JP2892028B2 - Electric discharge machine - Google Patents

Electric discharge machine

Info

Publication number
JP2892028B2
JP2892028B2 JP1038213A JP3821389A JP2892028B2 JP 2892028 B2 JP2892028 B2 JP 2892028B2 JP 1038213 A JP1038213 A JP 1038213A JP 3821389 A JP3821389 A JP 3821389A JP 2892028 B2 JP2892028 B2 JP 2892028B2
Authority
JP
Japan
Prior art keywords
machining
surface roughness
processing
determined
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1038213A
Other languages
Japanese (ja)
Other versions
JPH02218517A (en
Inventor
雅一 岸
静夫 荒屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP1038213A priority Critical patent/JP2892028B2/en
Publication of JPH02218517A publication Critical patent/JPH02218517A/en
Application granted granted Critical
Publication of JP2892028B2 publication Critical patent/JP2892028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、型彫り放電加工における多段揺動加工の加
工条件を自動設定して放電加工装置に関するものであ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining apparatus which automatically sets machining conditions for multi-stage swing machining in die sinking electric discharge machining.

〔従来の技術〕[Conventional technology]

型彫り放電加工において、電極と被加工物を相対的に
移動しながら加工を行う揺動加工法は、高い加工精度が
得られると共に、加工能率を向上する効果があることか
ら、ほとんど全ての数値制御(NC)型彫り放電加工機に
採用されている。このような揺動加工法の中でも、荒加
工から仕上加工までを、多段階に加工条件を変えて加工
して行く多段揺動加工法は、特に重要な加工法である。
Oscillating machining, in which machining is performed while moving the electrode and the workpiece relative to each other in die-sinking EDM, has high machining accuracy and has the effect of improving machining efficiency. Control (NC) die-sinking EDM is used in this machine. Among such oscillating working methods, a multi-stage oscillating working method in which processing from roughing to finishing is performed in multiple stages with changing processing conditions is a particularly important working method.

この多段揺動加工を行う場合に決定しなければならな
い代表的な加工条件は、加工面粗さR、電気条件(I,
T)(Iはピーク電流、Tはパルス幅)及び揺動量εで
あり、次表1は荒加工から仕上加工までの一連の加工条
件を示している。
Typical machining conditions that must be determined when performing this multi-stage rocking machining are machining surface roughness R, electrical conditions (I,
T) (I is the peak current, T is the pulse width) and the swing amount ε. Table 1 shows a series of machining conditions from rough machining to finish machining.

この表1において、R0、(I0,T0)及びεは、荒加
工の加工面粗さ、電気条件及び揺動量であり、またRn
(In,Tn)及びεは最終仕上加工の加工面粗さ、電気
条件及び揺動量である。
In Table 1, R 0 , (I 0 , T 0 ) and ε 0 are the surface roughness of roughing, the electrical conditions and the swing amount, and R n ,
(I n , T n ) and ε n are the machined surface roughness, electrical conditions, and swing amount of the final finish working.

放電加工の特性として、加工面粗さを1/2にする加工
条件では、加工速度は約1/5(=加工時間は約5倍)に
なる。一方、加工面粗さを1/2より少ない値にする加工
条件では、加工速度は1/5より大きくなる。したがつ
て、加工時間を短縮するためには、荒い加工面粗さから
仕上面を得るまで多段階に加工条件を変えて順次加工を
行う方法が採られている。
As a characteristic of the electric discharge machining, the machining speed is about 1/5 (= the machining time is about 5 times) under the machining condition of halving the machining surface roughness. On the other hand, under the processing conditions in which the processed surface roughness is set to a value smaller than 1/2, the processing speed is larger than 1/5. Therefore, in order to shorten the processing time, a method is employed in which the processing is sequentially performed while changing the processing conditions in multiple stages from the rough processing surface roughness to obtaining the finished surface.

第3図(a),(b)は型彫り放電加工における代表
的な加工状態の一例を示す図で、荒加工が終了して仕上
加工に入るときの電極1と被加工物2の相対位置状態を
示している。この第3図のうち(a)は貫通穴を加工し
た後、側面を順次仕上げる場合の例であり、(b)は底
付加工で側面を順次仕上げる場合の例である。第3図
(a),(b)において、被加工物2のハツチング部分
3は多段加工で加工する加工代である。
FIGS. 3 (a) and 3 (b) are views showing an example of a typical machining state in die-sinking electric discharge machining, and the relative positions of the electrode 1 and the workpiece 2 when the rough machining is finished and the finishing machining is started. The state is shown. FIG. 3A shows an example in which the side surface is sequentially finished after the through hole is processed, and FIG. 3B shows an example in which the side surface is sequentially finished by bottoming. 3 (a) and 3 (b), the hatched portion 3 of the workpiece 2 is a machining allowance for machining by multi-stage machining.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このような多段加工においては、前掲表1に示した加
工条件の中で、段数nと各段iの加工面粗さRの値によ
り加工時間が大きく影響を受ける。従来、これら段数n
と各段iの加工面粗さRの値は熟練者が勘で決定した
り、多くのテスト加工を行つて決定していたが、多段加
工の段数nと加工面粗さRの値の組み合わせは無限にあ
ることから、最適な条件を見出すことは極めて難しく、
結局、加工時間が長くなるという問題点があつた。
In such multi-stage machining, the machining time is greatly affected by the number of stages n and the value of the machining surface roughness R of each stage i in the machining conditions shown in Table 1 above. Conventionally, the number of stages n
And the value of the machined surface roughness R of each step i were determined by a skilled person by intuition or by performing a lot of test machining, but the combination of the number of steps n of the multistage machining and the value of the machined surface roughness R Is infinite, so finding the optimal conditions is extremely difficult.
After all, there was a problem that the processing time was long.

本発明の目的は、多段揺動放電加工において、操作者
の熟練度に関係なく加工時間の短縮化が図れる放電加工
装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electric discharge machine capable of reducing machining time in multi-stage swing electric discharge machining regardless of the skill level of an operator.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、多段揺動加工法を用いて放電加工を行う
放電加工装置において、予め入力される、使用電極と被
加工物の材質とで決まる単位面積当りの許容加工電流と
最大加工面積の比と、前記比を加工面粗さに変換する定
数を用いて荒加工面粗さを求め、最終仕上加工面粗さと
求めた前記荒加工面粗さのうちの一方を予め定める等比
の等比級数の初項、他方を最終項として加工段数を求
め、求めた各加工段における加工面粗さを求め、得られ
た結果から前記各加工段の面粗さを得るための電気条件
及び揺動量を各々求め、得られた電気条件及び揺動量に
従って前記各加工段の加工を実行させる演算手段を具備
することにより達成される。
An object of the present invention is to provide an electric discharge machine which performs electric discharge machining using a multi-stage swing machining method, in which a ratio of an allowable machining current per unit area determined in advance by an electrode to be used and a material of a workpiece to a maximum machining area. And a rough surface roughness is determined using a constant for converting the ratio into a processed surface roughness, and one of a final finished processed surface roughness and the determined rough processed surface roughness is an equivalent ratio of a predetermined equivalent ratio. The number of machining steps is determined with the first term of the series and the other term as the last term, the machining surface roughness at each machining step is determined, and the electrical conditions and swing amount for obtaining the surface roughness of each machining step from the obtained results. And calculating means for executing the machining of each machining stage in accordance with the obtained electric conditions and the amount of swing.

〔作用〕[Action]

操作者が、使用する電極と被加工物の材質、荒加工物
の最大加工面積及び最終仕上加工面粗さについての情報
を入力すると、この入力情報に基づいて多段揺動加工に
おける段数と各段での加工面粗さが演算される。この演
算結果により、前記各段の加工面粗さを得るための電気
条件及び揺動量が各々演算され、この演算により得られ
た電気条件及び揺動量に従って前記各段の加工が行われ
る。すなわち操作者が、上記のように使用する電極と被
加工物の材質、荒加工時の最大加工面積及び最終仕上加
工面粗さについての情報を入力するだけで、多段揺動加
工において最適な電気条件及び揺動量に従つて前記各段
の加工が行われることになり、操作者の熟練度に関係な
く加工時間の短縮化が図れる。
When the operator inputs information about the electrode to be used and the material of the workpiece, the maximum machining area of the rough workpiece, and the final finished surface roughness, based on the input information, the number of stages and the number of each stage in the multi-stage swing machining are determined. Is calculated. Based on the calculation result, the electrical conditions and the amount of swing for obtaining the processing surface roughness of each of the stages are calculated, and the machining of each of the stages is performed according to the electrical conditions and the amount of swing obtained by the calculation. In other words, the operator only needs to input information on the materials of the electrodes and the workpiece to be used as described above, the maximum machining area during rough machining, and the roughness of the final finished machining surface. The processing of each stage is performed according to the conditions and the swing amount, so that the processing time can be shortened regardless of the skill level of the operator.

〔実施例〕〔Example〕

以下、図面を参照して、本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明による放電加工装置の一実施例を示
すブロック図である。この第1図において、11はCPU等
からなる演算部、12はテープリーダ,キーボード等から
なる入力部、13はCRTデイスプレイ等からなる表示部、1
4はメモリ部、15はX,Y,Z軸駆動モータ等からなる機械駆
動部で、これらはCNC装置を構成している。この場合、
前記演算部11は、使用する電極と被加工物の材質、荒加
工時の最大加工面積及び最終仕上加工面粗さを入力情報
とし、これらの入力情報に基づいて多段揺動加工におけ
る段数と各段での面粗さを演算し、この演算結果により
前記各段の面粗さを得るための電気条件及び揺動量を各
々演算し、この演算により得られた電気条件及び揺動量
に従つて前記各段の加工を実行させる演算手段としても
機能する。
FIG. 1 is a block diagram showing one embodiment of the electric discharge machine according to the present invention. In FIG. 1, reference numeral 11 denotes an arithmetic unit comprising a CPU and the like, 12 an input unit comprising a tape reader, a keyboard and the like, 13 a display unit comprising a CRT display and the like, 1
Reference numeral 4 denotes a memory unit, and reference numeral 15 denotes a mechanical drive unit including X, Y, and Z-axis drive motors, and these constitute a CNC device. in this case,
The calculation unit 11 uses the electrode and the material of the workpiece to be used, the maximum machining area at the time of rough machining and the final finished machining surface roughness as input information, and based on these input information, the number of steps and the number of steps in the multi-stage swing machining. The surface roughness at each step is calculated, and the electric condition and the amount of oscillation for obtaining the surface roughness of each stage are calculated based on the operation result, and the electric condition and the amount of oscillation obtained by this operation are calculated according to the electric condition and the amount of oscillation. It also functions as arithmetic means for executing the processing of each stage.

16は加工電源回路等からなる加工パワー部、17はリレ
ー,リミットスイッチ等からなる機械操作部、18はテー
ブル,クイル等からなる機械本体、19は加工液供給装置
である。
Reference numeral 16 denotes a processing power unit including a processing power supply circuit and the like, 17 denotes a machine operation unit including a relay, a limit switch, and the like, 18 denotes a machine main body including a table, a quill, and the like, and 19 denotes a processing liquid supply device.

次に、第2図のフローチヤートを併用して本発明によ
る装置機能の一例を説明する。
Next, an example of an apparatus function according to the present invention will be described with reference to the flowchart of FIG.

まず操作者は、使用する電極と被加工物の材質、荒加
工での最大加工面積S、最終仕上加工の加工面粗さR
fを、入力部12から各々入力(ステツプ21)する。これ
らの入力情報は一般に製作図面に記載されている値であ
り、操作者は製作図面を見ながらこれらの情報を簡単に
入力できる。
First, the operator determines the material of the electrode and the workpiece to be used, the maximum machining area S in the rough machining, and the machining surface roughness R in the final finishing machining.
f is input from the input unit 12 (step 21). These input information are generally values described in the production drawing, and the operator can easily input these information while looking at the production drawing.

次に、電極と被加工物の材質と、荒加工での最大加工
面積Sから、下式(1)で荒加工の加工面粗さRrを演算
する(ステツプ22)。
Next, operations and material of the electrode and the workpiece, from the maximum machining area S in roughing, the surface finish R r roughing the following formula (1) (step 22).

Rr=K・S/J ……(1) ここで、Jは使用する電極と被加工物の材質で決まる
定数であり、単位面積当たりに流せる許容加工電流であ
る。また、KはS/Jから得られる加工電流を加工面粗さ
に変換するための定数である。
R r = K · S / J (1) where J is a constant determined by the electrode used and the material of the workpiece, and is an allowable machining current that can flow per unit area. K is a constant for converting a machining current obtained from S / J into a machining surface roughness.

次に、入力された最終仕上加工の加工面粗さRf及び上
式(1)で求められた荒加工の加工面粗さRrを用い、演
算部11によつて荒加工から最終仕上加工までの段数n
が、以下のように演算される(ステツプ23)。すなわち
発明者等により、多段加工で加工時間が最短となる最適
加工条件を数理計画法を用いて解析した結果、近似的に
等比数列的に加工面粗さRを減少すればよいことが明ら
かになつた。そしてその減少率Φは、第3図(a),
(b)に示すような一般の加工では0.6〜0.8が適正であ
ることが分かつた。
Then, using a surface finish R r roughing obtained by surface finish R f and the above formula of the final finishing input (1), final finish from O connexion roughing to the arithmetic unit 11 processing Number of steps n up to
Is calculated as follows (step 23). That is, as a result of analyzing the optimum machining conditions that minimize the machining time in the multi-stage machining using mathematical programming, the inventors have found that it is sufficient to reduce the machined surface roughness R approximately in a geometric progression. It has become. The rate of decrease Φ is shown in FIG.
It has been found that 0.6 to 0.8 is appropriate in general processing as shown in FIG.

これに基づき、荒加工から仕上加工までの段数nは下
式(2)で求めることができる。
Based on this, the number n of stages from rough machining to finish machining can be obtained by the following equation (2).

ただし、Rfは仕上加工の加工面粗さ、Rrは荒加工の加
工面粗さ、Φは加工面粗さ減少率である。
However, surface finish of R f is finishing, R r is the roughing surface finish, [Phi is surface finish reduction rate.

上式(2)により求められた段数nが整数でない場合
は四捨五入で整数化し(ステツプ24)、その段数をNと
する。
If the number n of steps obtained by the above equation (2) is not an integer, it is rounded to an integer (step 24), and the number of steps is set to N.

次に、整数化した段数Nを満足する修正加工面粗さ減
少率Φ′を下式(3)で求める(ステツプ25)。
Next, the corrected surface roughness reduction rate Φ 'that satisfies the integer number of steps N is obtained by the following equation (3) (step 25).

Φ′=(Rf/Rr1/N ……(3) 次に、各段の加工面粗さRi(i=1〜N)を下式
(4)で求める(ステツプ26)。
Φ ′ = (R f / R r ) 1 / N (3) Next, the processed surface roughness R i (i = 1 to N) of each step is obtained by the following equation (4) (step 26).

Ri=Φ′-iRr ……(4) R0=Rr,RN=Rfとすれば、一連の加工面粗さ(R1
R2,R3…RN)が上式(3)により求められる。
R i = Φ ′ -i R r (4) If R 0 = R r and R N = R f , a series of machined surface roughness (R 1 ,
R 2 , R 3 ... RN ) are obtained by the above equation (3).

次に、各段iの電気条件(Ii,Ti)と揺動量εを求
める(ステツプ27)。ここで、Iはパルス電流のピーク
電流、Tはパルス幅である。
Next, the electric conditions (I i , T i ) and the swing amount ε i of each stage i are obtained (step 27). Here, I is the peak current of the pulse current, and T is the pulse width.

各段iの加工面粗さRiに対する電気条件(Ii,Ti)と
揺動量εは、従来と同様の演算手法により最適値を求
める。求めた電気条件(Ii,Ti),揺動量εと、先に
演算された加工面粗さRiとの関係を下表2に示す。
The electrical conditions (I i , T i ) and the amount of swing ε i for the processing surface roughness R i of each stage i are determined by the same calculation method as in the prior art. Table 2 below shows the relationship between the obtained electrical conditions (I i , T i ), the swing amount ε i, and the previously calculated machining surface roughness R i .

この表2に示すように、荒加工から最終仕上加工まで
各段iにおける加工面粗さRiに対する電気条件(Ii
Ti)と揺動量εを順次求め、ルツクアツプテーブルと
してメモリ部14に記憶する。そして加工時、その加工段
i(加工面粗さRi)に対する電気条件(Ii,Ti)と揺動
量εをメモリ部14から順次読み出し、機械駆動部15を
介して加工パワー部16と機械操作部17へ与えて機械本体
11で加工を実行する(ステツプ28)。
As shown in Table 2, the electrical conditions for the surface finish R i in each stage i to the final finishing roughing (I i,
T i ) and the swing amount ε i are sequentially obtained and stored in the memory unit 14 as a lookup table. At the time of machining, the electrical conditions (I i , T i ) and the swing amount ε i for the machining step i (machined surface roughness R i ) are sequentially read from the memory unit 14, and the machining power unit 16 is transmitted via the machine drive unit 15. To the machine operation unit 17
The processing is executed in step 11 (step 28).

なお上述実施例では、荒加工から仕上加工までの各段
iにおける加工面粗さRiに対する電気条件(Ii,Ti)と
揺動量εを、ルツクアツプテーブルとしてメモリ部14
に記憶し、これを加工時、その加工段iに応じて順次読
み出して加工を実行するようにしたが、これにのみ限定
されることはない。例えば、前掲表2に示す加工面粗さ
Riと電気条件(Ii,Ti),揺動量εとの関係を数式化
し、その式を用いた演算で求めるようにしてもよい。
In the above embodiment, the electrical conditions (I i , T i ) and the swing amount ε i for the machining surface roughness R i at each stage i from the rough machining to the finishing machining are stored in the memory section 14 as a lookup table.
And at the time of processing, sequentially read out and execute the processing in accordance with the processing stage i, but the present invention is not limited to this. For example, the surface roughness shown in Table 2 above
The relationship between R i , the electrical conditions (I i , T i ), and the swing amount ε i may be expressed by a mathematical expression, and the relationship may be obtained by an operation using the expression.

〔発明の効果〕〔The invention's effect〕

本発明によれば、多段揺動放電加工において、通常、
製作図面に記憶されている、電極と被加工物の材質、荒
加工時の最大加工面積及び最終仕上加工面粗さについて
のデータを手動入力するだけで最適な加工条件が設定さ
れるので、操作者の熟練度に関係なく加工時間の短縮化
が図れるという効果がある。
According to the present invention, in multi-stage oscillating electric discharge machining,
Optimum machining conditions can be set simply by manually inputting data on the materials of electrodes and workpieces, the maximum machining area during rough machining, and the final finished surface roughness stored in the production drawing. There is an effect that the processing time can be shortened regardless of the skill level of the operator.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明装置の一実施例を示すブロック図、第2
図は本発明による装置を説明するためのフローチャー
ト、第3図は型彫り放電加工における代表的な加工状態
の一例を示す図である。 1…電極、2…被加工物、3…加工代、12…入力部、13
…表示部、11…演算部、14…メモリ部、15…機械駆動
部、16…加工パワー部、17…機械操作部、18…機械本
体、19…加工液供給装置。
FIG. 1 is a block diagram showing an embodiment of the apparatus of the present invention, and FIG.
FIG. 3 is a flowchart for explaining the apparatus according to the present invention, and FIG. 3 is a view showing an example of a typical machining state in die-sinking electrical discharge machining. DESCRIPTION OF SYMBOLS 1 ... Electrode, 2 ... Workpiece, 3 ... Processing allowance, 12 ... Input part, 13
... Display unit, 11 ... Calculation unit, 14 ... Memory unit, 15 ... Machine drive unit, 16 ... Machine power unit, 17 ... Machine operation unit, 18 ... Machine body, 19 ... Machine fluid supply device.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多段揺動加工法を用いて放電加工を行う放
電加工装置において、予め入力される、使用電極と被加
工物の材質とで決まる単位面積当りの許容加工電流と最
大加工面積の比と、前記比を加工面粗さに変換する定数
を用いて荒加工面粗さを求め、最終仕上加工面粗さと求
めた前記荒加工面粗さのうちの一方を予め定める等比の
等比級数の初項、他方を最終項として加工段数を求め、
求めた各加工段における加工面粗さを求め、得られた結
果から前記各加工段の面粗さを得るための電気条件及び
揺動量を各々求め、得られた電気条件及び揺動量に従っ
て前記各加工段の加工を実行させる演算手段を具備する
ことを特徴とする放電加工装置。
In an electric discharge machine for performing electric discharge machining using a multi-stage swing machining method, an allowable machining current and a maximum machining area per unit area, which are previously input and are determined by an electrode to be used and a material of a workpiece. Roughness surface roughness is determined by using a ratio and a constant that converts the ratio into a processing surface roughness, and one of a final finishing processing surface roughness and the determined rough processing surface roughness is determined in advance by an equal ratio or the like. The number of machining steps is determined with the first term of the series and the other term as the last term.
Obtained processing surface roughness in each of the processing steps obtained, the electrical conditions and the amount of swing for obtaining the surface roughness of each processing step from the obtained results, respectively, and according to the obtained electrical conditions and the amount of oscillation, An electric discharge machining apparatus comprising an arithmetic unit for executing machining at a machining stage.
JP1038213A 1989-02-20 1989-02-20 Electric discharge machine Expired - Fee Related JP2892028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038213A JP2892028B2 (en) 1989-02-20 1989-02-20 Electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038213A JP2892028B2 (en) 1989-02-20 1989-02-20 Electric discharge machine

Publications (2)

Publication Number Publication Date
JPH02218517A JPH02218517A (en) 1990-08-31
JP2892028B2 true JP2892028B2 (en) 1999-05-17

Family

ID=12519036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038213A Expired - Fee Related JP2892028B2 (en) 1989-02-20 1989-02-20 Electric discharge machine

Country Status (1)

Country Link
JP (1) JP2892028B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3338153B2 (en) * 1993-12-22 2002-10-28 株式会社ソディック Electric discharge machining condition determination method and electric discharge machining control device
US6791055B1 (en) 2000-04-20 2004-09-14 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for electrodischarge machining
CN110216341B (en) * 2019-06-21 2020-07-14 上海汉霸数控机电有限公司 Shaking processing method of spark machine
JP6952941B1 (en) * 2021-04-12 2021-10-27 三菱電機株式会社 Machining condition setting device, machining condition setting method, and electric discharge machining device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515693A (en) * 1974-07-06 1976-01-17 Inoue Japax Res HODENKAKOHOHO
JPS6399135A (en) * 1987-05-15 1988-04-30 Sodeitsuku:Kk Control method of electric discharge machining

Also Published As

Publication number Publication date
JPH02218517A (en) 1990-08-31

Similar Documents

Publication Publication Date Title
JP2637488B2 (en) Numerically controlled grinding machine
US4980532A (en) Machining time estimating device for electric discharge machining operation
US5894418A (en) Method for creating a machining condition series
JP3820988B2 (en) Electric discharge machining method and apparatus
US4837415A (en) Wire electrode type electric discharge machining apparatus
JP5937564B2 (en) Wire electrical discharge machine with machining condition selection function
JP4334481B2 (en) EDM machine
JP2892028B2 (en) Electric discharge machine
JP3913352B2 (en) Method of determining the machining process
JP2914101B2 (en) Wire electric discharge machining method and apparatus
JP3748099B2 (en) Cutting method and NC data creation device for performing this cutting method
KR930011213B1 (en) Wire-type edm method and apparatus
KR100738344B1 (en) Cnc small hole electric discharge machine which can monitor the whole state of processing by inputting cad data
JPH02218518A (en) Electric discharge machining method
JPH0521690B2 (en)
JPH0811017A (en) Method and device for preparing data to manufacture electrode for and data to control electric discharge machine
JP4063180B2 (en) Mold processing step determination device, mold processing step determination method, mold processing step determination program, computer-readable recording medium recording the program, NC data creation device, and machine tool control device
JP3103675B2 (en) Electric discharge machining method and apparatus
JP3739425B2 (en) Machining condition generation method for EDM
JPH04176516A (en) Second cut machining method and second cut machining controller in wire electric discharge machining
JPH0366090B2 (en)
JPH09216127A (en) Tool path generating device
JPH03117519A (en) Wire electric discharge machining
JPS62114820A (en) Electric discharge machine
JP2002297218A (en) Production management method for machine tool

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees