TW522574B - GaInP epitaxial stacking structure, a GaInP epitaxial stacking structure for FETs and a fabrication method thereof - Google Patents

GaInP epitaxial stacking structure, a GaInP epitaxial stacking structure for FETs and a fabrication method thereof Download PDF

Info

Publication number
TW522574B
TW522574B TW89118328A TW89118328A TW522574B TW 522574 B TW522574 B TW 522574B TW 89118328 A TW89118328 A TW 89118328A TW 89118328 A TW89118328 A TW 89118328A TW 522574 B TW522574 B TW 522574B
Authority
TW
Taiwan
Prior art keywords
layer
gallium
item
composition ratio
mentioned
Prior art date
Application number
TW89118328A
Other languages
Chinese (zh)
Inventor
Akira Kasahara
Masahiro Kimura
Taichi Okano
Takashi Udagawa
Original Assignee
Showa Denko Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP27435899A external-priority patent/JP3275894B2/en
Priority claimed from JP27871999A external-priority patent/JP3275895B2/en
Priority claimed from JP28623499A external-priority patent/JP3371868B2/en
Priority claimed from JP36863599A external-priority patent/JP2001185719A/en
Application filed by Showa Denko Kk filed Critical Showa Denko Kk
Application granted granted Critical
Publication of TW522574B publication Critical patent/TW522574B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

A GaInP epitaxial stacking structure and fabrication method thereof, and a FET transistor using this structure are provided wherein, stacked upon a GaAs single-crystal substrate are at least a buffer layer, a GazIn1-zAs (0 < Z ≤ 1) channel layer, and a GayIn1-yP (0 < Y ≤ 1) electron-supply layer joined to the channel layer, wherein the GaInP epitaxial stacking structure includes a region within the electron-supply layer wherein the gallium composition, ratio (Y) decreases from the side of the junction interface with the channel layer toward the opposite side.

Description

522574 *522574 *

本發明係有關於Ga I nP系積層結構體,並且更特別有 關於GalnP系積層結構體及其製造方法和使用此結構體之 場效電晶體’其具有電子供應層以及間隔層,提供高速遷 移率特性以及使用此結構的高速遷移率的場效電晶^。' 於微波區間或毫米波區間操作的蕭基接合型^效電晶 體(已知為MESFETs)包括高電子遷移率的gainp電晶體(已 知為TEGFETs,MODFETs等等),其使用摻雜的麟化鎵銦 | (gallium—indium phosphide 簡寫 GaAIni—AP :〇$Α$1)(參 考 IEEE Trans. Electron Devices,Vol· 37,Ν〇· 1 0 ( 1 990 )’ ρρ· 2141 -2147) °GaInP MODFETs 可使用於微 波區間信號放大的低雜訊Μ E S F E T s (參考I E E E T r a n sThe present invention relates to a Ga I nP-based laminated structure, and more particularly to a GalnP-based laminated structure, a method of manufacturing the same, and a field-effect transistor using the structure, which has an electron supply layer and a spacer layer, and provides high-speed migration. Rate characteristics and field-effect transistors with high-speed mobility using this structure ^. '' Schottky junction effect transistors (known as MESFETs) operating in the microwave or millimeter wave range include high electron mobility gainp transistors (known as TEGFETs, MODFETs, etc.), which use doped lin Gallium-indium | (gallium—indium phosphide abbreviation GaAIni-AP: 〇 $ Α $ 1) (refer to IEEE Trans. Electron Devices, Vol. 37, No. 1 0 (1 990) 'ρρ · 2141 -2147) ° GaInP MODFETs Low noise M ESFET s (refer to IEEE T rans

Electron Devices, Vol· 46, No· 1(1999), pp· 48-54) 以及穿透應用的功率MESFETs(參考IEEE Trans· Electron Devices, Vol· 44, No· 9(1997), pp· 134卜1348)。 第1圖係一種習知GalnP TEGFET的剖面結構之概要圖 式。基板10係以半絕緣的砷化鎵(化學式為:GaAs)材料製 造’使用{001}晶面(crystal plane)做為其主平面。於基 板10上設置一緩衝層(buffer layer)ll,包含一高阻值 I Π -V族化合物半導體層。於緩衝層1 1上設置一電子傳遞 層(通道層)1 2,包含一 η型砷化鎵銦化合物晶體 (GazIivzAs :0&lt;Ζ$1)。可設置一間隔層於通道層12上,特 別關於透射應用的功率T E G F Ε 了 s。包含碟化蘇銦化合物晶 體的電子供應層1 3設置於沒有插入間隔層上。電子供應層 1 3的载子(電子)密度藉由故意加入(摻雜)矽或其它不容易Electron Devices, Vol. 46, No. 1 (1999), pp. 48-54) and power MESFETs for penetrating applications (refer to IEEE Trans. Electron Devices, Vol. 44, No. 9 (1997), pp. 134, bu 1348). Fig. 1 is a schematic diagram of a cross-sectional structure of a conventional GalnP TEGFET. The substrate 10 is made of a semi-insulating gallium arsenide (chemical formula: GaAs) material and uses a {001} crystal plane as its principal plane. A buffer layer 11 is provided on the substrate 10 and includes a high-resistance group I Π -V compound semiconductor layer. An electron transfer layer (channel layer) 12 is disposed on the buffer layer 11 and includes an n-type gallium indium arsenide compound crystal (GazIivzAs: 0 &lt; Z $ 1). A spacer layer may be provided on the channel layer 12, particularly regarding the power T E G F E of the transmission application. An electron supply layer 13 containing a crystal of a plated thallium indium compound is provided on the spacer-free layer. The carrier (electron) density of the electron supply layer 1 3 is not easy by intentionally adding (doping) silicon or other

2037-3440-PF-ptd 第5頁 5225742037-3440-PF-ptd Page 5 522574

擴散的η型雜質。於電子供應層1 3上,典型地提供包含一 n 型GaAs等等的接觸層14,以便形成低接觸阻值的源極電極 1 5和汲極電極1 6。此外,於源極電極1 5與汲極電極丨6之 間’移除部分的接觸層1 4暴露出一凹谷結構,並且提供一 蕭基接合型閘極電極17 ;藉此構成一TEGFE丁。 於第1圖中說明構成Ga I nP係積層結構體1 a的各式各樣 的構成層11至14關於MODFET應用,因為輕易形成薄膜,可 藉由金屬有機化學汽相沉積方法(M〇CVD)(參考ibid ίΕΕΕDiffused n-type impurities. On the electron supply layer 13, a contact layer 14 containing an n-type GaAs or the like is typically provided to form a source electrode 15 and a drain electrode 16 with low contact resistance. In addition, the contact layer 14 of the 'removed portion' between the source electrode 15 and the drain electrode 6 exposes a valley structure and provides a Schottky junction gate electrode 17; thereby forming a TEGFE D . In the first figure, various constituent layers 11 to 14 constituting the Ga I nP-based laminated layer structure 1 a are explained. For MODFET applications, since a thin film can be easily formed, a metal organic chemical vapor deposition method (MOCVD) can be used. ) (Refer to ibid ίΕΕΕ

Trans· Electron Devices, Vol· 44 ( 1 997 ))方便地形Trans Electron Devices, Vol 44 (1 997)) Convenient terrain

成。於此等構成層中,電子供應層丨3係一機能層,於通道 層1^2之接合介面丨2a附近中用以提供電子堆積形成二維電 子&amp;氣(TEG)。電子供應層1 3照慣例地形成摻雜著不易擴散 (苓考 ibid IEEE Trans· Electron Devices,Vol· 44 ( 1 997 ))的矽(元素符號:Si)或其它]1—型雜質的磷化鎵 銦(GaYIni—YP : 〇&lt;γ $1)。電子供應層13之載子密度(單位: cm-3) —般為卜3 X l〇i8cm-3或特別地2 χ 1〇18cm_3。此外,於 一 GalnP TEGFET中,n型電子供應層一般構成自to make. Among these constituent layers, the electron supply layer 3 is a functional layer, which is used in the vicinity of the junction interface 1 2 of the channel layer 1 2 to provide electron accumulation to form two-dimensional electrons &amp; gas (TEG). The electron supply layer 13 is conventionally formed with phosphating doped with silicon (element symbol: Si) or other] -type impurities that are not easily diffused (ibid IEEE Trans. Electron Devices, Vol. 44 (1 997)). Gallium indium (GaYIni-YP: 0 &lt; γ $ 1). The carrier density (unit: cm-3) of the electron supply layer 13 is generally Bu 3 X 10 8 cm-3 or 2 x 1018 cm_3 in particular. In addition, in a GalnP TEGFET, the n-type electron supply layer is generally composed of

GaylrvγΡ(0&lt;Υ$ΐ)層’其中鎵組成比例於層的厚度方 向係固定值。 此外’於結構中’其中一間隔層設置於通道層丨2上, 為了避免二維電子氣受到來自通道層12的離子化散射干 擾,間隔層係一機能層,提供通道層丨2與電子供應層丨3之 空間孤立(參考 “Physics and Applicati〇ns 〇fGaylrvγP (0 &lt; Υ $ ΐ) layer 'wherein the gallium composition ratio is a fixed value in the thickness direction of the layer. In addition, one of the spacer layers is disposed on the channel layer 2 in the structure. In order to prevent the two-dimensional electron gas from being interfered by ionized scattering from the channel layer 12, the spacer layer is a functional layer, which provides the channel layer 2 and the electron supply. Layer 丨 3's spatial isolation (refer to "Physics and Applicati〇ns 〇f

Semiconductor Superlattices,,,Physical Society ofSemiconductor Superlattices ,,, Physical Society of

2037-3440-PF-ptd 522574 , j五、發明說明(3) ·2037-3440-PF-ptd 522574, j V. Description of the invention (3) ·

Japan, ed. (published by Baifukan, September 30, 1986, first edition, fourth printing), pp· . 236-240)。於一GalnP TEGFET中,間隔層典型地構成自未 摻雜的GaxIiVxPCCKX $1 )(參考 ibid IEEE Trans. ·Japan, ed. (Published by Baifukan, September 30, 1986, first edition, fourth printing), pp. 236-240). In a GalnP TEGFET, the spacer layer is typically constructed from undoped GaxIiVxPCCKX $ 1 (see ibid IEEE Trans. ·

Electron Devices, Vol· 44(1997))。不管GalnP TEGFET . 之例子,間隔層自具有少量雜質的高純度未摻雜層,並且 其層厚度典型地於2nm至10nm範圍之中(參考ibid % &quot;Physics and Applications of Semiconductor &quot;Electron Devices, Vol. 44 (1997)). Regardless of the GalnP TEGFET. Example, the spacer layer has a high-purity undoped layer with a small amount of impurities, and its layer thickness is typically in the range of 2nm to 10nm (refer to ibid% &quot; Physics and Applications of Semiconductor &quot;

Super lattices, &quot; pp. 18-20)。 一 例如,於低雜訊的GalnP TEGFET中,雜訊圖式(NF)及 _ 其它主要特性依據電子遷移率變化,因此電子遷移率愈來 愈快時,NF合宜地變得愈來愈低。因為這原因,為了造成 自η型電子供應層1 3提供的電子,於具有未摻雜的 G ax I Πη Ρ ( 〇 &lt; X $ 1 )構成間隔層的接合介面附近的 GazIrVzPCiRZ $1)前面區域中,堆積成二維電子氣;於通 道層1 2與間隔層之間的接合介面處的組成必須突然地改變 且顯示南電子遷移率。 此外’形成緩衝層係典型地藉由不改變鎵(元素符 號:Ga)的起始材料種類執行汽相沉積。因為電性地補償 剩餘施子(d〇nor)成分,碳(元素符號··〇受子的摻雜物胃夢 _ 由石夕的出現輕易地代替;以及一高阻值的以^層或 9Super lattices, &quot; pp. 18-20). For example, in a low-noise GalnP TEGFET, the noise pattern (NF) and other main characteristics change according to the electron mobility. Therefore, as the electron mobility becomes faster and faster, the NF becomes lower and lower. For this reason, in order to cause electrons supplied from the n-type electron supply layer 13, a GazIrVzPCiRZ $ 1) front region near a bonding interface having an undoped Gax I Πη Ρ (〇 &lt; X $ 1) forming a spacer layer In the middle, two-dimensional electron gas is accumulated; the composition at the junction interface between the channel layer 12 and the spacer layer must change suddenly and show the south electron mobility. Further, the formation of the buffer layer is typically performed by vapor deposition by not changing the type of the starting material of gallium (element symbol: Ga). Because the remaining donor components are electrically compensated, the carbon (element symbol ·· 〇 dopant dopant stomach dream_ is easily replaced by the appearance of Shi Xi; and a high-resistance layer or 9

AlLGa^As層於未摻雜狀態(參考j. Crystal Growth, (1 9 81)’ ΡΡ· 255-262)中的三曱基錄(化學式:(ch) · 3^a)g 作鎵(Ga)來源(參考J· Crystal Growth,55AlLGa ^ As layer in an undoped state (refer to j. Crystal Growth, (1 9 81) 'PP · 255-262) in the tritium radical (chemical formula: (ch) · 3 ^ a) g as gallium (Ga ) Source (refer to J. Crystal Growth, 55

522574522574

(1981), ρρ· 246-254, ibd, ρρ· 255-262, and PCT application publication No· 1 0 -504685 )輕易地獲得。 於關於低雜訊應用的GalnP TEGFET中,雜訊圖(NF)與 其匕主要特性依據二維電子遷移率(單位:c m2 / v * s )改 變,因此,電子遷移率(cm2/V*s)愈高肝變得愈低。因為 這個原因,於低雜訊TEGFET中,電子供應層扮演提供電子 的角色,必須自GaYIni_YP(〇&lt;Y 中構成,才可以顯出高 速的電子遷移率。另外一方面,於一功率Tegfet中,造成 匕以具有相當大的源極汲極電流流通操作的觀點,需要一 大畺平面的載子密度(單位:c m-2)和電子遷移率。因此, 關於功率T E G F E T應用的電子供應層必須自g a I p ( 〇 &lt; γ g 1)中構成,才可以顯出大量平面的載子密度。 然而於包含GaY I r^—Y P的習知電子供應層中,其中鎵 組成比例(=Y)或錮組成比例(=1 — γ)粗略地為一常數,於一 相當大平面的載子密度中,具有一缺點在於高速電子遷移 率無法穩定地被證明。因為這原因,於一低雜訊Ga I np TEGFETs範例中,未獲得一大量的轉導值(‘),因此阻塞 具有較好的低雜圖(N F )的低雜訊G a I η P T E G F E T s的穩定 供應。 本發明之第一目的係提供一包括一ΙηΗΡ(〇&lt;γ ‘ !) 電子供應層的Gal nP系積層結構體以及其製造方法,穩定(1981), ρρ · 246-254, ibd, ρρ · 255-262, and PCT application publication No. 1 0-504685). In the GalnP TEGFET for low noise applications, the noise figure (NF) and its main characteristics change according to the two-dimensional electron mobility (unit: c m2 / v * s). Therefore, the electron mobility (cm2 / V * s The higher the liver becomes, the lower it becomes. For this reason, in low-noise TEGFETs, the electron supply layer plays the role of providing electrons, and must be constructed from GaYIni_YP (0 &lt; Y to show high-speed electron mobility. On the other hand, in a power Tegfet In view of the fact that the source has a considerable source-drain current flow operation, a large plane carrier density (unit: cm-2) and electron mobility are required. Therefore, the electronic supply layer for power TEGFET applications It must be constructed from ga I p (〇 &lt; γ g 1) in order to show a large number of planar carrier densities. However, in the conventional electron supply layer containing GaY I r ^ —YP, the gallium composition ratio (= Y) or ytterbium composition ratio (= 1 — γ) is roughly a constant. In a carrier density of a relatively large plane, there is a disadvantage in that the high-speed electron mobility cannot be proven stably. In the example of noise Ga I np TEGFETs, a large number of transconductance values (') have not been obtained, so the stable supply of low noise G a I η PTEGFET s with better low noise figure (NF) is blocked. First purpose Providing a comprising a ΙηΗΡ (square &lt; γ '!) Gal nP layered structure based electron supply layer, and a manufacturing method, stable

地證明於室溫下超過5〇〇〇cm2/v*s的高速電子遷移率以及 一相當大量平面的載子密度,大於等於Ι 5χ i〇12cnr2以及 小於等於2·0χ l〇i2cm-2。利用這結構,由於其大量的源極It was proved that the high-speed electron mobility exceeding 5000 cm2 / v * s and a considerable number of plane carrier densities at room temperature were 15 × 1012cnr2 and 2.0 × 10-2 cm-2. With this structure, due to its large number of sources

2037-3440-PF.ptd2037-3440-PF.ptd

522574 五、發明說明(5) ί ^流、,可以獲得具有較佳轉導值特性的低雜訊G a ί η P ν f -子遷移率電晶體以及具有較佳功率轉換效522574 V. Description of the invention (5) 流 、, can obtain low noise G a ί η P ν f-sub-mobility transistor with better transconductance value characteristics and better power conversion efficiency

GalnP TEGFETs 。 此::,於此結構中,其中於通道層與電子供應層之間 '成:間隔層,假若一Gax〜P間隔層,#中銦組成比例 (=-X)粗略地為常數,提供連接至通道 曰一 ’於接合介面12a之附近,於磷(元素符號· p)及砷 二日Λ號人:As)之間產生相互擴散;目此產生-個問題, 々、疋^,a介面1 2a處的組合成分急劇升降變化惡化。 馨 假=於接合介面處1 2a的組合成分未產生急^升降變 效率:^子氣不會於㈣一通道層12之内部區間中有 響應用於。:子移Tt。電子遷移率特別地影 並且影^ 率的GaInP TEGFETS的轉導值(^), 广胃嘁訊圖更深。於低電子遷移率時,並未獲得一 ' Sm 此無法獲得具有低NF的GalnPTEGFET。 。 構成i外接關於間隔層自一未摻雜声 ί :':照慣例地常見的方法,其中銦組成比例係-常 1〇16cm-3 1未摻雜狀態時的載子密度最小約略為1 χ 更有效率地:m::隔層之載子密度使得二維電子氣 須自且有非,為了顯不商速的電子遷移率’間隔層必 因此,:t載子!度的GaxIni'xP(0&lt;x。)層中構成。 包括以Γ a T發明之第二個目的係形成一積層結構體,J: 定地顯露^ )材料製造的-間隔層’其可以穩 阿的電子遷移率且具有低濃度地載子密度。利GalnP TEGFETs. This :: In this structure, between the channel layer and the electron supply layer, it is: a spacer layer. If a Gax ~ P spacer layer, the # indium composition ratio (= -X) is roughly constant and provides a connection. To the channel "1", near the joint interface 12a, mutual diffusion occurs between phosphorus (element symbol · p) and arsenic on the 2nd Λ: As); for this reason, a problem arises, 々, 疋 ^, a interface The composition of the component at 12a sharply rises and falls and deteriorates. Xin False = The composition of 1 2a at the joint interface does not produce a sudden change in efficiency. ^ Ziqi will not have a response in the internal interval of the first channel layer 12. : Sub-shift Tt. The mobility of GaInP TEGFETS is particularly affected by the electron mobility, and the transduction value (^) of the GaInP TEGFETS is deeper. At low electron mobility, a 'Sm' is not obtained. This makes it impossible to obtain a GalnPTEGFET with low NF. . Constituting the outer layer of i about an un-doped sound of the spacer layer: ': A conventionally common method, in which the composition ratio of indium is-often 1016 cm-3 and the carrier density in the undoped state is approximately 1 χ More efficiently: The carrier density of the m :: barrier layer makes the two-dimensional electron gas self-existent and wrong. In order to show the electron mobility of the trader, the spacer layer must therefore: t carrier! Degree in the GaxIni'xP (0 &lt; x.) Layer. Including the formation of a multilayer structure with the second purpose of the invention of Γ a T, J: a steadily exposed ^) material-spacer layer 'which can stabilize the electron mobility and has a low carrier density. Profit

2037-3440-PF.ptd 522574 五、發明說明(6) 〜- 用此結構體’可以提供具有極好的轉導值的以匕?系積声 結構體。 、曰 與GalnP TEGFETs無關的,高速電子遷移率場效電晶 體的轉導值(gm)與夾止(pinch_〇f f )特徵係已知隨著緩衝 層之品質變動。例如,於一般的A1GaAs/GaAs晶格匹配的 TEGFETs以及AlGaAs/GalnAs伸張晶格的TEGFETs中,獲得 高的gm值以及好的夾止特徵,同時形成緩衝層當作具有低 漏電流的高阻值層。 一2037-3440-PF.ptd 522574 5. Description of the invention (6) ~-With this structure, can it provide an excellent transduction value? Systematic sound structure. Regardless of GalnP TEGFETs, the transconductance (gm) and pinch (pinch_ff) characteristics of high-speed electron mobility field effect transistors are known to vary with the quality of the buffer layer. For example, in general A1GaAs / GaAs lattice-matched TEGFETs and AlGaAs / GalnAs stretched TEGFETs, high gm values and good pinch-off characteristics are obtained, and a buffer layer is formed as a high resistance value with low leakage current. Floor. One

另外一方面,如上所述,於一GaInP TEGFET,其包 括‘包含G aY I ηι-γ P的一電子供應層,其係一種鱗(元素符 號:Ρ)型式的11 I - V族化合物半導體,輕易地造成高阻值 層的緩衝層具有一般具有的問題,其中無法穩定地獲得等 向性的gm值與夾止電壓。本發明發現於GaY I ηι γρ電子供應 層的銦組成比例(二;1 -γ )中異質性元件的不穩定性,因為用 以形成超晶格結構的緩衝層的鎵來源不同,像是特別使用 AlGaAs與GaAs當作構成層。 此外,於包含習知組成的緩衝層中,例如 A 1 G a A s / G a A s超晶格結構緩衝層,就電晶體之])c特性(靜態 特性)而言,於照光下(一般稱為、、光響應性&quot;),具有源 極汲極電流值的變動(參考G.J. Ree,ed.,On the other hand, as mentioned above, in a GaInP TEGFET, it includes an electron supply layer containing G aY I η-γ P, which is a scale (element symbol: P) type 11 I-V compound semiconductor, The buffer layer that easily causes the high-resistance layer has a problem in general, in which an isotropic gm value and a pinch-off voltage cannot be obtained stably. The present invention finds the instability of heterogeneous elements in the indium composition ratio (two; 1-γ) of the GaY I η γρ electron supply layer because the source of gallium used to form the buffer layer of the superlattice structure is different, such as in particular As a constituent layer, AlGaAs and GaAs are used. In addition, in a buffer layer containing a conventional composition, for example, A 1 G a A s / G a As s superlattice structure buffer layer, in terms of the transistor]) c characteristics (static characteristics), under light ( Generally referred to as ", photoresponse", and has a change in the source-drain current value (refer to GJ Ree, ed.,

Semi-Insulating III-V Materials, (Shiva Pub· Ltd· (Kent,UK,1 980 ),pp· 349-352 )以及源極汲極電流的磁 滯現象(參考Makoto Kikuchi,Yasuhiro Tarui,eds·, 、、Illustrated Semi conductor Dictionary, ”(NikkanSemi-Insulating III-V Materials, (Shiva Pub · Ltd · (Kent, UK, 1 980), pp · 349-352) and hysteresis of the source drain current (refer to Makoto Kikuchi, Yasuhiro Tarui, eds ·, ,, Illustrated Semi conductor Dictionary, ”(Nikkan

2037-3440-PF.ptd 第10頁 522574 五、發明說明(7)2037-3440-PF.ptd Page 10 522574 V. Description of Invention (7)

Kogyo Shimbunsha, January 25, 1978), ρ· 238)的問 題’以及容易產生扭結(kink)現象(參考JP-A-10-247727 及JP-A-10-335350)。 因此,本發明之第三個目的係提供一積層結構體,其 包括用以形成一6&amp;¥1111_/(0&lt;丫$1)電子供應層的一緩衝 層’其具有特別適合降低漏電流的高阻值,以及具有一等 向性的銦組成成分。 於一 GalnP TEGFET 中,間隔層係自 GaxIrVxPCtKX^i) 構成,其係一種包含銦的丨丨〗—V族化合物半導體,並且此 外’如同一薄膜般的構成。習知的M〇CVD技術具有一問 題’其中無法獲得具有等向性的銦組成比例( = 1—χ)的薄 間隔層。 、、 “因為這個原因,習知的GaInP系高速電子遷移率的場 效=晶體當作一間隔層使用;由於於間隔層中銦組成比例 的又動,其中並非充分地等向性的錮組成比例的 層無法保持等向性的能帶偏移;並且因 壓込固原因’難以獲得一等向性的轉導值(。與夾止電 積&gt; s F本發^第四個目的係提供關於TEGFET應用的 Γ° ^ ^ ,, t Γ, 千 中’可以提供具有較佳均質怍的GaIηΡ李古、争 電子遷移率電晶體。 』貝u白勺bainP糸阿速 為了獲得上述目的,太蘇明担 J 不明拎供堆疊於一GaAs單晶基Kogyo Shimbunsha, January 25, 1978), ρ · 238) and the kink phenomenon (see JP-A-10-247727 and JP-A-10-335350). Therefore, a third object of the present invention is to provide a laminated structure including a buffer layer for forming a 6 &amp; ¥ 1111 _ / (0 &lt; y $ 1) electron supply layer, which has a high level particularly suitable for reducing leakage current. Resistance, and an isotropic indium composition. In a GalnP TEGFET, the spacer layer is made of GaxIrVxPCtKX ^ i), which is a group V compound semiconductor containing indium, and in addition, it is formed like a thin film. The conventional MOCVD technique has a problem 'in which a thin spacer layer having an isotropic indium composition ratio (= 1-χ) cannot be obtained. ", For this reason, the field effect of the conventional GaInP-based high-speed electron mobility = the crystal is used as a spacer layer; due to the change of the indium composition ratio in the spacer layer, which is not a fully isotropic samarium composition The proportion of the layers cannot maintain the isotropic band shift; and it is difficult to obtain the isotropic transduction value due to compaction. Provide Γ ° ^ ^, t Γ, Qianzhong 'for TEGFET applications can provide GaIηP Ligu and electron mobility transistors with better homogeneity 怍 bainP 糸 Asu In order to achieve the above purpose, Tai Suming Dan J Unknown for stacking on a GaAs single crystal base

522574 五、發明說明(8) 板上的一Galnp系積層結構體,包括至 GaAzAsWZy)通道層以及形成連接通道 = 的層—、— )電子供應層,GaInP系積層結構體包括在 層之接合細則朝向相對的一側減少。Μ)自與通逼 〇 〇1上面提及的電子供應層之鎵組成比例為Υ^〇·51± 此外’上面提及的電子供應層於與通道 鎵組成比例為Υ-〇·7〇。 、曰接口;I面的 再者,上面提及的電子供應層於與通道層 鎵組成比例為Yqj。 授口 &quot;面的 進一步,於上面提及的電子供應層與通道層之間的接 合介面具有範圍1-20奈米(nanometer)厚度的區域,其中 鎵組成比例係一常數。 八 根據另一種型態,本發明於一GaAs單晶基板上形成一 Ga I nP係積層結構,其包括至少一緩衝層、一 乂 m 〇82111卜2八3(0&lt;2$1)通道層、一〇&amp;)(1111_彳(0&lt;\$1)間隔層以 及一〇8“111_^(〇&lt;丫‘1)電子供應層,其中上述通道層、間 隔層及電子供應層依序彼此連接;並且Ga I nP積層結構體 於間隔層範圍内包括一區域,其中鎵組成比例(χ)自與通 道層相接之接合介面側朝向電子供應層側減少。 上述電子供應層之鎵組成比例為γ = 0· 51 ± 〇. 01。 此外,與通道層相連的接合介面處的上述間隔層的鎵 組成比例為X ^ 〇 . 7 0。522574 V. Description of the invention (8) A Galnp-based layered structure on the board includes a channel layer to GaAzAsWZy) and a layer forming a connecting channel =,-,-) an electron supply layer. The GaInP-based layered structure includes the connection details of the layers. Decreases towards the opposite side. (M) From the above, the composition ratio of gallium of the above-mentioned electron supply layer is Υ ^ 51 · 51 ± In addition, the composition ratio of the above-mentioned electron supply layer to the channel gallium is Υ-0.70. Interface, I side. Furthermore, the above-mentioned electron supply layer and the channel layer have a gallium composition ratio of Yqj. Further, the interface between the electron supply layer and the channel layer mentioned above has a region in the range of 1-20 nanometer thickness, where the gallium composition ratio is a constant. According to another aspect, the present invention forms a Ga I nP-based multilayer structure on a GaAs single crystal substrate, which includes at least a buffer layer, a μm 〇82111, 233 (0 &lt; 2 $ 1) channel layer, 〇 &) (1111_ 彳 (0 &lt; \ $ 1) spacer layer and 008 "111 _ ^ (〇 &lt; ā'1) electron supply layer, wherein the above-mentioned channel layer, spacer layer and electron supply layer are in order with each other And the Ga I nP multilayer structure includes a region within the spacer layer, in which the gallium composition ratio (χ) decreases from the junction interface side that is in contact with the channel layer toward the electron supply layer side. The gallium composition ratio of the above electron supply layer Γ = 0.51 ± 0.01. In addition, the gallium composition ratio of the above-mentioned spacer layer at the bonding interface connected to the channel layer is X ^ 0.7.

2037-3440-PF.ptd 第12頁 5225742037-3440-PF.ptd Page 12 522574

此外,與通道眉 組成比例為χ = ΐ· 0。9 的接合介面處的上述間隔層的鎵 鎵电】th Υ與通這層相連的接合介面處的上it 録、、且成比例為X = 0 · 5 1 + 〇 〇 1 - 上迷間隔層的 進一V ii::n二層構成上述的間隔層。 物,當作其起始材括使用銘或鎵的有機甲基化合 週期性複數A1LG&amp;1 lA二:Ί具有不同的鋁組成比例的-aimg〜as(0…f丄具有汽相沉積的- 物,當作起始材料的週期性結構。 ^乙基化合 此外,關係式〇. 9 S i. 〇適用於週期性 产)。a 成層之又子岔度,Nd :構成層之施子密 上述週期性結構體包含一AlLGaHAs(〇 $丨)層以In addition, the composition ratio with the channel eyebrow is χ = ΐ · 0.9 at the bonding interface of the above-mentioned spacer layer. The thallium is recorded at the bonding interface connected to this layer, and is proportional to X. = 0 · 5 1 + 〇〇1-Two further layers of the upper layer V ii :: n constitute the above-mentioned spacer layer. As a starting material, the organic methyl compound periodic complex number A1LG &amp; 1 lA using 铭 or gallium is used: -aimg ~ as (0 ... f 丄 with vapor deposition- Material, as the periodic structure of the starting material. ^ Ethyl compound In addition, the relationship of 0.9 S i. 〇 applies to periodic production). a Layered bifurcation degree, Nd: Shi Zimi constituting the layer The above periodic structure includes an AlLGaHAs (〇 $ 丨) layer to

一P型GaAs層,並且每一構成層之載子密度為小於等於 [015cm~3。 、、 、X 此外,上述AlMGai—MAs層與通道層接觸。 並且,上述ALGanAs層具有小於等於5 X i〇i5cm-3的載 子密度,小於等於100nm的厚度並且包括11型層。 進一步,上述AlMGa1-MAs層之厚度小於週期性結構體之 構成層厚度。 此外,上述AlMGa^As層之鋁組成比例(M)小於構成週 期性結構體的AlLGa^As層之鋁組成比例。A P-type GaAs layer, and the carrier density of each constituent layer is less than or equal to [015 cm ~ 3. ,,, X In addition, the AlMGai-MAs layer is in contact with the channel layer. Also, the above-mentioned ALGanAs layer has a carrier density of 5 × 10 5 cm-3 or less, a thickness of 100 nm or less, and includes an 11-type layer. Further, the thickness of the AlMGa1-MAs layer is smaller than the thickness of the constituent layer of the periodic structure. In addition, the aluminum composition ratio (M) of the AlMGa ^ As layer is smaller than the aluminum composition ratio of the AlLGa ^ As layer constituting the periodic structure.

522574 五、發明說明(10) 並且,上述緩衝層包括:使用包 j化合物當作起始树料汽相沉積的c三甲 層,使用三乙基鎵做為起始 ”緩衝層與通道層之間,上層被設 式,間隔層及電子供應層為使用5丄嫁,型的傳導型 2相沉積_型層,於每一間隔—層鎵的起始材 電子供應層係彼此接觸的。 上述間隔層與 此外,於形成上述通道層後,表面粗操卢 aze))小於等s6〇ppm,並且通道層與=美鎵 鎵的起始材料汽相沉積的一GaAs層接觸。用—乙基銥备作 述Η 上述間隔層與通道層彼此接觸,並且形成上 之間隔層後的表面粗操度(霾痕性)係小於等於ι〇〇ρ_战 小於電子供應層後的表面粗操度(霾痕性)係 根據另一種型態,本發明提供一種製造一以 二、=構體之方法,包括:一步驟,其中使用鋁或鎵的有貝 曱基化合物,當作其起始材料汽相沉積上述緩衝層.—^ 驟’其中使用銘或鎵的有機乙基化合物,當作其二始材ς 汽相沉積上述AlGaAs層,與週期性結構體接觸;以及一: ,,其中經由使用具有單價鍵結對於銦的環戊二烯銦做^ ,始材料,藉由化學汽相沉積方法形成電子供應層及道 層。 、 根據另一種實施例,本發明提供一種製造以匕卩系積 522574 五、發明說明(u) 1=方法,包括:一步驟…使用銘或鎵的有機甲 ΐ ϊί 為起始材料汽相沉積上述緩衝層;一步驟,复 性&amp; M t或鎵的有機乙基化合物做為起始材料與上述週期 起二=t /、中使用具有早價鍵結對於銦的環戊二烯銦做為 之始材料,藉由化學汽相沉積 马 電子供應層。 L積方法形成通迢層、間隔層及 迭的此5,々本發明—包括使用上述以1 np系積層結構體製 4的一場效電晶體。 丹版衣 如f所述,本發明如同具有梯度組成變化的一 Υ η=Ρ層構成上述電子供應層,例如鎵組 觸層於增加層的厚度方向減少,因此二維電;I 有效率地堆積於上述通道層之内*,並 ’::乳 移率,因此可以形成呈右* Μ 冋1^電子遷 的「T D / ^有較佳寻向性的轉導值與夾止雷懕 的一GalnP系積層結構體。 人止Έ昼 此外,如上所述,本發明如522574 V. Description of the invention (10) Moreover, the above buffer layer includes: c-trimethyl layer using vapor-deposited compound as the starting tree material, and triethylgallium as the starting buffer layer and the channel layer The upper layer is set, and the spacer layer and the electron supply layer are conductive two-phase deposition-type layers using a 5 y-type, and at each interval, the electron supply layer of the starting material of the gallium is in contact with each other. In addition, after the formation of the above-mentioned channel layer, the layer has a rough surface (e.g., less than 60 ppm), and the channel layer is in contact with a GaAs layer vapor-deposited from the starting material of gallium gallium. Use-ethyl iridium Remarks: The above-mentioned spacer layer and the channel layer are in contact with each other, and the surface roughness (haze) of the spacer layer formed is less than or equal to ι〇〇ρ_ and less than the surface roughness after the electron supply layer ( According to another aspect, the present invention provides a method for manufacturing a two-dimensional structure, including: a step in which a benzyl compound of aluminum or gallium is used as a starting material for the vapor. Phase deposition of the above buffer layer.-^ '' Ming or The organic ethyl compound of gallium is used as its two starting materials. The above-mentioned AlGaAs layer is vapor-deposited and is in contact with the periodic structure; and one: wherein, by using indium cyclopentadiene indium with a monovalent bond ^ The starting material is to form an electron supply layer and a track layer by a chemical vapor deposition method. According to another embodiment, the present invention provides a manufacturing method using a dagger system 522574 V. Description of the invention (u) 1 = method, including: One step ... vapor deposition of the above buffer layer using the organic formaldehyde of gallium or gallium as the starting material; one step, the organic compound of the renaturation &amp; M t or gallium as the starting material and the above-mentioned cycle = t /, indium cyclopentadiene indium with early valence bonding to indium was used as the starting material, and the horse electron supply layer was deposited by chemical vapor phase. The L-layer method was used to form a passivation layer, a spacer layer, and a stacked layer. The present invention includes a field effect transistor using the above-mentioned 1 np-based multilayer structure system 4. As described in f, the present invention is like a layer having a gradient composition change. The η = P layer constitutes the above-mentioned electron supply layer. For example, the contact layer of the gallium group is increasing. The thickness direction of the layer is reduced, so it is two-dimensional; I is efficiently stacked in the above channel layer *, and ':: milk transfer rate, so it can form a "TD / ^ A GalnP-based multilayer structure having a better directional transduction value and a lightning arrester. In addition, as mentioned above, the present invention is as follows

GaYIni—ΥΡ層構成上述間卩3展,^有梯度組成變化的一 向接觸層於增加層的厚V方白V鎵組成比例自通道層朝 率地堆積於上述通道層之内A =此一、准电子虱有效 率,因此可以形成具有較:夂:且出現高速電子遷移 一 GalnP系積層結構體。、°的轉導值與夾止電壓的 並且,如上所述的,太旅&amp; _ 作其起始材料,汽相沉積包;呈^有機甲基化合物當 A1L G a卜L A s層結構體的緩衝二^月=^層的 W知,構成上述超晶格週 522574 五、發明說明(12) 期性結構體,並且有規定的補償比例;因此可以形成具有 低漏電流的一Gal nP系積層結構體。 進一步,上述組成係如此的:三乙基鎵當作其起始材 料,GaAs薄膜層汽相沉積於包含銦的I I I -V族化合物上, 因此可以形成一〇七111卜,3(0&lt;2$1)通道層、_(^111卜^間 隔層以及於銦組成比例中具有較佳的等向性的一電子供應 層;並且因此可以形成具有較佳等向性的轉導值及失止電 壓的一 G a I η P系積層結構體。 “ 本發明之上述目的及特徵藉由下面說明參考伴隨 將更加清楚明白。 1 β工 圖式簡單說明: 第1圖係關於一習知GalnP TEGFET結椹鹏 圖式; 體之概要剖面 第2圖係一圖表,說明關於Gay丨〜γΡ組 子供應層,於鎵組成比例中梯度變化的圖· 又曼化的電 第3圖係用以說明本發明較佳實施例’―The GaYIni-HP layer constitutes the above-mentioned three-phase extension, and the non-contact layer with a gradient composition change increases the thickness of the thick white square V gallium composition ratio of the layer from the channel layer to the inside of the channel layer. A = Here, Quasi-electronic lice are efficient, so they can form a GalnP-based layered structure that has: 夂: and high-speed electron migration. And ° of the transduction value and the pinch-off voltage and, as mentioned above, Tailu &amp; _ as its starting material, vapor deposition package; ^ organic methyl compounds as A1L G a BU LA s layer structure It is known that the buffer layer ^ month = ^ layer constitutes the above-mentioned superlattice period 522574 V. Description of the invention (12) Periodic structure with a prescribed compensation ratio; therefore, a Gal nP system with low leakage current can be formed Laminated structure. Further, the above composition is such that triethylgallium is used as a starting material, and a GaAs thin film layer is vapor-deposited on a group III-V compound containing indium, and thus can form 107111b, 3 (0 &lt; 2 $ 1) channel layer, _ (111111 spacer layer), and an electron supply layer with better isotropy in the composition ratio of indium; and therefore, it can form transduction values and stop voltages with better isotropy. A G a I η P-based multilayer structure. "The above-mentioned objects and features of the present invention will be more clearly understood through the following description with reference to the accompanying. 1 β diagram is briefly explained: Figure 1 is about a conventional GalnP TEGFET junction Xun Peng diagram; the outline of the body. Figure 2 is a chart explaining the gradient of the gallium composition ratio of the gas supply layer of the Gay 丨 ~ γP group. The figure 3 is also used to explain this. Invention's preferred embodiment '-

TEGFET概要剖面圖式; alnP 第4圖係一圖表,說明關於GaxiiVxP組 ^ 隔層,於鎵組成比例中梯度變化的圖; 弟度變化的間 的TEGFET schematic cross-section diagram; alnP Figure 4 is a diagram illustrating the gradient of the GaxiiVxP group ^ spacer in the gallium composition ratio;

GalnP 第5圖係用以說明本發明較佳實施 TEGFET的概要剖面圖式; 第6圖係用以說明本發明較佳實施例 結構體之概要剖面圖式; I nP系積層GalnP FIG. 5 is a schematic cross-sectional view for explaining a preferred implementation of the present invention, TEGFET; FIG. 6 is a schematic cross-sectional view for explaining a preferred embodiment of a structure of the present invention; I nP series build-up layer

2037-3440-PF-ptd 第16頁 522574 五、發明說明(13) 第7圖係用以說明本發明較佳實施例的一 Ga I nP TEGFET的概要剖面圖式; 第8圖係用以說明本發明較佳實施例的一 Ga I nP TEGFET的積層結構體之概要剖面圖式; 第9圖係詳述於工作範例中的一Gal nP TEGFET之概要 剖面圖式。 符號說明: 3 A〜蠢晶堆豐結構, 8A〜磊晶堆疊結構; 1 0〜基板; 1 1〜緩衝層; 接觸的接合介面; 1 4〜接觸層; 1 6〜汲極電極; Π 2A〜磊晶堆疊結構 1 1 2〜緩衝層; 1 1 3〜GaAs沉積層; 1 1 5〜間隔層; 1 2 3 A〜蠢晶堆豐結構 1 2 1〜基底; 1 22a〜Al0 3Ga0 7As 層 123〜GaAs 層; 1A〜GalnP系積層結構體; 6A〜磊晶堆疊結構; 9 A〜蠢晶堆豐結構, 10A〜GalnP系積層結構體: 12〜通道層; 12a〜電子供應曾與通道層 1 3〜電子供應層; 1 5〜源極電極; I 7〜閘極電極; 111〜基底; 112-1、112-2〜構成層; II 4〜通道層; 11 6〜電子供應層; 1 2 0〜閘極電極; 1 2 2〜緩衝層; 122b〜p 型GaAs 層;2037-3440-PF-ptd Page 16 522574 V. Description of the invention (13) Figure 7 is a schematic cross-sectional view of a Ga I nP TEGFET used to illustrate a preferred embodiment of the present invention; Figure 8 is used to illustrate A schematic cross-sectional view of a multilayer structure of a Ga I nP TEGFET according to a preferred embodiment of the present invention; FIG. 9 is a schematic cross-sectional view of a Gal nP TEGFET detailed in the working example. Explanation of symbols: 3 A ~ stupid crystal stack structure, 8A ~ epitaxial stack structure; 10 ~ substrate; 11 ~ buffer layer; contact interface; 14 ~ contact layer; 16 ~ drain electrode; Π 2A ~ Epitaxial stacked structure 1 1 2 ~ Buffer layer; 1 1 3 ~ GaAs deposition layer; 1 1 5 ~ Spacer layer; 1 2 3 A ~ Stupid crystal stack structure 1 2 1 ~ Substrate; 1 22a ~ Al0 3Ga0 7As layer 123 ~ GaAs layer; 1A ~ GalnP system layer structure; 6A ~ epitaxial stacked structure; 9A ~ stupid crystal stack structure, 10A ~ GalnP system layer structure: 12 ~ channel layer; 12a ~ electronic supply and channel layer 1 3 ~ electron supply layer; 1 5 ~ source electrode; I 7 ~ gate electrode; 111 ~ substrate; 112-1, 112-2 ~ constituent layer; II 4 ~ channel layer; 11 6 ~ electron supply layer; 1 2 0 ~ gate electrode; 1 2 2 ~ buffer layer; 122b ~ p-type GaAs layer;

2037-3440-PF-ptd 第17頁 5225742037-3440-PF-ptd Page 17 522574

1 24〜通道層; 126〜電子供應層; 1 2 8〜源極電極; 3 0 0〜磊晶堆疊結構; 3 0 2 - 1〜超晶袼結構; 302-2〜第二緩衝層構成 3〇23〜人1〇3〇8。7八3層; 3 0 2 c 〜η 型 G a A s 層; 304〜電子供應層; 304a〜與通道層接觸的接 304b〜與η型GaAs接觸層击 305〜η型GaAs接觸層; 3 0 7〜汲極電極; 6 0 0〜磊晶堆疊結構; 6 0 2〜緩衝層; 6 〇 4〜間隔層; 6 0 6〜接觸層; 6 0 8〜没極電極; 8 0 1〜基底; 802- 1、802-2〜構成層; 8 0 2 b〜沉積層; 805〜電子供應層; 9 0 2〜緩衝層; 902-2〜第二緩衝層構成 1 2 5〜間隔層; 1 2 7〜接觸層; 1 2 9〜汲極電極; 3 〇 1〜基底; 位; 302b〜p 型GaAs 層; 3 03〜通道層; 合介面; 觸的接合介面; 3 0 6〜源極電極; 3 0 8〜閘極電極; 6 0 1〜基底; 6 0 3〜通道層; 6 0 5〜電子供應層; 6 0 7〜源極電極; 6 0 9〜閘極電極; 8 0 2〜緩衝層; 8 0 2 a〜超晶格週期会士 8 03〜通道層; 9 0 1〜基底; 9 0 2 -1〜超晶格結構; $位;1 24 to channel layer; 126 to electron supply layer; 1 2 8 to source electrode; 3 0 0 to epitaxial stacked structure; 3 0 2 to 1 to supercrystalline fluorene structure; 302-2 to second buffer layer structure 3 〇23 ~ 人 103. 807 layers; 3 0 2 c ~ η-type G A A s layer; 304 ~ electron supply layer; 304a ~ contact with the channel layer 304b ~ contact with η-type GaAs layer 305 ~ η-type GaAs contact layer; 307 ~ drain electrode; 600 ~ epitaxial stacked structure; 602 ~ buffer layer; 604 ~ spacer layer; 606 ~ contact layer; 608 ~ Electrode; 80 1 ~ substrate; 802-1, 802-2 ~ constituting layer; 80 2 b ~ deposition layer; 805 ~ electron supply layer; 9 02 ~ buffer layer; 902-2 ~ second buffer The layer constitutes 1 2 5 ~ spacer layer; 1 2 7 ~ contact layer; 1 2 9 ~ drain electrode; 3 0 1 ~ substrate; bit; 302b ~ p-type GaAs layer; 3 03 ~ channel layer; junction interface; Bonding interface; 3 06 ~ source electrode; 3 0 8 ~ gate electrode; 6 0 1 ~ substrate; 6 0 3 ~ channel layer; 6 0 5 ~ electron supply layer; 6 0 7 ~ source electrode; 6 0 9 ~ gate electrode; 8 02 ~ buffer layer; 8 0 2 a Fellow superlattice period 03~ channel layer 8; base 1 ~ 90; 902 -1~ superlattice structure; $ bits;

2037-3440-?F-ptd 第18頁 522574 五、發明說明(15) 902b〜p型GaAs層 9 0 3〜通道層; 905〜電子供應層 9 0 7〜源極電極; 9 0 9〜閘極電極。 90 2a〜Ai0 3Ga0 7As 層 9〇2c〜GaAs 層; 9 0 4〜間隔層; 9 〇 6〜接觸層; 9 0 8〜沒極電極; 實施例說明: 根據本發明關於Gal nP FETs的基層結構體之基本構造 係於一GaAs單晶301之表面上堆疊一結構體,其包括至少 一緩衝層302、一 GazIrVzAsCfKZSl)通道層3〇3以及形成連 接於此通道層(第3圖所示)的一6%Ιηι_γΡ(〇&lt;γ ^丨)電子供應 層;或於一GaAs單晶601之表面上堆疊一結構體,其包括〜 至)一緩衝層602、一 GazI ivzAs ( 0&lt;Z $1)通道層β〇3、形成 一GaxIiVxPOu^i)間隔層604連接於上述通道層上以及形 成一GaYlr^POasD電子供應層6〇5連接於上述間隔層 (參考第5圖)。 最好使用GaAs單晶基板的半絕緣{〇〇1}方向基板。 根據本發明申請專利範圍第丨項的第一較佳實施例 中,GaYIni_YP(〇&lt;Y $1)電子供應層可藉由大氣壓力或低壓 M0CVD(有機金屬化學氣相沉積)或使用三甲基鎵(化學式: (CH^Ga)當作鎵(Ga)來源、三甲基銦(化學式: 當作銦(In)來源以及磷化氫(化學式·· π。當作磷(p)來源 等等的其它氣相沉積方法。亦可使用三乙基鎵(化學式: (qHdsGa)當作鎵(Ga)來源。例如可使用環戊二烯銦(化學2037-3440-? F-ptd Page 18 522574 V. Description of the invention (15) 902b ~ p-type GaAs layer 9 0 3 ~ channel layer; 905 ~ electron supply layer 9 0 7 ~ source electrode; 9 0 9 ~ gate Electrode. 90 2a ~ Ai0 3Ga0 7As layer 920c ~ GaAs layer; 904 ~ spacer layer; 906 ~ contact layer; 908 ~ electrode electrode; description of the embodiment: Basic structure of Gal nP FETs according to the present invention The basic structure of the body is a structure stacked on the surface of a GaAs single crystal 301, which includes at least a buffer layer 302, a GazIrVzAsCfKZS1) channel layer 30, and a layer connected to the channel layer (shown in FIG. 3). -6% Ιηι_γP (〇 &lt; γ ^ 丨) electron supply layer; or a structure stacked on the surface of a GaAs single crystal 601, which includes ~ to) a buffer layer 602, a GazI ivzAs (0 &lt; Z $ 1) The channel layer β03, a GaxIiVxPOu ^ i) spacer layer 604 is connected to the channel layer, and a GaYlr ^ POasD electron supply layer 605 is connected to the spacer layer (refer to FIG. 5). It is preferable to use a semi-insulating {OO 1} orientation substrate of a GaAs single crystal substrate. According to the first preferred embodiment of the scope of application for the patent of the present invention, the GaYIni_YP (0 &lt; Y $ 1) electron supply layer may be formed by atmospheric pressure or low-pressure MOCVD (organic metal chemical vapor deposition) or using trimethyl Gallium (chemical formula: (CH ^ Ga) as a source of gallium (Ga), trimethylindium (chemical formula: as a source of indium (In), and phosphine (chemical formula ·· π. As a source of phosphorus (p), etc. Other vapor deposition methods. Triethylgallium (chemical formula: (qHdsGa) can also be used as a source of gallium (Ga). For example, indium cyclopentadiene (chemical

2037-3440-FF-ptd 第19頁 522574 五、發明說明(16) 式:C5H5In)當作銦(In)來源,使用(CH3)3Ga/C5H5In/PH3 反 應形成GaYIni_YP層(參考JP —B_8 —1716〇)。隨著薄膜沉積時 間增加’藉由減少提供於M〇CVD反應系統的鎵來源量(濃 度)又同時保持提供於M〇CVD反應系統的銦來源量(濃度)為 一常數’可以形成具有鎵成分梯度分佈的6%Ιηι γΡ電子供 應層(組成濃度梯度分佈層)5例如自與(^ Irii zAs(〇&lt;z $ i) 通道層接合介面處開始於增加層的厚度方向減少鎵組成比 |例(Y)。此外,隨著薄膜沉積時間增加,藉由增加銦來源 =量又同時保持提供於M0CVD反應系統中的鎵來源量為一' 鑤 常數,可以形成上述薄膜型式。此外,為了獲得具有要求 載子密度的電子供應層,於沉積期間最好執行矽(s i) 的摻雜。 、、 電 的 佈 著 化 面 外 此 地 根 第2圖概要地說明構成GaYIni_YP成分梯度分佈層中,於 子供應層内部的鎵成分的梯度分佈圖。於第2圖中說明 鎵f分的梯度分佈圖案係本發明允許的—個成分梯度分 圖範例,並且於此圖案中,當鎵成分係均勻且線性=二 電子=應層之厚度增加而變化時,(a)顯示鎵成分的變&quot; 。(b)喊不於範例中的梯度分佈圖,於與通道層接合 處附近鎵成分保持固定值接著均勻地且線性地減少。 冰^不於範例中,其中鎵成分係以曲線蜜式減少。 :少係一梯度變化圖案,其中鎵成分係以階梯型式 梯度變化圖案並未限制於第2圖中說 據本發明申請專利範圍第3項的第三較中但;2037-3440-FF-ptd Page 19 522574 V. Description of the invention (16) Formula: C5H5In) as the source of indium (In), GaYIni_YP layer is formed by (CH3) 3Ga / C5H5In / PH3 reaction (refer to JP —B_8 —1716 〇). As the film deposition time increases, 'by reducing the amount of gallium source (concentration) provided to the MOCVD reaction system while maintaining a constant amount of indium source (concentration) provided to the MOCVD reaction system, a gallium composition can be formed Gradient distribution of 6% Iηι γ electron supply layer (composition concentration gradient distribution layer) 5 For example, from (^ Irii zAs (〇 &lt; z $ i) at the interface layer of the channel layer begins to increase the thickness of the layer and decreases the gallium composition ratio | Example (Y). In addition, as the film deposition time increases, the above-mentioned film type can be formed by increasing the amount of indium source = while keeping the amount of gallium source provided in the MOCVD reaction system to be a 鑤 constant. In addition, in order to obtain An electron supply layer having a required carrier density is preferably doped with silicon (Si) during the deposition. The outer surface of the electrical distribution layer is illustrated in the second figure. The outline of the composition of the GaYIni_YP composition gradient distribution layer is shown in FIG. Gradient distribution map of the gallium component inside the sub-supply layer. The gradient distribution pattern of the f-g component is illustrated in FIG. 2 as an example of a component gradient map allowed by the present invention, and here In the case, when the gallium composition is uniform and linear = two electrons = the thickness of the layer increases and changes, (a) shows the change in the gallium composition. (B) The gradient distribution diagram in the example is not used in the channel. The gallium composition near the layer joint maintains a fixed value and then decreases uniformly and linearly. In addition to the example, the gallium composition is reduced in a curvilinear honeycomb pattern.: There is less a gradient change pattern, in which the gallium composition is stepped The variation pattern is not limited to the third comparison in the second figure, which states that according to the third aspect of the patent application scope of the present invention;

2〇37-344〇-PF'Ptd 第20頁 522574 五、發明說明(17)2037-344〇-PF'Ptd Page 20 522574 V. Description of the Invention (17)

Gaz IhhAsCCRZ S 1 )通道居人人 的鎵組成成分比例(=:γ』 口 w面處GaYIni γΡ電子供應層 於U5。這是因為藉於〇·7,或者最妤大於等 可以增加堆積於通道層中二比例( = γ)大於等於〇· 7, 假若採用於第2圖中顧Τ維電子氣的遷移率。例如’ 間中鎵組成比例( = γ)、為^ 6Q d的鎵成分梯度分佈圖,於區 的厚度上限為2ru„,接…英j丄其中自與通道層接合介面處 組成比例為0·7。在接Π另一種—厚度區間可以形成鎵 的鎵成分,可用以各另個:種2nm厚度區間形成具有”1 藉由階梯型式的以〇 2读 %化―γΡ層的多層組成,接者 可Μ # &amp; ϋ ^ ·、2減^鎵成分層,根據此較佳實施例 ^ 〃梯度成分分佈的電子供應層。 奋p特別於根據本發明的申請專利範圍第&amp;項的第四較佳 貝她例中,於與Gaz Ini-zAs(〇&lt;Z $1)通道層接合介面處的 GaYinHPCiKY $1)電子供應層之鎵組成比例(=γ)設定為 1 · 〇。設定鎵組成比例為丨· Q,那就是使電子供應層為磷化 鎵(化學式:GaP)。例如,假若採用於第2圖中藉由(b)顯 不的鎵成分圖案,於此區間設定鎵組成比例卜γ )為丨· 〇, 其中與通道層接合介面處的厚度上限為2ηπι,接著鎵組成 比例線性地減少至〇 · 5 1,因此可以形成根據此較佳實施例 具有鎵成分的電子供應層。藉由設定與通道層接合介面處 的鎵組成比例為1· 〇,形成與Gazini_zAs通道層的高接合屏 障(junction barrier),因此可以有效地堆積二維電子 氣。 根據本發明申請專利範圍第2項的第二較佳實施例Gaz IhhAsCCRZ S 1) The proportion of gallium composition in the channel (=: γ) GaYIni γ P electron supply layer at U5 is at U5. This is because it can increase the accumulation in the channel by borrowing 0.7, or more The ratio of two in the layer (= γ) is greater than or equal to 0.7. If the mobility of the electron gas in GuT dimension is used in the second figure. For example, the composition ratio of gallium (= γ) and the gallium composition gradient of ^ 6Q d Distribution map, the upper limit of the thickness of the area is 2ru, where the composition ratio of the interface between the self and the channel layer is 0 · 7. In the other, the thickness of the gallium component can form gallium, which can be used for each Another: A 2nm thickness interval is formed with a multi-layered composition of "1" by a stepped pattern of 0%-γP layer, which can be M # & ϋ ^ ·, 2 minus gallium component layer, according to this comparison The preferred embodiment ^ An electronic supply layer with a gradient composition distribution. This is particularly preferred to the fourth preferred beta case of item &amp; in the scope of patent application according to the present invention, in which Gaz Ini-zAs (0 &lt; Z $ 1 ) GaYinHPCiKY at the junction interface of the channel layer $ 1) The gallium composition ratio (= γ) setting of the electron supply layer · 1 billion. Setting the gallium composition ratio to 丨 · Q means that the electron supply layer is gallium phosphide (chemical formula: GaP). For example, if the gallium component pattern shown by (b) in Fig. 2 is used, the gallium composition ratio [γ] is set in this interval to 丨 · 〇, where the upper limit of the thickness at the interface with the channel layer is 2ηπ, and then The gallium composition ratio linearly decreases to 0.51, so that an electron supply layer having a gallium component can be formed according to this preferred embodiment. By setting the composition ratio of gallium at the interface with the channel layer to 1 · 0, a high junction barrier with the Gazini_zAs channel layer is formed, so two-dimensional electron gas can be efficiently accumulated. The second preferred embodiment of the second patent application scope according to the present invention

2037-3440-PF-ptd 第21頁 522574 五、發明說明(18) 中,構成具有圖案的G aY I η^γ P的濃度梯度分佈層,其中隨 著層厚度增加減少鎵組成比例(=γ ),當減少量設定為0 · 5 1 ± 0 · 0 1時’達到最小鎵組成比例(=γ)。例如,考慮自一 η 型GaYlnuP濃度梯度分佈層形成一電子供應層,其中鎵組 成比例自1· 0減少至〇. 51。因為具有〇. 51 ± 0. 01的組成比 例的GaYIni-YP,具有粗略地與砷化鎵(GaAs)相匹配的晶 格’即使假若構成GaAs的接觸層堆疊於GaYlni γρ電子供應 層上’具有可以防止自晶格錯配(mismatch)產生電子供應 層之結晶狀況惡化的優點。 根據本發明申請專利範圍第5項的第五較佳實施例 中’自1-20奈米(單位:nm)的厚度範圍中,於電子供應層 二1^ f層之間的接合介面處的區間中,形成鎵組成比例 數的一η^γΙηΐγΡ層。藉由 )l =接觸形成具有常數鎵組成比例(=γ)的6和in&quot;p :有鬲屏障的通道層可以等向性地穩定。假若且 二t且二比區間的厚度變得非常的薄,從具有 著,並且變晶格產生錯位的問題變得很顯 GΜ n, Yp ^獲得具有較佳銦成分均勻性的- 電子供應層中為層了。二:種上型的具有厚度1〇⑽的 且有較仵矣 心疋也^得具有較鎵銦成分:^ 4 » ^有季乂 4表面狀態等等的_G U成刀均勻性及 有固定鎵成分的Ga J p产 Η :子I,、應層,上述具 的範圍為H。⑽並_1最上,範圍為&quot;〇_,更佳 常薄的薄膜中;ΐ:::1 定㈣Λ圍内。注意,於-非 有固疋叙組成比例㈠)的GaYlni—γΡ2037-3440-PF-ptd Page 21 522574 5. In the description of the invention (18), a patterned G aY I η ^ γ P concentration gradient distribution layer is formed, in which the gallium composition ratio decreases as the layer thickness increases (= γ ), When the reduction is set to 0 · 5 1 ± 0 · 0 1 ', the minimum gallium composition ratio (= γ) is reached. For example, consider forming an electron supply layer from a η-type GaYlnuP concentration gradient distribution layer, in which the gallium composition ratio is reduced from 1.0 to 0.51. Because GaYIni-YP has a composition ratio of 0.51 ± 0. 01, it has a lattice that roughly matches gallium arsenide (GaAs), even if the contact layer constituting GaAs is stacked on the GaYlni γρ electron supply layer. It is possible to prevent the crystalline state of the electron supply layer from deteriorating due to mismatch of the lattice. According to the fifth preferred embodiment of item 5 of the patent application scope of the present invention, the thickness of the bonding interface between the electron supply layer 2 and the 1 ^ f layer in the thickness range from 1-20 nanometers (unit: nm) In the interval, a η ^ γΙηΐγP layer with a composition ratio of gallium is formed. By) l = contact formation of 6 and in &quot; p with constant gallium composition ratio (= γ) can be isotropically stabilized. If the thickness of the two-t and two-ratio sections becomes very thin, it becomes obvious that the problem of dislocation caused by the transformation of the lattice becomes GM n, Yp ^ to obtain a better uniformity of the indium composition-electron supply layer In the middle. Second: the upper type has a thickness of 10 且 and has a relatively thick heart 疋 also has a more gallium indium composition: ^ 4 »^ has a 乂 GU 4 surface state and so on _GU knife uniformity and fixed Ga J p of the gallium component produces dysprosium: a sublayer I, a stress layer, and the above range is H. ⑽ and _1 are the uppermost, and the range is &quot; 〇_, more preferably in a thin film; ΐ ::: 1 is within the range of ㈣Λ. Note that the composition ratio of Yu-Non-solid-synthesized ㈠) GaYlni-γΡ

•ptd 第22頁 522574 五、發明說明(19) 層最好薄到低於1 n m,因為不能穩定控制鎵組成比例 (=Y),與通道層接合介面處不能穩定的獲得一過大的接合 屏卩羊。利用簫基接合電極,藉由電容電壓方法可以量測接 合屏障的高度(參考Appl· Phys· Lett·,43(1)(1983), Ρ· 118)。 ’ 根據第五較佳實施例,鎵成分的梯度分佈圖之功能與 先鈾技術之表面霾痕比較,改善G aY I γ Ρ ( 0 &lt; Υ $ 1 )電子供 應層之表面狀態(參考Takao Abe, “Silicon Crystal• ptd page 22 522574 V. Description of the invention (19) The layer is preferably as thin as less than 1 nm, because the gallium composition ratio (= Y) cannot be stably controlled, and an oversized bonding screen cannot be obtained stably at the interface with the channel layer. Sheep. The height of the bonding barrier can be measured using the capacitor-based bonding electrode using the capacitive voltage method (see Appl. Phys. Lett., 43 (1) (1983), P. 118). '' According to the fifth preferred embodiment, the function of the gradient profile of the gallium component is compared with the surface haze marks of the prior uranium technology, which improves the surface state of the G aY I γ P (0 &lt; Υ $ 1) (refer to Takao Abe, "Silicon Crystal

Growth and Wafer Working,,’(published by Baifukan, May 20, 1 994, 1st edition),pp· 322-326 )。例如,當 具有〇· 51的鎵組成比例的一n型GaG 51 InG.49P電子供應層堆 積於一η型GaQ 8 In。2 As通道層上的總厚度至2 5nm,於百萬 分之50 0-600沉積後表面具有一霾痕,假若第五較佳實施 例接著使鎵組成比例(=γ)自與GaG 8In().2As通道層接合介面 處於5nm範圍内,自1 · 〇隨著厚度增加而減少,直到總厚度 25nm時減少至〇· 51,因此,形成具有GaY IrvYP成分梯度分 佈的一電子供應層,並且於沉積後表面之霾痕改善至百萬 分之50-60(ppm)。 根據本發明申請專利範圍第6項的第六較佳實施例 中’ Gaxlni—xP(〇&lt;X $1)間隔層可藉由大氣壓力或低壓M0CVD 或其它氣相沉積裝置,使用三甲基鎵(化學式:(CH3)3Ga) 當作鎵(G a)來源、三甲基銦(化學式:(C H3 h I η )當作銦 (I η)來源以及磷化氫(化學式:pi)當作磷(Ρ )來源。三乙 烯鎵(化學式:(C2H5)3Ga)亦可以當作鎵(Ga)來源使用。例Growth and Wafer Working, '(published by Baifukan, May 20, 1 994, 1st edition), pp. 322-326). For example, when an n-type GaG 51 InG.49P electron supply layer having a gallium composition ratio of 0.51 is stacked on an n-type GaQ 8 In. The total thickness of the 2 As channel layer is 25 nm, and there is a haze mark on the surface after 50-600 parts per million deposition. If the fifth preferred embodiment then makes the gallium composition ratio (= γ) from GaG 8In ( ). 2As channel layer bonding interface is in the range of 5nm, and decreases from 1 · 〇 as the thickness increases, and decreases to 0.51 at a total thickness of 25nm. Therefore, an electron supply layer having a gradient distribution of GaY IrvYP composition is formed, and The haze marks on the surface after deposition improved to 50-60 parts per million (ppm). According to the sixth preferred embodiment of item 6 of the patent application scope of the present invention, the 'Gaxlni-xP (0 &lt; X $ 1) spacer layer can use trimethylgallium by atmospheric pressure or low pressure MOCVD or other vapor deposition equipment (Chemical formula: (CH3) 3Ga) as a source of gallium (G a), trimethylindium (chemical formula: (C H3 h I η) as a source of indium (I η), and phosphine (chemical formula: pi) as Source of phosphorus (P). Triethylene gallium (chemical formula: (C2H5) 3Ga) can also be used as a source of gallium (Ga). Example

2037-3440-FF-otd 第23頁 522574 五、發明說明(20) 如,利用環戊二烯銦(化學式:c5 H51 η)當作銦(I η)來源, 使用(CH3 )3 Ga/C5 Η51 η/ΡΗ3 反應形成GaY I Γ^γΡ 層(參考 JP-Β-8-17160)。於鎵成分梯度分佈的Gaxini χρ間隔層(梯 度組成成分層)中,當提供至MOCVD反應系統的銦來源維持 固定量時,隨著形成薄膜的時間增加,藉由減少提供至 Μ 0 C V D反應系統的鎵來源,鎵組成比例(X )自與 GazIr^—zAsCiKZSl)通道層接合介面處的增加層厚度方向中 減少。此外,當提供至MOCVD反應系統的鎵來源維持固定 量時,藉由同時增加銦來源的量可以形-成上述薄膜型式。 提供一GaYIni_YP(〇&lt;Y $;[)電子供應層與間隔層接觸, 考慮與GaAs基板的晶格配合,電子供應層最好具有設定銦 的組成比例(1-Y)為〇. 49(或更嚴格地為〇· 485 ),並且如同 於申4專利範圍第7項所述的較佳實施例中,鎵組成比例 (Y)設定為0 · 5 1。 第4圖係概要地說明於Gaxini xP梯度組成比例間隔層之 内部的鎵組成比例的梯度分佈圖。於第4圖中說明的鎵組 成比例之梯度分佈圖係藉由本發明可實施的一種組成比例 梯度分佈圖範例,並且於此圖中,(a)顯示鎵的組成比例 係均勻且線性地隨著間隔層厚度增加而變化◦符號(b)顯 示鎵的組成比例於與通道層接合貪面處保持固定值,接著 鎵的組成比例逐漸地均勻且綠性地減少。例如,於具有厚 度7nm的GaxIrvxP間隔層中,與/通道層接合介面處厚度為 2nm的區域·中,鎵的組成比例保持固定值,之後形成梯度 組成’其中鎵的組成比例減少。符號(c)顯示鎵的組成比2037-3440-FF-otd Page 23 522574 V. Description of the invention (20) For example, if cyclopentadiene indium (chemical formula: c5 H51 η) is used as the source of indium (I η), (CH3) 3 Ga / C5 is used. Η51 η / ΡΗ3 reacts to form a GaY I Γ ^ γP layer (refer to JP-B-8-17160). In the Gaxini χρ spacer layer (gradient composition layer) of the gallium composition gradient distribution, when the indium source provided to the MOCVD reaction system is maintained at a fixed amount, as the time for forming a thin film increases, it is provided to the M 0 CVD reaction system by reducing The gallium source, the gallium composition ratio (X) decreases in the direction of the thickness of the increasing layer at the junction interface with the GazIr-zAsCiKZS1) channel layer. In addition, when the gallium source supplied to the MOCVD reaction system is maintained at a fixed amount, the above-mentioned thin film pattern can be formed by simultaneously increasing the amount of the indium source. Provide a GaYIni_YP (0 &lt; Y $; [) The electron supply layer is in contact with the spacer layer. Considering the lattice matching with the GaAs substrate, the electron supply layer preferably has a composition ratio (1-Y) of indium set to 0.49 ( Or more strictly 0.45), and as in the preferred embodiment described in item 7 of the scope of patent No. 4, the gallium composition ratio (Y) is set to 0.51. Fig. 4 is a schematic diagram illustrating a gradient distribution of the gallium composition ratio inside the Gaxini xP gradient composition ratio spacer. The gradient distribution diagram of the gallium composition ratio illustrated in FIG. 4 is an example of a composition ratio gradient distribution map that can be implemented by the present invention, and in this figure, (a) shows that the composition ratio of gallium uniformly and linearly follows The thickness of the spacer layer increases and changes. The symbol (b) shows that the composition ratio of gallium remains fixed at the junction with the channel layer, and then the composition ratio of gallium gradually decreases uniformly and greenishly. For example, in a GaxIrvxP spacer layer having a thickness of 7 nm, a 2 nm thick region at the junction interface with the channel layer. In the gallium composition ratio is maintained at a fixed value, and then a gradient composition is formed, where the gallium composition ratio is reduced. Symbol (c) shows the composition ratio of gallium

第24頁 522574Page 522574

】係以曲線型式減少的範例。此外,符 圖宰,* a μ , t就C d )係一種梯度 ^其中叙的組成比例係以階梯型式減少H與通 运接合介面處至2nm厚度的區域中,鎵的 Λπ 0 豕的組成比例(=X ) 〇 .9 ;接著於另-個2nm厚度區域中,鎵的組成二為 &quot;,接著於再一個2nm厚度區域中,鎵的組成比例為 的二:可以形成各個叫〜汁層的多層構成物,並且以0.2 ”白梯型式減少鎵成分層 '可以形成梯度組成分佈的間隔 於弟4圖中說明的圖案並未限制梯声八你 4仰!为佈圖,但是於 任何梯度分佈圖中,根據本發明申請專利 1 n , 肖号巧乾圍第8項至第 1U項的較佳實施例,於與GazIni_zAs(〇&lt;Z &lt;n、系、, 人八 ^ . 1 2 、以^1)通道層接合介 面處的GaxIn卜ΧΡ間隔層的鎵的組成比例(=χ)係 々 0. 7 ’最好大於等於0.85,並且最好為ho。這是因藉 由使鎵的組成比例(=X)大於0· 7 ’可以增加堆積I通道層曰 中的二維電子氣的遷移率。此外,鎵的組成比例最好減曰少 至接近0 · 51。這是因為’假若獲得與形成電子供废声的】 Is an example of a reduction in the curve. In addition, Fu Tuzai, * a μ, t is C d) is a gradient ^ The composition ratio is described in a stepwise manner to reduce the composition of Λπ 0 镓 of gallium in the region of 2nm thickness from the interface between H and the transport interface. Ratio (= X) 0.9; then in another 2nm thickness region, the composition of gallium is &quot;, and then in another 2nm thickness region, the composition ratio of gallium is two: each can be formed into a juice The multi-layered structure of layers and the 0.2 ”white ladder-type reduction of the gallium component layer 'can form a gradient composition distribution interval. The pattern illustrated in the figure 4 does not limit the ladder sound to you! It is a layout, but in any In the gradient distribution diagram, according to the present invention, the preferred embodiment of the patent application 1 n, Xiao Qiao Qiaowei items 8 to 1U, and GazIni_zAs (0 &lt; Z &lt; n, Department ,, people eight ^. 1 2) The composition ratio (= χ) of the gallium of the GaxIn spacer layer at the junction interface of the channel layer is χ0.7 'is preferably 0.85 or more, and preferably ho. This is because Making the composition ratio (= X) of gallium greater than 0.7 · 'can increase the migration of the two-dimensional electron gas in the stacked I channel layer. Rate. In addition, the composition ratio of gallium is preferably reduced to close said at least 51. This is because the 0.5 'obtained if the electron donor formed sound waste

GaQ.5l IrV49P的晶格匹配,那麼間隔層具有較佳的於^曰曰8性, 於〇%1111_,3(0&lt;2$1)通道層中,適合堆積來自當&quot;作曰曰二 子氣的電子供應層的電子。 ~ 表1顯示具有根據本發,明的鎵組成比例(=X)為梯^:八 佈的一GaxIrvxP間隔層的Galnp TEGFET的遷移率^與== 鎵組成比例0.51做為間隔層的Ga^In^p層的典型知有 GalnP TEGFET 比較。 @ πGaQ.5l IrV49P lattice matching, then the spacer layer has a better ^ ^ 8 character, in the 0% 1111_, 3 (0 &lt; 2 $ 1) channel layer, suitable for stacking from Dang &quot; Electrons in the electron supply layer. ~ Table 1 shows the mobility of a Galnp TEGFET with a GaxIrvxP spacer layer with a GaxIrvxP spacer layer according to the present invention (= X) as a ladder ^ and Ga = a Ga1 composition ratio of 0.51 as the Ga ^ A typical example of the In ^ p layer is GalnP TEGFET comparison. @ π

2037-3440-PF.ptd 第25頁 5225742037-3440-PF.ptd Page 25 522574

[表i][表 i] Table I

GalnP TEGFET 型式 於 GaxInlocP 間隔層中鎵 的組成比例 (X) 單位面積載子密度 (單位:xl012cm·2) 遷移率 (單位:xl03cm3/Vs) 室溫 77 K 室溫 77 K 先前技術 0.51 1.9 1.6 4.2 14 先前技術 [0.51 1.7 1.4 4.4 17 本發明 1〇Τ75^Γ〇.51 1.8 1.5 ~~ΊΤ5 21 本發明 〇.75-&gt;0.51 1.9 1.7 6.0 23 於表1中根據本發明於TEGFETs中,就間隔層之鎵組成 ^例而3 ,私不、〇· 75 — 〇· 51&quot;表示於與通道層接合介面 處=鎵組成比例自0.75減少至與電子供應層接合介面處的 二二如,表中顯示❸,根據本發明,具有提供梯度分 1 =間隔層的GaInp TEGFET,即使概略相 室溫(3GQ Kelvin(K))下及液態氮溫度(77『 =二維持高於先前技術。順便一提的是可藉由一般 的萑爾效應量測方法(Ha丨1 ef f measurement method) ==:立面積载子密度。也就是,鎵的成分及鎵 :介佈的Gaxini-χΡ間隔層於與載子層接 口;I面處具有保持非常高的遷移率作用。 尤其,根據本發明之第9實施例,如同於第九較實 施例顯示的Gaxlni χΡ组成据_八&amp; aa b J於弟九季乂佳貝GalnP TEGFET type in the GaxInlocP spacer layer composition ratio of gallium (X) Carrier density per unit (unit: xl012cm · 2) Mobility (unit: xl03cm3 / Vs) Room temperature 77 K Room temperature 77 K Prior technology 0.51 1.9 1.6 4.2 14 Prior art [0.51 1.7 1.4 4.4 17 The present invention 10T75 ^ Γ.51 1.8 1.5 ~~ ΊΤ5 21 The present invention 0.75- &gt; 0.51 1.9 1.7 6.0 23 In Table 1, according to the present invention in TEGFETs, The gallium composition of the spacer layer is shown in Example 3, privately, 0.75 · —51, which is indicated at the interface with the channel layer = the gallium composition ratio has been reduced from 0.75 to the interface with the electron supply layer. It is shown in the figure that according to the present invention, a GaInp TEGFET having a gradient of 1 = spacer layer is maintained at room temperature (3GQ Kelvin (K)) and the temperature of liquid nitrogen (77 ′ = 2 remains higher than the prior art. By the way, by the way It is mentioned that the general Haar effect measurement method (Ha 丨 1 ef f measurement method) ==: standing area carrier density. That is, the composition of gallium and the Gaxini-χP spacer layer interposed on the Interface with carrier layer; has very high migration at I-plane Role In particular, according to Gaxlni χΡ ninth embodiment of the present invention, as compared with the ninth embodiment implemented according to the composition shown eight _ & aa b J Di to nine quaternary qe Pui

GaYIni_yAs(0&lt;Z^)it^^A^^^^^ 設為u,那就變成磷化面:鎵,成比例⑼ 琢、化于式· GaP),產生特別高的 522574 五、發明說明(23) 遷移率。即使於此範例中,位於Ga() 5i InQ 49p電子供應的接 合介面處的鎵組成比例最好為〇 · 5 1。即,於第九較佳實施 例中的Gaxlni—XP間隔層最好係一結晶層,其中自與通道層 接觸的接合介面處至與電子供應層接觸的接合介面處的鎵 組成比例(=X )自1 · 〇減少至〇 · 5 1。具有此種成分梯度分佈 的Gax Ιη^χΡ間隔層(χ=ι · 〇 — 〇· 51 )藉由形成一Gap層獲得, 其中於薄膜開始形成時,未提供銦的來源至M〇CVD反應系 統中’接著’逐漸增加提供至反應系統的銦來源的數量, 最後銦的成分變成〇. 5 Γ。 此外,根據本發明申請專利範圍第1 1項的第1 1較佳實 施例中,η型Gax I P組成梯度變化的間隔層係由摻雜硼 (化學式1)的11型(^11113(0.51&lt;)($1〇)構成。摻雜硼的 (iaxIiVxP成分梯度變化層隨著鎵組成梯度變化而形成,並 且可以隨著硼來源提供入M0CVi)系統形成。例如,用以摻 雜的硼來源包括:三甲基硼(化學式:(CH3)3B)與三乙基硼 (化學式··( C2 Hs &amp; B)。最好是摻雜硼,並且硼原子密度大 於等於1 X 1016cnr3且小於等於1 X i(pcnr3。進一步广二換 雜隶好達到幾乎超過Gax I ΓνχΡ成分梯度分佈層的y載子密 度。於Gax I n^P成分梯度分佈層的内部中的硼原子密度可 丨以隨著提供至MOCVD反應沉積系統的硼摻雜的來源婁1量而 調整。此外,於Gax IrvΧΡ成分梯度分佈層的内部中的硼原 子密度(單位:atoms/cm3)可以利用一般的二次離子質譜 儀量測(SIMS)。 ' % 隨著摻雜硼,Gaxlni—XP成分梯度分佈層的載子密度可GaYIni_yAs (0 &lt; Z ^) it ^^ A ^^^^^ Set to u, then it turns into a phosphating surface: gallium, proportionally cut and converted to GaP), resulting in a particularly high 522574 V. Description of the invention (23) Mobility. Even in this example, the gallium composition ratio at the bonding interface of the Ga () 5i InQ 49p electronic supply is preferably 0.51. That is, the Gaxlni-XP spacer layer in the ninth preferred embodiment is preferably a crystalline layer, in which the gallium composition ratio (= X) from the bonding interface in contact with the channel layer to the bonding interface in contact with the electron supply layer ) Decreased from 1.0 to 0.51. A Gax ln ^ χP spacer layer with such a composition gradient distribution (χ = ι · 〇-〇 · 51) was obtained by forming a Gap layer, where the source of indium was not provided to the MOCVD reaction system when the film was initially formed. 5 Γ. 'Next' gradually increased the number of indium sources provided to the reaction system, and finally the composition of indium became 0.5 Γ. In addition, according to the 11th preferred embodiment of item 11 in the scope of patent application of the present invention, the spacer layer with a gradient composition of n-type Gax IP is composed of type 11 doped with boron (chemical formula 1) (^ 11113 (0.51 &lt;) ($ 1〇). Boron-doped (iaxIiVxP composition gradient change layer is formed as the gallium composition gradient changes, and can be formed as the boron source is supplied into MOCVi) system. For example, the boron sources used for doping include : Trimethylboron (chemical formula: (CH3) 3B) and triethylboron (chemical formula ... (C2 Hs &amp; B). It is best to dope boron, and the boron atom density is 1 X 1016cnr3 or more and 1 or less X i (pcnr3. Further, the second-order heterogeneous coupler can reach the y-carrier density that almost exceeds the Gax I ΓνχP component gradient distribution layer. The boron atom density in the interior of the Gax I n ^ P component gradient distribution layer can be changed with The amount of boron doped source supplied to the MOCVD reactive deposition system is adjusted. In addition, the boron atom density (unit: atoms / cm3) in the interior of the Gax IrvXP composition gradient distribution layer can be measured by a general secondary ion mass spectrometer. Measurement (SIMS). '% With doped boron, Gaxlni XP composition gradient layer carrier density distribution can

522574 五、發明說明(24) 以減少。例如,於 \XP成分梯度分乡雜狀態大約為5 X 1 〇17at〇ms/cn]3的 或更多的級數而減小布層的載子密度可藉由硼摻雜至一個 度分佈層。因此,‘并# ’可形成具有更高阻抗的成分梯 電子氣可以減少至吸==GazIni—zAS(〇&lt;Z ^ )通道層的二維 電子遷移率,因此4子散射的程度’因為’證實高的 “ U此,可以提供具有較佳轉導 ranjconckictance 即gj 的GaInP TEGm。 弟6圖係根據本發明中請專 明第較佳實施例的堆疊結_的概要剖面員圖^ 製作過程中,可以使用具有以⑽丨晶面:為於其此: 要主千面的丰絕緣GaAs單晶做為基底8〇1。自{1〇”面盥 [110]晶體方向約略以± 10。夾角,具有以{1〇〇}晶面做為 其主要主平面的半絕緣以^單晶亦可以做為基底801。此 外’具有107歐姆公分(單位:Qxccm)室溫阻抗的GaAs單曰 亦可使用做為基底801。 阳 於基底8 0 1的表面上沉積一超晶格週期結構 (superlattice period structure)802a ,藉由M0CVD 方法 使用三曱基鎵(trimethyl gallium化學式:(CH3)3Ga)或其 它鎵化合物做為鎵來源氣相沉積,形成包括未摻雜 ^522574 V. Description of Invention (24) To reduce. For example, in the \ XP component gradient, the heterogeneous state is about 5 X 1 〇17at〇ms / cn] 3 or more, and the carrier density of the cloth layer can be reduced by doping boron to a degree distribution. Floor. Therefore, '##' can form a component ladder electron gas with higher impedance which can be reduced to the two-dimensional electron mobility of the channel layer of GazIni-zAS (〇 &lt; Z ^), so the degree of 4 sub-scattering is because 'Proven high' U, this can provide GaInP TEGm with better transduction ranjconckictance, ie gj. Figure 6 is a schematic profiler diagram of the stacking junction of the preferred embodiment according to the present invention. ^ Manufacturing process In this case, it is possible to use a GaAs single crystal having a main surface as the substrate 8101. The crystal orientation of the [110] surface is approximately ± 10 from the [110] surface. The included angle has a semi-insulating with a {100%} crystal plane as its main principal plane, and a single crystal can also be used as the substrate 801. In addition, a GaAs sheet having a room temperature impedance of 107 ohm cm (unit: Qxccm) can also be used as the substrate 801. A superlattice period structure 802a is deposited on the surface of the substrate 801, and a trimethylgallium (chemical formula: (CH3) 3Ga) or other gallium compound is used as a gallium source by the MOCVD method. Vapor deposition, including undoped ^

AlLGahLAs(0SL‘l)層’因此構成緩衝層802之一部份 | 8 0 2 a。添加至三甲基鎵化合物的曱基類成為碳雜質摻雜進 j入A1L G a! _L A s ( 0 $ L $ 1 )層的來源’因此,對於此層範圍内 的殘留施子電性補償,、並且給予於未摻雜狀態具有高阻值 的Al^Gai-LAsCO S1)層有效的作用。因此,假若使用二The AlLGahLAs (0SL 'l) layer' thus forms part of the buffer layer 802 | 8 0 2 a. The fluorene group added to the trimethylgallium compound becomes the source of carbon impurities doped into the A1L G a! _L A s (0 $ L $ 1) layer '. Therefore, for the residual donor electrons in this layer range Compensation, and given to the undoped Al ^ Gai-LAsCO S1) layer having a high resistance value effectively. So if you use two

522574 五、發明說明(25) 甲基叙化合物做為起始# 、对柯料,可以輕易 衝層。即使具有鎵的化合物,例如加上_構成高阻值的緩 衝層 種碳氫分子族群 ,v l/,j xu jj\j 「 一 的有機鎵化合物,其中兩種為甲基類,; 用’但是較三甲基鎵類作用稍差一點。;:目似有效的作 乙基Γ基鎵化合物當作鎵來源,由於碳雜質⑽^使用二 用,南阻值的的作用變得更差 广、、電性補償作 藉由具有彼此不同的鋁組成比例( 層的週期性堆積構成超晶格^^AS(U 藉由具有0.3的鎵組成比例的^ Ga As盘且^如,可以 例相當於。的週期性堆疊結構構成。此、有 AluGauAs與AlAs(砷化鋁,化學式:AUs)的週 ς晶 結構構成。具有包括兩層不同鋁構成比例 J 豐 具^層結構的週期性堆疊結構,構成層8。二= 適當厚度為大於等於10奈米(Μ:·)且小於等二—2的 _。利用5層或更多層不同銘組成比例的a η層堆疊構成週期多層單元,形成具有異質介面構成=超: 格結構的咼阻抗緩衝層’具有抑制自基底801至通道層 及上面的其他幾層的位置錯亂增殖等等的絕佳果效,θ 因此提供具有低晶格缺陷密度與高品道 803的果效,且具有更加的表面平整性。Ζ⑻通逼層 以有機乙基化合物製造的AlLGai LAs(〇 層做為 起始反應材料,其構成提供連接至超晶格結構的緩衝層 802之其它部位8〇2b,可以利用三乙基鎵(化學式:(c η ) sGa)與三乙基鋁(化學式:沉積。於使用第i族522574 V. Description of the invention (25) The methyl compound is used as the starting compound. Even compounds with gallium, for example, an organic gallium compound with _ which constitutes a high-resistance buffer layer type hydrocarbon molecule group, vl /, j xu jj \ j, two of which are methyls; use 'but It is slightly worse than trimethylgallium. :: It seems to be effective as an ethyl Γ-based gallium compound as a source of gallium. Due to the use of carbon impurities ⑽ ^, the effect of the southern resistance value becomes worse, The electrical compensation is performed by having a composition ratio of aluminum different from each other (the periodic stacking of layers constitutes a superlattice ^^ AS (U by a ^ Ga As disk with a composition ratio of 0.3 gallium and for example, it can be equivalent to A periodic stack structure. This is a cyclic structure composed of AluGauAs and AlAs (aluminum arsenide, chemical formula: AUs). It has a periodic stack structure including two layers with different aluminum composition ratios. Constituent layer 8. Two = appropriate thickness is greater than or equal to 10 nanometers (M: ·) and less than equal two-2. Use 5 or more layers of a η layers with different composition ratios to form periodic multilayer units to form Structure with heterogeneous interface = ultra: lattice impedance buffer layer It has the excellent effect of suppressing the disordered proliferation of the position from the substrate 801 to the channel layer and the other layers above, etc. θ therefore provides the effect of low lattice defect density and high quality 803, and has more surface flatness. The ZnO layer uses AlLGai LAs (0 layer made of organic ethyl compound as the starting reaction material, which constitutes 802b to provide the other part of the buffer layer 802 connected to the superlattice structure, and triethylgallium ( Chemical formula: (c η) sGa) and triethylaluminum (chemical formula: deposition. For use of group i

2037-3440-PF-ptd 第29頁 5225742037-3440-PF-ptd Page 29 522574

五、發明說明(26) ___ 元素的乙基化合物的MOCVD沉積範例中, 解再結合形成乙烷(分子式:GH6)及其他乙基類藉由熱分 著自化學氣相沉積反應系統耗盡,因/此皆^揮#發成分,接 層内部的量將不會如同以曱基化合物那反^質摻雜入晶格 將不會如同以甲基化合物那樣高。然而策=。因此’阻抗 八11^卜1^(〇€1^1)沉積層8〇21)以第三族一错由使用 物做為起始反應材料沉積,可以沉土呈古-素的乙基化合 包含銦的三五族化合物半導體層。^ ^ =相性銦成分的 沉積層之表面將被包含碳殘留物覆蓋的==, 容易形成乾淨表面曝光。 丰降低因此,V. Description of the Invention (26) ___ In the MOCVD deposition example of elemental ethyl compounds, the solution is recombined to form ethane (molecular formula: GH6) and other ethyl groups are depleted from the chemical vapor deposition reaction system by heat, Because of this, the amount of the hair component will not be as high as that of the methyl compound when the dopant is doped into the crystal lattice with the fluorenyl compound. However policy =. Therefore, the 'impedance 8 11 ^ bu 1 ^ (〇 € 1 ^ 1) deposition layer 8〇21) is deposited with the third group and a wrong starting material as the starting reaction material, which can sink the soil into a paleo-vinyl ethyl compound. A group three or five compound semiconductor layer containing indium. ^ ^ = The surface of the deposited layer of phase indium composition will be covered with carbon residues ==, it is easy to form a clean surface for exposure. Feng reduced therefore

利用有機乙基化合物做為起始反應材料的ΜG m層/〇r可以提供至構成緩衝層802的超晶格^構 8 U Z a之任何平面上。例如,可丨、/^生.., 鱼扣曰 TU&gt;儿積於半絕緣GaAs某底 二1=格結構, 二azIni-zAs(0&lt;Z $1)通道層803之間。此外,亦可 人物丰:超晶格結構8〇2&amp;的兩側上。於包含銦的三五族化 ==體8〇3與8〇4中’ |因組成的句相作用係最大的,其 有機乙基化合物做為起始反應材料沉積的 L σϋ(〇 sn層8 02b形成連接至超晶格結構體8〇2a :,亦有一種方法,其中AlLGai-LAs(0 ^1)層 某底8 0 1有機乙基化合物做為起始反應材料,形成連接於 ^/ 之表面,铜成分之勻相作用於GazIivzAs通道層803 人baLini Lp電子供應層805中進一步變小。The MG m layer / or using the organic ethyl compound as a starting reaction material can be provided on any plane of the superlattice 8 U Z a constituting the buffer layer 802. For example, 丨, / ^ 生 .., fish buckle TU &gt; is accumulated in a semi-insulating GaAs bottom 2 = grid structure, and between azIni-zAs (0 &lt; Z $ 1) channel layer 803. In addition, it can also be used on both sides of the character: superlattice structure 802 &amp;. In the three-fifth group containing indium == the body 8〇3 and 8〇4 '| due to the composition of the largest phase interaction system, the organic ethyl compound as the initial reaction material deposited L σϋ (〇sn layer 8 02b forms a connection to the superlattice structure 802a: There is also a method in which an AlLGai-LAs (0 ^ 1) layer with a certain 8 0 1 organic ethyl compound is used as a starting reaction material to form a connection to ^ On the surface, the homogeneous phase of the copper component acts on the GazIivzAs channel layer 803 and the baLini Lp electron supply layer 805 to become smaller.

AkGapLAsCO SL S 1 )層8〇2b的情況中,使用有機乙In the case of AkGapLAsCO SL S 1) layer 802b, organic ethyl acetate is used.

第30頁 522574 五、發明說明(27) 二上二為起始反應材料,僅僅提供於超晶格結構8〇2&amp; 底8〇1声而構成層802-1或者8 02 —2連接至半絕緣Ga As基 的組成士 ,,於超晶格結構8〇2&amp;之基底801側下方,忽略銘 、k供連接至半絕緣G a A s基底8 0 1 (限制兔一 :)表面的構成層(80H或8〇2_2),假若它的厚度制大為於一其 成層,於上述銦組成勻相中亦有效,並且此外由於基 &amp;晶體之結晶特性變動,產生緩衝層用以抑制於較上面幾 層的結晶品質改變。 根據本發明申請專利範圍第13項,具有補償比例(=κ) 的tlLGai_LAs(〇 層(80 2-!或802-2 )於規定範圍内構 成第13較佳實施例的緩衝層8〇2,可以藉由調整稱為ν/ι工夏 比例沉積。於大氣壓力或低壓力M0CVD沉積反應系統中, V/ I I I比例係規定提供比例,例如提供至系統範圍内,砂 化三氫(化學式:AsHs)(=V)相對於三甲基鎵(=ι π )(同前 所述 ’J· Crystal Growth,55 (1981))。例如,於 AsH3/ (CH3 )3Ga/H2低壓M0CVD系統中,於沉積溫度640 °C的條 件下’沉積壓力1 〇4 p a s c a 1 (p a ),利用於範圍大於等於7 至小於等於40的V/II I比例(=AsHy(CH3)3Ga)可以形成。 根據施子密度(Nd)與受子密度(Na)可以計算補償比例 (=K )。例如,根據B r ο 〇 k s - H e r r i n g公式,藉由霍爾效應方 法於液態氮溫度(77K )量測既定的阻抗、遷移率與載子密 度,可以計算 Nd 與 Na(參考 Phys· Rev·,Vol· 164,Νο.3 (1967), ρρ· 1025-1031 )。於Nd -Na 狀態中具有η 型Page 30 522574 V. Description of the invention (27) The second and second are the starting reaction materials, which are only provided for the superlattice structure 802 &amp; bottom 801 sound to form the layer 802-1 or 80 02-2. The composition of the insulating Ga As base is below the substrate 801 side of the superlattice structure 802 &amp; ignoring the inscriptions and k for connection to the semi-insulating G a A s substrate 8 0 1 (restriction rabbit :) surface composition Layer (80H or 802_2), if its thickness is made larger than one layer, it is also effective in the homogeneous phase of the above indium composition, and in addition, due to the change in the crystalline characteristics of the base &amp; crystal, a buffer layer is used to suppress the The crystal quality changed from the upper layers. According to item 13 of the scope of patent application for the present invention, tlLGai_LAs (0 layer (80 2-! Or 802-2)) with a compensation ratio (= κ) constitutes the buffer layer 802 of the 13th preferred embodiment within a specified range, It can be referred to as ν / ι industrial scale deposition by adjusting. In atmospheric pressure or low-pressure M0CVD deposition reaction system, the V / III ratio is a specified ratio, for example, it is provided to the system, and the trihydride (chemical formula: AsHs) ) (= V) relative to trimethylgallium (= ι π) (same as' J. Crystal Growth, 55 (1981)). For example, in an AsH3 / (CH3) 3Ga / H2 low-pressure MOCVD system, At a deposition temperature of 640 ° C, 'deposition pressure 1 0 4 pasca 1 (pa) can be formed using a V / II I ratio (= AsHy (CH3) 3Ga) ranging from 7 to 40. Density (Nd) and acceptor density (Na) can calculate the compensation ratio (= K). For example, according to the formula of B r ο 〇ks-Herring, use the Hall effect method to measure the predetermined temperature at the liquid nitrogen temperature (77K). Impedance, mobility, and carrier density, Nd and Na can be calculated (refer to Phys · Rev ·, Vol · 164, No. 3 (1967), ρρ · 1025-1031). It has η-type in Nd-Na state

AlLGanAsCO SL$1),藉由 Na/Nd 產生Κ。具有ρ 型 AlLGanAsAlLGanAsCO SL $ 1), generated K by Na / Nd. With ρ-type AlLGanAs

522574 五、發明說明(28) 其中Na&gt;Nd,藉由Nd/Na產生κ。具有適當的選擇”丨丨i比例的 η型或p型AlLGai_LAs(0 g 1 )與最好於大於等於〇· 9且小於 寻於1 · 0的K值具有特別高的阻抗。例如,藉由(〔私) 3Ga/AsH3/H2 MOCVD方法及V/III比例為2〇,沉積具3有補償 比例為1. 0的一未摻雜GaAs層,並且其載子密度低於5&gt;&lt; 1 014cm-、3。因此,此種高阻抗層具有產生具有高阻抗超晶格 結構減少·漏電流的一緩衝層8 〇 2 a的功效。522574 V. Description of the invention (28) Where Na &gt; Nd, κ is generated by Nd / Na. With appropriate choice "The η-type or p-type AlLGai_LAs (0 g 1) with an i ratio has a particularly high impedance with a K value preferably greater than or equal to 0.9 and less than 1 · 0. For example, by ([Private] 3Ga / AsH3 / H2 MOCVD method and V / III ratio of 20, the deposition tool has an undoped GaAs layer with a compensation ratio of 1.0, and its carrier density is lower than 5 &gt; &lt; 1 014cm-, 3. Therefore, such a high-impedance layer has the effect of generating a buffer layer 802a having a high-resistance superlattice structure to reduce leakage current.

根據本發明申請專利範圍第丨4項,於第丨4較佳實施例 中,超晶格結構藉由根據相對低侧利用口型未摻雜以^層 構成超晶格結構802a,並且具有大於等於〇·9且小於等於 ι·ο的補償比例(κ),及小於等於5x 1〇15cm_3的載子密度的 構成層(例如8〇2 —υ。假若使用P型GaAs,電子被電洞捕捉 束縛,並且結I,具有產生一緩衝層構成層可以切斷漏電 流的效果。/假若載子(電洞)密度超過丨χ 1〇15^_3,叩接合 面必須形成於超晶格結構(例如8 〇 2 — 2 )的其它構成層, m 由於增加電容具有失去TEGFET高速響應的問題。於具有小 於1Xl〇Cm的載子密度的p型GaAs中,因為於層的範圍内 的低包洞搶度,其中充分數量的電子無法被捕捉,進一步 阻礙減》漏電流。因此,利周GaAs層(例如8〇2 — 1)形成超 晶格,802a,較佳的載子密度為大於等於ΐχ ι〇ΐ3·3且 =於等於1 X l〇i5Cnr3。最好為大於等於5 X ι〇ΐ3㈣_3且小於 等於 1 X 1 014cnr3。 认一 ίη外η,緩衝層802與AlLGai-LAs(0 U )層構成具有大 ;寻;·且小於等於1 · 〇的補償比例(κ ),且載子密度小According to the fourth aspect of the patent application scope of the present invention, in the fourth preferred embodiment, the superlattice structure is formed of a superlattice structure 802a by using a layer of undoped dopant according to the relatively low side, and has a thickness greater than Compensation ratio (κ) equal to 0.9 and less than or equal to ι · ο, and a carrier layer having a carrier density of 5 × 1015 cm_3 or less (for example, 80-2—υ. If P-type GaAs is used, electrons are captured by holes The binding and junction I have the effect of generating a buffer layer constituting the layer to cut off the leakage current. / If the carrier (hole) density exceeds 丨 χ 1015 ^ _3, the 叩 junction surface must be formed in a superlattice structure ( For example, for other constituent layers of 〇2—2), m has the problem of losing the high-speed response of the TEGFET due to the increase in capacitance. In p-type GaAs with a carrier density of less than 1 × 10 Cm, because of the low envelope holes in the layer range Rush degree, in which a sufficient number of electrons cannot be captured, further hindering the reduction of leakage current. Therefore, the LiAs GaAs layer (eg 80-2) forms a superlattice, 802a, and the preferred carrier density is greater than or equal to ΐχ ι〇ΐ3 · 3 and = equal to 1 X l〇i5Cnr3 It is preferably 5 X ι〇ΐ3㈣_3 or more and 1 X 1 014cnr3 or less. Recognizing η and η, the buffer layer 802 and the AlLGai-LAs (0 U) layer structure have a large; find; · and 1 or less. Compensation ratio (κ) and small carrier density

第32頁 522574 五、發明說明(29) &quot;&quot; ' ' --- 於等於lx 1015cm3,如同一分離構成層。大於等於且 小於等於〇· 35的鋁補償比例(=L)最好產生上述p MGaAs層 (例如⑽2-1)以及具有低漏電流之超晶格結構8〇2&amp;。最好 =於等於G 2且小於等於Q. 3。具有此種適當銘組成比例的 i LGai_LAs(0 SL $1)層具有高於GaAs且於〇· 2電子伏特與 0 4eV之間的-禁止帶’降低漏電流 效上述 型^層為其它構成層,最好為一 P型MLGai_LAsi ^ 右撤r装几入^ 與L ai~LAs(〇 ^1)層8〇2b使用 占石,土合物做為起始材料層,藉由MOCVD方法戋分子 束磊晶(MBE)方法或刀次次刀子 括磷的,、 學乳相沉積分法形成。因為包 、 矢化a物半島體的通道層803鱼雷+ @ 80 5必須沉積於緩衝; 曰W層舁電子供應層 TEGFET使用其他不间接2士、,取好使用M〇CVD方法。對於 、 不门’儿積方法形成堆晷纟士爐8 A I π a 的,例如藉由MBE形成n ^ s n 9 # # i、、O τ預先知道 _與電子供應層m成㈣層802舆错由肋⑽形成通道層 = 第15項,第15較佳實施例 有機乙基化八物:i,b,形成部分的緩衝層802,且以 層,做為起始材料氣相沉積。藉由換雜構ί 增具T係直接沉積於白合_ 曰由^亦隹構成 803之下方,罝右盖 、一卜丨無化合物半導體声 : 起始材料製作未摻声 0 &quot;利用三甲基鎵做為 編…利用此較佳實施例改善少2Page 32 522574 V. Description of the invention (29) &quot; &quot; '--- It is equal to lx 1015cm3, which constitutes the same layer. An aluminum compensation ratio (= L) of equal to or greater than 0.35 is preferable to generate the above-mentioned p MGaAs layer (for example, ⑽2-1) and a superlattice structure 802 &amp; having a low leakage current. Preferably = equal to G 2 and less than or equal to Q.3. The i LGai_LAs (0 SL $ 1) layer with such an appropriate inscription composition ratio has a -forbidden band 'that is higher than GaAs and between 0.2 electron volts and 0 4 eV to reduce leakage current efficiency. The above-mentioned type layers are other constituent layers, It is best to load a P-type MLGai_LAsi ^ to the right and load a few ^ and Lai ~ LAs (〇 ^ 1) layer 802b using occupant, and the soil compound as the starting material layer, molecular beam lei by MOCVD method Crystallization (MBE) method or knife-by-knob phosphorus, formation of milk phase deposition method. Because the channel layer 803 torpedo of the sagittarius peninsula body + 805 must be deposited in the buffer; that is, the W layer and the electron supply layer TEGFET use other non-indirect 2 ±, and it is better to use MOCVD method. Regarding the method of forming a stacker furnace 8 AI π a by using the method, for example, forming n ^ sn 9 # # i, and O τ by MBE are known in advance_ forming a layer 802 with the electron supply layer 802. Forming the channel layer from the ribs = item 15, the fifteenth preferred embodiment of organic ethylation: i, b, forming part of the buffer layer 802, and using the layer as a starting material for vapor deposition. By changing the structure, the T system is directly deposited on Baihe _, which is composed of ^ 亦 隹, under the 803, and the right cover, and no compound semiconductor sound: no sound of the starting material is produced 0 &quot; Using three Methyl gallium as the editor ... Using this preferred embodiment to improve less 2

2037-3440-PF-ptd 第33頁 522574 五、發明說明(30) 土 2% ’甚至少於± ι〇/〇。此外,即使於八、(^—層使用 (C Hs丨A1 / (G 4 ) G a做為起始材料系統,具有約略自土 6 %至 ± 3%地增加錮組成比例的勻相性。Gaz I n^zAs通道層或 GaL I ΠηΡ電子供應層之銦組成比例可以藉由一般的X射線繞 射方法’自繞射角度判定;或自光發射的波長判定。 此外,根據本發明申請專利範圍第丨6項,於第丨6較佳 貫施例中,使用有機乙基化合物當作起始材料氣相沉積的 AlMGaHAsCO g 1 )層構成於具有小於等於5 χ i 〇15cm_3載 子密度的η型未摻雜的AlMGaiMAs上。具有小於等於5&gt;&lt; 10 cm載子(電子)密度的層具有 =制自GazIrvzAs通道層803的進入緩衝層8〇2内部的漏操作 二灿内使p型未摻雜AlMGa^As層具有減少進入緩衝層8〇2 =電流的功效’使用有機乙基化合物利用m〇cvd方法當 =始由於乙基類的作用以及於未摻雜狀態穩定地 又'PiAlMGai_MAs層’難以減少碳化合物地摻雜。此 丄呈二 =p型雜質可以獲得㈣叫〜“層,假如構成 1接1相當大的摻雜物(=Nd + Na)的 連接至GazIrvzAs通道層8〇3之下丨、M二且伐 (Ids)之光響應變大。因為這個 田及亟“流 型叫〜As(0^川層。们原因’取好使用未摻雜_ 使用有機乙基化合物做為如問μ、+、^ 士 Μ )層8Q2b具有少量的碳摻雜;_GUs(〇 基化合物製造的晶體層比;目 〃且與利用有機曱 有螓Γ苴儿人 1糸相當地低。因此,假若利用 有‘&lt; 乙基化合物沉積的AlMGai_MAs層之厚度係非常地=用導 522574 五、發明說明(31) 致進^緩衝層m之漏電流增加的問題。因此 層之厚度最好為等於小於1〇〇 μ M m Μ仏^ 错由控制潯膜形成的時 別地,根據本發明申請專利範圍第 nrr貫施例中,使用有機乙基化合物當作起 始材#氣相沉積的4^311^(〇$^|$1)層8〇礼之厚度不會 比使用構成超晶格結構8{)23的有機甲基化合物當作起始材 二氣&lt;=積1具有不同銘組成比例(L)的任-A1A lAs(。 參 或8〇2-2)厚度還厚。例如,使用有機乙 η二‘=具有小於等於5〇 nm厚度的AlMGaHAs(0心 1)層802b連接至包含5 nm厚度的AlLGa卜lAs層的超晶格結構 802a。有類似厚度的11型人1^31^以〇$^1$1)層8〇孔且有減 少Ids的磁滯現象的作用’並且亦顯示出增加心的穩定性的 功效。 根據本發明申請專利範圍第丨8項,於第丨8較佳實施例 中,使用有機乙基化合物當作起始材料氣相沉積的〇型&gt; A As層80 2b的鋁組成比例(μ)設定至不大於構成超晶 格結構8 0 23的任一人11^31_1&gt;8(0^1^$1)層(802-1 或802-2) 的铭組成比例(L )。紹的組成比例(=μ )最好不大於〇 4,因 此不會產生非直接傳遞型半導體。最佳為不大於0.3。最 理想的铭組成比例為〇,也就是G a A s構成層。可以控制紹 組成比例(=M),例如,藉由調整(qh^AI的比例數量,即 提供至MOCVD沉積系統中的三乙基鋁(化學式·e ) 與二乙基鍊(化學式·( G 4 )3 G a)的總數量。具有適當的铭 組成比例的η型AlMGai_MAs層80 2b連接於緩衝層80 2提供具有2037-3440-PF-ptd Page 33 522574 V. Description of the invention (30) Soil 2% ′ is even less than ± ι〇 / 〇. In addition, even if (C Hs 丨 A1 / (G 4) G a is used as the starting material system in the eighth and eighth layers, it has a homogeneity that increases the composition ratio of plutonium from about 6% to ± 3%. Gaz The indium composition ratio of the I n ^ zAs channel layer or GaL I ΠηP electron supply layer can be determined by the general X-ray diffraction method 'self-diffraction angle; or the wavelength of self-emission. In addition, the scope of patent application according to the present invention Item 6: In the preferred embodiment 6, the AlMGaHAsCO g 1) layer, which is vapor-deposited using an organic ethyl compound as a starting material, is composed of η having a carrier density of 5 × i 〇15cm_3 or less. On undoped AlMGaiMAs. The layer with a carrier density of 5 &lt; &lt; 10 cm or less has a drain operation of the internal buffer layer 802 made from the GazIrvzAs channel layer 803. The undoped AlMGa ^ As layer has the effect of reducing the ingress of the buffer layer 802 = the current 'using organic ethyl compounds using the mocvd method when = = due to the role of ethyl groups and stable in the undoped state' PiAlMGai_MAs Layer 'is difficult to reduce the doping of carbon compounds. = p-type impurities can obtain a howl ~ "layer, if a 1 to 1 sizeable dopant (= Nd + Na) is connected to the GazIrvzAs channel layer under 803, M and Ids (Ids) The light response becomes larger. Because the field pattern is called ~ As (0 ^ gawa layer. We reason 'prefer to use undoped _ use organic ethyl compounds as the μ, +, ^ ShiM) layer 8Q2b has a small amount of carbon doping; the crystal layer ratio of _GUs (〇-based compounds; the mesh is quite low compared to the use of organic compounds 螓 Γ 苴 儿 ren 1 糸. Therefore, if the use of 〈ethyl compound deposition The thickness of the AlMGai_MAs layer is extremely = 522574. V. Description of the Invention (31) The problem of increasing the leakage current of the buffer layer m. Therefore, the thickness of the layer is preferably equal to or less than 100 μM m Μ 仏 ^ In the case where the formation of the tritium film is controlled by mistake, in the nrr-th embodiment of the scope of patent application according to the present invention, an organic ethyl compound is used as a starting material. 4 ^ 311 ^ (〇 $ ^ | $ 1) The thickness of the layer 80 is no more than that of using the organic methyl compound constituting the superlattice structure 8 {) 23 as a starting material. The thickness of the Ren-A1A lAs (. Or 802-2-2) composition is also thick. For example, using organic ethyl η ′ ′ = AlMGaHAs (0 center 1) layer 802b having a thickness of 50 nm or less It is connected to a superlattice structure 802a containing an AlLGa / As layer with a thickness of 5 nm. It has a type 11 human with a similar thickness and a layer of 80 holes and reduces the hysteresis of Ids. 'And it has also been shown to increase the stability of the heart. According to the eighth item of the patent application scope of the present invention, in the eighth preferred embodiment, the aluminum composition ratio of type 0 &gt; A As layer 80 2b (μ ) Is set to not more than the inscription composition ratio (L) of 11 ^ 31_1 &gt; 8 (0 ^ 1 ^ $ 1) layer (802-1 or 802-2) of any one constituting the superlattice structure 8 0 23. The composition ratio (= μ) of this material is preferably not more than 0.4, so that a non-direct transfer type semiconductor is not generated. The most preferable is not more than 0.3. The ideal composition ratio is 0, that is, G a A s constituting layer. The composition ratio (= M) can be controlled. For example, by adjusting the ratio of (qh ^ AI), the triethylaluminum (chemical formula · e) and the diethyl chain (chemical formula · (G 4) The total number of 3 G a). The n-type AlMGai_MAs layer 80 2b with a proper composition ratio is connected to the buffer layer 80 2 to provide

2037-3440-PF-ptd 第35頁2037-3440-PF-ptd Page 35

522574 五、發明說明(32) 低的光響應與小電流迴路寬度的k的高電子遷移場效電晶 體。 第8圖係根據本發明申請專利範圍第1 9項,用以概念 上1明關方、第1 9較佳貫施例的堆疊結構】J 2 A的 式。於此實ί例操作中,具有U〇〇}晶面當作主要平面的 t = ίΊ :晶可以當作基底111使用。具有與[11 〇 ]晶格 ::^土其1广0高潰100丨面當作主要平面的半絕緣GaAs 早曰曰叮§作基底111使用。此外,具有107歐姆公分(單 位· Ω-cm)的室溫阻抗最好當作基底U1使用。 法利ίϊΐϋί表面上的緩衝層112自包含藉細⑽方 / ^甲土叙(、(CH3)3Ga)或其它三烷基鎵(trialkyl :合广鎵來源氣相沉積的未摻雜AlLGaHAs(〇 ^ t 格週期結構。甲基類添加於二曱美 成為破摻雜物摻雜進 且給予未#:二:::的範圍内剩餘施子的電性補償, 非當2 ί 具有高阻值的層 非吊好的果效。因此,假若 〜—)m 料,可以_易地# Μ、吏用—甲基合物當作起始材 易地建構一鬲阻值的緩衝層。即使剎爾餿仆人 ,列如具有三個附加的碳氫類的三 、’: 兩個附加類為甲基類,獲得相似神;=物 效仍較二甲基鎵化合物稍差。使用二乙美 ^ -疋果 作鎵來源,例&amp;,由於碳摻;:紅化合物當 阻抗的果效變得更弱。電欧補^作用,採用高 藉由堆疊具有彼此不同鋁組成比例(;=L)的一522574 V. Description of the invention (32) High electron migration field effect electric crystal with low light response and small current loop width k. Fig. 8 is a stack structure according to the invention in the scope of patent application No. 19, which is used to conceptually denote a clear structure and a preferred embodiment of the 19th embodiment] J 2 A. In this example operation, t = ίΊ with the crystal plane of U〇〇} as the main plane can be used as the substrate 111. A semi-insulating GaAs with a [11 〇] lattice :: ^ soil 1 wide 0 high rupture 100 丨 plane as the main plane was used as the substrate 111. In addition, a room temperature impedance having 107 ohm cm (unit · Ω-cm) is preferably used as the substrate U1. The buffer layer 112 on the surface of the fare is self-contained by a fine-grained formula / ^ Metoxyl (, (CH3) 3Ga) or other trialkyl gallium (trialkyl: Heguang gallium source vapor deposited undoped AlLGaHAs (〇 ^ t-lattice periodic structure. The methyl group is added to Ermei to become a dopant doped and give electrical compensation to the remaining donors within the range of #: 二 :::, and when the 2 has a high resistance value The effect of the layer is not good. Therefore, if ~ —) m material, you can easily build a buffer layer with a resistance value of _ 易地 # Μ, using -methyl compounds as starting materials. Servant servant, listed as three with three additional hydrocarbons: 'The two additional classes are methyl groups, and get similar gods; = the material efficiency is still slightly worse than the dimethyl gallium compound. Use diethylene glycol ^ -Capsules are sources of gallium, for example &amp;, due to carbon doping: the effect of red compounds becomes weaker when resisting. The effect of electrical compensation is high, and the stacking has a different aluminum composition ratio (; = L). one of

522574 —_ 五、發明說明(33)522574 —_ V. Description of the invention (33)

〇 {?iJ 組成士 ^ 有鋁組成比例0· 3的AlG.3GaQ.7As與 例0的GaAS構成一週期性堆疊結構。此^…、、’ 用八1。.1(^9^與砷化銘(化 =外,可以利 f 於—週期性堆疊結構中包含兩層不同鋁隹且、、'° 运結構體,構成層112一1與112_2 ^ =的夕 nm且小於辇於1nn 址丄β 田彳反保大於等於10 子心:ίΓ f成層112-1與112—2最好為具有載 :又乂於5&gt;&lt; l〇14cm—3的高阻抗層。堆疊週期 人,最好為大於等於5。高阻抗緩衝層包二 最二广&quot;面構造的超晶格結構,包含5層或更多的堆 =夕二早兀週期,具有不同鋁組成比例的 =1 )層,可以抑制錯位增殖或自基底丨丨i至通道層丨丨4以及 ^面其它層的錯位增殖的神奇果效,並且因此提供具有低 晶袼缺陷密度與高品質的GazIni zAs通道層114的果效、,並一 且其具有較佳的平坦表面。〇 {? IJ composition ^ AlG.3GaQ.7As with aluminum composition ratio of 0.3 and GaAS of Example 0 constitute a periodic stack structure. This ^ ... ,, ′ uses eight 1. .1 (^ 9 ^ and arsenide (铭 = outside, can be beneficial to-the periodic stacked structure contains two layers of different aluminum alloys, and, '° transport structure, constituting layers 112-1 and 112_2 ^ = Even nm and less than 1nn address, β field protection is greater than or equal to 10 cores: ΓΓ layer 112-1 and 112-2 are best to have a load: and also higher than 5 &gt; &lt; 1014cm-3 The impedance layer. The stacking period is preferably greater than or equal to 5. The high-resistance buffer layer includes a super-lattice structure of the second-most-wide &quot; surface structure, which contains 5 or more stacks = Early-Early Period, with different Aluminum composition ratio = 1) layer, can inhibit the distorted proliferation or the miraculous effect of dislocation proliferation from the substrate 丨 i to the channel layer 丨 4 and other layers, and therefore provide a low density of crystal defects and high quality The effect of the GazIni zAs channel layer 114, and it has a better flat surface.

以二乙基鎵(化學式:(q I h G a)做為起始材料製造的 GaAs層堆疊於構成超晶格結構的緩衝層112上,可以藉由 MOCVD方法利用((C2H5)3Gav(AsH3)/(H2)反應系統沉積曰。藉 由使用乙基化合物(C2H5)3Ga當作鎵來源的GaAs沉積層 11 3 ’具有勻相性的銦組成包含銦的I I I _ v化合物半導體層 可以沉積的果效。藉由熱分解結合將乙基類分開,並且形 成乙烧(分子式:h6 )以及其他易揮發的成分,並且耗盡 |化學氣相沉積反應系統,因此,沉積層表面覆蓋著包含碳 殘留物的機率減少,因此,必須考慮表面乾淨以便曝光。A GaAs layer made of diethylgallium (chemical formula: (q I h G a)) as a starting material is stacked on the buffer layer 112 constituting a superlattice structure, and can be used by the MOCVD method ((C2H5) 3Gav (AsH3 ) / (H2) reaction system deposition. By using an ethyl compound (C2H5) 3Ga as a source of gallium, a GaAs deposition layer 11 3 'inhomogeneous indium composition III_v compound semiconductor layer containing indium can be deposited. The ethyl group is separated by thermal decomposition and combined, and the ethyl alcohol (molecular formula: h6) and other volatile components are formed and depleted | The chemical vapor deposition reaction system, therefore, the surface of the deposited layer is covered with carbon residues The probability of objects is reduced, so the surface must be considered clean for exposure.

522574522574

^右使用二乙基鎵當作起始材料,摻雜進入GaAs層内 邛的反払雜物數置減少,並且於未摻雜狀態中的載子密度 係典型地較使用三甲基鎵當作起始材料的GaAs層高。例 如,當提供至一 M0CVD反應系統(一般稱為V/In比例)的 AsHs/CCH^Ga的濃度比例設定為1〇· 〇,利用三甲基鎵以及 利用P型載子密度5x 1〇13cm-3與高阻抗未摻雜以“層構成的 緩衝層11 2再結晶。對照之下,利用三乙基鎵、|有n型傳 導性的GaAs層以及大於一個等級的載子密度的結果。假若 痛不此種傳導性的一非常厚層直接沉積於GazIn〗zAs通道層 11 4之下,只會增加通道層的漏電流。因此,利用三乙基 鎵做為起始材料製造的GaAs層113的厚度最好介於幾個⑽ 至約略100 nm的厚度之間。為了產生更佳的結果,例如, 對於具有lx l〇i5cm-3載子密度的〇型(^^層113,最大的最 佳禮度為30 nifl。 以三乙基鎵當作起始材料製作的GaAs層113上方成功 地沉積一GazIni_zAs通道層114與GaYlni γΡ電子供應層lu。 形成於114至116的較上層中包含銦的丨丨丨—v族化合物半導 體層’利用三乙基鎵當作起始材料製造的以^層113具有 改善銦組成比例的勻相性至± 2%範圍内。於包含銦的 11族化合物半導體層中,其中銦的組成比例摻雜超過 土 ^範圍’變得難以獲得具有勻相夾止電壓(pinCh-〇ff voltage^與轉導值(gm)的TEGFETs。此外,即使於使用二 乙基鎵當作起始材料製造的AlcGa! cAs(〇&lt;c $丨)層中,於較 上層中雖然包含銦的I I I — V族化合物半導體層,具有較岣 522574 五、發明說明(35) 勻的銦組成比例,假若沉積包含鋁的晶體層,於汲極電流 中產生光響應的問題(參考G. J· Ree, ed·,^ The right uses diethylgallium as the starting material, the number of anti-doped impurities doped into the GaAs layer is reduced, and the carrier density in the undoped state is typically lower than that of trimethylgallium. The GaAs layer as the starting material is high. For example, when the concentration ratio of AsHs / CCH ^ Ga supplied to a MOCVD reaction system (commonly referred to as the V / In ratio) is set to 10 · 〇, using trimethylgallium and using a P-type carrier density 5x 103cm -3 was recrystallized from the high-impedance undoped buffer layer 112 composed of "layers. In contrast, the results were obtained using triethylgallium, a GaAs layer with n-type conductivity, and a carrier density greater than one order. If a very thick layer of such conductivity is directly deposited under the GazIn zAs channel layer 114, it will only increase the leakage current of the channel layer. Therefore, GaAs layer made of triethylgallium as a starting material The thickness of 113 is preferably between a few ⑽ to about 100 nm. For better results, for example, for a type 0 (^^ layer 113, the largest The best politeness is 30 nifl. A GazIni_zAs channel layer 114 and a GaYlni γP electron supply layer lu were successfully deposited on the GaAs layer 113 made of triethylgallium as a starting material. The upper layers formed in 114 to 116 include丨 丨 丨 --Group V compound semiconductor layer using triethylgallium as The layer 113 made of the starting material has an improved inhomogeneity of the indium composition ratio to within a range of ± 2%. In a group 11 compound semiconductor layer containing indium, it is difficult to dope the composition ratio of indium beyond the range. TEGFETs with homogeneous pinch-off voltage (pinCh-〇ff voltage ^ and transconductance value (gm) were obtained. In addition, even AlcGa! CAs (〇 &lt; c $ 丨) manufactured using diethylgallium as a starting material ) Layer, although the III-V compound semiconductor layer containing indium in the upper layer has a higher than 522574 V. Description of the invention (35) uniform indium composition ratio, if a crystal layer containing aluminum is deposited in the drain current The problem of light response (see G. J. Ree, ed.,

Semi-Insulating III-V Material, (Shiva Pub· Ltd· (Kent,UK,1980),pp. 349-352)),及n hysteresis,,of the source-drain current(參考Makoto Kituchi,Semi-Insulating III-V Material, (Shiva Pub · Ltd · (Kent, UK, 1980), pp. 349-352)), and hysteresis, of the source-drain current (see Makoto Kituchi,

Yasuhiro Tarui,eds·,’丨 Illustrated Semiconductor Dictionary, (Nikkan Kogyo Shimbunsha, January 25, 1978),p· 238)與n kinks” readily 〇ccur(JP-A- 1 0-247727 與JP-A- 1 0- 335350 )。 根據本發明申請專利範圍第20項,於第20較佳實施例 中’以Gaz I rvz As構成通道層Π4,於其中具有一小表面粗 糙,特別可以由當作基底層的GaAs層113形成,並且使用 M0CVD方法利用特別可當作第丨j; I族構成元素來源的三乙基 化合物。利用二乙基化合物當作第丨丨I族構成元素的m〇cvd 方法,使用至少一第I Π族元素的鎵或銦的三曱基化合 物’例如’二曱基鎵((CH3 )3 Ga)當作鎵來源,三甲基銦 ((CH3)3In)當作銦來源,以常壓方式或者低壓方式的仰口1) 方法形成。此外,可以使用具有單價鍵結的環戊二烯銦 、化學式· C2H5In)。利用(CH3)3Ga/(CH3)3ln/AsH3/H2 反應系 統,於以三乙基鎵當作起始材料製造的以^層113上形成 銦組成比例等於小於± 1%具有勻相性的以“一層⑴。 钢組成比例的句相料I益&amp; &amp; 疋精由务現銦組成比例之最大值與最 之間刀配的差異值所規範,為銦組成比例的平均值兩 倍。於(C2H5)Ga/(CH3)3ln/AsH3/H2 反應系統中,Yasuhiro Tarui, eds ·, '丨 Illustrated Semiconductor Dictionary, (Nikkan Kogyo Shimbunsha, January 25, 1978), p. 238) and n kinks "readily 〇ccur (JP-A- 1 0-247727 and JP-A- 1 0 -335350). According to item 20 of the scope of patent application of the present invention, in the 20th preferred embodiment, 'the channel layer Π4 is composed of Gaz I rvz As, which has a small surface roughness, which can be particularly made of GaAs as a base layer. The layer 113 is formed, and a MOCVD method is used using a triethyl compound which can be particularly used as a source of a group I constituent element. A mocvd method using a diethyl compound as a group I constituent element is used at least A gallium or indium trifluoride compound of a Group I Π element, such as' difluorenyl gallium ((CH3) 3Ga) is used as the source of gallium, and trimethylindium ((CH3) 3In) is used as the source of indium, with Atmospheric pressure or low pressure method 1) method. In addition, cyclopentadiene indium with a monovalent bond, chemical formula · C2H5In) can be used. (CH3) 3Ga / (CH3) 3ln / AsH3 / H2 reaction system Formed on the layer 113 made of triethylgallium as a starting material Composition ratio is equal to less than ± 1% with homogeneous properties to "one ⑴. The sentence composition I of the steel composition ratio is beneficially regulated by the difference between the maximum and the maximum indium composition ratio, which is twice the average value of the indium composition ratio. In the (C2H5) Ga / (CH3) 3ln / AsH3 / H2 reaction system,

522574 五、發明說明(36) 層的銦組成比例的勻相性粗略地考慮於± 6 %。 此外,使用三甲基化合物當作第丨丨丨丨丨丨族構成元素來 源,藉由MOCVD方法,於以三乙基鎵當作起始材料製造的 GaAs層11 3上獲得具有較佳銦組成勻相性的平坦的/ GazIni_zAs層,並且由於銦隔離等等亦具有一少量表面粗 糙。假若表面粗操係以霾(haze)表示(關於霾,可參考 Takao Abe, &quot;Silicon Crystal Growth and Wafer522574 V. Description of the invention The homogeneity of the indium composition ratio of the (36) layer is roughly considered at ± 6%. In addition, a trimethyl compound is used as the source of the 丨 丨 丨 丨 丨 丨 group of elements, and a better indium composition is obtained on the GaAs layer 11 3 manufactured by using triethylgallium as a starting material by the MOCVD method. Homogeneous flat / GazIni_zAs layer, and also has a small surface roughness due to indium isolation and the like. If the rough surface is represented by haze (for haze, please refer to Takao Abe, &quot; Silicon Crystal Growth and Wafer

Working,” (published by Baifukan, May 20, 1994, first edition),ρρ·322-326 ),接著,以三乙基鎵當作 起始材料製造的GaAs層113亦具有降低包含銦的丨丨卜v族化 合物半導體層1 1 4-1 1 6上方的霾的功效。具有一平坦連接 表面的間隔層11 5可以連接於具有低表面粗糙的通道層丨14 上,就是少量的霾並且因此層的厚度變得較均 接表面係平坦,接著,其具有二維電子氣可以侷限於通道 層114之接合介面區域附近的優點。為了產生適合有效的 侷限二維電子氣的異質接合介面,霾最好為等於小於⑽ ppm。以Gaz IrvzAs層構成通道層中,其具有大於6〇 霾 畺的粗糖表面,與間隔層連接的接合介面缺乏平坦性,且 變得更混亂,因此獲得的電子遷移率亦變成不同成分形 成,並且最後,無法獲得具有高轉導值(^)的(^1111&gt; TEGFETs 。 根據本發明之申請專利範圍第21項,於第21較佳實施 例中,利用三甲基化合物當作第π I族構成元素來源,、自 藉由M0CVD方法形成的GaxIni χΡ(〇&lt;χ $丨)層構成一間隔層Working, "(published by Baifukan, May 20, 1994, first edition), ρρ322-326), and then, the GaAs layer 113 made with triethylgallium as a starting material also has a reduced indium content. The haze effect on the group v compound semiconductor layer 1 1 4-1 1 6. The spacer layer 11 with a flat connection surface can be connected to the channel layer with low surface roughness 丨 14, which is a small amount of haze and therefore the layer The thickness becomes flatter than the homogeneous surface. Next, it has the advantage that the two-dimensional electron gas can be confined to the vicinity of the bonding interface area of the channel layer 114. In order to produce a heterogeneous bonding interface suitable for effectively confining two-dimensional electron gas, haze is best It is equal to or less than ⑽ppm. In the channel layer composed of Gaz IrvzAs layer, it has a coarse sugar surface greater than 60 haze, and the bonding interface connected to the spacer layer lacks flatness and becomes more chaotic, so the obtained electron mobility is also It is formed into different components, and in the end, (^ 1111 &gt; TEGFETs with a high transduction value (^) cannot be obtained. According to the 21st item of the scope of patent application of the present invention, it is preferably implemented at the 21st In the example, a trimethyl compound is used as a source of the group π I constituent element, and a GaxIni χP (〇 &lt; χ $ 丨) layer formed by the MOCVD method constitutes a spacer layer.

2037-3440-PF-ptd 第40頁2037-3440-PF-ptd Page 40

522574 五、發明說明(37) 11 5。如上所述,以三?冀 木 1 1 〇 ^ ^ ^ 土鎵备作起始材料製造的GaAs層 113上,可U構成一通道芦 不 έ0 - , , , λλΓ τ 曰 ,、包含具有較佳勻相性的 銦組成比例的Gaz In〗7As Μ。认Η丄 Π4, ^、; ^ 層於具有均勻銦組成的通道層 114上方,可U堆積具有較件勺 J ρ/Α/γ &lt;Τ1 λ ^ 罕1工9相性的銦組成的一 G ax I η卜x P ( 0 &lt; X $ 1 )間隔層 11 5。 μ τ /Λ TT ^ ^ ^ ^ 此外,根據(CH3)3Ga/(CH3) 3 In/AsH3反應糸統利用低壓痞赍 豆女击虹a扣a i次吊壓的MOCVD方法,可以獲得 ,、有更好勻相性的 G ax I η,__ν ρ ( π &lt;τ y &lt;r 1、q ^ 4- 1 0/ ^ ^ ^ L ~X Q &lt;X = 1 )層。具有銦組成比例 低於± 1 %的銦組成比例的勺. η每田a a a日日一』0 ^相性的GaxIrvxP層係非常適合 且貝用地备作一間隔層使用。 此外’依據(C H3) 3 G a當作如仏η ϊ丨/ ..^ 3田1乍起始材料系統,利用一低壓 或常壓的M0CVD方法,除了翻如々| 、了1α、、且成比例的勻相性外,可以 形成具有更佳的平坦表面的一 Μ 取®的間隔層1 1 5。例如,利用一 (CH3)3Ga/(CH3)3ln/AsH,/H ^ Λ ^ „ 士 0日 3 Α夂應糸統,於沉積間隔層11 5的 時間,於間隔層115表面上的靈 』缠J為等於小於100 ppm,因 此可以形成具有平坦接合介面 a 1 1 r ^ &quot;m的一間隔層11 5,其可以遠 接至電子供應層11 6 〇假若Q a τ η Ό贷日广应,,Γ 士 右b ax ί iVx Ρ間隔層11 5之表面的霈 超過lOOppm,由於區域缺彡主 yp Q缺乏表面平坦,間隔層11 5之厚度 雙化變得很顯著。因為這原目,通道層114與電子供應層 116空間分隔的距離,根據上述區域距離變地不同,因此 藉由接收二維電子氣,於通道層114内產生離子散射的程 度變成不同成分形成。因此,一維帝名今、适 ^ ^ 一維電子軋之遷移率根據區 域而變化產生問題。 _於構成間隔層115的Gaxlni—χΡ(〇&lt;χ$η層中,載子穷产 最好低於1 X 1〇16cm—3。載子密度愈低愈好,且視範例而522574 V. Description of the invention (37) 11 5. As mentioned, to three? Ji Mu 1 1 〇 ^ ^ ^ On the GaAs layer 113 made of earth gallium as a starting material, a channel can be formed by U U 0,,, λλΓ τ, containing an indium composition ratio with better homogeneity. Gaz In: 7As M. It can be recognized that the layers Η 丄 4, ^, and ^ are above the channel layer 114 having a uniform indium composition, and can be stacked with a G of indium having a relatively small amount of J ρ / Α / γ &lt; T1 λ ^ 1 and 9 phases. ax I η and x P (0 &lt; X $ 1) spacer layer 11 5. μ τ / Λ TT ^ ^ ^ ^ ^ In addition, according to the (CH3) 3Ga / (CH3) 3 In / AsH3 reaction system, the MOCVD method using low-pressure cowpea females to hit the a button ai times is obtained. G ax I η, __ν ρ (π &lt; τ y &lt; r 1, q ^ 4- 1 0 / ^ ^ ^ L ~ XQ &lt; X = 1) layer with better homogeneity. A spoon with an indium composition ratio of less than ± 1%. Η per field, a, a, and day. The 0 phase phase of the GaxIrvxP layer is very suitable and is used as a spacer layer. In addition, according to (C H3) 3 G a as Ru 仏 ϊ ϊ 丨 / .. ^ 3 Tian 1 starting material system, using a low pressure or normal pressure MOCVD method, in addition to 々 々 |, 1α ,, In addition to the proportional homogeneity, it is possible to form a 1 μm spacer layer 1 1 5 with a better flat surface. For example, using a (CH3) 3Ga / (CH3) 3ln / AsH, / H ^ Λ ^ ^ 00 日 3 Α 夂 system, at the time of depositing the spacer layer 115, the spirit on the surface of the spacer layer 115 " The winding J is equal to or less than 100 ppm, so a spacer layer 11 5 having a flat bonding interface a 1 1 r ^ &quot; m can be formed, which can be remotely connected to the electron supply layer 11 6 〇 If Q a τ η It should be noted that the thickness of the surface of the spacer b ax i iVx P spacer layer 115 is more than 100 ppm. Due to the lack of planarity of the main surface yp Q, the doubled thickness of the spacer layer 115 becomes very significant. The distance between the space between the channel layer 114 and the electron supply layer 116 varies according to the above-mentioned area. Therefore, by receiving two-dimensional electron gas, the degree of ion scattering generated in the channel layer 114 becomes different components. Therefore, one-dimensional The emperor's current and proper ^ ^ one-dimensional electronic rolling mobility changes depending on the region. Problems arise. _ In the Gaxlni_χP (〇 &lt; χ $ η layer) constituting the spacer layer 115, the carrier poor yield is preferably less than 1 X 1〇16cm-3. The lower the carrier density is, the better

203了-3440-PF.ptd 第41頁 522574 五、發明說明(38) 定,即使高阻抗亦不是問題。間隔層丨丨5的導通型式最好 為η型。厚度最好為1 nm至1 5 nm之間。當間隔層1 1 5之厚 度愈來愈薄時,藉由二維電子氣表示的遷移率增加,但+ 是,相反地,平面載子密度減少。關於具有2 χ 1〇18cm_3的 載子翁度的G aY I Πη P電子供應層,層的厚度最好能產生1 $ X liFcnr2的平面載子密度。平面載子密度可藉由一般的霍 爾效應量測方法獲得。 根據本發明申請專利範圍第22項,於第22較佳實施例 中,自具有等於小於20 0 ppm霾的表面的““η: γΡ(〇&lt;γ 層構成電子供應層11 6。可以自當作第丨丨丨族的構成起始 料的三甲基鎵((CH^Ga)或三甲基銦形成具有此 種粗操表面的GaYIni_YP層,設置於自三乙基鎵當作起始 料製造的GaAs層113之内層上。藉由使用一反應系統,利 用二甲基化合物當作鎵與銦兩者的來源,可以更稃定 得具有更少表面粗糙_γΙηι_ΥΜ。π以藉由量測。入射的又 其他裝置的散射強度量測霾。電子供應層的厚度 最好為20 nm至40 nm。 ㈣f參雜著n型摻雜物的Gay In&quot;p(°&lt;Y a)構成電子 ί、應層116。可以自具有銦組成比例(1_γ)為〇. 49的203 up-3440-PF.ptd page 41 522574 5. Description of the invention (38) Even high impedance is not a problem. The conduction type of the spacer layer 5 is preferably an n-type. The thickness is preferably between 1 nm and 15 nm. When the thickness of the spacer layer 1 15 is getting thinner and thinner, the mobility represented by the two-dimensional electron gas increases, but + yes, on the contrary, the plane carrier density decreases. Regarding the G aY I Πη P electron supply layer with a carrier degree of 2 x 1018 cm_3, the thickness of the layer should preferably produce a plane carrier density of 1 $ X liFcnr2. The plane carrier density can be obtained by a general Hall effect measurement method. According to item 22 of the scope of patent application of the present invention, in the twenty-second preferred embodiment, the "" η: γP (0 &lt; γ layer "having a surface equal to or less than 200 ppm haze constitutes the electron supply layer 116. The trimethylgallium ((CH ^ Ga) or trimethylindium used as the starting material of the group 丨 丨 丨 forms a GaYIni_YP layer with such a rough surface, and is set from triethylgallium as a starting material. On the inner layer of the GaAs layer 113 made of aluminum. By using a reaction system and using dimethyl compounds as the source of both gallium and indium, it can be more determined to have less surface roughness_γΙηι_μM. Π by the amount The thickness of the electron supply layer is preferably 20 nm to 40 nm. ㈣f is composed of Gay In &quot; p (° &lt; Y a), which is doped with n-type dopants. Electron ί, should layer 116. Can have an indium composition ratio (1_γ) of 0.05

Gauilrv4/晶體層構成極佳的電子供應層Μ』。因為 Irv49P與GaAs晶格吻合,自晶格錯位 .The Gauilrv4 / crystal layer constitutes an excellent electron supply layer M ′. Because Irv49P coincides with the GaAs lattice, it is dislocated from the lattice.

St Γ p物包括石夕(元素符號Sl),其具有小 心政糸數。GaQ.5lInfl 49P電子供應層116的載子密度最好為2St Γ p includes Shi Xi (element symbol Sl), which has a small number of care. The carrier density of GaQ.5lInfl 49P electron supply layer 116 is preferably 2

522574 五、發明說明(39) X 1 〇18 cm-3至3x 1018cm_3。可以藉由一般的電容電壓(C-V) 方法量測載子密度。具有少量表面粗糙及較佳銦組成比例 勻相性的GaY IrvYP電子供應層具有較佳的載子密度勻相 性,因此亦具有均勾只包括二維電子氣的平面載子密度。 根據本發明申請專利範圍第23項,於第23較佳實施例 中,藉由金屬金屬有機化學氣相沉積形成具有較佳霾表面 的包含銦的I I I _ V族化合物半導體層時,具有一價結合鍵 的環戊二烯銦(化學式:C5 H51 η ( I ))使用當作銦來源(參考 J· Electron. Mater., 25(3)(1996), ρρ· 407-409)。因522574 V. Description of the invention (39) X 1 〇18 cm-3 to 3x 1018 cm_3. Carrier density can be measured by the common capacitor voltage (C-V) method. The GaY IrvYP electron supply layer, which has a small amount of surface roughness and a preferred indium composition and homogeneity, has better carrier density homogeneity, and therefore also has a planar carrier density that includes only two-dimensional electron gas. According to item 23 of the scope of patent application of the present invention, in the twenty-third preferred embodiment, when a metal halide surface-forming III-V compound semiconductor layer containing indium is formed by metal-metal organic chemical vapor deposition, it has one price. Bonded cyclopentadiene indium (chemical formula: C5 H51 η (I)) is used as a source of indium (see J. Electron. Mater., 25 (3) (1996), ρρ · 407-409). because

為CsHsInCI)顯不路易斯基部(Lewis base)的特性,具有胂 (化學式:AsHs)或磷化氫(化學式:ph3)當作第v族元素來 源的I合作用可以於化學氣相沉積環境内被壓抑(參考j ·It is CsHsInCI) which shows the characteristics of the Lewis base. It has osmium (chemical formula: AsHs) or phosphine (chemical formula: ph3) as a source of group V elements. It can be used in chemical vapor deposition environment. Suppression (refer to j ·

Crystal Growth,1〇7 (1991),ρρ·36〇 — 354)。為 了這緣 故,例如因為有機銦磷聚合物被抑制(參考j. Chem.Crystal Growth, 107 (1991), ρ 36.-354). For this reason, for example, because organic indium phosphorus polymers are inhibited (see j. Chem.

Soc·, [1951](1951), ρρ· 2003-2013) 性較佳,且因此可以獲得較佳的包含銦 半導體氣相沉積層。 ,銦組成物的勻相 的I I I-V族化合物 此外 C5 Η51 η ( I )具有較:甲 I / ρ υ \ τ \ 力(昇華壓力)低,並且並壤 ^ * 3 3 η)的汽化肩Soc ·, [1951] (1951), ρρ · 2003-2013) have better properties, and therefore a better vapor-deposited layer containing indium semiconductor can be obtained. The indium composition is a homogeneous group of I I I-V compounds. In addition, C5 Η51 η (I) has a lower (sublimation pressure) force than A I / ρ υ \ τ \ and has a vaporization shoulder of ^ * 3 3 η).

應層ι16以及其它薄膜芦支GaxInHp間隔層115、電子令 壓力,C5H5In(I)最佳保曰持為了#誘發適合薄膜形成的昇華 伴隨C5IUn⑴的昇華壓二:度乾圍為40它至7〇 °C。例如 第27較佳實施例係 現虱體為虱。 ’、 利用上述Gal nP磊晶堆疊結相Stress layer ι16 and other thin film GaxInHp spacer layer 115, electrons make the pressure, C5H5In (I) is best kept for # induction of sublimation suitable for film formation. Sublimation pressure accompanied by C5IUn⑴ Second: The degree of dryness is 40 to 70. ° C. For example, the 27th preferred embodiment is that the lice are lice. ’, Using the above Gal nP epitaxial stacked junction

522574 五、發明說明(40) 製造的刀電子遷移率場效電晶體。 上述係本發明較佳實施例之說明,並且接著藉由可實 施範例更詳細說明本發明,但是本發明不應受限^此等^ 實施範例。 實施例1 藉由MOCVD方法 第3圖係根據此實 於此實施例中,本發明詳細的說明 構成一 G a I η P二維電子氣的場效電晶體。 施範例的一TEGFET300的概要剖面圖式。522574 V. Description of invention (40) Knife electron mobility field effect transistor. The above is a description of a preferred embodiment of the present invention, and then the present invention will be described in more detail by implementing examples, but the present invention should not be limited to these ^ implementation examples. Embodiment 1 By the MOCVD method, FIG. 3 is based on this. In this embodiment, the present invention is described in detail. A field effect transistor of a G a I η P two-dimensional electron gas is formed. A schematic cross-sectional view of a TEGFET 300 according to an example.

關於一TEGFET30 0應用的磊晶堆疊結構3Α,使用一未 摻雜的半絕緣(100)2偽壇蟑惨aAs單晶當作一基底3〇1。舍 作基底301使用的GaAs單晶的特殊阻抗為3 χ 1〇t 。具&quot; I有1 00 mm直徑位於基底301的表面上,沉積一 八Regarding an epitaxial stacked structure 3A applied to a TEGFET 300, an undoped semi-insulating (100) 2 pseudo-alloy aAs single crystal was used as a substrate 301. The special impedance of the GaAs single crystal used as the base 301 is 3 x 10t. I have a diameter of 100 mm on the surface of the substrate 301,

AlLGa^As/GaAs超晶格作為構成缓衝層3〇2的第一緩衝層的 構成部位302- 1。超晶格結構302-i包含具有鋁組成比&amp; (=L)0· 3的一未摻雜A1G 3GaQ 7As層302a及一未摻雜的p型 GaAs 層 30 2b aAluGauAs 層 302a 的載子密度為 1χ 1〇14cm_3 且其厚度為45 nm 型GaAs層302b的載子密度為7χ I HPcnr3 且其厚度為 50 run QAlQ3GaQ7As 層 302a 與層 3 0 2b的堆疊週期數目為5。藉由低壓的mocvd方法根據一 (CH3)3Ga/(CH3)3Al/AsH3/H2 反應系統,A1〇 3Ga&quot;As 層⑽。盥 P型GaAs層302b皆形成於640 X:。此時,薄膜形成的壓力為 1· 3 X 1〇4 pascal (pa)。氫氣當作載子氣體使用。 , 於第一緩衝層3 0 2的構成部位3 〇 2 - 1上方,藉由一 | (C2H5)3Ga/AsH3/H2反應系統、低壓M0CVd方法,利用三乙基The AlLGaAs / GaAs superlattice is used as a constituent portion 302-1 of the first buffer layer constituting the buffer layer 302. The superlattice structure 302-i includes a carrier density of an undoped A1G 3GaQ 7As layer 302a and an undoped p-type GaAs layer 30 2b aAluGauAs layer 302a having an aluminum composition ratio &amp; (= L) 0.3. The carrier density is 1χ 1014cm_3 and its thickness is 45 nm. The GaAs layer 302b has a carrier density of 7χ I HPcnr3 and its thickness is 50. The number of stacking cycles of the QAlQ3GaQ7As layer 302a and the layer 3 0 2b is five. By the low-pressure mocvd method, according to a (CH3) 3Ga / (CH3) 3Al / AsH3 / H2 reaction system, the A10Ga &quot; As layer is ⑽. The P-type GaAs layers 302b are all formed at 640X :. At this time, the pressure for film formation was 1.3 × 104 pascal (pa). Hydrogen is used as a carrier gas. Above the constituent part 3 〇 2-1 of the first buffer layer 302, by a | (C2H5) 3Ga / AsH3 / H2 reaction system, a low-pressure MOCVd method, using triethyl

2037-3440-PF-ptd 5225742037-3440-PF-ptd 522574

位於第二緩衝層構成部位3〇2-2上方,藉由低壓MOCVD f法使用一(CH3)3Ga/C5H5In/ASH3/H2反應系統沉積,堆疊 未#雜的η型Gaul %2 As層當作一通道層303。構成通道 層303的GaG 8 InG 2As層的載子密度為1 x 1 〇i5cnr3,且其厚度 為1 3 nm。自發光波長的勻相性發現銦組成比例的勻相性 參 為0 · 2 ( ± 〇 · 4 %)。自入射雷射散射的強度,量測的此層3 〇 3 的表面霾值發現為丨2 ppm。 位於GauInuAs通道層303上方,藉由低壓M0CVD方法 利用(C^3 )3Ga/C5H5 In/PH3/H2反應系統沉積,堆疊包含矽 払雜的η型G aQ S1 I nG 49 P的一電子供應層3 〇 4,其具有於鎵組 成比例(=γ)上梯度分佈。與未摻雜的nsGauIn^As通道 層3 03接觸的接合介面處3〇4a,電子供應層3〇4的鎵組成η 例(=Υ)設定為0.88。與η型GaAs接觸層305接觸的接合介5 處3 0 4 b,電子供應層3 〇 4的鎵組成比例(=γ)設定為〇 · 5 1。It is located above the second buffer layer formation site 30-2-2. It is deposited by a low-pressure MOCVD f method using a (CH3) 3Ga / C5H5In / ASH3 / H2 reaction system. A stack of ## n-type Gaul% 2 As layers is used as One channel layer 303. The carrier density of the GaG 8 InG 2As layer constituting the channel layer 303 is 1 × 10i5cnr3, and its thickness is 13 nm. The homogeneity of the self-luminous wavelength was found to be a homogeneity parameter of the indium composition ratio of 0.2 (± 0.4%). The intensity of the scattering from the incident laser, the measured surface haze value of this layer was found to be 2 ppm. It is located above the GauInuAs channel layer 303, and is deposited using a (C ^ 3) 3Ga / C5H5 In / PH3 / H2 reaction system by a low-pressure MOCVD method, and an electron supply layer including silicon-doped n-type G aQ S1 I nG 49 P is stacked. 3 04, which has a gradient distribution over the gallium composition ratio (= γ). The gallium composition η of the bonding interface at the junction interface which is in contact with the undoped nsGauIn ^ As channel layer 303, and the electron supply layer 304 is set to 0.88. The gallium composition ratio (= γ) of the bonding medium in contact with the n-type GaAs contact layer 305 at five places is 3 0 4 b, and the electron supply layer 3 0 4 is set to 0.51.

於形成薄膜的期間,藉由均勻地且線性地減少供應至 M0CVD 反應系統的Μ5ΐη 相對於(CH3)3Ga(=C5H5i^(c^Ga) 的比例\沉積上述電子供應層3〇4至25 nm的厚度。矽烷^ 合物(六虱化二矽Si2He)氣體混合物當作摻雜矽的來源。, 子供應層3 04的載子密度為2 X 1〇18cnr3,且其厚度為25 nm。自發光波長的勻相性發現銦組成比例的勻相性為During the formation of the thin film, the ratio of M5ΐη to (CH3) 3Ga (= C5H5i ^ (c ^ Ga) to the (CH3) 3Ga (= C5H5i ^ (c ^ Ga)) was uniformly and linearly reduced, and the above-mentioned electron supply layer was 304 to 25 nm. The thickness of the silane compound (hexasilane di-Si2He) gas mixture is used as the source of doped silicon., The carrier density of the carrier supply layer 3 04 is 2 X 1018cnr3, and its thickness is 25 nm. Since The homogeneity of the emission wavelength was found to be the homogeneity of the indium composition ratio as

522574 五、發明說明(42) 〇,51(± 0.51%)。堆疊此層3〇4後的霾值發現為18 。 包含η型Ga。5! I nG 49 P的電子供應層3〇4表面上方,辨由 反應系統,堆疊包含摻雜矽的n 二 1觸層305。上述六氫化二矽氣體混合物係用以當作摻雜 石的來源。η型GaAs接觸層305的載子密度為2 x j 〇i8cm_3, 且其厚度為100 nm 〇nSGaAs接觸層30 5表面的霾值量測為 2曰3 PPm。完成形成磊晶堆疊結構3A的構成層3〇3 —3〇5的磊 晶堆疊,於包含胂(AsH3)的氣體中加熱至5〇〇,接著於 氫的氣體中冷卻至室溫。 ’ 、 ^ 包含銦錫合金的歐姆電極形成於位於磊晶堆疊結構3A 最上面層的η型GaAs接觸層30 5的表面上。接著,^用一般 的霍爾效應量測方法,量測通過二維電子氣通道層3〇;3的 =維電子氣的電子遷移率。於室溫下(3〇〇 κ)的平面載子 密度(ns)為1· 6 X l(Fcm-2,且平均電子遷移率(…ο為58〇〇 (± 2%)(cm2/Vs)。此外,於液態氮的溫度(77 κ)時,心為 1·5χ l(Pcnr2,且#為22,〇〇〇 cm2/Vs,因此顯示出高速的 電子遷移率。522574 V. Description of the invention (42) 〇, 51 (± 0.51%). The haze value after stacking this layer 304 was found to be 18. Contains n-type Ga. Above the surface of the electron supply layer 304 of I nG 49 P, the n 2 1 contact layer 305 containing doped silicon is stacked by the reaction system. The hexahydrogen silicon gas mixture is used as a source of doped stones. The carrier density of the n-type GaAs contact layer 305 is 2 x j 8 cm_3, and its thickness is 100 nm. The haze value of the surface of the nSGaAs contact layer 30 5 is measured to be 2 PPm. The epitaxial stack of the constituent layers 3003-305 of forming the epitaxial stack structure 3A is completed, heated to 500 in a gas containing thorium (AsH3), and then cooled to room temperature in a hydrogen gas. An ohmic electrode containing an indium tin alloy is formed on the surface of the n-type GaAs contact layer 305 located at the uppermost layer of the epitaxial stacked structure 3A. Next, using a general Hall effect measurement method, the electron mobility of the three-dimensional electron gas passing through the two-dimensional electron gas channel layer 30 is measured; The plane carrier density (ns) at room temperature (300 κ) is 1.6 X l (Fcm-2, and the average electron mobility (... ο is 5800 (± 2%) (cm2 / Vs In addition, at a temperature of liquid nitrogen (77 κ), the heart is 1.5 × l (Pcnr2, and # is 22, 00 cm2 / Vs), and thus exhibits high-speed electron mobility.

冷卻後’利用已知的黃光顯影技術的曝光方法,用以 於位於蠢晶堆璺結構3 A的最表面層的η型G a A s接觸層3 0 5表 面上產生一凹處。於上述n型GaAs接觸層305上保持平台, 形成一源極電極306與一汲極電極307。藉由包含金鍺(重 量百分比中,93%的金及7%的鍺)、鎳及金層的多層結構形 成源極與汲極歐姆電極3 〇 6與3 0 7。源極電極3 0 6與汲極電 極3 0 7之間的距離為1 〇 # m。After cooling ’, an exposure method using a known yellow light development technique is used to create a recess on the surface of the n-type G a A s contact layer 3 05 located on the topmost layer of the stupid stack structure 3 A. A platform is held on the n-type GaAs contact layer 305 to form a source electrode 306 and a drain electrode 307. The source and drain ohmic electrodes 306 and 307 are formed by a multilayer structure including gold germanium (93% gold and 7% germanium in weight percentage), nickel, and gold layers. The distance between the source electrode 3 0 6 and the drain electrode 3 7 is 10 # m.

2037-3440-PFjtd 第46頁 1 522574 五、發明說明(43) 於Gauilrv49?電子供應層3〇4之上表面所曝光形成的 凹處中,形成利用鈦(Titanium)金屬做為下層、鋁金屬做 為上層的蕭基接合介面型閘極電極。閘極電極3〇8的閘極 長度為2 /z m。2037-3440-PFjtd Page 46 1 522574 V. Description of the invention (43) In the recess formed by exposing the upper surface of Gauilrv49? Electronic supply layer 30, a titanium (Titanium) metal is used as the lower layer and an aluminum metal is formed. As the upper-layer Schottky junction interface type gate electrode. The gate length of the gate electrode 308 is 2 / z m.

GalnP TEGFET 30 0的DC特性經計算。當施加的源極/The DC characteristics of GalnP TEGFET 300 are calculated. When the source /

/及極電壓為3 V ο 11 s ( V )時,飽和的源極汲極電流()為 70毫安培(mA)。當汲極電壓自〇 v升至5 v時,實際^,於 汲極電流中,不再發現循環(磁滯現象)。於源極及極電; 壓3·0的量測得的室溫轉導值(gm)係又高又均勻的為16〇± 5 mS/mm。此外,流通過曝光至緩衝層3〇2表面上形成1〇〇 # m間隔的金鍺歐姆電極之間的漏電流,於4 〇 v時發現少 於\ ,因此顯示具有高崩潰阻抗。因此,汲極電流的夾 止電壓(pinch - of f voltage)變成2· 38 ± 0· 03 V,獲得具 有勻相的臨界電壓的一Gal nP TEGFET。 實施例2 ; 於此實施例中’本發明詳細的說明,構成不同於實施 例1的具有一種G%Ini γΡ梯度成分分佈層的一Gainp二維電 子氣場效電晶體(TEGFET)。 此實施例之TEGFET與實施例1僅僅不同於〇%Ιηι γρ梯度 組成層的構成方面,除此之外,具有於第3圖中說明的, 如同實施例1利用相同的磊晶構成層的磊晶堆疊結構。因 此’下列實施例說明參考第3圖。於此實施例中,於 Gau As通道層303上方的電子供應層304構成具有鎵組 成比例梯度分佈的GaY IrVyP梯度分佈構成層,例如電子供/ And when the electrode voltage is 3 V ο 11 s (V), the saturated source drain current () is 70 milliamperes (mA). When the drain voltage rises from 0 v to 5 v, in reality, no cycle (hysteresis) is found in the drain current. For the source and electrode; the room temperature transduction value (gm) measured with a voltage of 3.0 was high and uniform at 16 ± 5 mS / mm. In addition, the leakage current flowing between the gold germanium ohmic electrodes with a gap of 100 #m formed on the surface of the buffer layer 302 was found to be less than \ at 400 volts, thus showing a high breakdown impedance. Therefore, the pinch-of-f voltage of the sink current becomes 2 · 38 ± 0 · 03 V, and a Gal nP TEGFET with a homogeneous threshold voltage is obtained. Embodiment 2; In this embodiment, a detailed description of the present invention constitutes a Gainp two-dimensional electron gas field effect transistor (TEGFET) having a G% Ini γ gradient component distribution layer different from that of Embodiment 1. The TEGFET of this embodiment is different from that of Embodiment 1 only in terms of the composition of the 0% Iηι γρ gradient composition layer. In addition, it has the features described in FIG. 3 and uses the same epitaxial structure layer as in Embodiment 1. Crystal stack structure. Therefore, reference is made to Fig. 3 for the following embodiment description. In this embodiment, the electron supply layer 304 above the Gau As channel layer 303 constitutes a GaY IrVyP gradient distribution constituting layer having a proportional distribution of gallium composition, such as an electron supply

522574 五、發明說明(44) 應層304與通運層303接觸的接合介面3〇4a的鎵組成比例為 1.0 ’以及與η型GaAs接觸層3〇5接觸的接合介面3〇4b的鎵 組成比例為0.51。梯度分佈組成的(^%111&quot;1)電子供應層304 的厚度為25 nm。於具有厚度為25 nm的電子供應層304 中’其中自與通道層接觸的接合介面處至往上2 nm厚度 處,包含GaYini_YP,其中鎵組成比例設定為丨.〇,也就是 GaP °接著’鎵組成比例均勻地且線性地隨著厚度增加而 減少’直到電子供應層3 〇 4的厚度變成2 5 nm。因此,與η 型GaAs接觸層30 5接觸的接合介面3 〇4b處的鎵組成比例為 〇· 51。於此實施例,於構成電子供應層3〇4的以“^ γρ層 1 ’於沉積期間電子供應層3 〇4的厚度自2 nm至2 5 nm時, =由均勻地且線性地增加供應至仰口1)反應系統的的 置’同時供應至MOCVD反應系統的(CH3)3Ga的量保持固定 值’產生鎵組成比例的梯度分佈。如同於實施例1中,於 G aY I η!—γ P包子供應層之表面上堆疊相同的打型^ a a s接觸層 3^5以便形成一Galnp磊晶堆疊結構。於室溫(3〇〇 κ)下, 藉由般萑爾效應量測方法量測的平面載子密度(\ )為1 · 7〇X 1〇12cm—2,且平均電子遷移率(#RT)為5900 (土 3%)2(Cm2/Vs)。此外,於液態氮溫度(77 κ)下的ns為1·6χ Cm^ ’且於77 Κ下的//為22, 700 cm2/ Vs,因此形成根 據=實施例的電子供應層304的Gal nP磊晶堆疊結構,亦顯 逮的電子遷移率。此外,實際上,如同於實施例1中 &amp;述的’使用此相同技術構成以丨^ TEGFET的汲極電流 中’不再發現磁滯現象(循環)。此外,於源極/汲極電壓522574 V. Description of the invention (44) The gallium composition ratio of the bonding interface 304a of the bonding layer 304 in contact with the transport layer 303 is 1.0 'and the gallium composition ratio of the bonding interface 304b in contact with the n-type GaAs contact layer 305. Is 0.51. The thickness of the (^% 111 &quot; 1) electron supply layer 304 consisting of a gradient distribution is 25 nm. In the electron supply layer 304 having a thickness of 25 nm, 'Where the thickness from the bonding interface in contact with the channel layer to 2 nm upwards, includes GaYini_YP, where the gallium composition ratio is set to 丨 .〇, which is GaP ° and then' The gallium composition ratio decreases uniformly and linearly as the thickness increases' until the thickness of the electron supply layer 304 becomes 25 nm. Therefore, the gallium composition ratio at the bonding interface 3 04b in contact with the n-type GaAs contact layer 305 is 0.51. In this embodiment, when the thickness of the electron supply layer 3 04 formed by the “^ γρ layer 1 ′ during the deposition of the electron supply layer 3 04 is from 2 nm to 25 nm, the supply is increased uniformly and linearly. To Yangkou 1) The placement of the reaction system 'while the amount of (CH3) 3Ga supplied to the MOCVD reaction system remains fixed' produces a gradient distribution of the gallium composition ratio. As in Example 1, at G aY I η! — The same patterned ^ aas contact layer 3 ^ 5 is stacked on the surface of the γ P bun supply layer to form a Galnp epitaxial stack structure. Measured by the Pyrene effect method at room temperature (300 κ) The measured plane carrier density (\) is 1.70 × 1012cm-2, and the average electron mobility (#RT) is 5900 (soil 3%) 2 (Cm2 / Vs). In addition, at the temperature of liquid nitrogen The ns at (77 κ) is 1.6 χ Cm ^ 'and // at 77 K is 22, 700 cm2 / Vs, so a Gal nP epitaxial stack structure of the electron supply layer 304 according to the embodiment is formed, and Obtained electron mobility. In addition, in fact, as described in &amp;amp; 1 using the same technique to construct the TEGFET's drain current Now hysteresis (loop). Furthermore, the source / drain voltage

2037-3440-PF-ptd2037-3440-PF-ptd

522574522574

又均勻的為1 6 5 土 5 五、發明說明(45) 3· 0下量測得的室溫轉導值(gj係又高 mS/mm 〇 實施例3 於此實施例中,本發明詳細地說明,利用勺入一 Gax I rvxP梯度分佈組成層的間隔層構成—匕3 效電晶體(TEGFET),做為本實施例。成第二維電子場 例的一了 EGFET 6〇〇的概要剖面圖式1。弟5圖係根據此實施 應用於一TEGFET 6 0 0的磊晶堆疊結構6八 的半絕緣(1〇〇)2偽壇縴惨aAs單晶做為—基底6〇1。 底601使用的GaAs單晶的特殊阻抗值為3x 1〇? 。具有土 直徑100關的基底601的表面上’沉積一AlLGaiLAs/Ga、A^ 晶格結構,其構成緩衝層6〇2。超晶格結構包含具有鋁組 成比例( = L)0· 3的未摻雜A1G sGauAs層及一未摻雜的p型 GaAs層。A1G 3GaQ 7As層的載子密度為1 x 1 〇i4cm-3,且其厚 度為45 nm型GaAs層的載子密度為7x 1(Fcm-3,且/其^ 度為50 nm。A1Q 3GaG 7As層與p型GaAs層的堆疊週期數目為 5個週期。藉由低壓MOCVD方法根據(CH3)3Ga/(CH/) 一 3A1/AsH3/H2反應系統,於6 40 °C,形成所有的A1〇3Ga()7As層 與P型GaAs層。於薄膜形成時的壓力為丨.3 χ ι〇4 Pascal(Pa)。使用氫當作載子氣體。 於緩衝層602上面,藉由低壓MOCVD方法利用(CH3) Aa/C^In/AsH〆!^反應系統沉積,堆疊一未摻雜的n型Ga。 8InQ2As層做為通道層6〇3。構成通道層60 3的Ga&quot;InQ2As層 的載子密度為1 X l〇i5cm-3,且其厚度為13 ηπ1。It is evenly 1 6 5 5 5 V. Description of the invention (45) Room temperature transduction value measured at 3 · 0 (gj is high mS / mm) Example 3 In this example, the present invention is detailed It is explained that a spacer structure consisting of a Gax IrvxP gradient distribution composition layer—a dagger 3 effect transistor (TEGFET) —is used as the present embodiment. An outline of the EGFET 600, which is a second-dimensional electronic field example, is used. Sectional drawing 1. Figure 5 is a semi-insulating (100) 2 pseudo-alkaline aAs single crystal used as a substrate-601, which is applied to an epitaxial stacked structure 680 of a TEGFET 600 according to this implementation. The special impedance value of the GaAs single crystal used for the bottom 601 is 3 × 10 °. On the surface of the substrate 601 with a soil diameter of 100 Å, an AlLGaiLAs / Ga, A ^ lattice structure is deposited, which forms a buffer layer 602. Ultra The lattice structure includes an undoped A1G sGauAs layer with an aluminum composition ratio (= L) of 0.3 and an undoped p-type GaAs layer. The carrier density of the A1G 3GaQ 7As layer is 1 x 1 〇4cm-3, The carrier density of the 45-nm-type GaAs layer is 7 × 1 (Fcm-3, and / or its thickness is 50 nm. The number of stacking cycles of the A1Q 3GaG 7As layer and the p-type GaAs layer is 5 cycles. According to the (CH3) 3Ga / (CH /)-3A1 / AsH3 / H2 reaction system by low-pressure MOCVD method, all A103Ga () 7As layers and P-type GaAs layers are formed at 6 40 ° C. When the film is formed The pressure is 丨 3 Pascal (Pa). Hydrogen is used as a carrier gas. On the buffer layer 602, the (CH3) Aa / C ^ In / AsH〆! ^ Reaction system is used by a low-pressure MOCVD method. An undoped n-type Ga is deposited and stacked. The 8InQ2As layer is used as the channel layer 603. The carrier density of the Ga &quot; InQ2As layer constituting the channel layer 60 3 is 1 × 10 5 cm-3, and its thickness is 13 ηπ1.

2037-3440-FF-ptd 第49頁 522574 五、發明說明(46) 於GaG.8InG2As通道層60 3上,藉由一低壓MOCVD方法利 用一(CH3 )3Ga/C5H51 n/PH3/H2反應系統沉積,堆疊一間隔層 6 0 4 ’其包含具有鎵組成比例χ)梯度分佈的未摻雜的^型 GaxIrVxP。與未摻雜的n SGaG 8In() 2as通道層60 3接觸的接 合介面604a處,間隔層604的鎵組成比例( = 設為〇· μ。 與GaGnIn^P電子供應層605接觸的接合介面㈤札處,間 |隔層604的鎵組成比例( = χ)設為〇· 5 1。於用以沉積電子供 |應層604至厚度6 nm的薄膜形成期間的時間内,藉由均勻 地且線性地減少供應至M0CVD反應系統内的相對於 (CH3)3Ga (=C5H5In/(CH3)3Ga)的比例,產生梯度變化的鎵 組成比例。 於GaxIivxP間隔層6〇4上方,藉由一低壓M〇CVI)方法利 用一(CH3)3Ga/C5H5In/PH3/H2反應系統沉積,堆疊包含摻雜 矽(Si)的η型Ga。” InG 4汁的一電子供應層6〇5。使用六氫化 一矽(S “ Ηδ )氣體混合物(體積濃度丨〇 ρρβ1)當作矽的摻雜來 源。於形成薄膜時的壓力為丨.3&gt;&lt; 1〇4 Pascal(Pa)。電子 供應層605的載子密度為2&gt;&lt; i〇i8cnr3,且其厚度為25_。 拳 於包含η型電子供應層6 0 5之表面上,藉由 一(CH3)3Ga/AsH3/H2反應系統,堆疊包含矽摻雜的n型以^ 的一接觸層60 6。上述六氫化二矽氣體混合物當作矽的摻 雜來源使周。η型GaAs接觸層6〇β的載子密度為2 χ 夕 10^3,且其厚度為100 nm。當完成蠢晶沉積上述構成層 603-60 6形成上述磊晶堆疊結構6A後,於包含胂) 氣體中加熱至5 0 0 °C,接著於氫氣中冷卻至室溫。 、2037-3440-FF-ptd Page 49 522574 V. Description of the invention (46) On the GaG.8InG2As channel layer 60 3, a (CH3) 3Ga / C5H51 n / PH3 / H2 reaction system was deposited by a low-pressure MOCVD method. A spacer layer 604 'is stacked, which includes an undoped ^ -type GaxIrVxP having a gallium composition ratio χ) gradient distribution. At the bonding interface 604a that is in contact with the undoped nSGaG 8In () 2as channel layer 60 3, the gallium composition ratio of the spacer layer 604 (= is set to 0 · μ. The bonding interface in contact with the GaGnIn ^ P electron supply layer 605 605 The gallium composition ratio (= χ) of the interlayer | interlayer 604 is set to 0.51. During the period from the time when the electron supply layer 604 is deposited to the film thickness of 6 nm, the uniform and The ratio of (CH3) 3Ga (= C5H5In / (CH3) 3Ga) supplied to the MOCVD reaction system is linearly reduced, resulting in a gradient change in the gallium composition ratio. Above the GaxIivxP spacer layer 604, a low-pressure M The (CVI) method uses a (CH3) 3Ga / C5H5In / PH3 / H2 reaction system to deposit and stack n-type Ga containing doped silicon (Si). An electron supply layer 605 of InG 4 juice. A hexahydrogen silicon (S "Ηδ) gas mixture (volume concentration 丨 0 ρρβ1) was used as the source of silicon doping. The pressure at the time of forming the thin film was 1.3. &Lt; 104 Pascal (Pa). The carrier density of the electron supply layer 605 is 2 &gt; &lt; ioi8cnr3, and its thickness is 25 mm. On the surface containing the n-type electron supply layer 605, a (CH3) 3Ga / AsH3 / H2 reaction system was used to stack a contact layer 606 containing silicon-doped n-type ^. The above-mentioned hexahydrogen silicon gas mixture is used as a doping source of silicon. The carrier density of the η-type GaAs contact layer 60β is 2 × 10 × 3, and its thickness is 100 nm. After completing the stupid deposition of the above-mentioned constituent layers 603-60 6 to form the above-mentioned epitaxial stacked structure 6A, it is heated to 500 ° C in a gas containing ii), and then cooled to room temperature in hydrogen. ,

2037-3440-PF.pid2037-3440-PF.pid

522574 五、發明說明(47) 包含銦錫合金的歐姆電極形成於位於磊晶堆疊結構6 A 最上面層的η型GaAs接觸層606的表面上。接著,使用一般 的霍爾效應量測方法,量測通過二維電子氣通道層6 0 3的 二維電子氣的電子遷移率。於室溫下(3〇〇 K)的平面載子 密度(ns)為1. 6 X l〇12cm-2,且平均電子遷移率(#rt)為61〇〇 (± 20/〇)(cm2/Vs)。此外,於液態氮的溫度(77 κ)時,ns為 1.5乂1012(:111—2,且//為2 3,00 0 〇1112/¥.3,因此顯示出高速的 電子遷移率。522574 V. Description of the invention (47) An ohmic electrode containing an indium tin alloy is formed on the surface of the n-type GaAs contact layer 606 located on the uppermost layer of the epitaxial stacked structure 6 A. Next, using a general Hall effect measurement method, the electron mobility of the two-dimensional electron gas passing through the two-dimensional electron gas channel layer 603 is measured. The plane carrier density (ns) at room temperature (300K) is 1.6 X 1012 cm-2, and the average electron mobility (#rt) is 6100 (± 20 / 〇) (cm2 / Vs). In addition, at a temperature of liquid nitrogen (77 κ), ns is 1.5 to 1012 (: 111-2, and // is 2 3,00 00 〇1112 / ¥ .3, so it exhibits high-speed electron mobility.

冷卻後’利用已知的黃光顯影技術的曝光方法,形成 於位於磊晶堆疊結構6 A的最表面層的η型Ga As接觸層606的 表面上產生一凹處。於上接觸層606上保持平台 處,形成一源極電極607與一汲極電極60 8。藉由包含金鍺 (重量百分比中,93%的金及7%的鍺)、鎳及金層的多層結 構形成源極與汲極歐姆電極6〇7與6 08。源極電極6〇7與沒 極電極6 0 8之間的距離為1 〇 # m。 於〇〜.511 nG.49P電子供應層605之上表面所曝光形成的 凹處中,形成利用鈦(Titanium)金屬做為下層、鋁金屬做 為上層的蕭基接合介面型閘極電極60 9。閘極電極6〇9的閘 極長度為1 // m。After cooling ', an exposure method using a known yellow light developing technique is used to form a recess on the surface of the n-type Ga As contact layer 606 located on the outermost layer of the epitaxial stacked structure 6A. A source electrode 607 and a drain electrode 608 are formed at the holding platform on the upper contact layer 606. The source and drain ohmic electrodes 607 and 608 are formed by a multilayer structure including gold germanium (93% gold and 7% germanium by weight), nickel, and gold layers. The distance between the source electrode 607 and the anode electrode 608 is 10 #m. In the recess formed by exposing the upper surface of the 0 ~ .511 nG.49P electron supply layer 605, a Titanium metal gate electrode using titanium (Titanium) as the lower layer and aluminum metal as the upper layer is formed. 60 9 . The gate length of the gate electrode 609 is 1 // m.

GalnP TEGFET 60 0的DC特性經計算。當施加的源極/ 汲極電壓為3 Volts(V)時,飽和的源極汲極電流(、)為 68毫安培CmA}。當汲極電壓自〇 v升至5 V時,實際仏丄,、於 汲極電流中,不再發現循環(磁滯現象)。於源二/^及極; 壓3·0時量測得的室溫轉導值(gm)係又高又均勻的為16〇 土The DC characteristics of GalnP TEGFET 60 0 are calculated. When the applied source / drain voltage is 3 Volts (V), the saturated source-drain current (,) is 68 mA CmA}. When the drain voltage rises from 0 v to 5 V, in reality, no cycle (hysteresis) is found in the drain current. At source two / ^ and poles; the room temperature transduction value (gm) measured at a pressure of 3.0 is high and uniform at 16 °

522574 五、發明說明(48) 5 mS/mm。此外,流通過曝光至緩衝層6 0 2表面上形成1 〇 〇 // m間隔的金鍺歐姆電極之間的漏電流,於4 Ο V時發現少 於1 // A,因此顯示具有高崩潰阻抗。因此,汲極電流的 夹止電壓(pinch-off voltage)變成 2·35±0·03 V,獲得 具有勻相的臨界電壓的一GalnP TEGFET。 貫施例4 於此實施例中,本發明詳細的說明,構成不同於實施 例3的具有一種GaxIiVxP梯度成分分佈層的一Galnp二維電 子氣場效電晶體(TEGFET)。 ί 此實施例之TEGFET與實施例3僅僅不同於GaxIn^P梯度 組成層的構成方面,除此之外,具有於第5圖中說明的, 如同貫施例3利用相同的磊晶構成層的磊晶堆疊結構。因 此,下列實施例說明參考第5圖。於此實施例中,於522574 V. Description of the invention (48) 5 mS / mm. In addition, the leakage current flowing between the gold germanium ohmic electrodes forming a 1000 // m interval on the surface of the buffer layer 602 was found to be less than 1 // A at 4 0 V, so it shows a high breakdown impedance. Therefore, the pinch-off voltage of the drain current becomes 2.35 ± 0.03 V, and a GalnP TEGFET with a uniform threshold voltage is obtained. Example 4 In this example, the present invention is described in detail, and a Galnp two-dimensional electron gas field effect transistor (TEGFET) having a GaxIiVxP gradient component distribution layer different from that in Example 3 is constituted. The TEGFET of this embodiment is different from that of Embodiment 3 only in terms of the composition of the GaxIn ^ P gradient composition layer. In addition, it has the structure illustrated in FIG. 5 and uses the same epitaxial structure layer as in Embodiment 3. Epitaxial stacked structure. Therefore, the following embodiment is described with reference to FIG. 5. In this embodiment, at

」As通道層603上方的間隔層6〇4構成具有鎵組成比 例ί弟度分佈的Gaxlni xp梯度分佈構成層,例如間隔層6〇4與 層6 0 3接觸的接合介面6 〇 4a的鎵組成比例為丨· 〇,以及 =aa\51 1 U電子供應層接觸的接合介面6〇4b的鎵組 屋^ ^列為〇· 51。梯度分佈組成的GaxIni_xP電子供應層604的 由=為8⑽。於具有厚度為8 nm的電子供應層604中,其 丄人「與通逼層603接觸的接合介面處至往上2 nm厚度處, ^ = a‘xχΡ ’其中鎵組成比例設定為1 · 〇,也就是GaP。 亩=@叙組成比例均勻地且線性地隨著厚度增加而減少, 因!^ g,厚度變成8 nm,也就是間隔層6 04的整體厚度。 ^ X ηι-χΡ電子供應層605接觸的接合介面604b處的The spacer layer 604 above the As channel layer 603 constitutes a Gaxlni xp gradient distribution composition layer having a gallium composition ratio distribution. For example, the gallium composition of the junction interface 6 〇4a in which the spacer layer 604 is in contact with the layer 603. The gallium HDB with the ratio of 丨 · 〇 and the bonding interface 604b of the aa \ 51 1 U electron supply layer contact is listed as 0.51. The GaxIni_xP electron supply layer 604 consisting of the gradient distribution is composed of = 8 ⑽. In the electron supply layer 604 having a thickness of 8 nm, the thickness of the bonding interface that is in contact with the through force layer 603 is 2 nm upward, ^ = a'xχΡ ', where the gallium composition ratio is set to 1 · 〇 , Which is GaP. Mu = @ Comment composition ratio decreases uniformly and linearly with increasing thickness, because! ^ G, the thickness becomes 8 nm, which is the overall thickness of the spacer layer 604. ^ X ηι-χΡ electronic supply Layer 605 at the bonding interface 604b

522574 五、發明說明(49) 鎵組成比例為0 · 5 1。於此實施例,於構成間隔層6 0 4的 Gax IrvxP層中,於沉積期間間隔層604的厚度自2 nm至8 nm 時,藉由均勻地且線性地增加供應至MOCVD反應系統的 量保 C5H5In的量,同時供應至MOCVD反應系 持固定值,產生鎵組成比例()的梯度分佈。522574 V. Description of the invention (49) The composition ratio of gallium is 0.51. In this embodiment, in the Gax IrvxP layer constituting the spacer layer 604, when the thickness of the spacer layer 604 during the deposition is from 2 nm to 8 nm, the quantity supplied to the MOCVD reaction system is uniformly and linearly increased. The amount of C5H5In, which is simultaneously supplied to the MOCVD reaction system, maintains a fixed value, resulting in a gradient distribution of the gallium composition ratio ().

如同於實施例1中,於GaxIn^xP間隔層604之表面上堆 疊相同的η型GaQ 51InQ 49P電子供應層60 5與GaAs接觸層606 以便形成一Gal nP磊晶堆疊結構。於室溫(3〇〇 κ)下,藉由 一般霍爾效應量測方法量測的平面載子密度(^ )為1 · 7 x iiPcnr2 ’且平均電子遷移率(3〇/〇 (cm2/Vs)。 此外,於液態氮溫度(7 7 K )下的ns為1 · 6 X 1 IF cm-2,且於 77 K下的//為23, 50 0 cmVVs,因此形成根據此實施例具 有間隔層604的GalnP磊晶堆疊結構,亦顯示高速的電子遷 移率。此外,實際上,如同於實施例丨中描述的,使用此 相同技術構成GalnP TEGFET的汲極電流中,不再發現磁滯 現象(循環)。此外,於源極/汲極電壓3· 〇下量測得的室溫 轉導值(gm)係又高又均勻的為165 土 5 mS/_。、 實施例5As in Embodiment 1, the same n-type GaQ 51InQ 49P electron supply layer 605 and GaAs contact layer 606 are stacked on the surface of the GaxInxP spacer layer 604 to form a Gal nP epitaxial stacked structure. At room temperature (300 κ), the plane carrier density (^) measured by a general Hall effect measurement method is 1.7 x iiPcnr2 'and the average electron mobility (3〇 / 〇 (cm2 / Vs). In addition, ns at the temperature of liquid nitrogen (7 7 K) is 1 · 6 X 1 IF cm-2, and // at 77 K is 23, 50 0 cmVVs, so the formation according to this embodiment has The GalnP epitaxial stack structure of the spacer layer 604 also exhibits high-speed electron mobility. In addition, as described in the embodiment 丨, the hysteresis is no longer found in the drain current of the GalnP TEGFET using this same technique Phenomenon (cycle). In addition, the room temperature transduction value (gm) measured at the source / drain voltage 3 · 〇 is high and uniform at 165 soil 5 mS / _. Example 5

於此實施例巾,本發明詳細地說明,利用包含一 GalnP二^電子氣場效電晶體(tegfet)做為本例,里 具有與貫施例3相同的梯度分佈組成, 女 〃 ^ 素㈣彻雜 Wni'xP(x\r二 1)7 二用 層當作一間隔層。 υ · b 1 )栎度構In this embodiment, the present invention will be described in detail. Using a GalnP two electron gas field effect transistor (tegfet) as an example, it has the same gradient distribution composition as in Example 3. The complete Wni'xP (x \ r 2 1) 7 dual-use layer is used as a spacer layer. υ · b 1)

此實施例的TEGEFT與實施例3的構成差異,僅僅在农The difference between the composition of TEGEFT in this embodiment and that in Embodiment 3 is only in agricultural

522574 五、發明說明(50) G ax I η卜x P梯度構成岸的 施例3相同,因此^垂 &gt; 不同;其餘蟲晶構成層係與實 ^本只苑例之說明可參考第5圖。 週期期間,:::雜:G實7列3中說明的間隔層604的沉積 舆通道細3二通ΓΓ3上。因此, 供庳#60 5桩鈣μ &amp; f。 處6〇“及與Gafl 5linQ 49P電子 (ii定=介面處6〇牡,形成具有鎵組成比例 —〇 δΤ)門r 及设定為〇. 51的硼摻雜的GaxInHP(x = 0. 88 “γ.η Λ 使用商業用㈣電性分級的三乙某棚 CH5)B)做為卿雜的來源。考慮構成間隔層,的打型 ^ 梯冓成層(χ=〇. 88 —〇. 51)的載子密度約略為】X 旦 叹疋加入(摻入)M〇CVD反應系統的三乙基硼數 二歹:如於此梯度構成層的内部中硼原子密度變成為3 X ^ cm 。根據此實施例,藉由摻雜硼使得梯度成分分佈的 ax Α—χ間隔層的載子密度下降至低於1 X 1 。 聶;I: t同於實施例3中,於GaxIlVxP間隔層604之表面上堆 二目、同的η型Ga〇 51 In〇 49P電子供應層6〇5與n型(^§接觸層 “以便形成一GaInp磊晶堆疊結構。於室溫(3⑽K)下, 藉由二般霍爾效應量測方法量測的平面載子密度(ns)為1 1〇12cnr2,且平均電子遷移率(ART)為 6400 (cm2/Vs)。 此外,於液態氮溫度(77 K)下的〜為丨·“ i〇12cm-2,且於 π κ下的以為24,500 cm2/Vs,因此根據此實施例形成具 f月t ‘的間隔層6 〇 4的G a I η P蠢晶堆疊結構,亦顯示高於 貝^例3的高速的電子遷移率。此外,實際上,如同於實 施例3中描述的,使用此相同技術構成“丨^ TEGFET的汲522574 V. Description of the invention (50) G ax I η x x P gradient constitutes the same shore as in Example 3, so ^ vertical &gt; is different; the rest of the worm crystal structure layer is the same as the actual example ^ Please refer to Section 5 Illustration. During the period, the deposition of the spacer layer 604 described in the :::: G7 column 3 is performed on the channel fine 3 two-link ΓΓ3. Therefore, supply # 60 5 piles of calcium &amp; f. 60 ″ and Gafl 5linQ 49P electron (ii = 60 ohms at the interface to form a gallium composition ratio-0δT) gate r and boron-doped GaxInHP (x = 0.88 set to 0.51 "Γ.η Λ uses a commercially available graded triethylethane (CH5) B) as a source of impurities. Considering the formation of the spacer layer, the carrier density of the ladder layer (χ = 0.88-0.51) is approximately [X] The number of triethylboron added (incorporated) into the MOCVD reaction system Second: If the density of the boron atom in the interior of the gradient forming layer becomes 3 X ^ cm. According to this embodiment, the carrier density of the ax A-χ spacer layer of the gradient composition distribution is reduced to less than 1 X 1 by doping boron. Nie; I: t As in Example 3, a binocular, the same n-type Gao51 In〇49P electron supply layer 605 and n-type (^ § contact layer "are stacked on the surface of the GaxIlVxP spacer layer 604 A GaInp epitaxial stacked structure was formed. The plane carrier density (ns) measured by the Hall effect measurement method at room temperature (3⑽K) was 1 1012cnr2, and the average electron mobility (ART) It is 6400 (cm2 / Vs). In addition, at the temperature of liquid nitrogen (77 K), ~ is 丨 · "i〇12cm-2, and at π κ is 24,500 cm2 / Vs. The G a I η P stupid stack structure of the spacer layer 604 of f't 'also shows a higher electron mobility than that of Example 3. In addition, in fact, as described in Example 3, Using this same technique to form a "丨 ^ TEGFET

ΙΙΜΙΙϋ· 第54頁 2037-3440-PF·〇 t d 522574 五、發明說明(51) 極電流中’不再發現磁滯現象(循環)。此外,於源極/汲 極電壓3. 0下量測得的室溫轉導值(gm)係又高又均勻的為 168 mS/mm 〇 實施例6ΙΙΙΙΙϋ · page 54 2037-3440-PF · 〇 t d 522574 V. Description of the invention (51) Hysteresis (cycle) is no longer found in the pole current. In addition, the room temperature transduction value (gm) measured at the source / drain voltage 3.0 was 168 mS / mm, which was high and uniform. Example 6

於此實施例,於第7圖中顯示的磊晶堆疊結構9A形成 於一未摻雜的半絕緣(100)2偽壇蓃aAs單晶基底9〇ι上。當 作基底901使用的GaAs單晶的特殊阻抗為2 X 1〇7 Ω cm。具 有直徑1 0 0 mm的基底9 0 1的表面上,沉積一第一緩衝層構 成部位902-1 ’其包含具有一 AlLGaKAs/GaAs超晶格結構的 緩衝層9 0 2。超晶格結構9 〇 2 - 1包含具有鋁組成比例(=l ) 〇 · 3的未摻雜A1Q 3GaQ 7As層902a及一未摻雜的p型GaAs層 9 0 2b。A 1。3 GaQ 7 As 層 9 0 2a 的載子密度為 1 X 1 〇i4 cm-3,且其 厚度為45 nm QAluGauAs層902a的補償比例為ΐ·〇型 GaAs層的902b載子密度為7χ l〇i3cm-3,且其厚度為5〇nm。 P型GaAs層的902b的補償比例為〇· 98。A1Q 3GaQ 7As層902a 與P型GaAs層90 2b的堆疊週期數目為5個週期。藉由低壓 MOOD方法根據應系統,於 640—C,形成所有的 AlG3GaG7As 層 902a 與p 型 GaAs 層 902b。In this embodiment, the epitaxial stacked structure 9A shown in FIG. 7 is formed on an undoped semi-insulating (100) 2 pseudo-alloy aAs single crystal substrate 900. The special impedance of the GaAs single crystal used as the substrate 901 is 2 × 107 Ω cm. On the surface of the substrate 901 having a diameter of 100 mm, a first buffer layer forming portion 902-1 'is deposited, which includes a buffer layer 902 having an AlLGaKAs / GaAs superlattice structure. The superlattice structure 9 〇 2-1 includes an undoped A1Q 3GaQ 7As layer 902a having an aluminum composition ratio (= 1) and an undoped p-type GaAs layer 9 0 2b. The carrier density of A 1.3 GaQ 7 As layer 9 0 2a is 1 X 1 0i4 cm-3, and its thickness is 45 nm. The compensation ratio of the QAluGauAs layer 902a is 902b. 7 × 10i3cm-3, and its thickness is 50nm. The compensation ratio of 902b of the P-type GaAs layer is 0.98. The number of stacking cycles of the A1Q 3GaQ 7As layer 902a and the P-type GaAs layer 90 2b is 5 cycles. By the low-voltage MOOD method, all the AlG3GaG7As layers 902a and p-type GaAs layers 902b are formed at 640-C according to the response system.

於薄膜形成時的壓力為l.3x 1〇4 pascal(pa)。使用 作載子氣體。 於第一緩衝層902之構成部位上面,藉由低壓 M0CVD方法利用(CA^Ga/AsH3/%反應系統,其具有將 (CMA改使用三乙基鎵((^^當作鎵來源沉積,堆聂 一GaAs層90 2c形成一第二緩衝層構成部位9〇2 2。薄膜形The pressure at the time of film formation was 1.3 x 104 pascal (pa). Use as carrier gas. On the constituent portion of the first buffer layer 902, a (CA ^ Ga / AsH3 /% reaction system is used by a low-pressure MOCVD method, which has (CMA instead of triethylgallium ((^^ is deposited as a gallium source, stacked) The Nie Yi GaAs layer 90 2c forms a second buffer layer constituting portion 902 2.

522574 五、發明說明(52) 成溫度為64(TC,且此時的形成薄膜壓力為ι 3χ i〇4 pa。 未摻雜的η型GaAs層902的載子密度為2χ 1〇1Scnr3 ,且直 度為20 nm。 子522574 V. Description of the invention (52) The formation temperature is 64 ° C, and the pressure for forming a thin film at this time is ι 3 × 10 4 pa. The carrier density of the undoped n-type GaAs layer 902 is 2 × 1〇1Scnr3, and The straightness is 20 nm.

於第二緩衝層構成部位902_2上,藉由一低壓M〇cvDs 法利用一叫^/⑽^:^/叫/心反應系統沉積’堆疊 一未摻雜的η型0%.81!1()2^層做為一通道層9〇3。構成通道 層903的GauIr^As層的載子密度為2&gt;&lt; l〇1Scm_3,且其厚度 為1 3 nm。自發光波長之勻相性發現銦組成比例之勻相性 為〇.2± 0.5%。、自入射的雷射光散射強度量測得此層9〇3的 表面霾值發現為13 ppm。 於GauIr^As通道層903上,藉由低壓M〇CVD*法使用 (CH3 )3 Ga / (CH3 )31 n / PH3 / H2 反應系統,堆疊一間隔層 9 〇 4, 其包含未摻雜的η型Ga^in^p。間隔層9〇4的載^密度為 1 X 10l3cnr3,且其厚度為3 nm。間隔層9〇4的表面具有15 ppm的粗糙粗糙度,當作其霾值。 馨 於包含GaQw In^P的間隔層904上方,藉由一低壓 以〇(:^方法利用一(^3)3(^几5115111斤}13/112反應系統沉積, 堆豐包含摻雜矽的η型GaD S1 InQjP的一電子供應層9〇5。使 用六氫化二矽(Sis4)氣體混合物(體積濃度1〇 ppm)當作矽 的摻雜來源。電子供應層90 5的載子密度為2χ i〇1Scm_3,且 其厚度為30 nm。自一般發光波長的勻相性發現構成電子 供應層9 0 5的G a〇 δ1 I nQ 49 P的銦組成比例勻相性為〇 · 4 9 ± | 〇·5%。堆疊此層90 5之後量測得的霾值發現為18 ppm。 I 於包含η型0〜5! InQjP電子供應層9 0 5之表面上,藉由On the second buffer layer forming part 902_2, an undoped n-type 0% .81! 1 ( 2) layer as a channel layer 903. The carrier density of the GauIrAs layer constituting the channel layer 903 is 2 &lt; 101Scm_3, and its thickness is 13 nm. The homogeneity of the self-luminous wavelength was found to be 0.2 ± 0.5%. The self-incident laser light scattering intensity measured the surface haze value of 903 in this layer and found it to be 13 ppm. On the GauIr ^ As channel layer 903, a (CH3) 3Ga / (CH3) 31n / PH3 / H2 reaction system is used by a low-pressure MOCVD * method to stack a spacer layer 104, which contains undoped η-type Ga ^ in ^ p. The carrier layer 904 has a carrier density of 1 × 1013cnr3 and a thickness of 3 nm. The surface of the spacer layer 904 had a roughness of 15 ppm as the haze value. Xin was deposited over the spacer layer 904 containing GaQw In ^ P by a low pressure method using a (^ 3) 3 (^ 5115111kg) 13/112 reaction system by a low pressure method, and the reactor containing doped silicon An electron supply layer 905 of η-type GaD S1 InQjP. A hexahydrogen silicon (Sis4) gas mixture (volume concentration 10 ppm) was used as the doping source of silicon. The carrier density of the electron supply layer 90 5 was 2χ. i〇1Scm_3, and its thickness is 30 nm. From the homogeneity of the general emission wavelength, it was found that the indium composition ratio of G a〇δ1 I nQ 49 P constituting the electron supply layer 905 was homogeneous of 0.4 9 ± | 〇 · 5%. The haze value measured after stacking this layer 90 5 was found to be 18 ppm. I On the surface containing n-type 0 ~ 5! InQjP electron supply layer 9 0 5

522574522574

一(CUGa/AsHs/H2反應系統,堆疊包含矽摻雜的n型以^ 的一接觸層9 Ο 6。上述六氫化二矽氣體混合物當作矽的摻 雜來源使用。接觸層906的載子密度為2χ l〇18cm_3,且其/厚 度為100 nm。接觸層9〇6量測得的霾值發現為23 ppm。當 完成磊晶沉積上述構成層903 —9〇6形成上述磊晶疊社&amp; 9A後,於包含肺(AsH3)的氣體中加熱至5㈣’日日接%且於^ 氣中冷卻至室溫。 ^ 包含銦錫合金的歐姆電極形成於位於磊晶堆疊結構9 A 隶上面層的η型GaAs接觸層906的表面上。接著,使用一般 的霍爾效應量測方法,量測通過二維電子氣通道層9〇3的 二維電子氣的電子遷移率。於室溫下(3〇〇 κ)的平面載子 密度(ns)為1· 6 X l〇i2cnr2,且平均電子遷移率(#打)為55〇〇 ± 2% (cm2/Vs)。此外,於液態氮的溫度(77 κ)時,心為^ 4x 1012Cnr2,且//為23, 0 0 0 cmVVs,因此顯示出高速的電 子遷移率。 冷卻後,利用已知的黃光顯影技術的曝光方法,形成 於位於蠢晶堆豐結構9 A的最表面層的η型G a A s接觸層9 0 6的 |表面上產生一凹處。於上述n型GaAs接觸層906上保持平台 處5形成一源極電極9 07與一汲極電極908。藉由包含金鍺 (重量百分比中,9 3 %的金及7 °/❹的鍺)、鎳及金層的多層結 構形成源極與汲極歐姆電極907與9 08。源極電極90 7與汲 極電極9 0 8之間的距離為1 〇 # m 於GaQ 51 i nQ,49P電子供應層905之上表面所曝光形成的 凹處中’形成利用鈦(Ti tan ium)金屬做為下層、銘金屬做First (CUGa / AsHs / H2 reaction system, a contact layer 9 0 6 containing silicon-doped n-type ^ is stacked. The above hexahydrogen silicon gas mixture is used as a doping source of silicon. The carrier of the contact layer 906 The density is 2 × 1018cm_3, and its thickness is 100 nm. The haze value measured by the contact layer 906 is found to be 23 ppm. When the epitaxial deposition of the above constituent layer 903-990 is completed, the above epitaxial stack is formed. &amp; After 9A, it was heated to 5㈣ '% in a gas containing lung (AsH3) and cooled to room temperature in ^ gas. ^ An ohmic electrode containing an indium tin alloy was formed on the epitaxial stack structure 9 A On the surface of the upper n-type GaAs contact layer 906. Next, using a general Hall effect measurement method, the electron mobility of the two-dimensional electron gas passing through the two-dimensional electron gas channel layer 903 is measured. At room temperature The plane carrier density (ns) of the lower (300 κ) is 1.6 × 10i2cnr2, and the average electron mobility (# 打) is 550,000 ± 2% (cm2 / Vs). At the temperature of nitrogen (77 κ), the heart is ^ 4x 1012Cnr2, and // is 23, 0 0 0 cmVVs, so it shows high-speed electron mobility. Then, a recess is formed on the surface of the n-type G a A s contact layer 9 0 6 formed on the outermost layer of the stupid crystal stack structure 9 A by using a known exposure method of yellow light development technology. The n-type GaAs contact layer 906 holds a platform 5 to form a source electrode 907 and a drain electrode 908. By including gold germanium (93% by weight of gold and 7 ° / 7Ge germanium), The multilayer structure of the nickel and gold layers forms the source and drain ohmic electrodes 907 and 9 08. The distance between the source electrode 90 7 and the drain electrode 9 0 8 is 1 〇 # m in GaQ 51 i nQ, 49P electronics supply In the recess formed by exposing the upper surface of the layer 905, titanium (Ti tan ium) metal is used as the lower layer and the metal is formed.

2037-3440-PF·pid 第57頁 522574 五、發明說明(54) 為上層的蕭基接合介面型閘極電極9 〇 9。閘極電極9 〇 9的閘 極長度為1 // m,且閘極寬度為1 5 〇 # m。2037-3440-PF · pid Page 57 522574 V. Description of the invention (54) is an upper-level Schottky junction interface gate electrode 109. The gate electrode 109 has a gate length of 1 // m and a gate width of 15 # m.

GalnP TEGFET 9A的DC特性經計算。當施加的源極/汲 極電壓為3 V ο 11 s (V)時,飽和的源極汲極電流(丨―)為7 〇 毫安培(mA)。當汲極電壓自〇 v升至5 V時,實際上,於沒 極電流中’不再發現循環(磁滞現象)。於源極/沒極電壓 3· 0時量測得的室溫轉導值(gir)係又高又均勻的為155 ± 5 mS/mm。此外,流通過曝光至緩衝層9〇2表面上形成1〇〇 # m間隔的金鍺歐姆電極之間的漏電流,於4〇 v時發現少於i # A,因此顯示具有高崩潰阻抗。因此,汲極電流的夾止 電壓(pinch - off voltage)變成 2.42± 0·03 V,獲得具有 勻相的臨界電壓的一Galnp TEGFET。 實施例7 第9圖係根據本實施例概要顯示的TEGFET i23a的剖面 圖式。 應用於TEGFET的磊晶堆疊結構丨23A形成於當作基底 121的一未摻雜的半絕緣(1〇〇)2偽壇萱aAs單晶上。當作基 $121使用的GaAs單晶的特殊阻抗為3 X 1〇7 Qcm。具有直 徑1 〇〇 mm的基底121的表面上,沉積一缓衝層122,其具有 | —AlLGai_LAs/GaAs超晶格結構。超晶格結構9〇2 —包含具有 ,組成比例〇L)0· 3的未摻雜A1q 3Ga。7^層122&amp;及一未摻 九的P型GaAs層122b。A1G 3GaQ 7As層122a的載子密度為ιχ 〇4^33,且其厚度為451^。?型〇&amp;48層的12 21)載子密度為 x 10 cm ,且其厚度為 50 nm ^AluGauAs 層 12 2&amp;與口型、The DC characteristics of GalnP TEGFET 9A are calculated. When the applied source / drain voltage is 3 V ο 11 s (V), the saturated source-drain current (丨 ―) is 70 milliamperes (mA). When the drain voltage rises from 0 v to 5 V, in fact, no cycle (hysteresis) is found in the pole current. The room temperature transduction value (gir) measured at the source / non-electrode voltage 3.0 is high and uniform at 155 ± 5 mS / mm. In addition, the leakage current flowing between the gold germanium ohmic electrodes with a gap of 100 # m formed on the surface of the buffer layer 902 was found to be less than i # A at 40 v, thus showing a high breakdown impedance. Therefore, the pinch-off voltage of the drain current becomes 2.42 ± 0.03 V, and a Galnp TEGFET with a uniform threshold voltage is obtained. Embodiment 7 Fig. 9 is a sectional view of a TEGFET i23a schematically shown in this embodiment. An epitaxial stacked structure applied to a TEGFET 23A is formed on an undoped semi-insulating (100) 2 pseudo-Alpha aAs single crystal serving as the substrate 121. The special impedance of the GaAs single crystal used as the base $ 121 is 3 X 107 Qcm. On the surface of the substrate 121 having a diameter of 100 mm, a buffer layer 122 is deposited, which has a | AlLGai_LAs / GaAs superlattice structure. Superlattice structure 902-containing undoped A1q 3Ga having a composition ratio of 0L) 0.3. 7 ^ layer 122 &amp; and a p-type GaAs layer 122b which is not doped with nine. The carrier density of the A1G 3GaQ 7As layer 122 a is ιχ 04 ^ 33, and its thickness is 451 ^. ? Type 0 &amp; 48 layer of 12 21) carrier density is x 10 cm and its thickness is 50 nm ^ AluGauAs layer 12 2 &amp;

522574 五、發明說明(55)522574 V. Description of the invention (55)

GaAs層122b的堆疊週期數目為5個週期。藉由低壓MOCVD方 法根據(CH3)3Ga/(CH3)3Al/AsH3/H2 反應系統,於640 °C,形 成所有的AlG.3GaG.7As層122a與p型GaAs層122b。於薄膜形 成時的壓力為1 X 104 Pascal (Pa)。使用氫當作載子氣 體。 於緩衝層122上面,藉由一((:2115)3〇3/人3}13/112反應系統 的低壓MOCVD方法,其使用三乙基鎵((:2H5)3Ga當作鎵來源 沉積,堆疊一GaAs層123。薄膜形成溫度為640 °C,且此時 的形成薄膜壓力為1 X 1 〇4 p a。未摻雜的η型ς a a s層1 2 3的 載子密度為2x 1015cnr3,且其厚度為2〇 nm。 於GaAs層123上,藉由一低壓m〇cvD方法利用一(CH3) 3 G a / C2 H51 n / A s H3 / H2反應系統沉積,堆疊一未摻雜的n型◦ a。 8InQ.2As層做為一通道層124。構成通道層124的GauInuAs 層的載子密度為lx l〇i5cm-3,且其厚度為13 nm。自一般發 光波長之勻相性發現銦組成比例之勻相性為〇 · 2 ± 〇. 4%。 自入射的雷射光散射強度量測得此層丨24的表面霾值發現 為12 ppm 。 於GaQ8In〇2As通道層124上,藉由低壓MOCVD方法使用 (Cl )3Ga/C5H5 In/PH3/H2反應系統,堆疊一間隔層} 25,其 包含5未推3雜的η型6〜51111。.4^。間隔層125的載子密度為1 X 1〇 Cm ,且其厚度為3 nm。間隔層1 2 5的表面霾值經景 測為 1 3 p p m。 一The number of stacked cycles of the GaAs layer 122b is 5 cycles. According to the (CH3) 3Ga / (CH3) 3Al / AsH3 / H2 reaction system, all AlG.3GaG.7As layers 122a and p-type GaAs layers 122b were formed at 640 ° C by a low-pressure MOCVD method. The pressure during film formation was 1 X 104 Pascal (Pa). Use hydrogen as a carrier gas. On the buffer layer 122, a low-pressure MOCVD method of a ((: 2115) 3〇3 / 人 3} 13/112 reaction system is used, which is deposited using triethylgallium ((: 2H5) 3Ga as a gallium source and stacked) A GaAs layer 123. The film formation temperature is 640 ° C, and the film formation pressure at this time is 1 X 1 〇4 pa. The carrier density of the undoped n-type aa layer 1 2 3 is 2x 1015cnr3, and its The thickness is 20 nm. On the GaAs layer 123, a (CH3) 3 G a / C2 H51 n / As s H3 / H2 reaction system is used to deposit an undoped n-type by a low-pressure mocvD method. ◦ a. The 8InQ.2As layer is used as a channel layer 124. The carrier density of the GauInuAs layer constituting the channel layer 124 is lx l0i5cm-3, and its thickness is 13 nm. The indium composition was found from the homogeneity of the general emission wavelength The homogeneity of the ratio is 0.2 ± 0.4%. The surface haze value of this layer measured from the incident laser light scattering intensity was found to be 12 ppm. On the GaQ8In〇2As channel layer 124, by low-pressure MOCVD The method uses a (Cl) 3Ga / C5H5 In / PH3 / H2 reaction system, stacking a spacer layer} 25, which contains 5 un-doped 3 hetero-n-type 6 ~ 51111 .. 4 ^. Spacer layer 125 of Density of 1 X 1〇 Cm, and a thickness of 3 nm. King surface haze value measured by the spacer layer 125 is 1 3 p p m. A

522574 五、發明說明(56) 隹®包含接雜續的η型Τ η ρ ΛΑ _ ^ 用丄Λ π -於π · G_5丨1 G 49P的一電子供應層126。使 &quot;虱化一矽(Sl2H6)氣體混合物(體積濃吏 的摻雜來源。電子供麻展19β的韶工度10 ppm)當作矽 1 仏應層126的載子密度為2x HPcnU,且 ^ β ^Γ〇Β 自一般發光波長的勻相性發現構成電子 二底層I26的Ga0·” In。“ρ的銦組成比例勻相性為〇㈣+ 〇·5%。堆疊此層126之後量測得的霾值發現為ΐ8 ρ叩。 於包含η型Gawln^p電子供應層126之表面上, 二aH^Ga/AsVH2反應系統,堆疊包含石夕摻雜的〇型〇二 接觸層127。上述六氫化二石夕氣體混合物當作石夕的摻 雜來源使用。接觸層127的載子密度為2χ 1〇1δ(:ιΓ3,且其, 度為100 η®。接觸層127量測得的霾值發現為23 ppm /告τ 完成磊晶沉積上述構成層1 22 — 1 27形成上述磊晶堆疊結才^ 123A後,於包含胂(AsHs)的氣體中加熱至5〇(rc,接著於 氫氣中冷卻至室溫。 ' 包含銦錫合金的歐姆電極形成於位於磊晶堆疊結 123A最上面層的η型GaAs接觸層127的表面上。接著,使用 一般的霍爾效應量測方法,量測通過二維電子氣通道層 124的二維電子氣的電子遷移率。於室溫下(3⑽κ)的平面 載子密度(ns)為1· 6x l(Fcm-2,且平均電子遷移率(A。為 580 0 ± 2% (cm2/Vs)。此外,於液態氮的溫度(77 κ)時,^ 為1. 5 X 1 012cm 2 ’且//為22, 〇〇〇 cm2/vs,因此顯示出高速 的電子遷移率。 冷卻後,利用已知的黃光顯影技術的曝光方法,形成 於位於磊晶堆豐結構1 23A的最表面層的η型GaAs接觸層1 27522574 V. Description of the invention (56) 隹 ® includes a contiguous η-type τ η ρ ΛΑ _ ^ using an electron supply layer 126 of 丄 Λ π-π · G_5 丨 1 G 49P. Let the &quot; Silicon-silicon (Sl2H6) gas mixture (doped source of thicker volume. Electron donation 19β 10 ppm) be regarded as the carrier density of silicon 1 response layer 126 as 2x HPcnU, and ^ β ^ Γ〇Β From the general emission wavelength homogeneity, it was found that Ga0 · "In, which constitutes the electron-secondary layer I26, has an indium composition ratio of homogeneity of 0% + 0.5%. The haze value measured after stacking this layer 126 was found to be ΐ8 ρ 叩. On the surface including the n-type Gawln ^ p electron supply layer 126, a two aH ^ Ga / AsVH2 reaction system is stacked, and a 0-type 02 contact layer 127 containing dopant is stacked. The above-mentioned hexahydroxanthine gas mixture is used as a source of doping for the stone. The carrier density of the contact layer 127 is 2χ 1〇1δ (: ιΓ3, and its degree is 100 η®. The haze value measured by the contact layer 127 was found to be 23 ppm / tau. Complete epitaxial deposition of the above constituent layer 1 22 — 1 27 After forming the above epitaxial stacked junction ^ 123A, it is heated to 50 (rc) in a gas containing rhenium (AsHs), and then cooled to room temperature in hydrogen. '' An ohmic electrode containing an indium tin alloy is formed at On the surface of the n-type GaAs contact layer 127 of the epitaxial stacked junction 123A, the electron mobility of the two-dimensional electron gas passing through the two-dimensional electron gas channel layer 124 is measured using a general Hall effect measurement method. The plane carrier density (ns) at room temperature (3⑽κ) is 1.6 × l (Fcm-2, and the average electron mobility (A. is 580 0 ± 2% (cm2 / Vs). In addition, At the temperature of nitrogen (77 κ), ^ is 1.5 X 1 012 cm 2 ′ and // is 22, 000 cm 2 / vs, and therefore exhibits high-speed electron mobility. After cooling, the known yellow light is used Exposure method of developing technology, formed on the n-type GaAs contact layer 127 on the outermost layer of the epitaxial stack structure 1 23A

2037-3440-PF.ptd 第60頁 5225742037-3440-PF.ptd Page 60 522574

2表面上產生一凹處。於上述nSGaAs接觸層127上保持平 口處,形成一源極電極1 2 8與一汲極電極1 2 g。藉由包含金 錯(重量百分比中,93%的金及7%的鍺)、鎳及金層的多層 結構形成源極與汲極歐姆電極128與129。源極電極128與 沒極電極1 2 9之間的距離為1 〇 # m。 Ρ電子供應層1 2 6之上表面所曝光形成的 η 0. 49 0.51 於Ga 凹處中,形成利用鈦(Titanium)金屬做為下層、鋁金屬做 為上層的多層結構的蕭基接合介面型閘極電極丨2 〇。閘極 電極120的閘極長度為i 。2 A depression is created on the surface. A source electrode 1 2 8 and a drain electrode 12 g are formed on the nSGaAs contact layer 127 at a flat surface. The source and drain ohmic electrodes 128 and 129 are formed by a multilayer structure including gold faults (93% gold and 7% germanium by weight), nickel, and gold layers. The distance between the source electrode 128 and the non-electrode electrode 129 is 10 #m. Η 0. 49 0.51 formed on the upper surface of the P electron supply layer 1 2 6 in the Ga recess to form a Schottky junction interface type of a multilayer structure using titanium (Titanium) metal as the lower layer and aluminum metal as the upper layer Gate electrode 丨 2 〇. The gate length of the gate electrode 120 is i.

GalnP TEGFET 12^的仳特性經計算。當施加的源極/ 汲極電壓為3 Volts(V)時,飽和的源極汲極電流(1化)為 70¾安培(mA)。當汲極電壓自〇 v升至5 V時,實際上,於 /及極電流中,不再發現循環(磁滯現象)。於源極/汲極電 壓3· 0時量測得的室溫轉導值(gJ係又高又均勻的為16〇 + mS/mm。此外,流通過曝光至緩衝層122表面上形成ι〇〇 // m間隔的金鍺歐姆電極之間的漏電流,於4〇 v時發現少 於1 # 因此顯示具有咼崩潰阻抗。因此,汲極電流的 夾止電壓(pinch-of f v〇ltage)變成 2·38± 〇〇3 V,莽 具有勻相的臨界電壓的一GaInP TEGFET。 又 1頂康十广沾述,月田、頁、的&quot;兒明’〜依據本發明於申請專利範圍第 ' ^ 以構成顯示高轉導值的GalnP TEGFET的 電子供應層包括具有梯度成分組成的— 通道層朝向接觸層,於層厚度增“&quot;向“ '、且成比例,因此二維電子氣有效率地堆積於通道層之内The 仳 characteristics of GalnP TEGFET 12 ^ are calculated. When the applied source / drain voltage is 3 Volts (V), the saturated source-drain current (10 volts) is 70¾ amps (mA). When the drain voltage rises from 0 v to 5 V, in fact, no cycle (hysteresis) is found in / and the pole current. Room temperature transconductance value measured at source / drain voltage 3.0 * (gJ series is high and uniform at 16 + mS / mm. In addition, a stream is formed by exposure to the surface of the buffer layer 122. The leakage current between gold germanium ohmic electrodes at 〇 // m intervals was found to be less than 1 # at 40 volts. Therefore, it has a 咼 breakdown impedance. Therefore, the pinch-of fv 〇ltage of the drain current A GaInP TEGFET with a homogeneous critical voltage of 2.38 ± 〇3 V. Another 1Kang Shiguang said, "Yuetian, Ping," "in the scope of patent application according to the present invention The '^' electron supply layer constituting the GalnP TEGFET showing a high transconductance value includes a composition with a gradient composition-the channel layer faces the contact layer, and the layer thickness increases "&quot; toward", and is proportional, so the two-dimensional electron gas Efficiently accumulates inside the channel layer

522574 五、發明說明(58) 3屡顯示出高速的電子遷移率,因此於轉導值與央止 結構 可以提供具有較佳勻相性的一Ga〖nP磊晶堆疊 f據本發明於申請專利範圍第2項中敘述的, 接人八Y層,例如與電子供應層接觸的 接5 &quot;面處的鎵組成比例為,接著與11型6^ 觸的接合介面處的鎵組成比例減 1 轉導值與夹止電慶方面,可以提供具有較佳5^=_;於 G a I η Ρ蟲晶堆疊結構。 、 依據本發明於申請專利範圍 磊晶堆疊結構内部可以利用GaAs單晶基板形成、呈於yalnP 格匹配特性的一電子供應層。 J ,、有較佳晶 依據本發明於申請專利範圍第4項中 度成分組成層的η型GaYlniYp層,例如、座電子供、’構成梯 接合介面處的鎵組成比例大於等於〇 /、,%=/、應層接觸的 觸層接觸的接合介面處的鎵組成比例減少至者約與二型::As接 此,於轉導值與夾止電壓方面,可杜51,因 的一GalnP磊晶堆疊結構。 &lt; U ^有較佳勻相性 依據本發明於申請專利範圍第5項中 道層,例如具有固定鎵組成比例(= 、 ,、处的,自與通 合介面處,藉由形成固定厚度的電子aynHP接觸的接 供應層產生一穩定地接合介面阻障。^ ㈣區域,自電子 (二卜γ)方面產生具有較佳勻相性的Ga匕’於銦組成比例 以及產生較佳表面特性。 Υ η Ρ電子供應層,522574 V. Description of the invention (58) 3 Repeatedly shows high-speed electron mobility, so the transconductance value and the center structure can provide a better homogeneity Ga 〖nP epitaxial stack f according to the invention in the scope of patent application As described in item 2, the gallium composition ratio at the eighth Y-layer, for example, the contact 5 &quot; surface that is in contact with the electronic supply layer is, and then the gallium composition ratio at the junction interface with the 11 type 6 ^ contact is reduced by 1 revolution. In terms of the derivative value and the clamping stop, it is possible to provide a worm crystal stack structure with a better 5 ^ = _; According to the present invention, in the scope of patent application, an epitaxial stacked structure can be formed with a GaAs single crystal substrate, and has an electron supply layer with yalnP lattice matching characteristics. J , An n-type GaYlniYp layer with a better crystal in accordance with the present invention in the fourth range of the composition scope of the patent application, for example, a base electron supply, 'the gallium composition ratio constituting the ladder junction interface is greater than or equal to 0, % = /, The gallium composition ratio at the contact interface of the layer-to-layer contact should be reduced to about the same as that of the type 2 :: As. In terms of transduction value and pinch-off voltage, 51, because of a GalnP Epitaxial stacked structure. &lt; U ^ has better homogeneity according to the present invention in the fifth patent application scope of the track layer, for example, has a fixed gallium composition ratio (=,,,, where, from the interface with the joint, by forming a fixed thickness The contact and supply layer of the electronic aynHP contact creates a stable joint interface barrier. ^ ㈣ region, from the electron (two di γ) aspect, Ga Ga 'with better homogeneity in indium composition ratio and better surface characteristics. 产生η Ρ electron supply layer,

2037-3440-FF-ptd 第62頁 522574 五、發明說明(59) 6項/敘據述上的〜,:顯的說%,依據本發明於申請專利範圍第 間隔層包括具有/度構成顯组示高轉—導值的GaInP T刚T的 例自通道層朝向接;刀二尸:Gax 1U層,鎵組成比 比例,因此二維右:ΪΠ增加的方向減少鎵組成 面,可以提供且H 於轉導值與夹正電壓方 依據本發明於申請專利範圍第7項中敘:的隹二構。 磊晶堆疊結構内部可以利用GaAs單晶 、a ηΡ 格匹配特性的—電子供應層。 /成〃、有較佺晶 隔層依請專:範圍第8項中敘述的,構成間 J 士梯度成为組成層的n型〇%1 p厣2037-3440-FF-ptd Page 62 522574 V. Description of the invention (59) 6 in the / description: ~%: Explicit%, according to the invention in the scope of the patent application, the spacer layer includes An example of GaInP T GangT showing high transduction-conductance values is connected from the channel layer; the second knife: Gax 1U layer, the gallium composition ratio, so the two-dimensional right: 增加 Π increasing direction decreases the gallium composition surface, which can provide and H According to the present invention, the second structure is described in item 7 of the scope of patent application according to the present invention. The epitaxial stacked structure can utilize the GaAs single crystal, a ηP lattice matching characteristics-the electron supply layer. / 成 〃 , 有 有 佺 晶 Interlayer according to the special: As described in the item 8 of the scope, the constituent J gradient becomes the n-type of the constituent layer 0% 1 p 厣

供應層接觸的接合介面處的鎵組成比例大;二如契:子 著朝向與Ga0.51 Ιη“9Ρ電子供應層接 合介面=J 隔層依構成間 供庫屛垃總ΑΑ „人人 ^ iuaxini-xp層’例如與電子 ;、應層接觸的接合介面處的鎵組成比例為i• 千 人aui 電子供應層接觸的接合介面處, σ 比列,因此,於轉導值與夾止電壓方面,可以、’、' 丄 佳勻相性的一GaI nP磊晶堆疊結構。 ,、八有較 依據本發明於申請專利範圍第丨〇The gallium composition ratio at the joint interface of the supply layer contact is large; the second is the same: the sub-direction and the Ga0.51 Ιη “9Ρ electronic supply layer joint interface = J. The supply compartment according to the composition 屛 总 person total ΑΑ„ renren ^ iuaxini -xp layer 'For example, the gallium composition ratio at the bonding interface that is in contact with the electrons; and the contact layer is i • Thousands of people aui The bonding interface at the electronic supply layer contact is σ ratio, so in terms of transduction value and pinch voltage A homogeneous GaI nP epitaxial stacked structure that can be, ','. According to the present invention, in the scope of patent application,

隔層,例如梯度成分組成層的_GaxinixP層:二如:G 522574 五、發明說明(60) __ j 觸的接合介面處的鎵組成比例為 者朝向與電子供應層接觸的接合诘:0. 01 ’接 例,因此,於轉導值與夾止带 而 / ^鎵組成比 勻相性的-GaInP蟲晶堆疊結面,可以提供具有較佳 於+請專利範圍第丨1項中 隔層,例如一硼摻雜、低載子宓声、古阳二的,構成間 :,axIni_xP層,於通道層内部有效 梯▲度成分組 移率的二維電子氣,囡積一兩電子遷 W心晶堆疊4。因此’可以提供具有較佳勻相性二 衝層依;專利範圍第12項中敘述的,構成缓 /、邛伤與利用鋁或鎵的有機甲其几〜 稱戚緩 始材料沉積、包含不同銘組成比例⑴的G令物當作其起 〇層的超晶格週期結構接觸’且一 牝LAs(〇sLg 機乙基化合物當作其起妒 77人彳用鋁或鎵的有 〆1、Θ , 、%始材科乳相沉積的A丨rQ A / :i = ’因此可以構成-高阻抗的緩衝V:M=°$M 衣k具有低漏電流的以111?磊晶堆疊結 曰Μ及一種 述蠢晶堆疊結構。 m 可以提供上 卜依據本發明於申請專利範圍第1 3頊φ力 使用有機甲基化合物當作A f 1 3項中敘述的, &amp; AAA1 Γ Λ ^ F t始材枓軋相沉積,裯如-杜 層的AlLGai_LAs層的超晶格週期結構構 屏週』父替 且具有既定的補償比例,因此,可以::::之-部份,Interlayers, such as the _GaxinixP layer of the gradient composition layer: two such as: G 522574 V. Description of the invention (60) __j The gallium composition ratio at the contact interface of the contact is toward the junction in contact with the electron supply layer: 0. 01 'As an example, a -GaInP worm crystal stack junction with a homogeneous homogeneity in the transduction value and the clamping band / ^ gallium composition ratio can provide an interlayer with better than +1 patent scope, For example, a boron-doped, low-carrier chirp, and ancient-yang two, composed of: axIni_xP layer, a two-dimensional electron gas with an effective gradient of the component group shift rate inside the channel layer, accumulate one or two electrons to move the center Crystal stack 4. Therefore, 'can provide a two-layer layer with better homogeneity; as described in item 12 of the patent scope, the organoforms that form relief / sting and the use of aluminum or gallium are referred to as slow-start material deposition and contain different inscriptions. The G ratio of the composition ratio is regarded as the superlattice periodic structure contact of the 0 layer, and a LAs (0sLg organic ethyl compound is regarded as the envy of 77 people). The aluminum or gallium has 〆1, Θ A, rQ A /: i = 'so that it can constitute a high-impedance buffer V: M = ° $ M with a low leakage current. And a stupid crystal stack structure. M can provide the above-mentioned according to the present invention in the scope of the patent application No. 13 顼 force using organic methyl compounds as described in A f 1 3, &amp; AAA1 Γ Λ ^ F t The starting material is deposited in the rolling phase, and the superlattice periodic structure of the AlLGai_LAs layer in the Ru-Du layer is replaced by the parent and has a predetermined compensation ratio. Therefore, it is possible to :::: 之-part,

Ga I nP蠢晶堆疊結構。 有低漏電流的 a I ^ 此外,依據本發明於申,專利^ oq 中敘述的,使用有機甲基化合物當作起項 522574 五、發明說明(61) — “lLGaKi As層與p型GaAs層的週期夺袪爲έ士德 結構構成緩衝層的一邻份,曰見女曰層、,、°構的超晶格週期 密度’因此,可以提;且右供八有既定的補償比例與載子 構。 ” 有低漏電流的GalnP磊晶堆疊結 機,:據本發明於申請專利範圍第15項中敘述的,利用右 作r材料氣相沉積的A心層= 少量的=提= ; = f表面狀態產生 率、轉導值以止電壓的—Ga 電子遷移 :據士發明於申請專利範圍第16項中敘述的,利 右土化a物當作起始材料氣相沉積的AlMGa} MAs声俜自呈 有既定萄工穷痄彻辰由κ μ c^mas臂係自具 構成物;面;:自、:J rn 'A1:Gai-MAs形成,因此,於銦 句相失止電壓與…GaInp遙晶堆疊結構。了乂“、具有 :據本發明於申請專利範圍第i 7項中敘述的,利 ΐΐίΐΐΚ:起始材料氣相沉積的η卿一層的 二“;晶= ί化f =二始材料氣相 』、、'口構的AlLGa卜LAs層的厚度,因此,於Ga I nP stupid stacked structure. A I ^ with low leakage current In addition, according to the present invention, patent ^ oq, using organic methyl compounds as the starting point 522574 V. Description of the invention (61)-"lLGaKi As layer and p-type GaAs layer The periodic depletion of the structure is an adjacent part of the buffer layer that constitutes the Stryker structure, and the superlattice periodic density of the structure, the structure, and the structure, can be mentioned; and the right supply has a predetermined compensation ratio and load. Substructure. "GalnP epitaxial stacking junction machine with low leakage current: According to the invention described in item 15 of the scope of patent application, the A core layer vapor-deposited using the right-side r material = small amount = mention =; = f surface state generation rate, transduction value to stop the voltage -Ga Electron Migration: According to the invention described in item 16 of the scope of the patent application, AlMGa, which is a right-sanding material, is used as the starting material for vapor deposition} MAs sounds self-presented by the established grapes, and it is formed by the κ μ c ^ mas arm system; the surface is formed by: J rn 'A1: Gai-MAs. Voltage and ... GaInp telecrystal stack structure. According to the invention, according to the present invention described in item i 7 of the scope of the patent application, the following is a good example: a two-layered "n" layer of vapor phase deposition of starting materials; "crystal = ίf = vapor phase of two starting materials" The thickness of the AlLGa and LAs layers of

I 疊結二:可以提供具有特別低磁滞現象的—GaInP磊晶堆 :據本發明於申請專利範圍第18項中敘 機乙基化合物當作起始材料氣相沉積的心離一層的有 ,ΕΗϋ1I Superimposition II: It is possible to provide a GaInP epitaxial reactor with a particularly low hysteresis phenomenon. According to the present invention, in the 18th patent application, the organic ethyl compound is used as a starting material for vapor deposition. , ΕΗϋ1

2037-3440-?F.ptd 第65頁2037-3440-? F.ptd Page 65

522574 五、發明說明(62) 銘組成比例(Μ ),号宏;^ I 4•士入/ 叫〜As層的I组成比例⑴壬::冓二:: ;以提供具有特別低的磁滞現象的—Ga二 當作發利範圍第19項中敘述的,被使用 田作丞底層、形成包含銦的⑴ 時,利用三乙基鎵當作耙私紝把γ J亿《物丰V體層 層,因此,GazInizA4“ 目沉積的一 GaAs薄膜522574 V. Description of the invention (62) Ming composition ratio (M), No. macro; ^ I 4 • Shi Rong / called ~ I composition ratio of As layer ⑴ ::: 冓 二 ::; to provide a particularly low hysteresis Phenomenal—Ga 2 is used as described in item 19 of the profit range. When using Ti as the bottom layer to form indium-containing gadolinium, triethylgallium is used as the core to make γ J billion “Wufeng V body layer, Therefore, a GaAs thin film deposited by GazInizA4

Gax Ιηι_χΡ間隔層與電子曰供、芦&quot;接土觸的目的銦構成物’ 面粗糙值,因η以接供層面可以形成較佳的表 ^ t M ^ ^ t ^GalnP ^ ^ ^ 蟲晶堆疊結構。 猫日日堆宜結構方法,以及提供此 既,Ϊ Ϊ f明於申請專利範圍第20項中敛述的,自具有 糙的n型GaxInixP形成通道層,因此,可以提 =二负乂土勻相的轉導值與夾止電壓的一GaInP磊晶堆疊 紹構。 依據本發明於申請專利範圍第21項中敘述的,自且有 一既定表面粗糙的r^GaxIrVxP形成間隔層,因此,可以提 # =有較佳勻相的轉導值與夾止電壓的一GaInp蟲晶堆疊 結構。 依據本發明於申請專利範圍第2 2項中敘述的,自具有 一既定表面粗糙的摻雜η型摻雜的Ιηι γΡ形成電子供應 層,因此,可以提供具有較佳勻相的轉導值與夾止電壓的 一 G a I η Ρ蠢晶堆疊結構。Gax Ιηι_χΡ Spacer layer and electrons, the target indium structure contacting the earth's surface roughness value, because η can form a better surface at the interface level ^ t M ^ ^ t ^ GalnP ^ ^ ^ Worm crystal Stacked structure. The cat-day-day-pile structure method and the provision of this are described in item 20 of the scope of the patent application. The channel layer is formed from the rough n-type GaxInixP. Therefore, it can be improved. A GaInP epitaxial stacked structure of the phase transduction value and the pinch-off voltage. According to the invention described in item 21 of the scope of the patent application, a gap layer is formed from r ^ GaxIrVxP with a predetermined surface roughness. Therefore, # = a GaInp with a better homogeneous transconductance value and pinch-off voltage can be provided. Worm crystal stack structure. According to the invention described in item 22 of the scope of patent application, the electron supply layer is formed from doped η-type doped η-type doped ηP with a predetermined surface roughness. Therefore, a transconductance value with better homogeneity can be provided. A G a I η stupid stack structure with pinch-off voltage.

第66頁 522574 五、發明說明(63) 依據本發明於申請專利範圍第2 3項與第2 4項中 的,利用環戊二烯銦當作關於如从士, 貝甲敘述 沉積方法形成η型GazIni〜zAs通1 、、^ 口材枓藉由化學氣相 子供應層,因此,可以形成呈H/土 axini-x:P間隔層與電 的表面粗糙的一通道層、一眨=^句相的銦組成與少量 此外,可以提供具有較佳“性二::τ供應層,並且 種製造GalnP磊晶堆疊姓槿 、¥值轉夾止電壓的一 構。 法,以及提供此磊晶堆疊結 依據本發明於申請專利 成具有特別高速電子遷移率的述的,可以形P.66 522574 V. Description of the invention (63) According to the present invention, in the items 23 and 24 of the scope of the patent application, cyclopentadiene indium is used as a reference to the formation of deposition methods such as Congshi, Biejia Type GazIni ~ zAs through 1, ^ mouth material through the chemical vapor phase supply layer, therefore, can form a channel layer with a rough surface of H / soil axini-x: P spacer layer and electricity = ^ Sentence phase indium composition and small amount In addition, it can provide a better "Second :: τ supply layer, and a structure to make GalnP epitaxial stacking surname, ¥ value turn clamping voltage. Method, and provide this epitaxial According to the invention, the stacked junction is patented to have a particularly high-speed electron mobility, which can be shaped

2037-3440-PF-ptd 第67頁2037-3440-PF-ptd Page 67

Claims (1)

522574 _ 案5虎 89118328 _^年U月力日 倏玉连_____ 六、申請專利範圍 1. 一種Gal nP系積層結構體,包括·· 至少一緩衝層、一 GazIrvzAs(0&lt;Z$l)通道層及連接於 上述通道層的一GaY InuPCtKY $ 1)電子供應層沉積於一 G a A s單晶基底上;以及 上述Gal nP系積層結構體,其特徵在於:於電子供應 層内部包括一區域,其中上述鎵組成比例(γ )自與上述通 道層接觸的接合介面朝向對立側減少。 2. 如申請專利範圍第1項所述的Ga I nP系積層結構 體’其特徵在於上述電子供應層之鎵組成比例為γ ^ 〇 · 5 1 ±0.01。 3·如申請專利範圍第1項或第2項所述的Gal nP系積層 結構體’其特徵在於上述電子供應層與上述通道層接觸的 接合介面處的鎵組成比例為γ ^ 〇. 7。 4.如申請專利範圍第1項或第2項所述的GalnP系積層 結構體’其特徵在於上述電子供應層與上述通道層接觸的 接合介面處的鎵組成比例為γ = 1 · 〇。 5 ·如申請專利範圍第1項或第2項所述的Ga I nP系積層 結構體’其特徵在於上述電子供應層與上述通道層之間的 接合介面處,具有1 nm至20 nm厚度範圍的區域,其中鎵 組成比例為固定值。 6· 一種GalnP系積層結構體,包括: 至少一緩衝層、一 GazinizAs(〇&lt;zsi)通道層、一 GaxIiVxPCOCX $1)間隔層及連接於上述通道層的一 GaYinHPCiKY $ 1)電子供應層沉積於一GaAs單晶基底上;522574 _ Case 5 Tiger 89118328 _ ^ U month Liri 倏 Yulian _____ Six, the scope of patent application 1. A Gal nP series laminated structure, including ... at least one buffer layer, a GazIrvzAs (0 &lt; Z $ l) The channel layer and a GaY InuPCtKY $ 1) connected to the channel layer are deposited on a G A As single crystal substrate; and the Gal nP-based layered structure is characterized in that: A region in which the above-mentioned gallium composition ratio (γ) decreases from a bonding interface in contact with the channel layer toward the opposite side. 2. The Ga I nP-based multilayer structure according to item 1 of the scope of the patent application, wherein the gallium composition ratio of the above-mentioned electron supply layer is γ ^ 0 · 5 1 ± 0.01. 3. The Gal nP-based layered structure according to item 1 or item 2 of the scope of patent application, characterized in that the gallium composition ratio at the joint interface between the electron supply layer and the channel layer is γ ^ 0.7. 4. The GalnP-based layered structure according to item 1 or 2 of the scope of the patent application, wherein the gallium composition ratio at the joint interface between the electron supply layer and the channel layer is γ = 1 · 〇. 5 · The Ga I nP-based multilayer structure according to item 1 or 2 of the scope of patent application, characterized in that the junction interface between the electron supply layer and the channel layer has a thickness ranging from 1 nm to 20 nm. Area where the gallium composition ratio is a fixed value. 6. A GalnP-based multilayer structure, comprising: at least one buffer layer, a GazinizAs (0 &lt; zsi) channel layer, a GaxIiVxPCOCX $ 1) spacer layer, and a GaYinHPCiKY $ 1) electronic supply layer connected to the channel layer is deposited on On a GaAs single crystal substrate; 522574522574 月 曰 修正 上述Gal nP系積層結構體,其特徵在於··上述通道 曰間/隔層及電子供應層依順序彼此相連,並且上述 a I nP系積層結構體於間隔層内部包括一區域,其中上述 $組成比例(X)自與上述通道層接觸的接合介面朝向上 電子供應層側減少。 &amp; ^如申請專利範圍第6項所述的Ga I nP系積層結構 〇一 〇1,。、特欲在於上述電子供應層之鎵組成比例為Υ = 0· 51 土 社播8辦如甘申5月專利範圍第6項或第7項所述的GalnP系積層 =的;寺!在於上述間隔層與上述通道層接觸的= W面處的鎵組成比例為γ - 〇 . 7。 結構體,人%d'11第6項或第7項所述的Gainp系積層 介面處的鎵組i比例為;!ΓΓ。層與上述通道層接觸的接合 處的鎵組成比例為γ = 〇 · 5〗± 〇 〇工 、9接觸的接合介面 11·如申請專利範圍第6項斛、+、AA r 體,其特徵在於一硼摻雜的n型構成aInp系積層結構 12·如申請專利範圍第lJf Π成上述間隔層。 層結構體,其特徵在於上述緩衝^弟6項所述的GalnP系積 甲基化合物當作起始材料氣相、„ ^匕括利用鋁或鎵的有機 ⑴的複數叩〜As(〇心υ;的dl銘=比例 w J結構,以及上述The above-mentioned Gal nP-based layered structure is characterized in that the above-mentioned channel / interlayer and electron supply layer are sequentially connected to each other, and the a I nP-based layered structure includes a region inside the spacer layer, where The aforementioned $ composition ratio (X) decreases from the bonding interface in contact with the channel layer toward the upper electron supply layer side. &amp; ^ The Ga I nP-based build-up layer structure described in item 6 of the scope of patent application. The special desire is that the gallium composition ratio of the above-mentioned electronic supply layer is 0 = 0.51. Tushe Broadcasting Office 8 The GalnP-based layer as described in item 6 or 7 of the May patent scope of Ganshen = =; Temple! The gallium composition ratio at the = W plane where the spacer layer is in contact with the channel layer is γ-0.7. For the structure, the ratio of the gallium group i at the interface of the Gainp-based buildup layer described in item 6 or 7 of% d'11 is:! ΓΓ. The gallium composition ratio of the joint where the layer contacts the above channel layer is γ = 0.5 5 ± 〇 〇, 9 contact interface 11. 11 such as the scope of the application for patent No. 6, +, AA r body, which is characterized by A boron-doped n-type aInp-based laminated layer structure 12 is formed as the above-mentioned spacer layer according to the patent application No. 1Jf. The layered structure is characterized in that the GalnP-based methyl compound described in item 6 of the above-mentioned buffer is used as a starting material, a gas phase, and a plurality of organic ⑴ using aluminum or gallium 叩 ~ As (〇 心 υ ; Dl 铭 = proportional w J structure, and the above 2037-3440-PF2.ptc 第69頁 5225742037-3440-PF2.ptc Page 69 522574 tE 89118^r 六、申請專利範圍 作’系積層結構體包括利用紹或嫁的有機乙基化合物當 i日(I ϋ材料氣相沉積-1)層接觸上述週 期性結構。 體,13· ^申請專利範圍第12項所述的GalηΡ系積層結構 m r if其特彳政在於對於週期性結構的構成層的不同組成比例 成 (假如Na$Nd)以及K = Nd/Na(假如Nd&lt;Na) ;Na :構 曰的文子您度’叱:構成層的施子密度)保 9 $ κ $ 1. 0的關係。 14· 一種GalnP系積層結構體,包括: 至少一緩衝層〜一以“〜^^⑼^^^通道層與連接於 广通道層的一 電子供應層, — GaAS單晶結構上;以及 、 内邻ΐί^11^系積層結構體特徵在於:上述電子供應層 接ϋ 區域,其中鎵組成比例自與上述通道層接觸的 ^ &quot;面側朝向對立側減少鎵組成比例(γ),以及上述緩 、,冗^ i ΐ利用鋁或鎵的有機曱基化合物當作起始材料氣相 的週期f士 =同銘組成比例(L)的複數A1如層 兹的以及上述以11115系積層結構體包括利用鋁或 aa)層接觸上述週期性結構。 叫gvmas(0 15· 一種GalnP系積層結構體,包括: 至少一緩衝層、一 GazIni_zAs(0&lt;ZSl)通道層、一 GaxIrVxPc^x 間隔層及一GaYlni γΡ(〇&lt;γ $ ^ 層/儿積於一 G a A s單晶基底上;以及 ’、wtE 89118 ^ r VI. Scope of patent application The structure of the 'layered structure' includes the use of organic or organic ethyl compounds, and the (I ϋ material vapor deposition-1) layer contacts the above-mentioned periodic structure. The structure of the GalηP-based multilayer structure mr if described in item 12 of the scope of the patent application is based on the different composition ratios of the constituent layers of the periodic structure (if Na $ Nd) and K = Nd / Na ( Suppose Nd &lt;Na); Na: the structure of the text, you have '度: the density of the donor layer of the layer) to ensure a relationship of 9 $ κ $ 1. 0. 14. · A GalnP-based layered structure, comprising: at least one buffer layer ~ a "~ ^^ ⑼ ^^^ channel layer and an electron supply layer connected to the wide channel layer,-on a GaAS single crystal structure; and The adjacent ΐ ^^^ multilayer structure is characterized in that the above-mentioned electron supply layer is connected to the area, in which the gallium composition ratio decreases from the surface side facing the opposite side of the channel layer to the opposite side to reduce the gallium composition ratio (γ), and the aforementioned relief , ^^ ΐ The period of the gas phase using an organic fluorene-based compound of aluminum or gallium as the starting material f = a complex number A1 with the same composition ratio (L) as described above and the above-mentioned 11115 series laminated structure includes An aluminum or aa) layer is used to contact the above-mentioned periodic structure. It is called gvmas (0 15 · a GalnP system layer structure, which includes: at least one buffer layer, a GazIni_zAs (0 &lt; ZSl) channel layer, a GaxIrVxPc ^ x spacer layer, and a GaYlni γP (0 &lt; γ $ ^ layer / child product on a G a A s single crystal substrate; and ', w 522574 案號 89118328 六、申請專利範圍 上述GalnP糸積層結構體,其特徵在於:上述通道 曰、間隔層及電子供應層依順序彼此相冑’並且上述 GalnP系積層結構體於上述間隔層内部包括一區域,直中 ΪΪί = :(Χ)自與上述通道層接觸的接合介面朝向 的減少’以及上述緩衝層包括利用鋁或鎵 比例π\1δΑ ]物當作起始材料氣相沉積具有不同鋁組成 _ 、稷 LGa卜lAs(〇 SL S 1)層的週期結構,以及上 ί作:=層結構體包括利用銘或鎵的有機乙基化合物 2ΪΪΪ 沉積的層接觸上述 週期性結構。 # 如申清專利範圍第14項或第15項所述的以11^系 體,其特徵在於上述週期結構包括一A1LGai_LAs(0 二^層與一㈣^^層’以及每一構成層的載子密度小 於 4 於 1 X 1 〇丨5 cm-3。 藉如申請專利範圍第14項或第15項所述wGaInP系 、曰…才體,其特徵在於上述A1MGa^As層接觸上述通道 接麻^ ·如申晴專利範圍第1 4項或第1 5項所述的Ga I nP系 χ 1〇15 _3 八特破在於上述AUGawAs層具有小於等於5 cm的載子密度以及小於等於1〇〇nm的厚度,並且包 括一 η型層。 圍第14項或第15項所述的Gal ηΡ系 於上述Alj^Ga^As層的厚度小於上述 19·如申請專利範 積層結構體,其特徵在 週期結構的構成層厚度522574 Case No. 89118328 6. The scope of the patent application The above GalnP stack structure is characterized in that the channel, the spacer layer and the electron supply layer are opposite each other in sequence, and the GalnP series laminate structure includes a Area, straight middle = = (X) reduction in orientation of the bonding interface from contact with the above channel layer 'and the above buffer layer includes the use of aluminum or gallium ratio π \ 1δΑ] as a starting material, and vapor deposition has a different aluminum composition , The periodic structure of the 稷 LGabAs (〇SL S 1) layer, and the above operation: the layer structure includes a layer deposited using an organic ethyl compound 2ΪΪΪ of gallium or gallium to contact the above-mentioned periodic structure. # As stated in item 14 or item 15 of the patent scope, the 11 ^ system is characterized in that the above periodic structure includes an A1LGai_LAs (0 2 ^ layer and 1㈣ ^^ layer 'and the load of each constituent layer The sub-density is less than 4 to 1 X 1 〇5 cm-3. According to the wGaInP system described in item 14 or item 15 of the patent application scope, it is characterized in that the above-mentioned A1MGa ^ As layer is in contact with the above-mentioned channel and then hemps. ^ The Ga I nP system χ 1015 as described in item 14 or item 15 of Shen Qing's patent scope is that the above-mentioned AUGawAs layer has a carrier density of 5 cm or less and 100 or less. The thickness of nm and includes an η-type layer. Gal ηP described in item 14 or item 15 is that the thickness of the above-mentioned Alj ^ Ga ^ As layer is smaller than the above-mentioned 19. If a patent-applied laminated layer structure is characterized in that Constituent layer thickness of the periodic structure 522574522574 六、申請專利範圍 2 0 積層結構^申ί專利範圍第14項或第15項所述的以11113系 (Μ)低於槿//、特徵在於上述A1MGanAs層的鋁組成比例 21如、週主期結構的A1LGai-LAs層的I呂組成比例(L) ° 声纟士槿辦申請專利範圍第6項或第15項所述的GalnP系積 甲基化合铷Ϊ特徵在於上述緩衝層包括利用第111族的三 層t利;:當作起始材料氣相沉積的AlLGai_LAs(0 $1) 詈於卜、+7乙基鎵當作鎵起始材料氣相沉積的一GaAs層設 型,;上與通道層之間,上述通道層包括n型導電 起始材料二相=ί '電子供應層係利用三甲基鎵當作鎵 内的銦組成μ Γ積的η 31層,於每一間隔層與電子供應層 声愈電子枇L列的勻相性係小於等於土2%,以及上述間隔 層與電子供應層係彼此接觸的。 層結:體如項或第15項所述_ 鎵心LT6°ppra,以及上述通道層接觸利用三乙基 鎵田作鎵起始材料氣相沉積的一以^層0 層社f6項或第15項所述_ΐηρ系積 ;以及“ m於上述間隔層與上述通道層彼此接 100 ppm成述間隔層後的表面粗糙度(霾)係小於等於 展社2j挪如申請專利範圍第6項或第15項所述的GaInP系積 層# 口構體,其特徵在於开)士、 、 度(霾)係小於等於200 ppm。 』衣©租才C 25.-種GaInP系積層結構體製造方*,用以製造如Sixth, the scope of the application for patents 20 The laminated structure ^ The 11113 series (M) is lower than the hibiscus as described in item 14 or 15 of the patent scope, which is characterized by the aluminum composition ratio 21 of the A1MGanAs layer as described above. The I1 composition ratio (L) of the A1LGai-LAs layer of the phase structure ° The GalnP system methylation compound described in the 6th or 15th of the scope of patent application of the Acrylic Hibiscus Office is characterized in that the above buffer layer includes the use of the first Three layers of the 111 group; AlGai_LAs (0 $ 1) as a starting material for vapor deposition; +7 ethyl gallium as a GaAs layer for vapor deposition of a gallium starting material; Between the channel layer and the channel layer, the above-mentioned channel layer includes two phases of n-type conductive starting material = "the electron supply layer uses trimethylgallium as the indium in gallium to form a μΓ product of η 31 layers, in each spacer layer The homogeneity of the column L with the electron supply layer is less than or equal to 2%, and the above-mentioned spacer layer and the electron supply layer are in contact with each other. Layering: as described in item or item 15_ Gallium core LT6 ° ppra, and the above-mentioned channel layer contact is deposited using triethylgallium field as a gallium starting material. 15 of the _ΐηρ series; and "m The surface roughness (haze) after the spacer layer and the channel layer are connected to each other at 100 ppm to form the spacer layer is less than or equal to 6 of the patent application scope of the exhibition company 2j Or the GaInP system layer structure described in item 15, which is characterized in that the degree, degree, and degree (haze) are 200 ppm or less. 』衣 © 租 才 C 25.- a manufacturer of GaInP system structures *, Used to make /4 /4 J911832S_ 六 修正 曰 ---一案號— 申請專利範圍 -—----•夕一 — —__ 中請專利範圍第丨 其包括: 、或弟14項所述的Gal nP系積層結構體, 利用I呂或鎵的有 的緩衝層步驟; 機甲基化合物當作起始材料氣相沉積 與上述週湘纟士 當作起始材料氣:” ^觸’ %用鋁或鎵的有機乙基化合物 藉由化2ί 1L積的A1GaAs層步驟;以及 銦當作銦的::::ί方法利用具有單價鍵結的環戊二烯 應層步驟。D材枓乳相沉積的形成上述通道層與電子供 申請專利範系積層結構體製造方法’用以製造如 其包括:第項或第15項所述的以11^系積層結構體, 上述的有機甲基化合物當作起始材料氣相沉積 當作起構接觸’ μ用鋁或鎵的有機乙基化合物 ^ α材科乳相沉積的AlGaAs層步驟;以及 藉由化學氣相沉 用具有 銦當作銦的起私从』, &amp; /丄 貝獲、、、口的%戊二烯 ^ ^ Ύ t Ό材料氣相沉積的形成上述通道&gt;、η ^ $ 與電子供應層步驟。 、、層間隔層/ 4/4 J911832S_ Sixth Amendment --- Case No.-Patent Application Scope ------- • Xiyi ---__ Chinese Patent Application No. 丨 which includes: or Gal nP system described in item 14 Laminated structure, using some buffer steps of I or Ga; organic methyl compounds are used as starting materials for vapor deposition and the above-mentioned Zhou Xiangshi is used as starting materials: "^ Touch"% with aluminum or gallium The organic ethyl compound is passed through a 1 L product of the A1GaAs layer step; and the indium is used as the indium :::: method, which utilizes a cyclopentadiene layer step with a monovalent bond. The formation of the D material and the emulsion phase deposition The above-mentioned channel layer and electron for patent application for a laminated structure manufacturing method are used to manufacture a laminated structure with an 11 ^ system as described in the item or item 15, and the above-mentioned organic methyl compound is used as a starting material. Vapor deposition is used as a structure to contact 'μ AlGaAs layer deposited with an organic ethyl compound of aluminum or gallium ^ α material; and the use of chemical vapor deposition with indium as indium.', &amp; / 丄 贝 取 ,,,, and% of pentadiene ^ ^ Formation of 气相 t Ό material by vapor deposition of the above-mentioned channels>, η ^ $ and electron supply layer steps. 2037-3440-PF2.ptc 第73頁2037-3440-PF2.ptc Page 73
TW89118328A 1999-09-28 2000-09-07 GaInP epitaxial stacking structure, a GaInP epitaxial stacking structure for FETs and a fabrication method thereof TW522574B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP27435899A JP3275894B2 (en) 1999-09-28 1999-09-28 Method for manufacturing GaInP-based laminated structure
JP27871999A JP3275895B2 (en) 1999-09-30 1999-09-30 Method for manufacturing GaInP-based laminated structure
JP28623499A JP3371868B2 (en) 1999-10-07 1999-10-07 GaInP-based laminated structure
JP36863599A JP2001185719A (en) 1999-12-27 1999-12-27 GaInP LAMINATED STRUCTURE AND FIELD EFFECT TRANSISTOR MANUFACTURED BY USING IT

Publications (1)

Publication Number Publication Date
TW522574B true TW522574B (en) 2003-03-01

Family

ID=27479023

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89118328A TW522574B (en) 1999-09-28 2000-09-07 GaInP epitaxial stacking structure, a GaInP epitaxial stacking structure for FETs and a fabrication method thereof

Country Status (3)

Country Link
DE (1) DE10047659B4 (en)
GB (1) GB2358736B (en)
TW (1) TW522574B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817160B2 (en) * 1987-10-06 1996-02-21 昭和電工株式会社 Vapor growth method
DE69023956T2 (en) * 1989-06-16 1996-04-25 Toshiba Kawasaki Kk Method for producing a III-V compound semiconductor component.
JP2539268B2 (en) * 1989-07-12 1996-10-02 富士通株式会社 Semiconductor device
DE4109723A1 (en) * 1991-03-25 1992-10-01 Merck Patent Gmbh METAL ORGANIC COMPOUNDS
JP2994863B2 (en) * 1992-07-24 1999-12-27 松下電器産業株式会社 Heterojunction semiconductor device
JP3172958B2 (en) * 1993-05-20 2001-06-04 富士通株式会社 Method for manufacturing compound semiconductor thin film
WO1996000979A1 (en) * 1994-06-29 1996-01-11 British Telecommunications Public Limited Company Preparation of semiconductor substrates
JPH10247727A (en) * 1997-03-05 1998-09-14 Matsushita Electric Ind Co Ltd Field effect transistor
JPH10335350A (en) * 1997-06-03 1998-12-18 Oki Electric Ind Co Ltd Field-effect transistor

Also Published As

Publication number Publication date
DE10047659A1 (en) 2001-04-05
GB2358736B (en) 2004-06-23
GB2358736A (en) 2001-08-01
GB0022198D0 (en) 2000-10-25
DE10047659B4 (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP3751791B2 (en) Heterojunction field effect transistor
Mohammad Contact mechanisms and design principles for nonalloyed ohmic contacts to n-GaN
US11594413B2 (en) Semiconductor structure having sets of III-V compound layers and method of forming
Mönch Electronic structure of metal-semiconductor contacts
JP4530171B2 (en) Semiconductor device
Gutsch et al. Charge transport in Si nanocrystal/SiO2 superlattices
KR20040104959A (en) Doped Group III-V Nitride Material, And Microelectronic Device And Device Precursor Structures Comprising Same
CN103003931B (en) Epitaxial substrate for semiconductor device, semiconductor element, PN engage the manufacture method of diode element and epitaxial substrate for semiconductor device
TW201535520A (en) Conformal thin film deposition of electropositive metal alloy films
WO2009147774A1 (en) Semiconductor device
JP2005236287A (en) Low doped layer for nitride-based semiconductor device
WO2011117936A1 (en) Transistor and method for manufacturing same
US6841435B2 (en) Method for fabricating a GaInP epitaxial stacking structure
US10418457B2 (en) Metal electrode with tunable work functions
TWI805620B (en) Metal electrode with tunable work functions
TW522574B (en) GaInP epitaxial stacking structure, a GaInP epitaxial stacking structure for FETs and a fabrication method thereof
JP2016039327A (en) Nitride semiconductor device, diode, and field-effect transistor
US9768349B2 (en) Superlattice structure
Wang et al. Mg acceptor energy levels in Al x In y Ga 1− x− y N quaternary alloys: An approach to overcome the p-type doping bottleneck in nitrides
Shao et al. Advantage of SiO 2 Intermediate Layer on the Electron Injection for Ti/n-Al 0.60 Ga 0.40 N Structure
JP2014160761A (en) Semiconductor device
TWI692849B (en) Improving metal contacts to group iv semiconductors by inserting interfacial atomic monolayers
US20210257463A1 (en) Field assisted interfacial diffusion doping through heterostructure design
Wang et al. Increased Schottky barrier heights for Au on n-and p-type GaN using cryogenic metal deposition
Al Huwayz et al. Effects of gamma radiation on the electrical properties of InAs/InGaAs quantum dot-based laser structures grown on GaAs and Si substrates by molecular beam epitaxy

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees