TW511143B - Method for forming GaN/AlN superlattice structure - Google Patents

Method for forming GaN/AlN superlattice structure Download PDF

Info

Publication number
TW511143B
TW511143B TW90128769A TW90128769A TW511143B TW 511143 B TW511143 B TW 511143B TW 90128769 A TW90128769 A TW 90128769A TW 90128769 A TW90128769 A TW 90128769A TW 511143 B TW511143 B TW 511143B
Authority
TW
Taiwan
Prior art keywords
gallium nitride
nitride
superlattice structure
aluminum nitride
gallium
Prior art date
Application number
TW90128769A
Other languages
Chinese (zh)
Inventor
Jyh-Rong Gong
Cheng-Lung Yeh
Ya-Tung Cherng
Wen-How Lan
Yuh-Der Shiang
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW90128769A priority Critical patent/TW511143B/en
Application granted granted Critical
Publication of TW511143B publication Critical patent/TW511143B/en

Links

Abstract

A method of fabricating a GaN/AlN superlattice structure in gallium nitride compound semiconductor materials and devices. The superlattice structure is formed upon the substrate and/or formed in the gallium nitride semiconductor structure. The proposed superlattice structure suppress the dislocation to improve the performance of gallium nitride based compound semiconductor.

Description

511143 五、發明說明α) #發明範圍 本發明係有關於一種在氮化鎵半導體元件中製作超晶 格的方法及結構,特別是關於成長能阻擋差排發展之超晶 格的方法及結構。 #發明背景 、寬能隙、高強度化學鍵 近年來已被積極開發,應 功率和高溫電子等元件。 無法製成,使得大部份氮 有相當晶格錯配量的基 1203 ? sapphire ) 、 6H- 、矽(Si ) 板和蠢晶溥 排(M i s f i t 元件中,其 匹配及熱膨 ,這些應變 以釋放能量 為貫穿式差 這些差排往 效之元件上 差排的存在 生。在元件 、及立方結構 膜間晶格的不 Dislocation 結構常為異質 脹係數之差 能在元件製造 。部分錯位差 排 往是造成元件 作顯微組織分 ,這些錯位差 之活化區 氮化鎵系材料具備直接能隙 結與良好之抗輻射強度等優點, 用在藍/綠〜紫外光發光元件、高 目前大尺寸的氮化鎵晶圓尚 化鎵半導體元件需.採用和氮化鎵 板。一般使用的有C面氧化銘(A 碳化碎(S i C )、坤化蘇(G a A s ) 石炭化石夕(/5-SiC)等等。由於基 匹配而產生的應變常引發錯位差 )的形成。此外,在典型的光電 結構’由於蟲晶艇之間的晶格不 異,容易在異質界面累積應變能 及使用過程往往會形成錯位差排 排更會延伸至晶體表面,被稱之 (Threading Dislocation ) 〇 退化之主要原因。在已退化或失 析時,經常可清晰地觀察到錯位 排缺陷一般由異質界面上開始產511143 V. Description of the invention α) #Scope of the invention The present invention relates to a method and a structure for fabricating a superlattice in a gallium nitride semiconductor device, and in particular, a method and a structure for growing a superlattice that can block the development of differential rows. # 发明 发明 Background, wide energy gap, high-strength chemical bonds have been actively developed in recent years to respond to power and high-temperature electronic components. Can not be made, most of the nitrogen has a considerable lattice mismatch of the base 1203? Sapphire), 6H-, silicon (Si) plate and stupid crystal row (Misfit element, its matching and thermal expansion, these strains The release of energy is a penetrating difference between these poorly-acting elements. The non-Dislocation structure of the lattice between the element and the cubic structure film is often a difference in heterogeneous expansion coefficients that can be produced in the element. Partial misalignment The discharge is caused by the microstructure of the device. These dislocations in the active region of the gallium nitride-based material have the advantages of direct energy gap junction and good radiation resistance. They are used in blue / green ~ ultraviolet light-emitting devices. Size gallium nitride wafer is still required for gallium semiconductor components. Adopt and gallium nitride board. Generally used are C-faced oxide (A carbonized (S i C), Kunhuasu (G a A s)) Xi (/ 5-SiC), etc. The strain caused by the base matching often causes dislocations). In addition, in the typical optoelectronic structure, because the crystal lattices between the wormworm boats are not different, it is easy to accumulate at the heterogeneous interface. Strain energy and use process Dislocations often form on the surface of the crystal, which is called the main cause of degradation. When they are degraded or lost, it is often clear that dislocation defects usually start on the heterogeneous interface. Produce

511143 五、發明說明(2) (Active Region),倘有差排之存在,則會成為少數載 子(Minority Carriers)之陷阱(Traps)或再結合中心 (Recombination Centers ),因而影響此類半導體元件 的特性及品質。例如對發光元件而言,差排缺陷的存在使 得過剩載子結合不以發光再結合型態(R a d i a t i v e Recombination)釋出能量,反而藉由非輻射再結合效應 (Nonrad i at i ve Recombination Effect )將能量釋出。511143 V. Description of the invention (2) (Active Region), if there is a difference, it will become a trap (recombination centers) of minority carriers (Recombination Centers), thus affecting such semiconductor components Characteristics and quality. For example, for light-emitting elements, the existence of differential row defects causes excess carrier binding not to release energy in a light-emitting recombination mode, but instead uses a non-radiative recombination effect (Nonrad i at i ve Recombination Effect). Release energy.

除了提供陷阱捕捉少數載子外,差排也提供載子濃度擴散 的捷徑(Short cut )。對一具特定載子分佈的元件而 言,載子沿著差棑作快速擴散或是載子偏聚於差排附近, 均會導致元件載子分佈的不均勻,而影響元件之功能。 由於沒有晶格常數與氮化鎵完全匹配的基板,所以目 前在生長氮化鎵薄膜時多採異質磊晶生長。以使用最多的 C面氧化铭基板為例,雖然氧化铭基板的物性及化性皆相 當穩定,但是它與氮化鎵薄膜間約有1 6 %的晶格錯配量,In addition to providing traps to capture minority carriers, differential rows also provide short cuts for carrier concentration diffusion. For a component with a specific carrier distribution, the rapid diffusion of carriers along the delta or the segregation of the carriers near the differential row will cause the uneven distribution of the carrier of the component and affect the function of the component. Because there is no substrate with a lattice constant that is exactly matched to gallium nitride, heteroepitaxial growth is currently used when growing gallium nitride thin films. Taking the most commonly used C-plane oxidized substrate as an example, although the physical properties and chemical properties of the oxidized substrate are relatively stable, there is about 16% lattice mismatch between it and the gallium nitride film.

這造成生長在氧化鋁基板上的氮化鎵薄膜缺陷密度很高, 通常内部都會存在10E11〜10E9/cm2密度的差排。為了能夠 有效地減少差排密度,相關研究人員開發了許多方法想要 解決此一問題,例如:橫向蟲晶(L a t e r a 1 E p i t a X i a 1 Overgrowth )法、缓衝層結構,先在基板上低溫成長很薄 的氮化鋁(A 1 N )或氮化鎵(G a N )作為緩衝層,以緩和磊 晶薄膜和基板間的晶格不匹配,藉以改善後續生長之高溫 氮化鎵的蠢晶品質、應變超晶格結構(S t r a i n e d L a y e r Superlattice)及中間層(Intermediate-Layer)結構等This causes the defect density of the gallium nitride film grown on the alumina substrate to be very high, and usually there are differential rows with a density of 10E11 ~ 10E9 / cm2 inside. In order to effectively reduce the difference in row density, researchers have developed many methods to solve this problem, such as: Lateral worm crystal (Latera 1 Epita X ia 1 Overgrowth) method, buffer layer structure, first on the substrate Low-temperature-growth aluminum nitride (A 1 N) or gallium nitride (G a N) serves as a buffer layer to alleviate the lattice mismatch between the epitaxial film and the substrate, thereby improving the subsequent growth of high-temperature gallium nitride. Stupid crystal quality, strained superlattice structure and intermediate-layer structure, etc.

