508845 Λ7 Γ>7 7131twf.d〇c/〇〇6 五、發明說明(/) 本發明是有關於一種發光二極體結構及其製作方法, (請先閱讀背面之注意事項再填寫本頁) 且特別是有關於一種以具有網狀脈絡搭配銲墊部分(Pad ) 之網狀正面電極以取代傳統以單一金屬作爲正面電極的高 亮度發光二極體結構及其製作方法。 現今的發光二極體製作漸趨成熟,故可以做成具有 高信賴度的大型顯示看板。由於大型的顯示看板所採用的 發光二極體必須具備高亮度的特性,以使其大型的顯示看 板不僅是大而淸晰,更能夠在遠距離觀看其顯示的內容。 因此發光二極體的發展始終朝著高亮度、低耗電率的方向 前進。 •線, 經泫部智慧財產局員工消費合作社印製 發光二極體的主要材質磷化鋁鎵銦(AlGalnP)爲一直 接能隙材料,在與砷化鎵(GaAs)晶格匹配的條件下,適當 曰周整銘與錄的比例可調變發光的波長介於550nm-680nm 之間’約爲綠光至紅光的波長範圍。由於增加鋁的含量可 以增大材料的能隙,故一般會以鋁含量高的磷化鋁鎵銦作 爲侷限層(Confining Layer )夾住中心的載子發光層或稱活 性層(Active Layer ),以提高載子的注入效率,進而形成 问發71[:效率的雙異質結構(Double Hetero-structure )發光 二極體。其中,由於侷限層的能隙較所發出之光子的能量 大’故侷限層並不會吸收由活性層所發出的光。 首先請先參照第1圖,其示爲習知中發光二極體結 構之剖面示意圖。一般磷化鋁鎵銦發光二極體是以有機金 屬化學氣相沉積(Metal Organic Chemical Vapor Dep〇S1t10n,MOCVD )的方式於n型砷化鎵基板100上依 3 本紙張尺度適用中國國家標準(CNS)Al規格(210 x 297公釐) 經濟部智慧財產局員Η消費合作社印製 508845 7l31twf.doc/006 _L)/_ 五、發明說明Cl ) 序成長一 n型磷化鋁鎵銦侷限層102、一磷化鋁鎵銦活性 層104、一 ρ型磷化銘鎵銦侷限層106,最後再蒸鍍上一 正面電極108及背面電極110即完成一發光二極體元件的 製作。而爲了提高正面整體的發光強度,通常會再加上布 拉格反射鏡層 112( Distributed Bragg Reflector )於 η 型磷 化鋁鎵銦侷限層102之下方,如此便可以將射往η型砷化 鎵基板100的光子反射回正面輸出。由於Ρ型磷化鋁鎵銦 材料在磊晶上有移動率過低及摻雜高濃度不易的問題,會 使得其電阻係數偏高(約〇.5Ω<η〇以致於橫向電流無法 有效地分散到整個晶粒上,由於載子大部份僅注入於正面 電極108的正下方,故其他位置的活性層104便無法獲得 足夠載子進行復合發光。再者,此種電流擁擠現象(Current Crowding )亦會造成大部分產生的光被不透光的正面電極 1〇8擋住而反射回半導體本體(Bulk )或被吸光的基板100 所吸收,造成元件的發光效率大幅降低。 接著請參照第2圖,其示爲習知發光二極體中具有 電流分散層結構之剖面示意圖。爲了解決第1圖結構上之 缺點而在ρ型磷化鋁鎵銦侷限層106及正面電極108之間 加入一電流分散層114( Current-Spreading Layer ),此電流 分散層114除了對活性層104所發出的光具極佳的穿透性 2 ’更重要的是它比磷化鋁鎵銦可摻雜較高的濃度且具較 闻的移動率,故電流分散層114具有較低的電阻係數,可 使整個晶粒獲得較均勻的電流,目前電流分散層114採用 的材料以砷化鋁鎵(AlGaAs )及磷化鎵(GaP )爲主。然而 (請先閱讀背面之注意事項再填寫本頁) . •線. 4 508845 Λ; Γ)7 7131twf. doc/006 五、發明說明(> ) •丨一-----------^^裝--- (請先閱讀背面之注意事項再填寫本頁) 上述所提到的電流分散層Π4 —般都需數十微米厚才能達 到足夠大的電流分散能力,但賴以成長電流分散層11炎的 有機金屬化學氣相沉積(MOCVD )其成長速率相當的緩 慢,使得元件的製造成本提高及Ιί造時間增長。再者,即 使電流#散層Π4的導電效果再怎麼提高,也不能達到如 導體般高效率傳導的特性。 因此,本發明的目的在提出一種發光二極體結構, 以網狀金屬搭配金屬墊(Pad )取代習知的單一金屬之正面 電極,使得電流可以先藉由網狀脈絡傳導,使電流分散層 的厚度下降,並降低由活性層所發射出光子被擋住的機 率。 --線.508845 Λ7 Γ > 7 7131twf.d〇c / 〇〇6 V. Description of the invention (/) This invention relates to a light-emitting diode structure and its manufacturing method, (Please read the precautions on the back before filling this page) In particular, it relates to a high-brightness light-emitting diode structure with a mesh-like vein and a pad portion (Pad) to replace the traditional high-brightness light-emitting diode structure using a single metal as the front-electrode and a manufacturing method thereof. Today, the production of light-emitting diodes is gradually mature, so it can be made into a large-scale display panel with high reliability. Because the large-scale display boards used in the light-emitting diodes must have high brightness characteristics, so that the large-scale display boards are not only large and clear, but also can view their display content at a long distance. Therefore, the development of light-emitting diodes has always moved in the direction of high brightness and low power consumption. • Line, the main material printed by the Ministry of Intellectual Property Bureau ’s Consumer Cooperative for the production of light-emitting diodes is aluminum gallium indium phosphide (AlGalnP), which is a direct bandgap material that matches the gallium arsenide (GaAs) lattice It is appropriate to say that the ratio of Zhou Zhengming to the recorded light can be adjusted to tune the wavelength between 550nm and 680nm, which is about the wavelength range of green light to red light. Since the energy gap of the material can be increased by increasing the aluminum content, the aluminum carrier layer with a high aluminum content is generally used as a confining layer (Confining Layer) to sandwich the central carrier light emitting layer or active layer (Active Layer). In order to improve the carrier injection efficiency, a double Hetero-structure light emitting diode 71 [: efficiency is formed. Among them, since the energy gap of the confined layer is greater than the energy of the photon emitted, the confined layer will not absorb the light emitted by the active layer. First, please refer to FIG. 1, which is a schematic cross-sectional view of a conventional light emitting diode structure. General aluminum gallium indium light emitting diodes are made of Metal Organic Chemical Vapor DepOs1t10n (MOCVD) on an n-type gallium arsenide substrate 100 in accordance with 3 paper standards. CNS) Al specification (210 x 297 mm) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 508845 7l31twf.doc / 006 _L) / _ V. Description of the invention Cl) Sequence growth of an n-type aluminum gallium indium confinement layer 102 , An aluminum gallium indium phosphide active layer 104, a p-type gallium indium gallium indium confinement layer 106, and finally a front electrode 108 and a back electrode 110 are vapor-deposited to complete the production of a light emitting diode element. In order to improve the overall luminous intensity of the front side, a Bragg reflector layer 112 (Distributed Bragg Reflector) is usually added under the n-type aluminum gallium indium phosphide confined layer 102, so that the n-type gallium arsenide substrate can be shot. 100 photons are reflected back to the front output. The P-type aluminum gallium indium phosphide material has the problems of too low mobility and high doping concentration on the epitaxial crystal, which will cause its resistivity to be too high (about 0.5Ω < η〇, so that the lateral current cannot be effectively dispersed. On the entire die, since most of the carriers are only injected directly under the front electrode 108, the active layer 104 in other positions cannot obtain enough carriers for composite light emission. Furthermore, this current crowding phenomenon (Current Crowding) ) Will also cause most of the generated light to be blocked by the opaque front electrode 108 and reflected back to the semiconductor body (Bulk) or absorbed by the light-absorbing substrate 100, resulting in a significant decrease in the light emitting efficiency of the device. Figure, which is a schematic cross-sectional view of a conventional light-emitting diode with a current-dispersing layer structure. In order to solve the structural shortcoming of Figure 1, a p-type aluminum gallium indium phosphide confining layer 106 and a front electrode 108 are added with a A current-spreading layer 114, in addition to having excellent penetrability to the light emitted from the active layer 104, 2 'is more important than the doping of aluminum gallium indium phosphide. Concentration and relatively high mobility, so the current dispersion layer 114 has a lower resistivity, which can obtain a more uniform current across the grain. At present, the materials used in the current dispersion layer 114 are aluminum gallium arsenide (AlGaAs) and Gallium phosphide (GaP) is the main. However (please read the precautions on the back before filling this page). • Line. 4 508845 Λ; Γ) 7 7131twf. Doc / 006 5. Description of the invention (>) • 丨 一----------- ^^ 装 --- (Please read the precautions on the back before filling out this page) The above-mentioned current dispersion layer Π4-generally requires tens of microns to achieve sufficient Large current dispersing capacity, but the growth rate of organometallic chemical vapor deposition (MOCVD), which relies on the growth of the current dispersing layer 11, is relatively slow, which increases the manufacturing cost of the device and increases the manufacturing time. Furthermore, even if the conductive effect of the current #dispersion layer Π4 is improved, it cannot achieve the characteristics of high-efficiency conduction like a conductor. Therefore, the object of the present invention is to provide a light-emitting diode structure, which replaces the conventional front electrode of a single metal with a mesh metal and a metal pad (Pad), so that the current can be conducted through the mesh vein first to make the current dispersion layer. The thickness decreases and the probability of photons emitted by the active layer being blocked is reduced. --line.
經濟部智慧財產局員工消費合作社印S 爲達本發明之上述目的,提出一種發光二極體之結 構主要包括一基板,基板之一面上具有一布拉格反射鏡 層、一第一型離子摻雜侷限層、一活性層、一第二型離子 摻雜侷限層、一電流分散層與一網狀正面電極’而基板的 另一面上則具有一背面電極。其中,網狀正面電極包括一 銲墊部分以及一網狀脈絡,電流由銲墊部分經由網狀脈絡 在進入電流分散層之前平均分散,以使發光二極體具有高 亮度,並藉由網狀正面電極降低發光二極體中電流分散層 之厚度,進而降低電流分散層在磊晶過程所耗費之成本與 量產時間。 爲讓本發明之上述目的、特徵、和優點能更明顯易 懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說 明如下: 5 本紙張尺度適用中國國家標爭(CNS)A 1規格G10 X 297公釐) 508845 7131twf. doc/00 6 __ 五、發明說明(/| ) 圖式之簡單說明: 第1圖繪示爲習知發光二極體結構之剖面示意圖; (請先閱讀背面之注意事項再填寫本頁) 第2圖繪示爲習知發光二極體中具有電流分散層結 構之剖面示意圖; 第3圖繪示爲依照本發明一較佳實施例中發光二極 體結構之剖面示意圖; 第4圖繪示爲依照本發明一較佳實施例中網狀正面 電極所採用的光罩示意圖; 第5圖繪示爲習知第2圖之結構中,其光輸出相對 強度與電流分散層厚度(t)之關係圖; 第6圖繪示爲依照本發明一較佳實施例中針對不同 金屬間隙(w )、不同電流分散層厚度(t )與光輸出相對強 度之關係圖;以及 第7圖繪示爲依照本發明一較佳實施例之二極體結 構在每一單位方格內的電流分佈模擬結果。 圖式之標示說明: 1〇〇 :基板 ' 經濟部智慧財產局員工消費合作社印« 102、106 :偏限層 104 :活性層 10 8 :正面電極 110 :背面電極 112 :布拉格反射鏡層 114 :電流分散層 116 :網狀正面電極 6 本紙張尺度適用中國國家標準(CNS)A丨規格(210x297公釐) 508845 經濟部智慧財產局員工消費合作社印¾ 7131twf. doc/006 五、發明說明(f) 116a :銲墊部分 116b :網狀脈絡 400 :光罩 402 :漏空部分 404 :網狀部分 406 :金屬墊部分 齩佳實施例 請參照第3圖,其繪示爲依照本發明一較佳實 施例中發光二極體結構之剖面示意圖。本發明之發光二極 體結構與習知相近,主要包括一基板100,基板100之一 面上具有一布拉格反射鏡層112、一第一型離子摻雜侷限 層102、一活性層104、一第二型離子摻雜侷限層106、一 電流分散層Π4與一網狀正面電極116,而基板1〇〇的另 一面上則具有一背面電極110。此外,網狀正面電極116 包括一銲墊部分116a以及一網狀脈絡116b,電流由銲墊 116a部分經由網狀脈絡116b在進入電流分散層114之前 平均分散,以使發光二極體具有高亮度,並藉由網狀正面 電極116降低發光二極體中電流分散層114之厚度。其中’ 基板1〇〇例如爲砷化鎵基板,第一型摻雜侷限層1〇2之材 質例如爲η型摻雜之磷化鋁銦鎵,第二型摻雜侷限層1〇6 之材質例如爲ρ型摻雜之磷化鋁銦鎵,活性層104之材質 例如選自於未摻雜之磷化鋁銦鎵與此材質所形成之量子井 結構等所組成之族群。而電流分散層14之材質係選自於 砷化鋁鎵與磷化鎵等所組成之族群。其與習知主要差異之 7 (請先閱讀背面之注意事項再填寫本頁) 訂: 本紙張尺度適用中國國家標準(Ci\:SMl規格(210 χ」97公釐) 508845 7l3ltwf·doc/006 五、發明說明(<) 處,在於本發明以網狀正面電極116取代習知(第2圖) 之單一圓形之正面電極108,使得電流在進入電流分散層 114之前可以先藉由網狀正面電極116傳導並分散,故其 下方所需的電流分散層Π4便不需要很大的厚度(小於數 十微米),且又由於網狀正面電極116係由一銲墊部分U6a 與一網狀脈絡116b所構成,故相較於習知(第2圖)的 結構並不會擋住太多由活性層104所發射出之光子。此外, 整個發光二極體之晶粒能夠藉由網狀正面電極116而得到 均勻的電流分佈,故發光強度自然大幅提高。 第4圖繪示爲依照本發明一較佳實施例中網狀正面 電極所採用的光罩示意圖。製作上述網狀正面電極116所 採用的光罩(Mask )400之圖形如第4圖所示。由第4圖中 可知,光罩400由對應於銲墊部分116a位置之金屬墊部 分406、對應於網狀脈絡116b位置之網狀部分404以及漏 空部分402所組成。而網狀正面電極116之製作方式例如 於晶片上旋塗光阻、曝光、顯影後,使光阻僅存在方形斜 線的部份,之後形成金屬層於未受光阻覆蓋之電流分散層 114上,再以例如掀除(Lift-off )、蝕刻(Etch )或其他方 經濟部智慧財產局員工消費合作社印製 式將光阻及其上之金屬層移除,留下的金屬部分即構成網 狀正面電極116。 吾人特別將習知一維的電流分佈關係式推廣至二 維,並以電腦先模擬習知結構(請參照第2圖)的電流分 佈及發光強度。習知之一維電流階佈關係式如下: 8 本紙張尺度適用中國國家標準(CNS)Al規格(」丨()X 297公楚) 508845 7l31twf. doc/006 五、發明說明( Λ (χ/1 + V2)2 其中JQ爲金屬下方的電流密度,J(x)爲距金屬X處 的電流密度,L爲橫向分佈長度(Spreading Length ) ’其 與電流分散層(本模擬係指磷化鎵而言)的厚度t有以下 的關係:/ =(㈣,)1/2 Λ J〇e g :電流分散層的電導率(Conductivity ) t :電流分散層的厚度In order to achieve the above-mentioned object of the present invention, a structure of a light-emitting diode is mainly composed of a substrate. One side of the substrate has a Bragg reflector layer and a first-type ion doping limitation. Layer, an active layer, a second type ion-doped confinement layer, a current dispersion layer, and a mesh front electrode, and the other side of the substrate has a back electrode. Among them, the mesh front electrode includes a pad portion and a mesh vein, and the current is evenly dispersed by the pad portion through the mesh vein before entering the current dispersing layer, so that the light emitting diode has high brightness, and The front electrode reduces the thickness of the current dispersing layer in the light emitting diode, thereby reducing the cost and mass production time of the current dispersing layer during the epitaxial process. In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below in conjunction with the accompanying drawings, and described in detail as follows: 5 This paper scale is applicable to the Chinese National Standards (CNS) ) A 1 specification G10 X 297 mm) 508845 7131twf. Doc / 00 6 __ V. Description of the invention (/ |) Brief description of the diagram: The first diagram is a schematic cross-sectional diagram of a conventional light emitting diode structure; ( Please read the precautions on the back before filling in this page.) Figure 2 is a schematic cross-sectional view of a conventional light-emitting diode with a current dispersing layer structure. Figure 3 is a light emitting diode according to a preferred embodiment of the present invention. A schematic cross-sectional view of a diode structure; FIG. 4 is a schematic view of a photomask used in a mesh front electrode according to a preferred embodiment of the present invention; FIG. 5 is a view showing the structure of FIG. The relationship between the relative intensity of the light output and the thickness (t) of the current dispersing layer; FIG. 6 shows the thickness of the current dispersing layer (t) and the light output for different metal gaps (w) according to a preferred embodiment of the present invention. A graph of relative intensity; and According to the present invention is illustrated as a preferred embodiment of the diode of Example simulated current distribution structure within each unit of squares results. Description of the diagram: 100: substrates printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs «102, 106: Partial layer 104: Active layer 10 8: Front electrode 110: Back electrode 112: Bragg reflector layer 114: Current dispersing layer 116: mesh-shaped front electrode 6 This paper size is applicable to China National Standard (CNS) A 丨 specifications (210x297 mm) 508845 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ¾ 7131twf. Doc / 006 V. Description of the invention ) 116a: pad part 116b: mesh vein 400: photomask 402: void part 404: mesh part 406: metal pad part For a preferred embodiment, please refer to FIG. 3, which is shown as a preferred embodiment in accordance with the present invention. A schematic cross-sectional view of a light emitting diode structure in the embodiment. The light-emitting diode structure of the present invention is similar to the conventional one, and mainly includes a substrate 100 having a Bragg reflector layer 112, a first-type ion-doped confinement layer 102, an active layer 104, and a first surface. The second type ion-doped confinement layer 106, a current dispersion layer Π4, and a mesh front electrode 116, and the other surface of the substrate 100 has a back electrode 110. In addition, the mesh front electrode 116 includes a pad portion 116a and a mesh vein 116b, and the current is evenly dispersed by the pad 116a portion through the mesh vein 116b before entering the current dispersion layer 114, so that the light emitting diode has high brightness. The thickness of the current dispersion layer 114 in the light-emitting diode is reduced by the mesh-shaped front electrode 116. Wherein the substrate 100 is, for example, a gallium arsenide substrate, the material of the first type doped confinement layer 102 is, for example, n-type doped aluminum indium gallium phosphide, and the material of the second type doped confinement layer 10 For example, it is p-type doped aluminum indium gallium phosphide, and the material of the active layer 104 is selected from the group consisting of a quantum well structure formed by undoped aluminum indium gallium phosphide and this material. The material of the current dispersion layer 14 is selected from the group consisting of aluminum gallium arsenide and gallium phosphide. The main difference from the conventional 7 (please read the notes on the back before filling in this page) Order: The paper size applies to the Chinese national standard (Ci \: SMl specification (210 χ "97 mm) 508845 7l3ltwf · doc / 006 5. Description of the invention (<) is that the present invention replaces the conventional single circular front electrode 108 with a mesh-shaped front electrode 116 (Figure 2), so that the current can be passed through the network before entering the current dispersion layer 114. The front electrode 116 is conductive and dispersed, so the current dispersing layer Π4 below it does not need a large thickness (less than several tens of microns), and because the mesh front electrode 116 is composed of a pad portion U6a and a mesh The shape of the vein 116b, so compared with the conventional structure (Figure 2) does not block too much photons emitted by the active layer 104. In addition, the entire light-emitting diode grains can be meshed The front electrode 116 obtains a uniform current distribution, so the luminous intensity is naturally greatly increased. FIG. 4 shows a schematic diagram of a photomask used in accordance with the mesh front electrode in a preferred embodiment of the present invention. The above-mentioned mesh front electrode 116 is fabricated Adopted The pattern of Mask 400 is shown in Figure 4. As can be seen from Figure 4, the mask 400 consists of a metal pad portion 406 corresponding to the position of the pad portion 116a, and a mesh portion corresponding to the position of the mesh vein 116b. 404 and the empty portion 402. The manufacturing method of the mesh front electrode 116 is, for example, spin-coating a photoresist on a wafer, exposing, and developing the photoresist so that only the square oblique line portion exists, and then forming a metal layer without receiving light The photoresist and the metal layer thereon are printed on the current dispersion layer 114 covered by the resist, such as Lift-off, Etch, or other consumer printing cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. The remaining metal part constitutes the mesh-shaped front electrode 116. I specially extended the conventional one-dimensional current distribution relationship to two-dimensional, and first simulated the current distribution and light emission of the conventional structure with a computer (see Figure 2). Intensity. The one-dimensional current-level cloth relation is as follows: 8 This paper size applies the Chinese National Standard (CNS) Al specification ("丨 () X 297). 508845 7l31twf. Doc / 006 5. Description of the invention (Λ (χ / 1 + V2) 2 where JQ Is the current density under the metal, J (x) is the current density from the metal X, and L is the Spreading Length, which is related to the thickness t of the current dispersion layer (in this simulation, it is gallium phosphide) The following relationship: / = (㈣,) 1/2 Λ J〇eg: Conductivity of the current dispersion layer t: Thickness of the current dispersion layer
k :波茲曼常數(Boltzmann Constant ) 1.38x10 23 J/K T :絕對溫度(QK ) e :單位電荷値(Elementary charge ) 1·60218χ10·19 C (請先閱讀背面之注意事瑣再填寫本頁) >衣---- #0’ ·111111 經濟部智慧財產局員工消費合作社印製 第5圖繪示爲習知第2圖之結構中,其光輸出相對 強度與電流分散層厚度(t )之關係圖。假設習知結構的發 光二極體尺寸爲9milx9mil ( lmil = 25.4微米)大小的晶 粒且中心正面電極108爲直徑3mil的圓形金屬正面電極 108,爲使模擬結果更接近實際元件的光輸出特性,吾人 將電流分散層114的光臨界角亦納入模擬考量中,磷化鎵 材質之電流分散層114的臨界角約爲17.10,換句話說, 每個點光源可入射進空氣中的立體角(Apex of cone )約爲 34^,若入射光大於此立體角或者入射光碰到銲墊部分k: Boltzmann Constant 1.38x10 23 J / KT: absolute temperature (QK) e: unitary charge 値 (Elementary charge) 1 · 60218 × 10 · 19 C (Please read the cautions on the back before filling this page ) > clothing ---- # 0 '· 111111 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 5 shows the structure of the conventional Figure 2. Its relative light output intensity and current dispersion layer thickness (t ). Assume that the size of the light-emitting diode of the conventional structure is 9milx9mil (lmil = 25.4 microns), and the center front electrode 108 is a round metal front electrode 108 with a diameter of 3mil. In order to make the simulation result closer to the light output characteristics of the actual device I have also included the critical angle of light of the current dispersion layer 114 in the simulation considerations. The critical angle of the current dispersion layer 114 of gallium phosphide material is about 17.10. In other words, the solid angle at which each point light source can enter the air ( Apex of cone) is about 34 ^, if the incident light is larger than this solid angle or the incident light hits the pad portion
本紙張尺度適用中國國家標準(CNS)八1規格(210 x 297公釐) 508845 經濟部智慧財產局員工消費合作社印¾ 7131twf. doc/006 五、發明說明(δ ) 116a者將不列入光輸出的計數。將固定電流50mA注入此 發光二極體,可得到第5圖中的光輸出模擬結果,其中縱 座標爲正規化後的相對強度,即以t = 50微米者的發光 強度當做基準値,而橫座標爲電流分散層114的厚度。如 預期地,當電流分散層114厚度增加時,會有大量的電流 遠離正面電極108下方的位置,故光輸出會呈現正相關的 增加。之後針對網狀正面電極116模擬的光輸出結果將以 第5圖中之最大値(t = 50微米)爲基準値進行正規化 (Normalized )處理以方便比較。 第6圖繪示爲依照本發明一較佳實施例中針對不同 金屬間隙(w )、不同電流分散層厚度(t )與光輸出相對強 度之關係圖。具網狀正面電極116的發光二極體之晶粒尺 寸設定爲9milx9mn,注入同等電流5〇mA,令w爲網狀 脈絡116b間的距離(即實心方形的邊長),s爲網狀脈絡 116b的線寬,t爲電流分散層的厚度,J(x)則爲w、s及t 的函數,只要這三者之一有任何變動,將會影響活性層104 中任一點的電流密度大小。 理論上若網狀脈絡116b之線寬愈大,則遮蔽光的面 積將愈大,對發光二極體的光輸出愈不利,故本模擬將網 狀脈絡116b線寬設爲1微米,針對不同的網狀脈絡116b 間距w及不同的電流分散層厚度t做光輸出的模擬,其結 果如第6圖所示。而第6圖可以分爲兩個部份解釋,在虛 線左側表當網狀脈絡116b間距愈大時,擋光的網狀脈絡 116b總面積會減小,故發光二極體之發光強度隨w愈大 (請先閱讀背面之注意事項再填寫本頁) 訂· 本纸張尺度適用中國國家標準(CNSM 1規格(210 X 297公t ) 508845 Λ; 1;7 7l31twf.doc/006 五、發明說明(Cj ) 而愈売。然而一旦網狀脈絡116b之間距過大而超過虛線 對應的w値時(約爲7至9之間),電流分散能力則成爲 發光二極體發光強度的主導因素,隨著間距w愈大,電流 的均勻性反而變差’大部分的電流皆集中在網狀脈絡116b 的正下方,故可收集到的光強度因而減小。 値得一提的是當w = 1〜50微米時,整體的發光強度 皆比習知結構來得大,最大的發光強度約爲習知單一正面 1¾極者的4.8 5倍’產生在w = 8微米且t = 5 0微米時, 即使電流分散層114的厚度t僅有1微米,就整體發光強 度而言,亦可高達習知結構的4.81倍,可見本發明不僅能 有效提升發光二極體的亮度,亦能以1微米的電流分散層 114取代習知數十微米電流分散層114,甚至可以不需要 電流分散層114的配置,故此一優點便可大大降低(避免) 磊晶成本及節省元件的量產時間。從另一個角度來看,此 網狀正面電極116的發明將發光強度對電流分散層U4厚 度的相依性降低,轉而以另一種製程參數(金屬的間距w) 可更有效地調整並提昇發光二極體的光輸出強度。 第7圖繪示爲依照本發明一較佳實施例之二極體結 構在每一單位方格內的電流分佈模擬結果。本發明的模擬 係針對注入50mA至發光二極體中所得到的電流及發光強 度比較,希望在均勻的電流分佈下能獲得比習知採單一圓 形正面電極108者還大的發光強度。請參照第7圖,其繪 示爲當t = 1微米且w = 8微米時單位方格內的電流分佈情 況,電流密度最大値約爲96.0A/cm2,最小値約爲 本紙張 適用中國國家標準(CNS)A丨規格(210x297公釐) (請先閱讀背面之注意事項再填寫本頁)This paper size applies to China National Standard (CNS) eight one specifications (210 x 297 mm) 508845 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ¾ 7131twf. Doc / 006 V. Description of invention (δ) 116a will not be included in light Output count. Injecting a fixed current of 50 mA into this light-emitting diode, the light output simulation results in Figure 5 can be obtained, where the vertical coordinate is the normalized relative intensity, that is, the luminous intensity of the person with t = 50 μm is used as the reference chirp, and the horizontal The coordinates are the thickness of the current dispersion layer 114. As expected, when the thickness of the current dispersion layer 114 is increased, a large amount of current will be far away from the position under the front electrode 108, so the light output will show a positive correlation increase. The light output results for the meshed front electrode 116 will be normalized with the maximum 値 (t = 50 microns) in Figure 5 for comparison. FIG. 6 is a diagram illustrating the relationship between different metal gaps (w), different current dispersion layer thicknesses (t), and relative light output in a preferred embodiment of the present invention. The grain size of the light-emitting diode with the mesh front electrode 116 is set to 9milx9mn, and an equivalent current of 50 mA is injected. Let w be the distance between the mesh veins 116b (that is, the length of the solid square side), and s the mesh vein. The line width of 116b, t is the thickness of the current dispersion layer, and J (x) is a function of w, s, and t. Any change in one of these three will affect the current density at any point in the active layer 104 . Theoretically, if the line width of the mesh vein 116b is larger, the area for shielding light will be larger, which is more detrimental to the light output of the light-emitting diode. Therefore, the line width of the mesh vein 116b is set to 1 micron in this simulation. The light output of the meshed network 116b with a pitch w and different thicknesses t of the current dispersing layers was simulated. The results are shown in FIG. Fig. 6 can be divided into two parts. On the left side of the dotted line, when the distance between the mesh veins 116b is larger, the total area of the mesh veins 116b that blocks light will decrease, so the light emitting intensity of the light-emitting diode varies with w. Larger (Please read the precautions on the back before filling this page) Order · This paper size applies to the Chinese national standard (CNSM 1 specification (210 X 297 g t) 508845 Λ; 1; 7 7l31twf.doc / 006 V. Invention Explanation (Cj) is getting worse. However, once the distance between the network veins 116b is too large and exceeds the w 値 corresponding to the dotted line (between about 7 and 9), the current dispersion ability becomes the dominant factor of the light-emitting diode's luminous intensity. As the distance w becomes larger, the uniformity of the current becomes worse. Most of the current is concentrated directly below the mesh vein 116b, so the light intensity that can be collected is reduced. It is worth mentioning that when w = From 1 to 50 microns, the overall luminous intensity is greater than that of the conventional structure, and the maximum luminous intensity is about 4.85 times of the conventional single frontal 1¾ pole 'produced at w = 8 microns and t = 50 microns. Even if the thickness t of the current dispersion layer 114 is only 1 micrometer, the whole light is emitted. In terms of strength, it can be as high as 4.81 times of the conventional structure. It can be seen that the present invention can not only effectively improve the brightness of the light-emitting diode, but also replace the conventional tens of micron current dispersion layer 114 with a 1 micron current dispersion layer 114, and even The configuration of the current dispersing layer 114 may not be needed, so this advantage can greatly reduce (avoid) the epitaxial cost and save the mass production time of the component. From another perspective, the invention of the meshed front electrode 116 reduces the light emission intensity. The dependence of the thickness of the current dispersing layer U4 is reduced, and another process parameter (metal pitch w) can be used to more effectively adjust and improve the light output intensity of the light emitting diode. FIG. 7 shows a comparison according to the present invention. The simulation results of the current distribution of the diode structure in each unit square of the preferred embodiment. The simulation of the present invention is aimed at comparing the current and luminous intensity obtained by injecting 50 mA into the light emitting diode, and hopes to achieve a uniform current distribution. It can obtain a greater luminous intensity than the conventionally adopted single circular front electrode 108. Please refer to Fig. 7, which is shown as the unit square when t = 1 micron and w = 8 micron. Flow distribution case, the maximum current density Zhi about 96.0A / cm2, the minimum Zhi about this paper applies China National Standard (CNS) A Shu size (210x297 mm) (Please read the back of the precautions to fill out this page)
經濟部智慧財產局員工消費合作社印製 ^131twf. doc/006五 ________ 經濟部智慧財產局員工消費合作社印製 發明說明(|〇 ) 96.4A/cm2。的確,我們獲得一非常均勻的電流分佈特性, 換句話說’我們將整個晶粒的面積作了最有效的利用,這 也就是爲什麼本發明之光輸出強度會比習知電流從中間正 面電極108往外擴散者提高四倍以上。 綜上所述,本發明之發光二極體結構至少具有下列 優點: 1·本發明之發光二極體結構以網狀正面電極(包括銲 墊部分與網狀脈絡)取代習知單一圓形正面電極,可以提 供更有效的電流分佈情況。 2·本發明之發光二極體結構以網狀正面電極(包括銲 墊部分與網狀脈絡)取代習知單一圓形正面電極,可以降 低電流分散層的厚度。 3·本發明之發光二極體結構中電流分散層的厚度較習 知低許多(約爲一微米左右),故可以降低電流分散層在 嘉晶過程所耗費之成本,並可以節省發光二極體元件的量 產時間。 4·本發明之發光二極體結構中甚至可以不需要電流分 散層的存在,檢省了一步製作過程。 雖然本發明已以一較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍內,當可作各種之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者爲準。 本紙張乂㈣用中關家標準(Ο^Λ丨規格⑵Gx」97公g ) 請 先 閱 讀 背Printed by the Employees 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs ^ 131twf. Doc / 0065 ________ Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economics Invention Description (| 〇) 96.4A / cm2. Indeed, we obtain a very uniform current distribution characteristic, in other words, 'we have made the most effective use of the entire grain area, which is why the light output intensity of the present invention is higher than the conventional current from the middle front electrode 108 Outward spreaders increased more than fourfold. In summary, the light-emitting diode structure of the present invention has at least the following advantages: 1. The light-emitting diode structure of the present invention replaces the conventional single circular front surface with a mesh-shaped front electrode (including a pad portion and a mesh vein). Electrodes can provide more effective current distribution. 2. The light emitting diode structure of the present invention replaces the conventional single circular front electrode with a mesh front electrode (including a pad portion and a mesh vein), which can reduce the thickness of the current dispersion layer. 3. The thickness of the current dispersing layer in the light emitting diode structure of the present invention is much lower than the conventional one (about one micron), so the cost of the current dispersing layer in the Jiajing process can be reduced, and the light emitting diode can be saved. Mass production time of body components. 4. The light emitting diode structure of the present invention does not even need the presence of a current dispersing layer, which saves one step in the manufacturing process. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art can make various modifications and decorations without departing from the spirit and scope of the present invention. The scope of protection of the invention shall be determined by the scope of the attached patent application. This paper uses the Zhongguanjia standard (〇 ^ Λ 丨 size: Gx "97g) Please read it first
意 事 項 再J I裝 訂 線Things to do