedback gain calculation unit 73 includes a storage device that records a table associating the material type set and the speed feedback gain set. That is, an arbitrary element in the grade set corresponds to one element in the speed feedback gain set. Each element of the material type set indicates the material type of the material applied to the workpiece 70. Each element of the speed feedback gain set indicates the value of the speed feedback gain used in the control device 17. The speed feedback gain calculation unit 73 refers to the table and calculates a speed feedback gain corresponding to the material type extracted by the workpiece material type collection unit 72 from the speed feedback gain set.
 制御装置17は、角度差分算出部21と角度フィードバックゲイン乗算部22と回転速度差分算出部23と速度フィードバックゲイン乗算部24と比例制御部25と積分制御部26と加算部27とを備えている。 The control device 17 includes an angle difference calculation unit 21, an angle feedback gain multiplication unit 22, a rotational speed difference calculation unit 23, a speed feedback gain multiplication unit 24, a proportional control unit 25, an integration control unit 26, and an addition unit 27. .
 角度差分算出部21は、目標値算出部14により算出された目標角度から積分器15により算出されたテーブル65の角度を減算することにより角度差分を算出する。角度フィードバックゲイン乗算部22は、角度差分算出部21により算出された角度差分に定数である角度フィードバックゲインを乗算して回転速度量を算出する。回転速度差分算出部23は、角度フィードバックゲイン乗算部22により算出された回転速度量からエンコーダ69により計測されるモータ67のシャフトの回転速度を減算することにより回転速度差分を算出する。速度フィードバックゲイン乗算部24は、回転速度差分算出部23により算出された回転速度差分に速度フィードバックゲイン算出部73により算出される速度フィードバックゲインを乗算することにより速度操作量を算出する。比例制御部25は、速度フィードバックゲイン乗算部24により算出された速度操作量に定数である比例フィードバックゲインを乗算して比例操作量を算出する。積分制御部26は、速度フィードバックゲイン乗算部24により算出された速度操作量を積分することにより積分制御量を算出し、その積分制御量に定数である積分フィードバックゲインを乗算することにより積分操作量を算出する。加算部27は、比例制御部25により算出された比例操作量に積分制御部26により算出された積分操作量を乗算することにより操作量を算出する。 The angle difference calculation unit 21 calculates the angle difference by subtracting the angle of the table 65 calculated by the integrator 15 from the target angle calculated by the target value calculation unit 14. The angle feedback gain multiplication unit 22 calculates the rotation speed amount by multiplying the angle difference calculated by the angle difference calculation unit 21 by an angle feedback gain that is a constant. The rotation speed difference calculation unit 23 calculates the rotation speed difference by subtracting the rotation speed of the shaft of the motor 67 measured by the encoder 69 from the rotation speed amount calculated by the angle feedback gain multiplication unit 22. The speed feedback gain multiplication unit 24 multiplies the rotation speed difference calculated by the rotation speed difference calculation unit 23 by the speed feedback gain calculated by the speed feedback gain calculation unit 73 to calculate the speed operation amount. The proportional control unit 25 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 24 by a constant proportional feedback gain. The integration control unit 26 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 24, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the operation amount. Is calculated. The adding unit 27 calculates the operation amount by multiplying the proportional operation amount calculated by the proportional control unit 25 by the integral operation amount calculated by the integration control unit 26.
 本発明による加工方法の実施の形態は、工作機械61を用いて実行される。作業者は、まず、ワーク70をテーブル65に設置し、図示されていない数値制御装置にワーク70を歯車に加工するための数値制御データを入力する。その数値制御装置は、その数値制御データを工作機械制御装置63に出力し、その数値制御データに基づいてカッター66を回転させる。工作機械制御装置63の目標値算出部14は、その数値制御データとカッター66の動作とを収集し、その数値制御データとカッター66の動作とに基づいて目標角度を算出する。工作機械制御装置63の積分器15は、エンコーダ69により計測されるモータ67のシャフトの回転速度に基づいてテーブル65の角度を算出する。 The embodiment of the machining method according to the present invention is executed using the machine tool 61. First, the operator places the work 70 on the table 65, and inputs numerical control data for processing the work 70 into a gear into a numerical control device (not shown). The numerical control device outputs the numerical control data to the machine tool control device 63, and rotates the cutter 66 based on the numerical control data. The target value calculation unit 14 of the machine tool control device 63 collects the numerical control data and the operation of the cutter 66 and calculates a target angle based on the numerical control data and the operation of the cutter 66. The integrator 15 of the machine tool control device 63 calculates the angle of the table 65 based on the rotational speed of the shaft of the motor 67 measured by the encoder 69.
 速度フィードバックゲイン設定装置71のワーク材種収集部72は、その数値制御データに基づいてワーク70の材料の材種を算出する。速度フィードバックゲイン算出部73は、速度フィードバックゲイン算出部73は、材種集合と速度フィードバックゲイン集合とを対応付けるテーブルを参照して、その速度フィードバックゲイン集合からワーク材種収集部72により抽出される材種に対応する速度フィードバックゲインを算出する。 The workpiece material type collection unit 72 of the speed feedback gain setting device 71 calculates the material type of the material of the workpiece 70 based on the numerical control data. The speed feedback gain calculation unit 73 refers to a table associating the material type set with the speed feedback gain set, and the material extracted from the speed feedback gain set by the work material type collection unit 72 is referred to by the speed feedback gain calculation unit 73. The speed feedback gain corresponding to the seed is calculated.
 制御装置17の角度差分算出部21は、目標値算出部14により算出された目標角度から積分器15により算出されたテーブル65の角度を減算することにより角度差分を算出する。角度フィードバックゲイン乗算部22は、角度差分算出部21により算出された角度差分に定数である角度フィードバックゲインを乗算して回転速度量を算出する。回転速度差分算出部23は、角度フィードバックゲイン乗算部22により算出された回転速度量からエンコーダ69により計測されるモータ67のシャフトの回転速度を減算することにより回転速度差分を算出する。速度フィードバックゲイン乗算部24は、回転速度差分算出部23により算出された回転速度差分に速度フィードバックゲイン設定装置71により設定される速度フィードバックゲインを乗算することにより速度操作量を算出する。比例制御部25は、速度フィードバックゲイン乗算部24により算出された速度操作量に定数である比例フィードバックゲインを乗算して比例操作量を算出する。積分制御部26は、速度フィードバックゲイン乗算部24により算出された速度操作量を積分することにより積分制御量を算出し、その積分制御量に定数である積分フィードバックゲインを乗算することにより積分操作量を算出する。加算部27は、比例制御部25により算出された比例操作量に積分制御部26により算出された積分操作量を乗算することにより操作量を算出する。 The angle difference calculation unit 21 of the control device 17 calculates the angle difference by subtracting the angle of the table 65 calculated by the integrator 15 from the target angle calculated by the target value calculation unit 14. The angle feedback gain multiplication unit 22 calculates the rotation speed amount by multiplying the angle difference calculated by the angle difference calculation unit 21 by an angle feedback gain that is a constant. The rotation speed difference calculation unit 23 calculates the rotation speed difference by subtracting the rotation speed of the shaft of the motor 67 measured by the encoder 69 from the rotation speed amount calculated by the angle feedback gain multiplication unit 22. The speed feedback gain multiplication unit 24 calculates the speed operation amount by multiplying the rotation speed difference calculated by the rotation speed difference calculation unit 23 by the speed feedback gain set by the speed feedback gain setting device 71. The proportional control unit 25 calculates a proportional operation amount by multiplying the speed operation amount calculated by the speed feedback gain multiplication unit 24 by a constant proportional feedback gain. The integration control unit 26 calculates an integral control amount by integrating the speed operation amount calculated by the speed feedback gain multiplication unit 24, and multiplies the integral control amount by an integral feedback gain that is a constant, thereby integrating the operation amount. Is calculated. The adding unit 27 calculates the operation amount by multiplying the proportional operation amount calculated by the proportional control unit 25 by the integral operation amount calculated by the integration control unit 26.
 モータ67は、加算部27により算出された操作量に基づいてシャフトを回転させる。ウォームギア68は、モータ67のシャフトの回転動力をテーブル65に伝達し、テーブル65を回転させる。工作機械61は、このような動作により、その数値制御データに示されるようにカッター66がワーク70の縁を切削し、ワーク70の縁に歯を形成することによりワーク70を歯車に形成する。 The motor 67 rotates the shaft based on the operation amount calculated by the adding unit 27. The worm gear 68 transmits the rotational power of the shaft of the motor 67 to the table 65 to rotate the table 65. With such an operation, the machine tool 61 forms the workpiece 70 into a gear by the cutter 66 cutting the edge of the workpiece 70 and forming teeth on the edge of the workpiece 70 as shown in the numerical control data.
 ワーク70に作用する外力に対するテーブル65の回転方向の剛性は、ワーク70の切削性・研削性により変化する。その切削性・研削性は、ワーク70を形成する材料の材種に固有である。このため、工作機械61は、速度フィードバックゲイン算出部73により記録されるテーブルを適切に作成することにより、速度フィードバックゲインをより適切に設定することができる。工作機械61は、このように速度フィードバックゲインが適切に設定されたときに、ワーク70に作用する外力に対するテーブル65の回転方向の剛性を確保することができ、かつ、制御系を起因とする発振現象を防止することができる。 The rigidity in the rotational direction of the table 65 with respect to the external force acting on the work 70 varies depending on the machinability and grindability of the work 70. The machinability and grindability are specific to the material type of the material forming the workpiece 70. For this reason, the machine tool 61 can set the speed feedback gain more appropriately by appropriately creating the table recorded by the speed feedback gain calculator 73. When the speed feedback gain is appropriately set in this way, the machine tool 61 can ensure the rigidity in the rotational direction of the table 65 with respect to the external force acting on the workpiece 70, and oscillation caused by the control system The phenomenon can be prevented.
 なお、ワーク材種収集部72は、工作機械制御装置63が備える入力装置を介して入力される材種をその入力装置から収集する他のワーク材種収集部に置換されることができる。このような工作機械は、既述の実施の形態における工作機械61と同様にして、速度フィードバックゲインをより適切に設定することができ、ワーク70に作用する外力に対するテーブル65の回転方向の剛性を確保することができ、かつ、制御系を起因とする発振現象を防止することができる。 The workpiece material type collecting unit 72 can be replaced with another workpiece material type collecting unit that collects the material type input via the input device included in the machine tool control device 63 from the input device. In such a machine tool, the speed feedback gain can be set more appropriately in the same manner as the machine tool 61 in the above-described embodiment, and the rigidity in the rotation direction of the table 65 with respect to the external force acting on the workpiece 70 can be increased. The oscillation phenomenon caused by the control system can be prevented.
 なお、速度フィードバックゲイン設定装置71は、初期的に、ワーク70の材種に基づいて速度フィードバックゲインを算出し、以降に、既述の実施の形態と同様にして、テーブル65の振動に基づいて速度フィードバックゲインを算出することもできる。このような速度フィードバックゲインの算出においても、既述の実施の形態と同様にして、発振現象を防止することができる。 The speed feedback gain setting device 71 initially calculates the speed feedback gain based on the material type of the workpiece 70, and thereafter, based on the vibration of the table 65, as in the above-described embodiment. A speed feedback gain can also be calculated. Also in the calculation of the speed feedback gain, the oscillation phenomenon can be prevented in the same manner as in the above-described embodiment.

Claims (14)

  1.  速度フィードバックゲインを自動的に更新する速度フィードバックゲイン自動設定装置と、
     ワークを支持するテーブルの回転に関するセンサ値を計測するセンサと、
     前記テーブルの角度が目標角度に一致するように、前記速度フィードバックゲインに基づいて、前記テーブルを回転させるモータを前記センサ値に基づいてフィードバック制御する制御装置
     とを具備する工作機械。
    A speed feedback gain automatic setting device that automatically updates the speed feedback gain;
    A sensor for measuring a sensor value related to rotation of the table supporting the workpiece;
    A control device that feedback-controls a motor that rotates the table based on the sensor value based on the speed feedback gain so that the angle of the table matches a target angle.
  2.  請求項1において、
     前記速度フィードバックゲイン自動設定装置は、
     前記センサ値に基づいて振動の程度を算出する振動計測部と、
     前記振動の程度に基づいて前記速度フィードバックゲインを算出する速度フィードバックゲイン算出部とを備える
     工作機械。
    In claim 1,
    The speed feedback gain automatic setting device is:
    A vibration measuring unit that calculates the degree of vibration based on the sensor value;
    A speed feedback gain calculating unit that calculates the speed feedback gain based on the degree of vibration.
  3.  請求項2において、
     前記速度フィードバックゲインは、前記振動の程度が所定の閾値より大きいときに増加する
     工作機械。
    In claim 2,
    The speed feedback gain increases when the degree of vibration is greater than a predetermined threshold.
  4.  請求項3において、
     前記センサは、前記テーブルの角度を計測するロータリーエンコーダを含み、
     前記センサ値は、前記テーブルの角度を示す
     工作機械。
    In claim 3,
    The sensor includes a rotary encoder that measures an angle of the table,
    The sensor value indicates an angle of the table.
  5.  請求項4において、
     前記ワークに歯車に形成するための数値制御データに基づいて前記目標角度を算出する目標値算出部
     をさらに具備する工作機械。
    In claim 4,
    A machine tool further comprising a target value calculation unit that calculates the target angle based on numerical control data for forming a gear on the workpiece.
  6.  請求項1において、
     前記速度フィードバックゲイン自動設定装置は、
     前記ワークの材種を収集するワーク材種収集部と、
     複数材種と複数速度フィードバックゲインとを対応付けるテーブルを参照して、前記複数速度フィードバックゲインのうちから前記材種に対応する前記速度フィードバックゲインを算出する速度フィードバックゲイン算出部とをさらに備える
     工作機械。
    In claim 1,
    The speed feedback gain automatic setting device is:
    A workpiece material type collecting unit for collecting the material type of the workpiece;
    A machine tool further comprising: a speed feedback gain calculation unit that calculates a speed feedback gain corresponding to the material type from the plurality of speed feedback gains with reference to a table associating the plurality of material types with a plurality of speed feedback gains.
  7.  請求項6において、
     前記ワーク材種収集部は、前記ワークを加工するためのデータから前記材種を抽出する
     工作機械。
    In claim 6,
    The workpiece material type collection unit extracts the material type from data for processing the workpiece.
  8.  速度フィードバックゲインを自動的に更新するステップと、
     ワークを支持するテーブルの回転に関するセンサ値を計測するステップと、
     前記テーブルの角度が目標角度に一致するように、前記速度フィードバックゲインに基づいて、前記テーブルを回転させるモータを前記センサ値に基づいてフィードバック制御するステップ
     とを具備する加工方法。
    Automatically updating the speed feedback gain;
    Measuring a sensor value related to rotation of the table supporting the workpiece;
    A step of feedback-controlling a motor for rotating the table based on the sensor value based on the speed feedback gain so that the angle of the table matches a target angle.
  9.  請求項8において、
     前記センサ値に基づいて振動の程度を算出するステップと、
     前記振動の程度に基づいて前記速度フィードバックゲインを算出するステップ
     とをさらに具備する加工方法。
    In claim 8,
    Calculating the degree of vibration based on the sensor value;
    And a step of calculating the speed feedback gain based on the degree of vibration.
  10.  請求項9において、
     前記速度フィードバックゲインは、前記振動の程度が所定の閾値より大きいときに増加する
     加工方法。
    In claim 9,
    The speed feedback gain increases when the degree of vibration is greater than a predetermined threshold.
  11.  請求項10において、
     前記センサは、前記テーブルの角度を計測するロータリーエンコーダを含み、
     前記センサ値は、前記テーブルの角度を示す
     加工方法。
    In claim 10,
    The sensor includes a rotary encoder that measures an angle of the table,
    The sensor value indicates an angle of the table.
  12.  請求項11において、
     前記ワークに歯車に形成するための数値制御データに基づいて前記目標角度を算出するステップ
     をさらに具備する加工方法。
    In claim 11,
    A machining method further comprising: calculating the target angle based on numerical control data for forming a gear on the workpiece.
  13.  請求項8において、
     前記ワークの材種を収集するステップと、
     複数材種と複数速度フィードバックゲインとを対応付けるテーブルを参照して、前記複数速度フィードバックゲインのうちから前記材種に対応する前記速度フィードバックゲインを算出するステップ
     とをさらに具備する加工方法。
    In claim 8,
    Collecting a grade of the workpiece;
    And a step of calculating the speed feedback gain corresponding to the material type out of the plurality of speed feedback gains with reference to a table associating a plurality of material types with a plurality of speed feedback gains.
  14.  請求項13において、
     前記ワークを加工するためのデータから前記材種を抽出するステップ
     をさらに具備する加工方法。
    In claim 13,
    The processing method further comprising the step of extracting the material type from data for processing the workpiece.
PCT/JP2010/052381 2009-02-20 2010-02-17 Machine tool and machining method WO2010095668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009037690A JP2010188496A (en) 2009-02-20 2009-02-20 Machine tool and machining method
JP2009-037690 2009-02-20

Publications (1)

Publication Number Publication Date
WO2010095668A1 true WO2010095668A1 (en) 2010-08-26

Family

ID=42633948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052381 WO2010095668A1 (en) 2009-02-20 2010-02-17 Machine tool and machining method

Country Status (2)

Country Link
JP (1) JP2010188496A (en)
WO (1) WO2010095668A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7000040B2 (en) * 2017-05-31 2022-01-19 Dmg森精機株式会社 Movement accuracy monitoring system, rotary table with movement accuracy monitoring function, machine tool and NC equipment
JP6787950B2 (en) * 2018-06-04 2020-11-18 ファナック株式会社 Numerical control device
JP7267585B2 (en) * 2019-03-29 2023-05-02 株式会社 神崎高級工機製作所 Gear processing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265961B2 (en) * 1995-12-14 2002-03-18 村田機械株式会社 Work movement control device
JP2003053643A (en) * 2001-08-13 2003-02-26 Mori Seiki Co Ltd Control method and control device for machine tool feeding system
JP2005231013A (en) * 2004-02-23 2005-09-02 Kanzaki Kokyukoki Mfg Co Ltd Gear finish-machining method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63875A (en) * 1986-06-19 1988-01-05 Victor Co Of Japan Ltd Reproducing device for disk-shaped information recording medium
JP2844660B2 (en) * 1989-04-27 1999-01-06 日産自動車株式会社 Initial adjustment method of work positioning device
JP2851380B2 (en) * 1990-06-05 1999-01-27 マツダ株式会社 Vibration reduction mechanism of pressing member
JP3477792B2 (en) * 1994-03-04 2003-12-10 三菱電機株式会社 Motion control device
JPH09258831A (en) * 1996-03-22 1997-10-03 Nissan Motor Co Ltd Method and device for high-speed positioning
JP2007141189A (en) * 2005-10-18 2007-06-07 Fanuc Ltd Controller using acceleration sensor and adjusting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265961B2 (en) * 1995-12-14 2002-03-18 村田機械株式会社 Work movement control device
JP2003053643A (en) * 2001-08-13 2003-02-26 Mori Seiki Co Ltd Control method and control device for machine tool feeding system
JP2005231013A (en) * 2004-02-23 2005-09-02 Kanzaki Kokyukoki Mfg Co Ltd Gear finish-machining method

Also Published As

Publication number Publication date
JP2010188496A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5710391B2 (en) Processing abnormality detection device and processing abnormality detection method for machine tools
US9612595B2 (en) Chatter vibration suppressing method and machine tool
EP2871547B1 (en) Real-time numerical control tool path adaptation using force feedback
CN102455685B (en) Method for monitoring rotary shaft rotation speed fluctuation in lathe and monitoring arrangement, lathe
CN104570922B (en) Possesses the control device of the lathe of rotary index device
CN104374571A (en) Bearing life determination device
CN105710711A (en) Position Controller Of Feed Axis In Machine Tool
JP2012200858A (en) Online cutting intelligent control apparatus which matches machine tool's i/o module and method for the control
TWI781353B (en) Machine tools and controls
WO2011129008A1 (en) Gear machining method
JP2003181722A (en) Tapping machining device and tapping machining method
CN108453320A (en) The device and method of workpieces processing on gear cutting machine
JP2010120150A (en) Estimation method for thermal deformation compensation of machine tool
WO2021167014A1 (en) Machine tool control device
WO2010095668A1 (en) Machine tool and machining method
JP5674449B2 (en) Machine Tools
GB2137125A (en) Tool wear sensors
JP5351550B2 (en) Machine tool and processing method
JP4568880B2 (en) NC machine tool processing control system
US9778644B2 (en) Method and device for control of a drive for a tool or workpiece
JP6040665B2 (en) Chatter vibration suppressing method and machine tool
JP5494378B2 (en) Thread cutting control method and apparatus
JP5782899B2 (en) Cutting condition setting device
JP2014061567A (en) Machine tool
JP6490520B2 (en) Motor drive control device and machine tool equipped with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743794

Country of ref document: EP

Kind code of ref document: A1