第6頁 511143 五、發明說明(3) 等。即便如此,一般用於超高亮度藍綠色發光二極體之氮 化物材料之差排密度卻仍高達1 Ο E 8〜1 Ο E 1 0 / c m 2。近年, Nakamura 利用ELOG (Epitaxial Lateral Overgrowth )方 式製作出壽命達10000小時之藍光雷色二極體,其主要的 突破之一即利用所謂E L 0 G方式進一步降低貫穿式差排之密 度。 #發明標的及描述Page 6 511143 V. Description of Invention (3) and so on. Even so, the differential row density of nitride materials generally used for ultra-high-brightness blue-green light-emitting diodes is still as high as 1 0 E 8 to 1 0 E 1 0 / c m 2. In recent years, Nakamura has used the ELOG (Epitaxial Lateral Overgrowth) method to produce blue light-emitting diodes with a lifespan of 10,000 hours. One of its major breakthroughs is the use of the so-called E L 0 G method to further reduce the density of penetrating differential rows. # 发明 Target's and Description

因此想要製造高品質之氮化鎵半導體元件,降低氮化 鎵磊晶薄膜中的貫穿式差排密度是非常重要的條件。本發 明目的即在提出一種成長超晶格的結構及方法’以降低氮 化鎵磊晶薄膜中之差排密度。 本發明係利用在製程中加入氮化鋁/氮化鎵之超晶格 結構以阻擋貫穿式差排降低差排密度。氮化鋁/氮化鎵之 超晶格結構可分為:(1 )先在基板上成長氮化鋁/氮化鎵 超晶格結構再成長氮化鎵化合物磊晶。(2 )在兩層氮化 鎵化合物磊晶之間成長氮化鋁/氮化鎵之超晶格結構。 為了進一步說明本發明之結構、製作方法及特徵,可由下 文詳細之描述及附圖而有更清楚的認識。Therefore, if you want to manufacture high-quality gallium nitride semiconductor devices, it is very important to reduce the through-difference density in the gallium nitride epitaxial film. The object of the present invention is to propose a structure and method for growing a superlattice 'to reduce the differential density in a gallium nitride epitaxial film. The present invention utilizes a superlattice structure in which aluminum nitride / gallium nitride is added in the manufacturing process to block the through differential row and reduce the differential row density. The superlattice structure of aluminum nitride / gallium nitride can be divided into: (1) first grow the aluminum nitride / gallium nitride superlattice structure on the substrate and then grow the epitaxial compound of gallium nitride. (2) Grow an aluminum nitride / gallium nitride superlattice structure between two layers of gallium nitride compound epitaxy. In order to further explain the structure, manufacturing method and features of the present invention, it can be more clearly understood from the following detailed description and drawings.

#詳細描述 下面’以在C面氧化銘基板上’成長氮t化蘇蠢晶為 例,說明本發明之結構。 在較佳具體實施例中,請參閱第1圖,一 C面氧化鋁基#Detailed Description The structure of the present invention will be described below by taking the growth of nitrogen-titanium silicide crystals on a C-plane oxide substrate as an example. In the preferred embodiment, please refer to FIG. 1, a C-plane alumina-based

第7頁 511143 五、發明說明(4) 一 板(標示1 0 ),在該基板上方生長第一層(標示2 0 )之氮 . 化鋁緩衝層,厚度在1 0 0至3 0 0 n m之間;第二層(標示3 0 ),生長於前述第一層(標示20)上,為氮化銘/氮化鎵 _ 之超晶格結構,氮化鋁/氮化鎵厚度組合為4〜7 n m / 4〜7 n m, . 對數在3至20對之間,總厚度在2 4至2 8 0 nm之間;第三層 ‘ (標示4 0 ),生長於前述第二層(標示3 0 )上,為氮化鎵 磊晶層。應用第1圖中之超晶格結構可非常有效的阻擋差 排往上發展。第2圖是底層未生長氮化鋁/氮化鎵超晶格結 構的氮化鎵薄膜之橫截面穿透式電子顯微(TEM )照片, 第3圖是底層生長氮化鋁/氮化鎵超晶格結構(1 0對)的氮 化鎵薄膜之橫截面穿透式電子顯微(T E Μ )照片,比較第2 ® 圖、第3圖,明顯顯示氮化鋁/氮化鎵超晶格結構非常有效 的阻擋差排往上發展。 第4圖為本發明之另一較佳具體實施例,氮化鋁/氮化 鎵之超晶格結構(標示6 0 ),氮化鋁/氮化鎵厚度組合為 4〜7nm/4〜7nm,對數在3至20對之間,總厚度在24至280nm 之間。此氮化鋁/氮化鎵之超晶格結構(標示6 0 )生長於 下層氮化鎵化合物蠢晶(標示5 0 )和上層氮化鎵化合物蠢 晶層(標示7 0 )之間。第5圖是在氮化鎵磊晶膜中間加入 氮化鋁/氮化鎵(5對)超晶格結構之橫截面穿透式電子顯 微(TEM )照片,在此結構中,明顯顯示氮化鋁/氮化鎵超 φ 晶格結構也非常有效的阻擋差排往上發展。 第6圖顯示本發明較佳具體實施例之氮化鋁/氮化鎵超 晶格結構,結構内之磊晶膜界面會有雙軸向應變Page 7 511143 V. Description of the invention (4) A plate (labeled 10) on which a first layer of nitrogen (labeled 2 0) is grown. An aluminum buffer layer having a thickness of 100 to 300 nm Between; the second layer (labeled 30), which is grown on the first layer (labeled 20), is a superlattice structure of nitride / gallium nitride, and the thickness combination of aluminum nitride / gallium nitride is 4 ~ 7 nm / 4 ~ 7 nm,. The logarithm is between 3 and 20 pairs, and the total thickness is between 24 and 28 nm; the third layer (labeled 40) is grown on the aforementioned second layer (labeled 3 0) is a gallium nitride epitaxial layer. The superlattice structure shown in Figure 1 can be used to effectively block the development of differential discharge. Figure 2 is a cross-section transmission electron microscopy (TEM) photograph of a gallium nitride film with an ungrown aluminum nitride / gallium nitride superlattice structure. Figure 3 is a bottom grown aluminum nitride / gallium nitride. Cross-section transmission electron microscopy (TE) photograph of a gallium nitride thin film with a superlattice structure (10 pairs). Comparing Fig. 2 and Fig. 3, it clearly shows the aluminum nitride / gallium nitride supercrystal The lattice structure is very effective in blocking the development of the differential row. FIG. 4 is another preferred embodiment of the present invention. The superlattice structure of aluminum nitride / gallium nitride (labeled 60), and the thickness combination of aluminum nitride / gallium nitride is 4 ~ 7nm / 4 ~ 7nm. The logarithm is between 3 and 20 pairs, and the total thickness is between 24 and 280 nm. This aluminum nitride / gallium nitride superlattice structure (labeled 60) is grown between the lower gallium nitride compound dummy (labeled 50) and the upper gallium nitride compound dummy layer (labeled 70). Figure 5 is a cross-sectional transmission electron microscopy (TEM) photo of an aluminum nitride / gallium nitride (five pair) superlattice structure added to a gallium nitride epitaxial film. In this structure, nitrogen is clearly shown. The aluminum / gallium nitride super-φ lattice structure is also very effective in blocking the development of the differential discharge. FIG. 6 shows the aluminum nitride / gallium nitride superlattice structure of the preferred embodiment of the present invention. The epitaxial film interface in the structure will have biaxial strain.

第8頁 511143 五、發明說明(5) (Biaxial Strain)的產生,氮化鎵薄膜(標示80)會感 受到雙軸向壓縮式(C 〇 m p r e s s i v e )應變而氮化I呂薄膜 (標示9 0 )則感受到雙轴向伸張(E x t e n s i v e )應變。氮 化鎵薄膜(標示8 0 )的厚度及氮化銘薄膜(標示9 0 )的厚 度均會影響阻擋差排的效果並且會導致新的缺陷產生,例 如錯位差排,進而影響其後氮化鎵磊晶層的品質,經我們 實驗評估的結果,氮化銘/氮化鎵厚度之組合以5 n m / 5 n m較 佳。理論上,超晶格結構中氮化铭/氮化鎵的對數愈多, 阻擋的效果愈好,但就實際應用需求、製作良率及成本的 考量下,以三對到二十對的結構較佳。Page 8 511143 V. Description of the invention (5) (Biaxial Strain), the gallium nitride film (labeled 80) will feel the biaxial compression (C ompressive) strain and nitride nitride film (labeled 9 0 ) Then feel the biaxial extension (Extensive) strain. The thickness of the gallium nitride film (labeled 80) and the thickness of the nitride film (labeled 90) both affect the effect of blocking the difference rows and cause new defects, such as misalignment rows, which in turn affects subsequent nitriding. The quality of the gallium epitaxial layer is evaluated by our experiments. The combination of nitride thickness and gallium nitride thickness is preferably 5 nm / 5 nm. Theoretically, the more the number of nitride / gallium nitride in the superlattice structure, the better the blocking effect, but considering the actual application requirements, production yield and cost considerations, a structure with three pairs to twenty pairs Better.

前述之氮化鎵嘉晶層(標示40、50及70),可為η型 GaN 、AlGaN 、InGaN 及AlGalnN 等材料。氮化鎵半 導體元件所使用之基板(標示1 0 )材料,並不限於前述較 佳具體實施例所引述者,其亦包括各種具恰當特性之材 津斗,{列如·· 6 Η —石炭4匕石夕(S i C )、石申4匕#家(G a A s )、石夕(Si )、及立方結構碳化矽(/3 - S i C )等等。此外,第1圖第 一層(標示2 0 )之氮化鋁緩衝層,也可以是氮化鎵緩衝 ^ 〇The aforementioned gallium nitride ferrite layer (labeled 40, 50, and 70) may be made of materials such as n-type GaN, AlGaN, InGaN, and AlGalnN. The material of the substrate (labeled 10) used for the gallium nitride semiconductor device is not limited to those cited in the foregoing preferred embodiments, and it also includes various materials with appropriate characteristics. {列 如 ·· 6 Η— 石炭4 dagger stone eve (S i C), Shishen 4 dagger # 家 (G a A s), Shi Xi (Si), and cubic structure silicon carbide (/ 3-S i C) and so on. In addition, the aluminum nitride buffer layer of the first layer (labeled 20) in Figure 1 may also be a gallium nitride buffer ^ 〇

第1圖及第4圖之氮化鋁/氮化鎵之超晶格結構,其生 長溫度界於4 5 0〜6 0 0 °C之間或9 0 0〜1 2 0 0 °C之間。雖然本發 明的製作方法係利用原子層蠢晶(A t 〇 m i c L a y e r E p i t a X y, A L E )法,但也可使用其他的沉積方法來製作,例如金屬有 機化學氣相沉積法(MOCVD )、分子束磊晶法(MBE )等。The superlattice structure of aluminum nitride / gallium nitride in Figures 1 and 4 has a growth temperature boundary between 4 5 0 ~ 6 0 0 ° C or 9 0 0 ~ 1 2 0 0 ° C . Although the manufacturing method of the present invention uses the atomic layer (Atomic Layer Epitaxy) method, other deposition methods can also be used, such as metal organic chemical vapor deposition (MOCVD). , Molecular beam epitaxy (MBE) and so on.

第9頁 511143 五、發明說明(6) #圖例簡述 第1圖係本發明中之一較佳具體實施例的結構示意圖; 第2圖是底層未生長氮化鋁/氮化鎵超晶格結構的氮化鎵薄 膜之橫截面穿透式電子顯微(TEM )照片; 第3圖是底層生長氮化鋁/氮化鎵超晶格結構(SLS,10對 )的氮化鎵薄膜之橫截面穿透式電子顯微(TEM )照片; 第4圖係本發明中之另一較佳具體實施例的結構示意圖; 第5圖是在氮化鎵磊晶膜中間加入氮化鋁/氮化鎵(5對) 超晶格結構之橫截面穿透式電子顯微(TEM )照片;511143 on page 9 5. Description of the invention (6) # Brief description of the drawing Figure 1 is a schematic structural diagram of one of the preferred embodiments of the present invention; Figure 2 is the underlying ungrown aluminum nitride / gallium nitride superlattice Cross-section transmission electron microscopy (TEM) photo of the structured gallium nitride thin film; Figure 3 is a cross-section of a gallium nitride thin film with a bottom-grown aluminum nitride / gallium nitride superlattice structure (SLS, 10 pairs) Cross-section transmission electron microscopy (TEM) photo; Figure 4 is a schematic structural view of another preferred embodiment of the present invention; Figure 5 is a method of adding aluminum nitride / nitride in the middle of a gallium nitride epitaxial film Cross-section transmission electron microscopy (TEM) photo of gallium (5 pairs) superlattice structure;

第6圖係本發明之氮化鋁/氮化鎵超晶格結構示意圖FIG. 6 is a schematic diagram of the aluminum nitride / gallium nitride superlattice structure of the present invention.

第10頁Page 10

Claims (1)

511143 六、申請專利範圍 1. 一種在氮化鎵半導體元件中阻擋差排生長之阻擋結 構,該阻擋結構包括: (I )在基板上形成第一緩衝層,係利用由氮化鋁或氮化 鎵所形成; (Π )在前述第一緩衝層上生長氮化鋁/氮化鎵超晶格結 構。 2. 如申請專利範圍第1項的阻擋結構,其中,前述氮化鋁 /氮化鎵超晶格結構中,單--對之厚度組成範圍為 4〜7nm/4〜7nm 〇511143 VI. Application Patent Scope 1. A blocking structure for blocking the growth of differential rows in a gallium nitride semiconductor device, the blocking structure includes: (I) forming a first buffer layer on a substrate, which is made of aluminum nitride or nitride Formed of gallium; (Π) growing an aluminum nitride / gallium nitride superlattice structure on the first buffer layer. 2. For example, the barrier structure of the first patent application range, wherein in the aforementioned aluminum nitride / gallium nitride superlattice structure, the thickness composition range of the single-pair is 4 ~ 7nm / 4 ~ 7nm. 3. 如申請專利範圍第1項的阻擂結構,其中,前述氮化鋁 /氮化鎵超晶格結構的對數為3對至2 0對。 4. 一種在氮化鎵半導體元件中阻擋差排生長之阻擋結 構,該阻擋結構為一氮化鋁/氮化鎵超晶格結構,形成於 兩層氮化鎵化合物蟲晶之間。 5. 如申請專利範圍第4項的阻擋結構,其中,前述氮化鋁 /氮化鎵超晶格結構中,單——對之厚度組成範圍為 4〜7nm/4〜7nm 〇 6. 如申請專利範圍第4項的阻擋結構,其中,前述氮化鋁 /氮化鎵超晶格結構的對數為3對至2 0對。3. The rubidium resistive structure according to item 1 of the patent application range, wherein the logarithm of the aforementioned aluminum nitride / gallium nitride superlattice structure is 3 to 20 pairs. 4. A blocking structure for blocking the growth of a differential row in a gallium nitride semiconductor device. The blocking structure is an aluminum nitride / gallium nitride superlattice structure formed between two layers of gallium nitride compound insect crystals. 5. For example, the barrier structure of the fourth scope of the patent application, wherein, in the foregoing aluminum nitride / gallium nitride superlattice structure, the thickness range of the single-pair pair is 4 ~ 7nm / 4 ~ 7nm 〇6. The barrier structure of item 4 of the patent, wherein the logarithm of the aforementioned aluminum nitride / gallium nitride superlattice structure is 3 to 20 pairs. 7. 如申請專利範圍第1項或第4項的阻擋結構,其中,前 述氮化鋁/氮化鎵超晶格結構的生長溫度界於4 5 0〜6 0 0 °C之 間或9 0 0〜1 2 0 0 QC之間。7. If the barrier structure of the first or fourth item of the patent application scope, wherein the growth temperature boundary of the aforementioned aluminum nitride / gallium nitride superlattice structure is between 4 5 0 ~ 6 0 0 ° C or 9 0 0 ~ 1 2 0 0 QC. 第11頁Page 11
TW90128769A 2001-11-21 2001-11-21 Method for forming GaN/AlN superlattice structure TW511143B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90128769A TW511143B (en) 2001-11-21 2001-11-21 Method for forming GaN/AlN superlattice structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90128769A TW511143B (en) 2001-11-21 2001-11-21 Method for forming GaN/AlN superlattice structure

Publications (1)

Publication Number Publication Date
TW511143B true TW511143B (en) 2002-11-21

Family

ID=27752374

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90128769A TW511143B (en) 2001-11-21 2001-11-21 Method for forming GaN/AlN superlattice structure

Country Status (1)

Country Link
TW (1) TW511143B (en)

Similar Documents

Publication Publication Date Title
US9691712B2 (en) Method of controlling stress in group-III nitride films deposited on substrates
Krost et al. GaN‐based devices on Si
JP4677065B2 (en) Light emitting diode and manufacturing method thereof
JP5520056B2 (en) Nitride semiconductor structure having intermediate layer structure and method for manufacturing nitride semiconductor structure having intermediate layer structure
JP5723862B2 (en) III-nitride light emitting device grown on template for strain reduction
US6156581A (en) GaN-based devices using (Ga, AL, In)N base layers
JP4529846B2 (en) III-V nitride semiconductor substrate and method for manufacturing the same
JP4332720B2 (en) Method for manufacturing plate-like substrate for forming semiconductor element
JP5311416B2 (en) III-nitride light-emitting devices grown on templates for strain reduction
JP2004524250A (en) Gallium nitride materials and methods
US20140001438A1 (en) Semiconductor devices and methods of manufacturing the same
US8823055B2 (en) REO/ALO/A1N template for III-N material growth on silicon
JP4458223B2 (en) Compound semiconductor device and manufacturing method thereof
US20150203990A1 (en) REN SEMICONDUCTOR LAYER EPITAXIALLY GROWN ON REAlN/REO BUFFER ON Si SUBSTRATE
JP4449357B2 (en) Method for manufacturing epitaxial wafer for field effect transistor
TW511143B (en) Method for forming GaN/AlN superlattice structure
KR100834698B1 (en) Method of forming gan layer and gan substrate manufactured using the same
CN113539786A (en) Silicon-based gallium nitride epitaxial structure and preparation method thereof
KR100839224B1 (en) Method for manufacturing thick film of gan
CN117410405A (en) Deep ultraviolet light-emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light-emitting diode
JP2006120855A (en) Group iii-v nitride semiconductor epitaxial wafer
KR20130142415A (en) Gan-based semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent