JP2002307238A - Method of automatic electrode wear compensation in equal depth pore electric discharge machining - Google Patents
Method of automatic electrode wear compensation in equal depth pore electric discharge machiningInfo
- Publication number
- JP2002307238A JP2002307238A JP2001241559A JP2001241559A JP2002307238A JP 2002307238 A JP2002307238 A JP 2002307238A JP 2001241559 A JP2001241559 A JP 2001241559A JP 2001241559 A JP2001241559 A JP 2001241559A JP 2002307238 A JP2002307238 A JP 2002307238A
- Authority
- JP
- Japan
- Prior art keywords
- machining
- value
- electrode
- depth
- pore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は一種の等深度細孔放
電加工自動電極消耗補償の方法に関する。特に一種の誤
差を極小とし、加工一回当りのプロセスを短縮し、作業
効率を効果的に向上させる等深度細孔放電加工自動電極
消耗補償の方法に係る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of automatic electrode wear compensation for a kind of equi-depth pore electric discharge machining. In particular, the present invention relates to a method of equi-depth pore discharge machining automatic electrode consumption compensation for minimizing a kind of error, shortening a process per machining, and effectively improving work efficiency.
【0002】[0002]
【従来の技術】細孔放電機は加工プログラム装置におい
て、先ず加工深度値を入力、設定後、放電電源を起動し
放電加工作業を行うものである。図1が示すように、公
知の細孔放電機の加工深度値(D)の設定では、1.被
加工物の加工深度(Z)、2.加工電極の消耗率
(W)、及び補正値(offset)等の数値(即ちD
=Z+W+offset)を入力する。これにより、加
工電極はその入力した加工深度値に基づき、被加工物に
対して放電加工を行う。一方、前記加工深度値はすべて
固定値である。電極の消耗率は電極の長さと反比例する
ため、従来品では加工電極の消耗率は固定値に設定され
ているのである。別に、前記補正値の設定は主に、孔を
穿つ時に、該加工電極の被加工物への完全な貫通を確保
する、或いは加工深度値(D)を電極消耗値(W)に加
え、以って被加工物の貫通を確保する、或いは目的とす
る加工深度を達成する。2. Description of the Related Art In a machining program apparatus, a machining depth value is first input and set, and then a discharge power source is started to perform an electric discharge machining operation. As shown in FIG. 1, in the setting of the machining depth value (D) of the known pore discharge machine, 1. The processing depth (Z) of the workpiece; Numerical values such as the wear rate (W) of the processing electrode and the correction value (offset) (ie, D
= Z + W + offset). Thus, the machining electrode performs electric discharge machining on the workpiece based on the input machining depth value. On the other hand, the machining depth values are all fixed values. Since the wear rate of the electrode is inversely proportional to the length of the electrode, the wear rate of the machining electrode is set to a fixed value in the conventional product. Separately, the setting of the correction value is mainly to ensure complete penetration of the machining electrode into the workpiece when drilling a hole, or to add the machining depth value (D) to the electrode wear value (W), As a result, the penetration of the workpiece is ensured, or the intended machining depth is achieved.
【0003】新しい電極を使用する時には、電極は完全
で、かつ端面と直径も共に完全であるため、初めての孔
の加工時、深度が深くなりがちである。これは電極の消
耗が少ないためである。電極が二つ目の孔を加工後、電
極消耗率は徐々に増加するが、これは加工工程の反応速
度が原因で、電極の消耗率は電極が短くなることにより
増加する。特に、小さ目の直径の電極を使用した時に、
極めて明確で(0.3mm、0.4mm、0.5mm等、
或いは1.5mm以下)、これが、加工深度が一定でな
い主要原因である。言い換えれば、すべての孔の加工を
均一にするためには、加工深度が浅ければ浅いほど、電
極消耗値(W)を穿孔加工が可能な電極最大消耗値(即
ち電極最短時の電極消耗値)に設定する必要がある。そ
のため、新しい電極に換えて加工する時には、電極の消
耗値が固定値であるため、新しい電極を用いた最初の孔
の加工深度は他の孔より深くなる。即ち、加工深度は加
工孔数に従い徐々に減少して行くと言うことである。よ
って、超過した加工深度は、滓の排出問題も加わり、非
常に多くの加工時間を消費することとなる。When a new electrode is used, the electrode is perfect, and both the end face and the diameter are perfect, so that the depth tends to be deep when the first hole is formed. This is because the electrode is less consumed. After the electrode has machined the second hole, the electrode wear rate gradually increases, but this is due to the reaction speed of the working process, and the electrode wear rate increases as the electrode becomes shorter. Especially when using smaller diameter electrodes,
Extremely clear (0.3mm, 0.4mm, 0.5mm, etc.
Or 1.5 mm or less), which is the main cause of the uneven working depth. In other words, in order to make the processing of all holes uniform, as the processing depth becomes smaller, the electrode wear value (W) is set to the maximum electrode wear value at which drilling is possible (that is, the electrode wear value at the shortest electrode). ) Must be set. Therefore, when processing is performed in place of a new electrode, the consumption depth of the electrode is a fixed value, and the processing depth of the first hole using the new electrode is deeper than the other holes. That is, the working depth gradually decreases with the number of working holes. Thus, an excessive machining depth adds to the problem of slag discharge and consumes a great deal of machining time.
【0004】その欠点は以下のように統合される。 1.図2が示すように、細孔加工電極が被加工物に対し
て細孔放電加工を行う時、毎回、最大の電極消耗値に設
定する。そのため、全く新しい加工電極は、第一孔放電
加工から最後の一個の孔まで、電極が被加工物の底部を
穿出する場合が甚だしく多い。さらには加工時間の増加
を招き、加えて高圧の加工液が、電極端より噴出する反
作用力の問題により、電極の偏移を引き起こし、被加工
物底部の孔の拡大減少を招き、被加工物の損壊をも招く
恐れがある。公知の細孔放電加工機では電極の消耗を固
定値に設定するため、このような欠点が存するのであ
る。 2.公知の放電加工深度値(D)の設定は、電極を固定
の最大消耗値に設定するが、この設定方式は被加工物に
対して完全に貫通加工が可能であるだけで、被加工物に
対して精巧、正確な未貫通孔の加工を行うことはできな
い。例えば図3が示すように、被加工物を、加工しよう
とする未貫通孔(盲孔)の実際の深度に設定した場合に
は、その補正値(offset)はゼロである。これに
より、細孔加工電極が孔加工を続け消耗すると、該被加
工物に対して加工する未貫通孔深度には極めて大きな差
異があり、加工深度が徐々に減少して行く現象が見られ
る。[0004] The disadvantages are integrated as follows. 1. As shown in FIG. 2, the maximum electrode consumption value is set each time the pore machining electrode performs the pore electric discharge machining on the workpiece. For this reason, a completely new machining electrode is extremely often the case where the electrode penetrates the bottom of the workpiece from the first hole electric discharge machining to the last one hole. Further, the machining time is increased, and in addition, the reaction force of the high-pressure machining fluid spouting from the electrode end causes the electrode to shift, causing the hole at the bottom of the workpiece to expand and decrease, and There is also a risk of causing damage. In a known pore electric discharge machine, such a defect exists because the consumption of the electrode is set to a fixed value. 2. In the setting of the known electric discharge machining depth value (D), the electrode is set to a fixed maximum consumption value. However, this setting method can completely penetrate the workpiece and only allows the machining to be performed. On the other hand, it is not possible to perform elaborate and accurate non-through hole processing. For example, as shown in FIG. 3, when the workpiece is set to the actual depth of the unpenetrated hole (blind hole) to be processed, the correction value (offset) is zero. As a result, if the pore-forming electrode continues to be drilled and consumed, there is a very large difference in the depth of the non-through hole to be machined on the workpiece, and a phenomenon is seen in which the machining depth gradually decreases.
【0005】[0005]
【発明が解決しようとする課題】上記公知構造の欠点を
解決するため、本発明は等深度細孔放電加工自動電極消
耗補償方法の提供を課題とする。本発明は、動態自動電
極消耗補償方法を使用するため、加工深度の誤差が極め
て小さく、延いては一回の放電加工のプロセスを短縮可
能で、効果的に作業効率を向上させることができる。さ
らに、加工深度値(D)を加工する細孔加工電極の消耗
値(W)は自動測定計算の動態値に設定するため、誤差
値を小さくすることができ、細孔加工電極は設定された
加工深度値(D)を正確に加工し、各孔の加工深度値の
誤差は極小である。また、本発明の細孔放電加工自動電
極消耗補償方法を採用することにより、補正値(off
set)をゼロに設定すれば、深度誤差値が非常に微小
な未貫通孔の放電加工を効果的に行うことができる。SUMMARY OF THE INVENTION In order to solve the above-mentioned drawbacks of the known structure, an object of the present invention is to provide a method of automatically compensating for the consumption of an electrode at the same depth of pores by EDM. Since the present invention uses the dynamic electrode wear compensation method, the error of the machining depth is extremely small, so that the process of one electric discharge machining can be shortened, and the working efficiency can be effectively improved. Furthermore, since the consumption value (W) of the pore processing electrode for processing the processing depth value (D) is set to the dynamic value of the automatic measurement calculation, the error value can be reduced, and the pore processing electrode is set. The machining depth value (D) is accurately machined, and the error of the machining depth value of each hole is minimal. In addition, by adopting the method for automatically compensating for the consumption of the electrode by fine pore discharge machining according to the present invention, the correction value (off
If (set) is set to zero, it is possible to effectively perform electric discharge machining of a non-through hole having a very small depth error value.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するた
め、本発明は下記の等深度細孔放電加工自動電極消耗補
償方法を提供する。それは、細孔放電機の電極加工深度
値(D)の設定において、加工深度値(D)を得るた
め、1.被加工物の加工深度(Z)、2.電極消耗率
(W)、3.補正値(offset)等を入力してこれ
らの和を算出し、加工電極はその数値に基づき、加工プ
ログラムによって実際の加工深度値を算出し、被加工物
に対する細孔放電加工を行う。該細孔加工電極の消耗率
(W)は自動測定計算の動態値に設定するため、加工電
極は第一孔加工により測定、取得された電極の被加工物
表面に対する値を参照値とし、第二孔電極の被加工物表
面に対する値を減じる。即ち、第一孔加工時の正確な電
極消耗値を算出すれば、該電極消耗値を第二孔の電極消
耗値として入力することができる。隣りあった加工孔の
電極消耗値は非常に近似しているため、このようにして
相対的に算出される加工深度値の誤差は非常に小さい。In order to solve the above-mentioned problems, the present invention provides the following equi-depth pore electric discharge machining automatic electrode wear compensation method. In order to obtain the machining depth value (D) in setting the electrode machining depth value (D) of the pore discharge machine, it is necessary to: 1. The processing depth (Z) of the workpiece; 2. electrode wear rate (W); A correction value (offset) or the like is input to calculate the sum thereof, and the machining electrode calculates an actual machining depth value by a machining program based on the numerical value, and performs pore discharge machining on the workpiece. In order to set the consumption rate (W) of the pore processing electrode to the dynamic value of the automatic measurement calculation, the processing electrode measured and obtained by the first hole processing uses the value of the electrode with respect to the workpiece surface as a reference value, Decrease the value of the two-hole electrode for the workpiece surface. That is, if an accurate electrode wear value at the time of processing the first hole is calculated, the electrode wear value can be input as an electrode wear value of the second hole. Since the electrode consumption values of the adjacent processing holes are very similar, the error of the processing depth value relatively calculated in this way is very small.
【0007】[0007]
【発明の実施の形態】図4、5、6が示すように、本発
明では、加工深度値(D)の設定時、被加工物の加工深
度(Z)、及び補正値(offset)を直接入力す
る。加工電極の消耗値(W)は、本発明においては自動
測定計算の動態値として設定する。よって、加工電極は
一つ前の孔(第一孔)加工時の値を測定し、被加工物表
面に相対して測定された値を参照値とし、次の孔(第二
孔)の加工時の電極の被加工物表面に相対して測定され
た値を減じる。そのため、一つ前の孔(第一孔)の加工
時の正確な電極消耗値を算出することができ、この電極
消耗値を現在加工している孔の加工時の電極消耗値(即
ち第二孔の電極消耗値)として入力する。以後の加工も
これに則って行う。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIGS. 4, 5 and 6, in the present invention, when setting the processing depth value (D), the processing depth (Z) and the correction value (offset) of the workpiece are directly changed. input. In the present invention, the consumption value (W) of the processing electrode is set as a dynamic value of automatic measurement calculation. Therefore, the machining electrode measures the value at the time of machining the previous hole (first hole), uses the value measured relative to the surface of the workpiece as a reference value, and processes the next hole (second hole). Subtract the value measured relative to the workpiece surface at the time of the electrode. Therefore, an accurate electrode wear value at the time of machining the previous hole (first hole) can be calculated, and the electrode wear value at the time of machining the currently processed hole (ie, the second electrode wear value) can be calculated. (Electrode wear value of the hole). Subsequent processing is performed in accordance with this.
【0008】第一孔の細孔放電加工時、電極が被加工物
と第一放電を行う時、測定されるZ軸の数値を仮にZ0
とする。第一孔の加工が完成すると、作業台は第二孔の
加工位置に移動する。第二孔の加工を行う時には、電極
が被加工物とその第一放電を行う時に測定されたZ軸の
数値をZ1とする。即ち、第二孔加工深度値(D)公式
の電極消耗値(W)は、電極が被加工物表面に接触した
時、極めて短時間で算出され(W0はZ0引くZ1の
値)、さらに、計算公式に代入される。即ち、加工深度
値(D)は被加工物の加工深度(Z)に動態電極消耗値
(W0)と穿孔補正値(offset)を加えた数値で
ある。第三孔の加工時には、電極が被加工物とその第一
放電を行う時に測定されたZ軸の数値をZ2とする。即
ち、第三孔加工深度値(D)公式の電極消耗値(W1)
は、電極が被加工物表面に接触した時、極めて短時間で
算出され(W1はZ1引くZ2の値)、さらに、計算公
式に代入される。即ち、加工深度値(D)は被加工物の
加工深度(Z)に動態電極消耗値(W1)と穿孔補正値
(offset)を加えた数値である。続く加工も同様
である(図5参照)。[0008] When the electrode performs the first discharge with the workpiece at the time of the electric discharge machining of the first hole, the measured value of the Z axis is assumed to be Z0.
And When the processing of the first hole is completed, the worktable moves to the processing position of the second hole. When machining the second hole, the value of the Z-axis measured when the electrode performs the workpiece and the first discharge is Z1. That is, the electrode consumption value (W) of the second hole processing depth value (D) formula is calculated in a very short time when the electrode contacts the workpiece surface (W0 is the value of Z1 minus Z1), and Substituted into the calculation formula. That is, the machining depth value (D) is a numerical value obtained by adding the dynamic electrode wear value (W0) and the drilling correction value (offset) to the machining depth (Z) of the workpiece. When machining the third hole, the value of the Z axis measured when the electrode performs the first discharge with the workpiece is Z2. That is, the third electrode processing depth value (D) formula electrode wear value (W1)
Is calculated in a very short time when the electrode contacts the surface of the workpiece (W1 is the value of Z2 minus Z2), and is further substituted into the calculation formula. That is, the machining depth value (D) is a numerical value obtained by adding the dynamic electrode wear value (W1) and the drilling correction value (offset) to the machining depth (Z) of the workpiece. The same applies to the subsequent processing (see FIG. 5).
【0009】未貫通孔の加工時の補正値(offse
t)はゼロに設定する(図4参照)。電極消耗値(W)
は新電極の第一孔加工の電極消耗値を特別に記憶し、W
0とする。その他はW1とし、各孔毎に記録する。ま
た、電極の有効な長さに基づき、相対する電極消耗値の
番号が加工深度計算公式に代入される。例えば、細孔放
電加工の加工深度値(D)は、1.被加工物の加工深度
(Z)、2.加工電極の消耗率(W)、3.補正値(o
ffset)等数値の和、即ちD=Z+W(W0、W
1、W2、・・・、WN)+offsetに等しい。加
工開始に当り入力する細孔加工電極消耗値は、およその
値とすることができ、よって、第一孔放電加工のデータ
を以降の加工のための根拠とすることができる。
また、消耗値をゼロとし、加工深度が被加工物の加工深
度(Z)に補正値(offset)(未貫通孔加工時に
はゼロとする)を加えた値に達した時、加工を停止し、
加工軸を上昇させて被加工物表面から離す。さらに、作
業台を非加工平面まで移動させて電極の被加工物表面へ
の接触によってそのZ軸の値を得る。続いて、一つ前の
被加工物表面に相対して得られたZ軸値に対して今回測
定された値を減じる。このように、今回の孔を加工する
際の電極消耗率を算出することができ、かつ実際の加工
深度を得ることができる。続いて、該孔の加工時の電極
消耗率に基づき、再加工の深度値を算出し、元の加工位
置に戻し、加工が完成するまで、未完成の加工を行う。
その加工プロセスは図6が示す通りである。この入力方
式は人為的入力ミスを避け、加工効率を向上させること
ができる。[0009] The correction value (offse
t) is set to zero (see FIG. 4). Electrode wear value (W)
Specially memorizes the electrode wear value of the first hole processing of the new electrode, W
Set to 0. Others are set to W1 and recorded for each hole. Also, based on the effective length of the electrode, the number of the corresponding electrode wear value is substituted into the machining depth calculation formula. For example, the machining depth value (D) of the pore electric discharge machining is: 1. The processing depth (Z) of the workpiece; 2. consumption rate of the working electrode (W); Correction value (o
ffset), ie, D = Z + W (W0, W
1, W2,..., WN) + offset. The pore machining electrode wear value input at the start of machining can be an approximate value, and thus the data of the first electro-discharge machining can be used as a basis for the subsequent machining.
Further, when the wear value is set to zero and the processing depth reaches a value obtained by adding a correction value (offset) to the processing depth (Z) of the workpiece (set to zero when processing a non-through hole), the processing is stopped.
Raise the machining axis to separate it from the workpiece surface. Further, the work table is moved to the non-machining plane, and the Z-axis value is obtained by contact of the electrode with the surface of the workpiece. Subsequently, the value measured this time is subtracted from the Z-axis value obtained relative to the immediately preceding workpiece surface. As described above, the electrode consumption rate when the current hole is machined can be calculated, and the actual machining depth can be obtained. Subsequently, a rework depth value is calculated based on the electrode consumption rate at the time of machining the hole, returned to the original machining position, and unfinished machining is performed until machining is completed.
The processing process is as shown in FIG. This input method can avoid human input errors and improve processing efficiency.
【0010】現在、加工しようとする被加工物の加工深
度を20MM、かつ補正値を3MMとする。この場合、
先ず、前記プログラム中において入力可能な加工深度
(D)は加工しようとする深度(Z)20MMに電極消
耗率(W)ゼロと補正値(offset)3MMを加え
た数値である。電極が被加工物に対して放電加工を開始
した時、第一回放電点が得られるZ軸の数値を仮に31
5MM(Z0)位置とする。292MM(マイナス23
MM)位置まで加工して行った時、コントローラーは加
工を停止し、上昇し被加工物表面より離れる。続いて、
作業台を平面位置に移動し、放電加工を施していない表
面に接触する。この時得られるZ軸の位置を仮に30
7.3MMとすると、電極消耗は7.7MM(315−
307.3)である。同時に、実際の加工深度が15.
3MMであり、かつ電極消耗率は約50%(7.7/1
5.3)であると算出される。よって、残余の加工深度
は4.7MMに電極消耗率を加えれば得られる。こうし
て、算出された正確な加工深度はZ軸に対して281.
94のMMの位置(292−7.06−3)である。続
いて、作業台は元の加工位置に戻り、所定の深度が達成
されるまで未完成の加工を続け、加工軸が安全高度まで
上昇して第二孔の加工位置に移動する。At present, the processing depth of the workpiece to be processed is 20 MM, and the correction value is 3 MM. in this case,
First, the machining depth (D) that can be input in the program is a numerical value obtained by adding the electrode wear rate (W) of zero and the correction value (offset) of 3MM to the depth (Z) of 20MM to be machined. When the electrode starts electric discharge machining on the workpiece, the value of the Z-axis at which the first discharge point is obtained is assumed to be 31.
5MM (Z0) position. 292MM (minus 23
When processing is performed to the MM) position, the controller stops the processing, rises, and moves away from the workpiece surface. continue,
Move the platform to a planar position and touch a surface that has not been subjected to electrical discharge machining. The position of the Z axis obtained at this time is assumed to be 30
Assuming 7.3MM, the electrode wear is 7.7MM (315-
307.3). At the same time, the actual machining depth is 15.
3MM and the electrode wear rate is about 50% (7.7 / 1
5.3). Therefore, the remaining machining depth can be obtained by adding the electrode wear rate to 4.7 MM. Thus, the calculated accurate machining depth is 281.
It is the position of MM of 94 (292-7.06-3). Subsequently, the work table returns to the original processing position, continues unfinished processing until a predetermined depth is achieved, and the processing axis is raised to a safe altitude and moves to the processing position of the second hole.
【0011】放電が再開され、その第一回放電接触のZ
軸位置の数値304.94(Z1)を取得する。よっ
て、新電極の第一孔加工の電極消耗値(W0)は315
引く304.94で10.06である。これを、加工深
度計算公式(D=Z+W+offset)に代入する
と、20+10.6+3=33.06となる。故に、こ
の孔の加工停止点はZ軸位置271.88(304.9
4−33.06)である。加工達成後、加工軸は安全高
度まで上昇し、作業台は第三孔加工位置まで移動する。
放電が再開され、その第一回放電接触のZ軸位置の数値
294.84(Z2)を取得する。よって、第二孔加工
の電極消耗値(W1)は304.94引く294.84
で10.10である。これを、加工深度計算公式(D=
Z+W+offset)に代入すると、20+10.1
0+3=33.10となる。故に、この孔の加工停止点
はZ軸位置261.74である。加工達成後、加工軸は
安全高度まで上昇し、作業台は第四孔加工位置まで移動
する。以降の加工も同様である。The discharge is resumed and the first discharge contact Z
The numerical value 304.94 (Z1) of the axis position is obtained. Therefore, the electrode consumption value (W0) of the first hole processing of the new electrode is 315.
Subtract 304.94, which is 10.06. Substituting this into the processing depth calculation formula (D = Z + W + offset) gives 20 + 10.6 + 3 = 33.06. Therefore, the machining stop point of this hole is at the Z-axis position 271.88 (304.9).
4-33.06). After machining is completed, the machining axis is raised to a safe altitude, and the worktable moves to the third hole machining position.
The discharge is restarted, and a value 294.84 (Z2) of the Z-axis position of the first discharge contact is obtained. Therefore, the electrode consumption value (W1) of the second hole processing is 304.94 minus 294.84.
Is 10.10. This is calculated using the machining depth calculation formula (D =
Z + W + offset), 20 + 10.1
0 + 3 = 33.10. Therefore, the processing stop point of this hole is the Z-axis position 261.74. After the machining is completed, the machining axis is raised to a safe altitude, and the worktable moves to the fourth hole machining position. The same applies to the subsequent processing.
【0012】[0012]
【発明の効果】上記のように、第二孔加工と第三孔加工
の誤差は0.04(10.10−10.06)割る1.
5(1+0.5)で、約0.027MMである。上記の
加工深度を用いて得られる電極消耗値は、隣り合った孔
の電極消耗値で、しかも数値が非常に近接している。即
ち、該細孔放電加工機は、この動態自動電極消耗補償方
法を使用するため、加工深度の誤差が極めて小さく、延
いては一回の放電加工のプロセスを短縮可能で、効果的
に作業効率を向上させることができる。さらに、加工深
度値(D)を達成する細孔加工電極の消耗値(W)は自
動測定計算の動態値に設定することも可能であるため、
誤差値を小さくすることができる。このため、細孔加工
電極は設定された加工深度値(D)に正確に加工し、各
孔の加工深度値の誤差は極小である。加えて、本発明の
細孔放電加工自動電極消耗補償の方法を運用することに
より、補正値(offset)をゼロに設定すれば、効
果的に未貫通孔(盲孔)の放電加工を行うことができ
る。該未貫通孔の深度誤差値が非常に微小であることは
言うまでも無い。As described above, the error between the second hole processing and the third hole processing is 0.04 (10.10-10.06) divided by 1.
5 (1 + 0.5), which is about 0.027 MM. The electrode wear value obtained using the above processing depth is the electrode wear value of the adjacent holes, and the values are very close. In other words, since the pore electric discharge machine uses this dynamic electrode wear compensation method, the error of the machining depth is extremely small, so that the process of one electric discharge machining can be shortened, and the working efficiency can be effectively improved. Can be improved. Furthermore, since the consumption value (W) of the microporous electrode for achieving the processing depth value (D) can be set to the dynamic value of the automatic measurement calculation,
The error value can be reduced. For this reason, the fine hole machining electrode is accurately machined to the set machining depth value (D), and the error of the machining depth value of each hole is extremely small. In addition, if the correction value (offset) is set to zero by operating the method of automatic electrode discharge compensation of the pore discharge machining according to the present invention, the electric discharge machining of the non-through hole (blind hole) can be effectively performed. Can be. It goes without saying that the depth error value of the non-through hole is very small.
【図1】細孔放電加工深度値計算の原理である。FIG. 1 is a principle of calculating a depth value of a pore discharge machining.
【図2】公知の細孔放電機による細孔放電加工の作動参
考図である。FIG. 2 is an operation reference diagram of a pore discharge machining by a known pore discharge machine.
【図3】公知の未貫通孔加工作業の断面参考図である。FIG. 3 is a cross-sectional reference view of a known non-through hole processing operation.
【図4】本発明自動電極消耗補償の動態細孔加工電極消
耗率の計算原理である。FIG. 4 is a calculation principle of a dynamic pore processing electrode consumption rate of the automatic electrode consumption compensation according to the present invention.
【図5】本発明加工プロセスのブロックチャートであ
る。FIG. 5 is a block chart of the processing process of the present invention.
【図6】本発明の第一孔加工プロセスのブロックチャー
トである。FIG. 6 is a block chart of a first hole forming process of the present invention.
D 加工深度値 Z 被加工物の加工深度 W 電極消耗率(値) offset 補正値 Z0 Z軸の第一放電により測定された仮設数
値 Z1 Z軸の第二放電により測定された仮設数
値 Z2 Z軸の第三放電により測定された仮設数
値 W0 第二孔動態電極消耗の仮設数値 W1 第三孔動態電極消耗の仮設数値D Machining depth value Z Machining depth of workpiece W Electrode wear rate (value) offset correction value Z0 Temporary value measured by first discharge of Z axis Z1 Temporary value measured by second discharge of Z axis Z2 Z axis Numerical value measured by the third discharge of W0 Temporary numerical value of the second pore dynamic electrode consumption W1 Temporary numerical value of the third pore dynamic electrode consumption
Claims (3)
設定において、加工深度値(D)を得るため、1.被加
工物の加工深度(Z)、2.電極消耗率(W)、3.補
正値(offset)等の数値の和を算出し、これらの
各数値により、加工プログラムに基づいて実際の電極加
工深度値を算出し、以って被加工物に対する細孔放電加
工を行う加工方法であって、 該細孔加工電極の消耗率(W)を自動測定計算の動態値
に設定するべく、一つ前の孔(第一孔)加工時に測定、
取得された電極の被加工物表面に対するZ軸値を参照値
とし、次の孔(第二孔)の加工時の被加工物表面に対す
るZ軸値を減じて電極消耗値を算出して、この電極消耗
値を次の孔の加工時の電極消耗値(即ち、第二孔の電極
消耗値)として入力することにより、加工電極の加工深
度誤差を最小とし、 以下同様に加工することを特徴とする等深度細孔放電加
工自動電極消耗補償方法。In order to obtain a machining depth value (D) mainly in setting a machining depth value (D) of an electrode of a pore discharge machine, it is necessary to: 1. The processing depth (Z) of the workpiece; 2. electrode wear rate (W); A machining method of calculating a sum of numerical values such as a correction value (offset) and calculating an actual electrode machining depth value based on a machining program based on each of these numerical values, thereby performing a pore discharge machining on a workpiece. In order to set the consumption rate (W) of the pore processing electrode to the dynamic value of the automatic measurement calculation, it is measured at the time of processing the previous hole (first hole),
Using the obtained Z-axis value of the electrode with respect to the workpiece surface as a reference value, subtracting the Z-axis value with respect to the workpiece surface at the time of processing the next hole (second hole) to calculate the electrode wear value, By inputting the electrode wear value as the electrode wear value at the time of processing the next hole (that is, the electrode wear value of the second hole), the processing depth error of the processing electrode is minimized, and the same processing is performed. Equal depth pore electric discharge machining automatic electrode wear compensation method.
時、正確な未貫通孔の放電加工が可能で、しかも、該放
電加工された各未貫通孔の深度誤差は極めて微小である
ことを特徴とする請求項1記載の等深度細孔放電加工自
動電極消耗補償の方法。2. When the correction value (offset) is zero, accurate electric discharge machining of the non-penetrated holes is possible, and the depth error of each non-penetrated hole subjected to the electric discharge machining is extremely small. 2. The method of claim 1, wherein the electrode is automatically compensated for wear of the electrode at the same depth.
て被加工物表面に対する上記測定を多数回行って自動修
正することにより、非常に正確な加工深度を達成するこ
とを特徴とする請求項1記載の等深度細孔放電加工自動
電極消耗補償の方法。3. An extremely accurate machining depth is obtained by automatically correcting the electrode wear value (W) by performing the measurement on the workpiece surface many times during machining. Item 3. The method for automatic electrode wear compensation of equal depth pore electric discharge machining according to Item 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW090108713 | 2001-04-12 | ||
TW90108713A TW520311B (en) | 2001-04-12 | 2001-04-12 | Method of automatic electrode wear compensation in equal depth pore electro-discharge machining |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002307238A true JP2002307238A (en) | 2002-10-23 |
JP2002307238A5 JP2002307238A5 (en) | 2005-04-07 |
Family
ID=21677922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001241559A Pending JP2002307238A (en) | 2001-04-12 | 2001-08-09 | Method of automatic electrode wear compensation in equal depth pore electric discharge machining |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2002307238A (en) |
TW (1) | TW520311B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101747465B1 (en) * | 2009-10-21 | 2017-06-14 | 누보 피그노네 에스피에이 | Tool compensation method and device |
JP2017104970A (en) * | 2015-12-10 | 2017-06-15 | ナショナル ガオション ユニヴァーシティ オブ アプライド サイエンシーズ | Electric discharge machine |
CN108340033A (en) * | 2018-04-20 | 2018-07-31 | 北京迪蒙吉意超硬材料技术有限公司 | Process the EDM shaping machine intelligent depth control system and method for PCD composite sheets |
CN114571019A (en) * | 2022-03-16 | 2022-06-03 | 上海空间推进研究所 | Electric spark milling method |
CN114619108A (en) * | 2022-04-19 | 2022-06-14 | 中国航发动力股份有限公司 | Micro electric spark small hole machining method, system, equipment and storage medium thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113770463B (en) * | 2021-09-27 | 2022-10-11 | 深圳大学 | Micro stepped hole machining method based on electrode loss |
-
2001
- 2001-04-12 TW TW90108713A patent/TW520311B/en not_active IP Right Cessation
- 2001-08-09 JP JP2001241559A patent/JP2002307238A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101747465B1 (en) * | 2009-10-21 | 2017-06-14 | 누보 피그노네 에스피에이 | Tool compensation method and device |
JP2017104970A (en) * | 2015-12-10 | 2017-06-15 | ナショナル ガオション ユニヴァーシティ オブ アプライド サイエンシーズ | Electric discharge machine |
CN106862680A (en) * | 2015-12-10 | 2017-06-20 | 高雄应用科技大学 | Electric discharge machine with cutter trimming function |
CN108340033A (en) * | 2018-04-20 | 2018-07-31 | 北京迪蒙吉意超硬材料技术有限公司 | Process the EDM shaping machine intelligent depth control system and method for PCD composite sheets |
CN114571019A (en) * | 2022-03-16 | 2022-06-03 | 上海空间推进研究所 | Electric spark milling method |
CN114571019B (en) * | 2022-03-16 | 2023-10-13 | 上海空间推进研究所 | Electric spark milling method |
CN114619108A (en) * | 2022-04-19 | 2022-06-14 | 中国航发动力股份有限公司 | Micro electric spark small hole machining method, system, equipment and storage medium thereof |
CN114619108B (en) * | 2022-04-19 | 2023-09-15 | 中国航发动力股份有限公司 | Micro electric spark small hole machining method, system, equipment and storage medium thereof |
Also Published As
Publication number | Publication date |
---|---|
TW520311B (en) | 2003-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7576295B2 (en) | Method for detecting and compensating electrode wear of electric discharge machining | |
EP1249294B1 (en) | Small hole electric discharge machine drill provided with depth-specific processing means and method of depth-specific processing with small hole electric discharge machine drill | |
KR101734626B1 (en) | Wire electrical discharge machine, machining path generator of wire electrical discharge machine, and machining method for use in wire electrical discharge machine for performing path compensation in concave arc corner portion | |
JP2002307238A (en) | Method of automatic electrode wear compensation in equal depth pore electric discharge machining | |
KR920006654B1 (en) | Wire electrode type electric discharge machining apparatus | |
EP3072620B1 (en) | Wire electric discharge machine including unit for adjusting position of workpiece before calibrating | |
JPH08155737A (en) | Electric discharge machining device | |
KR100564160B1 (en) | Method for automatically measuring eletrode attrition rate of electric discharge machine drill apparatus | |
KR200382717Y1 (en) | Cnc small hole electric discharge machine | |
JP3289575B2 (en) | Electric discharge machine and method | |
JP3512577B2 (en) | Electric discharge machining apparatus and electric discharge machining method | |
EP3305451B1 (en) | Machining time-estimating method for wire electrical discharge machine and control device for wire electrical discharge machine | |
JPH10296538A (en) | Electrical discharge machining device | |
KR20160002023A (en) | Method of processing precision hole using cnc edm drill machines | |
JP2002307238A5 (en) | ||
JP2892028B2 (en) | Electric discharge machine | |
CN112091234A (en) | Numerical control cutting method for arc surface | |
JP2010105128A (en) | Grinding machine | |
KR100564159B1 (en) | Cnc small hole electric discharge machine and usung method thereof | |
JP4463901B2 (en) | Electric discharge machining method and apparatus | |
JP3807189B2 (en) | Additional processing method and apparatus by electric discharge | |
JP2002331426A (en) | Depth designating machining method in thin hole electric discharge machine and thin hole electric discharge machine having depth designating machining means | |
JP5603206B2 (en) | Workpiece machining method, workpiece machining apparatus, and program | |
JP3732290B2 (en) | Electric discharge machining apparatus and electric discharge machining method | |
JPH11347818A (en) | Working method of work |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040524 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060404 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060912 |