TW520311B - Method of automatic electrode wear compensation in equal depth pore electro-discharge machining - Google Patents

Method of automatic electrode wear compensation in equal depth pore electro-discharge machining Download PDF

Info

Publication number
TW520311B
TW520311B TW90108713A TW90108713A TW520311B TW 520311 B TW520311 B TW 520311B TW 90108713 A TW90108713 A TW 90108713A TW 90108713 A TW90108713 A TW 90108713A TW 520311 B TW520311 B TW 520311B
Authority
TW
Taiwan
Prior art keywords
value
machining
hole
electrode
depth
Prior art date
Application number
TW90108713A
Other languages
Chinese (zh)
Inventor
Jiau-Jing Shr
Original Assignee
Castek Mechatron Industry Co L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Castek Mechatron Industry Co L filed Critical Castek Mechatron Industry Co L
Priority to TW90108713A priority Critical patent/TW520311B/en
Priority to JP2001241559A priority patent/JP2002307238A/en
Application granted granted Critical
Publication of TW520311B publication Critical patent/TW520311B/en

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

This invention provides a method of automatic electrode wear compensation in equal depth pore electro-discharge machining. In setting the machining depth value D of a pore electro-discharge machine, the machining depth value D is computed as the sum of the machining depth Z of a workpiece, an electrode wear rate W and a correction value (offset), and a machining electrode performs pore electro-discharge machining to the actual workpiece on the basis of the numeric value and a machining program. In order to set the wear rate W of the pore machining electrode to the moving state value of automatic measuring calculation, the Z-axis value of the machining electrode to the workpiece surface measured in first pore machining is made the reference value, and the Z-axis value of the electrode to the workpiece surface in second pore machining is reduced, that is, the actual electrode wear value in preceding pore machining is measured, and the measured electrode wear value can be input as the electrode wear value in the following pore machining. As such, this invention can minimize an error, shorten a process per machining and effectively improve work efficiency.

Description

520311 五、發明說明(1)520311 V. Description of the invention (1)

按以,細孔放電機係在其加工程式裴置先輪入加工深 f禮設定後,再啟動放電電源進行放電加工作業。請參閱 第一圖所示,按習知細孔放電機其加工深度總值(D)之設 定係包括同時輸入有:1·工件之厚度(z)、2•加工電極之 消耗率(w)、及補正值(offset)等數值(即D=z+ff+〇ffset) 。以令加X電極可依據其所輸入之加工深度總值對工件作 放電加工,而前述所設定之加工深度總值皆係為一固定值 。因電極之消耗率係與電極長度呈反比,而習知皆係將加 電極之/肖耗率,没為一固定值。另前述補正值之設定主 要係確保該加工電極於鑽孔時可完全貫穿過工件,亦或將 加工深度(Z)加入電極消耗值(ff),以確保可貫穿工件, ,達到所希望之加工深度;當使用新的電極時,因電極為 7G整且端面與直徑皆為完整,所以第一孔加工時,因此而 造成加工深度較深,此乃電極消耗較少之緣故,當電極加 工第二孔後電極消耗率會慢慢的增加,此乃伺服反應速度 之因素’造成電極之消耗率因電極之縮短而増加,术其當 使用較小之電極直徑時會相當明顯(例如·· 〇· 3㈣,〇· 4 二,o.5mm等等亦或15龍以下),是以造成加工深度不 #之主要f因’換句話說,加工深度會愈來愈淺;使用者 右要達到每一孔加工均要打穿之要求,勢必要將電極之消 耗值(W)設為能穿孔加工之電極最大消耗值(即電極最短 ,之電極消耗值),因此當換用新f極加工時,因電極之 肩,值為固疋值之關係,因此新電極之第一孔加工乏深度 會杈其它孔為深,即加工深度會依加工孔數而遞減,因此According to this, the fine-hole electric discharge machine is started after its machining program Pei Zhi turns into the machining depth setting, and then the electric discharge power is turned on for electric discharge machining. Please refer to the first figure. According to the conventional fine hole discharge machine, the setting of the total processing depth (D) of the machine includes simultaneous input of: 1 · workpiece thickness (z), 2 · processing electrode consumption rate (w) And offset (offset) and other values (ie D = z + ff + 〇ffset). So that the X-electrode can perform EDM on the workpiece according to the total machining depth input, and the total machining depth set above is a fixed value. Because the consumption rate of the electrode is inversely proportional to the length of the electrode, it is common practice to add the consumption rate of the electrode / shaw, which is not a fixed value. In addition, the setting of the aforementioned correction value is mainly to ensure that the machining electrode can completely penetrate the workpiece when drilling, or add the machining depth (Z) to the electrode consumption value (ff) to ensure that it can penetrate the workpiece and achieve the desired processing. Depth; when using a new electrode, because the electrode is 7G and the end face and diameter are complete, the first hole is processed, which results in a deeper processing depth. This is because the electrode consumes less. After two holes, the electrode consumption rate will gradually increase. This is a factor of the servo response speed. 'The consumption rate of the electrode is increased due to the shortening of the electrode. It will be quite obvious when using a smaller electrode diameter (for example ... · 3㈣, 0.4 · 2, o.5mm, etc. (or less than 15 dragons), which is the main reason that causes the processing depth is not # In other words, the processing depth will become shallower and shallower; The requirement of punching in one hole processing is bound to set the electrode consumption value (W) to the maximum consumption value of the electrode that can be punched (that is, the electrode is the shortest and the electrode consumption value), so when switching to a new f-pole processing Due to electricity The shoulder, the relationship is a solid piece goods value, so the first hole of the new working electrodes may lack depth deep bifurcation other apertures, i.e., the machining depth will be decremented by the number of the processed hole, and therefore

520311 五、發明說明(2) 多出之加工深度會因排渣問題而耗費相當多之加工時間, 其缺點係: 1 ·如第二圖所示,細孔加工電極每次對工件作細孔放 電加工時,皆係設為最大之電極消耗值,因此,當一支全 新的加工電極由第一孔放電加工至最後一孔時,因電極穿 出工件底部甚多,一來造成加工時間之增加,二來可能因 高壓之加工液由電極端喷出之反作用力問題,因而造成電 極之偏擺,產生工件底部擴孔之現象,甚而可能造成工件 之損壞,習用細孔放電加工機因電極之消耗設為固定值, 有此之缺點。 2·依前述之習知放電加工深度總值(D)之設定,即電 極δ又疋為一固疋之最大消耗值’此設定方式僅能對工件作 完全貫穿之加工,而無法對工件進行精準的盲孔加工,如 第二圖所示’當工件設定其欲加工盲孔實際深度時,則補 正值(offset)係設為零,是以,當細孔加工電 消耗後,對該工件所加工之盲孔深度便會呈現極大差里, 有珥孔加工深度遞減之現象者。 、 因此,有鑑於習式之缺失 並集聚多年製造經驗,不斷求 加工機之設計,予以充分構思 電極消耗補償,因此完成·本創 請0 所在,創作人乃潛心鑽研, 新求變以突破習知細孔放電 使其可作等深細孔加工自動 作並提出本案之發明專利申 本發明之主要目的’係提供一種等深 動電極消耗補償之方法,其係斜斜 駕力 八你針對在細孔放電機之加工520311 V. Description of the invention (2) The extra processing depth will take a considerable amount of processing time due to the problem of slag discharge. The disadvantages are: 1 · As shown in the second figure, the pore processing electrode makes pores on the workpiece each time. During electrical discharge machining, the electrode consumption is set to the maximum value. Therefore, when a brand new machining electrode is discharged from the first hole to the last hole, the electrode penetrates the bottom of the workpiece so much that the processing time is reduced. Increased. Secondly, the reaction force of the high-pressure machining fluid sprayed from the electrode end may cause the electrode to sway and cause the phenomenon of hole expansion at the bottom of the workpiece. It may even cause damage to the workpiece. Consumption set to a fixed value has this disadvantage. 2 · According to the conventional setting of the total depth of electrical discharge machining (D), that is, the electrode δ is the maximum consumption value of a solid 'This setting method can only complete the processing of the workpiece, not the workpiece Accurate blind hole machining, as shown in the second figure, 'When the workpiece sets the actual depth of the blind hole to be processed, the offset value is set to zero, so when the electrical consumption of the fine hole machining, the workpiece is The depth of the processed blind hole will be extremely different, and there is a phenomenon that the depth of the countersinking hole decreases. Therefore, in view of the lack of habits and the accumulation of many years of manufacturing experience, we are constantly seeking the design of processing machines and fully conceiving the electrode consumption compensation. Therefore, we have created 0. The creator is diligently studying, and seeking new changes to break through Knowing the pore discharge makes it possible to automate the processing of constant-depth pores and proposes an invention patent for this case. The main purpose of the present invention is to provide a method for compensating for the consumption of moving electrodes at constant depth, which is the oblique driving force. Processing of hole discharge machine

520311 五、發明說明(3) 深度總值(D )之設定,即加工深度總值之取得係由輸入有 1.工件之加工厚度(Z) 、2.補正值(offset)及3.加工電極 消耗值(W)等數值所計算出之和,以使加工電極可依據其 所輸入之各數值,經加工程式計算出實際加工深度總值, 以令其對工件作放電加工,而前述電極之消耗值(W )在本 發明申請案則設為一自動量測計算之動態值,以上一孔( 第一孔)所偵測取得之電極相對於工件表面之值作為參考 值,減下一孔(第二孔)電極相對於工件表面之值,因此得 以算出上一孔(第一孔)之正確電極消耗值,並將此電極消 耗值帶入為目前加工孔之消耗值(即為第二孔之電極消耗 值),因相鄰之加工孔其加工電極之消耗值相當的接近, 相對地所計算出之加工深度值誤差值較少;進而當加工電 極進行放電加工時,可得誤差值極小之加工深度值(D)者 ,進而可縮短放電加工之行程,達到有效提昇工作效率者 〇 本發明之另一目的,係提供一種等深度細孔放電加工 自動電極消耗補償之方法,其運用將加工深度總值 (D )之 電極消耗值(W)設為一可_動量測計算之動態值,以取得 極小誤差值之加工深度;另外,當補正值(offset)設定為 零時,可令其作精確的盲孔放電加工者。 餘下,茲4就本案發明之特徵等項加以配合圖示說明 之方式,詳列敘述於後。* 按細孔放電加工機之加工前置作業,係需在其加工程 式先輸入欲加工深度總值設定後,再啟動放電電源以進行520311 V. Description of the invention (3) The total depth (D) is set, that is, the total value of the processing depth is obtained by inputting 1. the processing thickness (Z) of the workpiece, 2. the offset value (offset), and 3. the processing electrode The sum of the calculated values such as the consumption value (W), so that the machining electrode can calculate the total actual machining depth value through the machining program according to the values entered by it, so that it can perform EDM on the workpiece. The consumption value (W) is set as a dynamic value for automatic measurement and calculation in the present application. The value of the electrode relative to the workpiece surface detected by the previous hole (the first hole) is used as a reference value, and the next hole is subtracted. (Second hole) The value of the electrode relative to the workpiece surface, so the correct electrode consumption value of the previous hole (the first hole) can be calculated, and this electrode consumption value is brought into the consumption value of the currently processed hole (that is, the second hole) Hole electrode consumption value), because the consumption value of the machining electrode of the adjacent machining hole is quite close, the calculated error value of the machining depth value is relatively small; and when the machining electrode is subjected to electrical discharge machining, the error value can be obtained Minimal processing Those with a depth value (D) can further shorten the stroke of the electrical discharge machining and effectively improve the work efficiency. Another object of the present invention is to provide an automatic electrode consumption compensation method for equal-depth fine-hole electrical discharge machining. The electrode consumption value (W) of the total value (D) is set to a dynamic value that can be calculated by momentum measurement to obtain a processing depth with a small error value. In addition, when the offset value is set to zero, it can be made For accurate blind hole EDM. In the remainder, the manner in which the features and other aspects of the invention of the present invention are combined with illustrations are described in detail below. * According to the pre-processing operation of the micro-hole electrical discharge machine, it is necessary to input the total value of the depth to be processed in its processing mode, and then start the discharge power supply to perform

第7頁 520311 五、發明說明(4) 放電加工作#, 入有:1 ·工件之 正值(of f set)等 電極可依據其所 總值,以令其對 首先’敬請 細孔放電加工自 總值(D)之設定 (Z),及補正值( 本發明申請案則 工電極以上一孔 面之值作為參考 面之值,周此得 ,並將此電極消 二孔之電極消耗 加工第一孔時, 之數值俾設為Z 0 孔加工位置後, 放電時所測得之 值(D )公式内之 時在極短時間内 算公式内,即加 消耗值(W0)加穿 時,當電極與工 f加工深度總值(D)之設定係包括同時輸 厚度(z) ' 2·加工電極之消耗值(?)及3•補 數值(即D = Z + W + 〇ffset)之和,以使加工 輸入之各數值經加工程式計箅出加工深度 工件作放電加工者。 >閱第四、五、六圖:本發明一種等深度 動電極消耗補償之方法,其在作加工深度 時’係可直接輸入工件之實際欲加工厚度 offset),而前述加工電極之消耗值(ff)在 設為^一可自動量測計算之動態值,以令加 (第一孔)所偵測取得之電極相對於工件表 值μ減下孔(第二孔)電極相對於工件表 以异f上一孔(第一孔)之正確電極消耗值 耗值帶入為目前加工孔之消耗值(即為第 值),以後之加工依此類推;當細孔放電 畲,極與工件第一發放電時所測得之z軸 第一孔加工完成,工作台移動至第二 進行第二孔加工聘,當電極與工件第一發 Z軸之數值假設為Z1,則第二孔加工深度 電^消耗值.(ff)會於電極碰觸到工件表面 汁异出來(W0等於Z0減Z1之值),並帶入計 工深度值(D)等於工件厚度(z)加動態電極 孔補正值(off set);又當進行第三孔加工 件第一發放電時所測得之z軸之數值假設Page 7 520311 V. Description of the invention (4) Discharge plus work #, the entry is: 1 · The positive value of the workpiece (of f set) and other electrodes can be based on their total value, so that they can first discharge the pores Set (Z) processed from the total value (D), and the correction value (the value of the hole surface above the working electrode in the application of the present invention is used as the reference surface value, which is obtained in this way, and the electrode that consumes the second hole of the electrode is consumed When machining the first hole, the value 俾 is set to Z 0 after the hole machining position, and the value measured during discharge (D) is calculated in the formula in a very short time, that is, the consumption value (W0) is added and penetrated. When the total depth (D) of the electrode and the working depth (D) is set, it includes the thickness (z) '2 · consumption value (?) Of the processing electrode and 3 • supplementary value (ie D = Z + W + 〇ffset) ), So that each value of the processing input is calculated by the processing program to calculate the processing depth of the workpiece as an EDM. ≫ See Figures 4, 5 and 6: A method for compensating for the consumption of moving electrodes of equal depth according to the present invention. When processing depth, 'the actual thickness of the workpiece can be directly input offset), and the above The consumption value of the electrode (ff) is set to a dynamic value that can be automatically measured and calculated, so that the electrode detected by adding (the first hole) relative to the workpiece table value minus the lower hole (the second hole) electrode Relative to the workpiece table, the correct electrode consumption value of the previous hole (the first hole) is brought into the consumption value of the currently processed hole (that is, the No. 1 value), and the subsequent processing can be deduced by analogy; when the fine hole is discharged 畲, The first hole machining of the z-axis measured when the pole and the workpiece are discharged for the first time is completed, and the table is moved to the second for the second hole machining. When the Z-axis value of the electrode and the workpiece is the first time, Z1 is assumed. The electrical consumption value of the second hole machining depth (ff) will be different when the electrode touches the surface of the workpiece (W0 is equal to Z0 minus Z1), and the calculated depth value (D) is equal to the workpiece thickness (z) Add the dynamic electrode hole correction value (off set); the numerical assumption of the z-axis measured when the first discharge of the third hole machining part is performed

520311 五、發明說明(5) 、 為Z 2,則第三孔加工深度值(D )公式内之電極消耗值 (w 1 ) 會於電極碰觸到工件表面時在極短時間内計算出來(W1等 於Z1減Z2之值),並帶入計算公式内,即加工深度值 (D) 等於工件厚度(Z )加動態電極消耗值(\Π )加穿孔補正值 (offset),爾後之加工設定依此類推(如第五圖所示); 又盲孔加工(不穿孔加工之補正值(offset)設為零(0) (如第四圖所示);其中,電極消耗值(W)可特別記憶新 電極之第一孔加工之電極消耗值,稱為W0,其餘以W1稱呼 亦可逐孔記錄,並依電極有效長度相對之電極消耗值之代 號帶入加工深度計算公式内。 例如:細孔放電加工其加工深度值(D)係等於輸入h 工件之厚度(Ζ)、2·加工電極之消耗率(w)及3·補正值 (offset)等數值之和,即 D = z + ff(㈣,η,…,ff2,ffN)+〇ffset ,當加工開始所輸入之鈿孔加工電極消耗值可為一大概值 ,以令細孔加工電極得以作為第一孔放電加工之依據;亦 可將消耗值設為零(0),當加工深度到達工件厚度(z)加補 正值(offset)〔盲孔加工時為零(0)〕時,停止加工並令 加工軸上升至離開工件表面,並移動工作台至一平面作電 極對工件表面之碰觸以得到另一 z值,再以前一次之Z軸相 對於工件表面之值減此次所測得之值,如此可算出加工 =,極消耗率,且得到實際之加工深度,然後依此孔之 ,極消耗率算出再加工之深度值並移回原加工位置進行未 完成之加工,其加工流程如第六圖所示,直到加工完成, 此輸入方式可避免因人而異之輸入錯誤,並提昇加=效率520311 Fifth, the description of the invention (5) is Z 2, the electrode consumption value (w 1) in the third hole machining depth value (D) formula will be calculated in a very short time when the electrode touches the surface of the workpiece ( W1 is equal to Z1 minus Z2), and brought into the calculation formula, that is, the processing depth value (D) is equal to the workpiece thickness (Z) plus the dynamic electrode consumption value (\ Π) plus the perforation correction value (offset), and the subsequent processing settings And so on (as shown in the fifth figure); and blind hole processing (the offset value of non-perforation processing is set to zero (0) (as shown in the fourth figure); where the electrode consumption value (W) can be Specially remember the electrode consumption value of the first hole processing of the new electrode, which is called W0, and the rest is called W1, which can also be recorded hole by hole, and brought into the processing depth calculation formula according to the code of electrode consumption value relative to the effective length of the electrode. For example: The machining depth value (D) of pore discharge machining is equal to the sum of the thickness (Z) of the workpiece input h, the machining electrode consumption rate (w), and the 3 offset value (offset), that is, D = z + ff (㈣, η, ..., ff2, ffN) + 〇ffset, when the 钿The electrode consumption value can be an approximate value, so that the fine hole machining electrode can be used as the basis for electrical discharge machining of the first hole. The consumption value can also be set to zero (0). When the machining depth reaches the workpiece thickness (z), a correction value ( offset) [Zero (0) during blind hole machining], stop machining and raise the machining axis away from the workpiece surface, and move the table to a flat surface for the electrode to touch the workpiece surface to obtain another z value, and then The value of the previous Z-axis relative to the surface of the workpiece minus the value measured this time, so that the machining =, pole consumption rate, and the actual machining depth can be obtained, and then based on the hole, the pole consumption rate is calculated for reprocessing. The depth value is moved back to the original processing position for unfinished processing. The processing flow is shown in Figure 6. Until the processing is completed, this input method can avoid input errors that vary from person to person, and increase the processing efficiency.

520311 五、發明說明(6) 者;現在假設欲加工工件之厚度為20毫米(MM)穿孔且多出 3毫米(offset),則首先在前述程#中可輸入加工深度( 〇)等於欲加工之深度(Z)為20毫米(MM)加電極消耗(W)零( 〇)與補正值(offset)3 MM,當電極開始對工件進行放電加 工時,第一次放電點取得Z軸之值假設為31 5MM(Z0)之位置 ,加工至292 MM(負23MM)之位置時控制器令其加工停止並 上升至離開工件表面’然後移動工作台至一平面處作無放 電加工之表面碰觸,此時得到Z軸之位置值假設為3 〇 7. 3 關,因此得到電極消耗為7·7ΜΜ(315_30 7·3),同時亦得知 實際加工深度為1 5· 3ΜΜ,且算出電極消耗率為約百分之五 十(7.7/15.3)(50%),所以殘餘之加工深度為4, 7龍加電極 /肖耗率,結果异出正確之加工深度應至Ζ軸相對位置81 之位置(292-7.06-3),然後移回原來加工位置進行未完成 之加工直到深度到達並令加工軸上升至安全高專,工作A 移至第二孔加工位置;放電再開始,並取得第一次放電^ 觸之Z軸位置值304, 94(Z1),所以新電極第一孔加工之電 極消耗值(W0)等於315減304.94得10.06,再帶入加工深度 計算公式(D=Z+W+OFFSET)等於20+10·06+3=33·〇6,所以 ^ 孔之停止點為Ζ轴位置271· 88(304· 94-33· 06),當加工到 達後,令加工轴上升至安全高度,工作台移至第三孔加工 位置;放電再開始,並取得第一次放電接觸之2軸位置值 假自又為294·84(Ζ2)’所以第二孔加工之電極消耗值(W1 )等 於304·94減294·84得10·10,再帶入加工深度計算公式 (D = Z + W + OFFSET)等於 20 + 10· 10 + 3 = 33· 10,所以此孔之停止520311 5. Inventor (6); Now suppose that the thickness of the workpiece to be processed is 20 millimeters (MM) perforation and 3 millimeters (offset), then you can first enter the machining depth (0) equal to the machining in the aforementioned process # The depth (Z) is 20 millimeters (MM) plus the electrode consumption (W) zero (0) and the offset value (offset) 3 MM. When the electrode starts electrical machining of the workpiece, the first discharge point obtains the value of the Z axis Suppose it is at the position of 31 5MM (Z0). When processing to the position of 292 MM (negative 23MM), the controller stops its processing and rises away from the surface of the workpiece ', and then moves the table to a flat surface for non-discharge machining. At this time, the position value of the Z axis is assumed to be 3.07. 3 off, so the electrode consumption is 7 · 7MM (315_30 7 · 3). At the same time, the actual processing depth is 15 · 3MM, and the electrode consumption is calculated. The rate is about fifty percent (7.7 / 15.3) (50%), so the residual machining depth is 4, 7 plus the electrode / sharp rate. As a result, the correct machining depth should be up to 81 relative to the Z axis. Position (292-7.06-3), then move back to the original processing position for unfinished processing until When the degree reaches and makes the machining axis rise to the safety high school, work A moves to the second hole machining position; the discharge starts again, and the first discharge is obtained ^ The Z-axis position value touched by 304, 94 (Z1), so the new electrode The electrode consumption value (W0) of a hole processing is equal to 315 minus 304.94 to get 10.06, and then the calculation depth calculation formula (D = Z + W + OFFSET) is equal to 20 + 10 · 06 + 3 = 33 · 〇6, so ^ hole The stopping point is the Z-axis position 271 · 88 (304 · 94-33 · 06). When the machining is reached, the machining axis is raised to a safe height, and the worktable is moved to the third hole machining position; the discharge is started again, and the first The value of the 2 axis position of a single discharge contact is 294 · 84 (Z2) ', so the electrode consumption value (W1) of the second hole processing is equal to 304 · 94 minus 294 · 84 to get 10 · 10, and then brought into the processing depth The calculation formula (D = Z + W + OFFSET) is equal to 20 + 10 · 10 + 3 = 33 · 10, so the stop of this hole

第10頁 520311 五、發明說明(7) 點為Z軸位置261.74,當加工到達後,令加工軸上升至安 全高度,工作台移至第四孔加工位置,爾後之加工依此類 推;綜合以上結果,第二孔加工與第三孔加工之誤差為0 · 04(10.10-10.06)除以 1.5 (1 + 0.5)約等於0.027 mm,以上加 工深度西所取得之電極消耗值為相鄰孔之電極消耗值,且 數值相當的接近,因此,該細孔放電加工機因使用此動態 自動電極消耗補償之方法,始可得到極小誤差之加工深度 ,進而縮短每次碑電加工之行程,達到有效提昇工作效率 者。 又,前述係運用將加工深度值(D) 之細孔加工電極之 消耗值(W)設為一可自動量測計算之動態值,以取得較少 之誤差值,令細孔加工電極皆可準確加工至所設定之加工 深度值(D)處,使每一孔之加工深度值約在誤差極小之加 工深度值,是以,運用本發明之細孔放電加工自動電極消 耗補償之方法,當前述之補正值(〇 f f s e t )設為零時,則可 有效進行盲孔放電加工,其所放電加工出之各盲孔深度誤 差值相當的微小。 綜上所陳,本發明之方法實施者,乃確實具有創新暨 實際功效提昇,是應合於發明專利之成立要義,懇祈 鈞 局明鑒,惠予授准合法之專利權成立,至感德便。Page 10 520311 V. Description of the invention (7) The point is the Z-axis position 261.74. When the processing is reached, the processing axis is raised to a safe height, the worktable is moved to the fourth hole processing position, and the subsequent processing is the same; As a result, the error between the machining of the second hole and the machining of the third hole is 0 · 04 (10.10-10.06) divided by 1.5 (1 + 0.5) which is approximately equal to 0.027 mm. The electrode consumption value obtained by the above processing depth west is the value of the adjacent hole. The electrode consumption value is quite close to the value. Therefore, the fine-hole electrical discharge machining machine can obtain the machining depth with very small errors by using this dynamic automatic electrode consumption compensation method, thereby shortening the stroke of each tablet electric machining to achieve effective Those who improve work efficiency. In addition, the foregoing is to set the consumption value (W) of the fine hole processing electrode (D) as a dynamic value that can be automatically measured and calculated to obtain fewer error values, so that the fine hole processing electrode can be used. Accurately process to the set processing depth value (D), so that the processing depth value of each hole is about the processing depth value with very small error. Therefore, the method of automatic electrode consumption compensation for pore discharge machining of the present invention is used. When the aforementioned correction value (0ffset) is set to zero, blind hole discharge machining can be effectively performed, and the depth error value of each blind hole produced by the discharge machining is quite small. To sum up, the implementer of the method of the present invention does have innovation and practical effect improvement. It is in line with the founding principles of invention patents. I sincerely hope that the patents of the Bureau will be granted. Poop.

520311 圖式簡單說明 其中,說明所引述圖示,分別係為: 圖式說明: 第一圖:係細孔放電加工深度值計算之原理。 第二圖:係習知細孔放電機進行細孔放電加工之作動 參考圖。 第三圖:係習知進行盲孔加工之剖視參考圖。 第四圖:係本發明自動電極消耗補償之動態細孔加工 電極消耗率之計算原理。 第五圖:係本發明之加工流程方塊圖。 第六圖:係本發明之第一孔加工流程方塊圖。 圖號說明:520311 Brief description of the drawings Among them, the diagrams cited in the description are as follows: Description of the drawings: The first picture: the principle of calculating the depth of pore discharge machining. The second picture is a reference diagram of the operation of the conventional fine hole discharge machine for fine hole discharge machining. The third picture is a cross-sectional reference diagram of conventional blind hole machining. The fourth figure: the calculation principle of the electrode consumption rate in the dynamic fine hole processing of automatic electrode consumption compensation of the present invention. Fifth figure: a block diagram of the processing flow of the present invention. Fig. 6 is a block diagram of the first hole processing flow of the present invention. Figure number description:

加工深度值-------D 工件加工厚度----Z 電極消耗率(值--W 補正值- — --offsetProcessing depth value ------- D workpiece processing thickness ---- Z electrode consumption rate (value --W correction value --- --offset

Z軸第一發放電測得之假設數值-------ZQ Z軸第二發放電測得之假設數值-------Z1 Z軸第三發放電測得之假設數值-------Z2 第二孔動態電極消耗假設值------- --W0 第三孔動態電極消耗假設值----------W1Hypothetical value measured in the first discharge of the Z axis ------- ZQ Hypothetical value measured in the second discharge of the Z axis ---------- Z1 Hypothetical value measured in the third discharge of the Z axis- ------ Z2 Assumed value of dynamic electrode consumption in the second hole ------- --W0 Assumed value of dynamic electrode consumption in the third hole ---------- W1

第12頁Page 12

Claims (1)

5203 U 1請專利範圍 .係種等深度細孔放電加工自動電極消耗補償之方法,其 =對在細孔放電機之加工深度值(D)之設定,即加^ 消二ί之取得係包括輸入有:1.工件厚度(ζ)、2·電極 以祐率(?)及3.補正值(〇ffSet)等數值所計算出之和, 杂加工電極可依據其所輸入之各數值經加工程式計箅 徵U加工深度值,以令其對工件作細孔放電加工其特 知前述之細孔加工電極之消耗率(w)其主要係將前述 電極消耗值在設為一自動量測計算之動態值 π加工電極以上一孔(第一孔)所偵測取得之電極相 、:工件表面之值作為參考值’減下一孔(第二孔 表面之值,因此得以算出上一孔(第一孔)之 :極消耗值,並將此電極消耗值帶入為目前加工孔 值(即$第二孔之電極消♦耗值),目㈣之加工孔 之消耗值相當的接近’ 4目對地所計算出之加工深 值會相當接近’第二孔以下之加工,依此類推, =;進行放電加工時’即依據上一孔之電極消耗值, :為:-孔之補償值,以達到誤差相當少之細孔放電加 作效Ϊ:可縮短每次放電加工之行程,達到有效提昇工 利ΐ圍第1•項所述之等深度細孔放電加工自勒 為零睥補償之方法,其中,當前述之補正值(off set) :二可進行精確盲孔放電加工,且其所放電加工出 &lt;各盲孔深度誤差值相當的微小者。5203 U 1 Patent scope. This is a method for compensating the consumption of automatic electrodes for deep-hole electrical discharge machining of equal depth. It is the setting of the processing depth value (D) in a fine-hole electric discharge machine, that is, adding ^ to eliminate the two. The acquisition system includes Inputs are: 1. Workpiece thickness (ζ), 2. Sum of the electrode calculated by the value of 佑 (?) And 3. Correction value (〇ffSet), etc., and the machining electrode can be processed according to the entered values. The program calculates the U machining depth value so that it can perform pore discharge machining on the workpiece. It knows the aforementioned consumption rate of the pore processing electrode (w). It mainly sets the consumption value of the electrode as an automatic measurement calculation. The dynamic value of π is the electrode phase detected by processing one hole above the electrode (the first hole): the value of the workpiece surface is used as a reference value 'minus the value of the next hole (the value of the second hole surface, so the previous hole ( The first hole): Extreme consumption value, and bring this electrode consumption value into the current machining hole value (ie, the second hole electrode consumption value). The consumption value of the machining hole is quite close to '4 The processing depth calculated from the ground to the ground will be quite close to the 'second The following processing, and so on, == when performing electrical discharge processing, that is, based on the electrode consumption value of the previous hole, is:-the compensation value of the hole, to achieve the effect of fine hole discharge with relatively small errors. Each stroke of electrical discharge machining achieves the method of effectively improving the equal-depth fine-hole electrical discharge machining described in item 1 • item, which is zero compensation, wherein when the aforementioned offset value (off set): The precise blind hole electrical discharge machining is performed, and the discharge machining results in <minimum error values corresponding to the depth of each blind hole. 520311 六、申請專利範圍 3.如申請專利範圍第1.項所述之等深度細孔放電加工自動 電極消耗補償之方法,當加工中途進行多次表面量測, 進而自動修正電極消耗值(W ),可得到非常精確之加工 深度者。 馨520311 VI. Application for patent scope 3. The method of automatic electrode consumption compensation for deep-hole electrical discharge machining of the same depth as described in item 1. of the patent application scope. When surface measurement is performed several times during processing, the electrode consumption value is automatically corrected (W ), You can get very accurate processing depth. Xin 第14頁Page 14
TW90108713A 2001-04-12 2001-04-12 Method of automatic electrode wear compensation in equal depth pore electro-discharge machining TW520311B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW90108713A TW520311B (en) 2001-04-12 2001-04-12 Method of automatic electrode wear compensation in equal depth pore electro-discharge machining
JP2001241559A JP2002307238A (en) 2001-04-12 2001-08-09 Method of automatic electrode wear compensation in equal depth pore electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90108713A TW520311B (en) 2001-04-12 2001-04-12 Method of automatic electrode wear compensation in equal depth pore electro-discharge machining

Publications (1)

Publication Number Publication Date
TW520311B true TW520311B (en) 2003-02-11

Family

ID=21677922

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90108713A TW520311B (en) 2001-04-12 2001-04-12 Method of automatic electrode wear compensation in equal depth pore electro-discharge machining

Country Status (2)

Country Link
JP (1) JP2002307238A (en)
TW (1) TW520311B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596474A (en) * 2009-10-21 2012-07-18 诺沃皮尼奥内有限公司 Tool compensation method and device
CN113770463A (en) * 2021-09-27 2021-12-10 深圳大学 Micro-step hole machining method based on electrode loss

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI571338B (en) * 2015-12-10 2017-02-21 國立高雄應用科技大學 Electrical discharge machine equipped with trimming tools
CN108340033A (en) * 2018-04-20 2018-07-31 北京迪蒙吉意超硬材料技术有限公司 Process the EDM shaping machine intelligent depth control system and method for PCD composite sheets
CN114571019B (en) * 2022-03-16 2023-10-13 上海空间推进研究所 Electric spark milling method
CN114619108B (en) * 2022-04-19 2023-09-15 中国航发动力股份有限公司 Micro electric spark small hole machining method, system, equipment and storage medium thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596474A (en) * 2009-10-21 2012-07-18 诺沃皮尼奥内有限公司 Tool compensation method and device
US8999136B2 (en) 2009-10-21 2015-04-07 Nuovo Pignone S.P.A. Method for compensating a wear of an electrode
CN102596474B (en) * 2009-10-21 2015-09-30 诺沃皮尼奥内有限公司 Tool compensation method and device
CN113770463A (en) * 2021-09-27 2021-12-10 深圳大学 Micro-step hole machining method based on electrode loss

Also Published As

Publication number Publication date
JP2002307238A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
TW520311B (en) Method of automatic electrode wear compensation in equal depth pore electro-discharge machining
JP2006123065A (en) Control device for wire electric discharge machine
JP6227599B2 (en) Wire electrical discharge machine with constant distance between poles
CN101670472B (en) Method and device for controlling wire cutting electrochemical discharge processing and feeding
TW201006596A (en) Method and apparatus for feed control of wire cutting and electrochemical discharge machining
Klink et al. Technology-based assessment of subtractive machining processes for mold manufacture
Song et al. Development of strip EDM
US6723941B2 (en) Wire electric-discharge machining apparatus
JP6506349B2 (en) Control device of wire electric discharge machine, and control method of wire electric discharge machine
CN108340035B (en) Hole depth determination method, calculation control system and electrode machining device
JP4569973B2 (en) Electric discharge machining apparatus and method, and method for determining occurrence of electric discharge
CN105436638A (en) Processing technology method for mould cavity
CN109652802B (en) Multi-time engraving and chemical milling manufacturing method for component
CN103084680B (en) Method for improving quality of wire cut electrical discharge machining by adopting multimedia
CN104962916A (en) Etching-assisted micro-ultrasonic machining device and etching-assisted micro-ultrasonic machining method
CN109434229A (en) A kind of abnormity hole electric spark integration machined electrode and processing method
CN107138814A (en) Spark machine minute surface discharge-treating method
JP4678711B2 (en) Die-sinker EDM
CN103056462A (en) Designing method of blade molded surface electrolysis negative electrode mould protecting device
JP2002307238A5 (en)
RU2747436C1 (en) Method for high-precision continous pulse-cyclic dimensional electrochemical treatment of parts with an oscillating electrode
JP5494459B2 (en) Electrolytic processing method and electrolytic processing apparatus
RU2257981C1 (en) Electrochemical treatment process
JP3829300B2 (en) Dynamic pressure groove machining method
JP2002254247A (en) High efficient hole forming method by diesinking micro electrical discharge machining

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees