TW507393B - Piperazine derivative, process for preparing it, polymeric solid electrolyte and secondary battery - Google Patents

Piperazine derivative, process for preparing it, polymeric solid electrolyte and secondary battery Download PDF

Info

Publication number
TW507393B
TW507393B TW090114398A TW90114398A TW507393B TW 507393 B TW507393 B TW 507393B TW 090114398 A TW090114398 A TW 090114398A TW 90114398 A TW90114398 A TW 90114398A TW 507393 B TW507393 B TW 507393B
Authority
TW
Taiwan
Prior art keywords
compound
group
solid electrolyte
meth
polymer
Prior art date
Application number
TW090114398A
Other languages
Chinese (zh)
Inventor
Takeshi Ishitoku
Shinobu Aoki
Hitoshi Onishi
Yoshinobu Nogi
Masahiro Toriida
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000191793A external-priority patent/JP2001291529A/en
Priority claimed from JP2000232921A external-priority patent/JP2002047279A/en
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Application granted granted Critical
Publication of TW507393B publication Critical patent/TW507393B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hydrogenated Pyridines (AREA)

Abstract

The present invention is to provide a process for preparing novel piperazine derivatives suitable as hardening and crosslinking agents, and relates to a polymeric solid electrolyte obtained from said piperazine derivatives and having high ionic conductivity and maintaining electrochernical stability. Moreover, provided is a secondary battery using said polymeric solid electrolyte. The piperazine derivative according to the present invention is a novel piperazine derivative having at least two groups represented by formula (1) within one molecule, wherein R1 to R6 represents hydrogen atom or a lower alkyl group, and X represents oxygen, sulfur or NR6.

Description

507393 五、發明説明(1 ) 【發明說明】 技術領域 本發明關於新穎的哌哄衍生物之製造方法,使用該哌阱 衍生物所獲得的具有優異性能之高分子固體電解質,以及 使用其的二次電池 背景技術 目前,作爲環氧樹脂或丙烯酸酯之硬化劑,可以使用多 元胺,其中,脂族多元胺由於具有高反應性而能具有在常 溫進行硬化的可用性。然而,習用的脂族多元胺有蒸氣壓 高、皮膚刺激性強之問題。 習知的脂族多元胺大多爲一級胺,雖然反應性高,但常 溫硬化時有需要長時間之缺點。 本案發明人在該情況下,由高反應性、低刺激性的觀 點,精心銳意開發具有改良的硬化劑,而發現具有優異性 能的新穎哌哄衍生物。 另一方面,習用的一次電池、二次電池、電容器等的電 化學元件中’沿用液體電解質。然而,使用液體電解質, 則有從製品容器出來的漏液之掛慮,因此在電化學元件之 利用’希望能夠改良提高長時間的可靠性。 其中一種改良方法爲檢討使用固體電解質代替液體電解 <質的方法。若使用固體電解質,則不用擔心漏液問題,同 時有元件本身小型化、輕量化之優點。但是,一般的固體 電解質之離子傳導度係比液體電解質低,而難以製得具有 優異充放電特性的電池。 507393 五、發明説明(2 ) 近年來,已注意及硏究固固體電解質中的高分子固體電 解質,其具有可撓性,故推測在電極-電解質間的離子電子 交換反應過程中所發生的體積變化,能柔軟地對付。 作爲該高分子固體電解質,已有提議具有聚醚構造的聚 環氧乙烷和鋰鹽等的鹼金屬鹽之複合物、聚氧烷烯的二酯 化合物、聚甲氧基氧烷烯的酯化合物,具有雙鍵的氧基化 合物和共聚物所成的交聯樹脂和無機鹽爲主要構成分的高 分子固體電解質(特開平5-25353號),具有碳酸酯基作爲官 能基的有機高分子物質和金屬鹽所成的高分子固體電解質 (特開平6-333842號),聚碳酸酯甲基丙烯酸酯樹脂(特開平 1-241764號等等。 本發明在於發現使用由本身找出的新穎哌畊衍生物所獲 得的高分子物質,能提供具有優異性能的高分子固體電解 質。 發明槪述 本發明之目的爲提供一種新穎哌畊衍生物,其適用爲硬 化劑或交聯劑,蒸氣壓低且刺激性低,且具有優異的反應 性。 本發明之目的爲提供一種製造該新穎哌畊衍生物之方 法。 " 本發明之目的爲提供一種使用上述哌畊衍生物所獲得的 高分子固體電解質,其具有高的離子傳導度,同時保持電 化學的安定性。 又,本發明之目的爲提供一種使用上述哌_衍生物所獲 五、發明説明(3 ) 得的高分子固體電解質,其之膠化速度快,而且與電極的 反應性係低的。 再者,本發明之目的爲提供一種使用該高分子固體電解 質的二次電池。 本發明提供新穎的哌畊衍生物,其爲1分子中具有2個 以上之哌哄骨架的化合物,爲1分子中具有2個以上之下 式(I)所示的基。507393 V. Description of the invention (1) [Explanation of the invention] TECHNICAL FIELD The present invention relates to a novel method for manufacturing a piperidine derivative, a polymer solid electrolyte having excellent properties obtained by using the piperidine derivative, and two methods using the same. BACKGROUND OF THE INVENTION Currently, as a curing agent for epoxy resins or acrylates, polyamines can be used. Among them, aliphatic polyamines have high reactivity and can be used for curing at room temperature. However, conventional aliphatic polyamines have problems of high vapor pressure and strong skin irritation. Most of the conventional aliphatic polyamines are primary amines. Although they are highly reactive, they have the disadvantage of requiring a long time when they are hardened at room temperature. In this case, the inventors of the present case carefully developed an improved hardener from the viewpoint of high reactivity and low irritation, and found a novel piperidine derivative having excellent performance. On the other hand, liquid electrolytes are used in conventional electrochemical elements such as primary batteries, secondary batteries, and capacitors. However, the use of a liquid electrolyte is concerned with leakage of liquid from a product container. Therefore, the use of an electrochemical device is expected to improve the reliability over a long period of time. One of the improvements is to review the use of solid electrolytes instead of liquid electrolytes. If a solid electrolyte is used, there is no need to worry about the leakage, and at the same time, there are advantages of miniaturization and weight reduction of the element itself. However, a general solid electrolyte has a lower ion conductivity than a liquid electrolyte, and it is difficult to produce a battery having excellent charge and discharge characteristics. 507393 V. Description of the invention (2) In recent years, attention has been paid to the polymer solid electrolytes in solid solid electrolytes, which have flexibility, so it is estimated that the volume that occurs during the ion-electron exchange reaction between the electrode and the electrolyte Change and can deal with softly. As the polymer solid electrolyte, there have been proposed a complex of an alkali metal salt such as polyethylene oxide and a lithium salt having a polyether structure, a diester compound of polyoxyalkylene, and an ester of polymethoxyoxyalkylene. Compounds, polymer electrolytes with double bonds, crosslinked resins made of oxy compounds and copolymers, and inorganic salts as the main components (Japanese Patent Application Laid-Open No. 5-25353), organic polymers with carbonate groups as functional groups Polymer solid electrolyte (Japanese Patent Application Laid-Open No. 6-333842) made of a substance and a metal salt, polycarbonate methacrylate resin (Japanese Patent Application Laid-open No. 1-241764, etc.) The present invention consists in discovering the use of a novel pipette found by itself The polymer material obtained from the tillage derivative can provide a polymer solid electrolyte with excellent properties. DESCRIPTION OF THE INVENTION The object of the present invention is to provide a novel piperin derivative which is suitable as a hardener or a cross-linking agent, has a low vapor pressure and Low irritation and excellent reactivity. The object of the present invention is to provide a method for manufacturing the novel pipertin derivative. &Quot; The object of the present invention is to provide a use The polymer solid electrolyte obtained from piperin derivatives has high ionic conductivity while maintaining electrochemical stability. In addition, the object of the present invention is to provide a method for obtaining the above-mentioned piperine derivatives. (3) The obtained polymer solid electrolyte has a high gelation rate and low reactivity with the electrode. Furthermore, the object of the present invention is to provide a secondary battery using the polymer solid electrolyte. The present invention Provided is a novel piperin derivative, which is a compound having two or more piperazine skeletons in one molecule and having two or more groups represented by the following formula (I) in one molecule.

其中R1、R2、R3、R4和R5可爲相同或相異,且代表氫原子 或低級烷基,X代表氧原子、硫原子或NR6,其中R6係氫 原子或低級烷基。★代表接合點(以下皆同)。 本發明提供一種能獲得該新穎哌畊衍生物之優異方法。 本發明提供之高分子固體電解質,係爲在由上述哌哄衍 生物與分子中具有2個以上之(甲基)丙烯基之化合物(X)的 加成反應所形成的聚合物中,含有週期表第la族之金屬鹽 者。 再者,本發明提供一種使用該高分子電解質的二次電 池。 發明的县體實施型態 本案發明人爲解決上述問題,而精心進行硏究,結果發 5073^_n 嘹8, 2 #正 y Ui 五、發明説明(4 ) 現1分子中具有2個以上特定哌畊基的化合物係具有作爲 硬化劑或交聯劑的優異特性,而達成本發明。 本發明所提供的新穎哌畊衍生物係爲1分子中具有2個 以上之下式(I)所示的基。 R2 R5Wherein R1, R2, R3, R4 and R5 may be the same or different and represent a hydrogen atom or a lower alkyl group, and X represents an oxygen atom, a sulfur atom or NR6, wherein R6 is a hydrogen atom or a lower alkyl group. ★ Represents the joint (the same applies hereinafter). The present invention provides an excellent method for obtaining the novel pipen derivative. The polymer solid electrolyte provided by the present invention is a polymer formed by the addition reaction of the above-mentioned pipe derivative and the compound (X) having two or more (meth) propenyl groups in the molecule, containing a period Table group la metal salt person. The present invention also provides a secondary battery using the polymer electrolyte. Invented county body implementation mode The inventor of this case carefully studied to solve the above problems, and the result was found 5073 ^ _n 嘹 8, 2 # 正 y Ui V. Description of the invention (4) It is found that there are more than 2 specific elements in 1 molecule Piperin-based compounds have excellent properties as hardeners or cross-linking agents, and have reached the present invention. The novel piperin derivative provided by the present invention has two or more groups represented by the following formula (I) in one molecule. R2 R5

其中R1、R2、R3、R4和R5可爲相同或相異,且代表氫原子 或低級烷基,較佳爲甲基,X代表氧原子、硫原子或NR6。 又R6係氫原子或低級烷基。 本發明中的低級烷基係碳數1至6個的烷基,其較佳爲 甲基、乙基、丙基、丁基等之碳數1至4個的烷基。特佳 爲甲基和乙基。 本發明的哌畊衍生物可爲具有2個以上之上述式(I)所示 的基,雖然不特別限制與該基所接合的基,但是該基所接 合的基較佳爲含有雜原子的烴基。雜原子例如爲氧、氮、 硫等,其中較佳爲氧。 該含有雜原子的烴基例如可爲含有雜原子的碳數2至 100的伸烷基。 因此,本發明的哌畊衍生物之較佳例子爲下式(II)所表 示的化合物。 507393 五、發明説明(5 )Among them, R1, R2, R3, R4 and R5 may be the same or different, and represent a hydrogen atom or a lower alkyl group, preferably a methyl group, and X represents an oxygen atom, a sulfur atom, or NR6. R6 is a hydrogen atom or a lower alkyl group. The lower alkyl group in the present invention is an alkyl group having 1 to 6 carbon atoms, and it is preferably an alkyl group having 1 to 4 carbon atoms such as methyl, ethyl, propyl, and butyl. Particularly preferred are methyl and ethyl. The piperin derivative of the present invention may have two or more groups represented by the above formula (I). Although the group bonded to the group is not particularly limited, the group bonded to the group is preferably a heteroatom-containing group. Alkyl. Heteroatoms are, for example, oxygen, nitrogen, sulfur and the like, and among them, oxygen is preferred. The hetero atom-containing hydrocarbon group may be, for example, an alkylene group having 2 to 100 carbon atoms containing a hetero atom. Therefore, a preferred example of the piperin derivative of the present invention is a compound represented by the following formula (II). 507393 V. Description of the invention (5)

式中R爲可含有雜原子的碳數2至1〇〇之烴基,^爲2至10 之整數,R1、R2、R3、R4和R5可爲相同或相異,且代表氫 原子或低級烷基’較佳爲甲基,X代表氧原子、硫原子或 NR6,其中R6係氫原子或低級烷基。 雖然式(II)的R爲可含有雜原子的碳數2至100之烴 基’但是該基可有醚鍵、酯鍵、碳酸酯鍵或不飽和鍵,亦 可有環構造或分枝。 R之較佳的具體例子爲伸艺基、伸丙基、伸丁基、2,2-二甲基伸丙基、伸戊基、3-甲基伸戊基、伸己基、伸壬基、 伸癸基等基, 或下式(1)至(9)所示之基,In the formula, R is a hydrocarbon group having 2 to 100 carbon atoms, and ^ is an integer of 2 to 10. R1, R2, R3, R4, and R5 may be the same or different, and represent a hydrogen atom or a lower alkane. The group 'is preferably a methyl group, and X represents an oxygen atom, a sulfur atom, or NR6, wherein R6 is a hydrogen atom or a lower alkyl group. Although R of the formula (II) is a hydrocarbon group having 2 to 100 carbon atoms which may contain a hetero atom, the group may have an ether bond, an ester bond, a carbonate bond or an unsaturated bond, and may have a ring structure or a branch. Preferable specific examples of R are Shenyi, Yanji, Yanji, 2,2-dimethyl Yanji, Yanpentyl, 3-methyl Yanpentyl, Hexyl, Yannonyl, A base such as decyl, or a base represented by the following formulae (1) to (9),

*〜。^)*分“6) ⑺* ~. ^) * Points "6) ⑺

或下式(10)至(13)所示之基。 *一 CH2CHR7 -(〇ch2ch2ch2ch2) (10) 507393 五、發明説明(6 ) (式中,R7代表氫原子或甲基,P代表1至20之整數。) *-CH2CH2CH2CH2— (〇CH2CH2CH2CH2) q-* (11) (式中,q代表1至20之整數。) a 厂(0CH2CHR9)r-* R~^-(och2chr,(V* ⑽ L(och2chr!1)「* (式中,R8係低級烷基,R9、R1Q、R11可爲相同或相異,且 代表氫原子或甲基,r、s、t各自獨立地代表〇至10之整Or the base represented by the following formulae (10) to (13). * 一 CH2CHR7-(〇ch2ch2ch2ch2) (10) 507393 V. Description of the invention (6) (In the formula, R7 represents a hydrogen atom or a methyl group, and P represents an integer from 1 to 20.) * -CH2CH2CH2CH2— (〇CH2CH2CH2CH2) q- * (11) (where q represents an integer from 1 to 20.) a Factory (0CH2CHR9) r- * R ~ ^-(och2chr, (V * ⑽ L (och2chr! 1) "* (where, R8 is Lower alkyl, R9, R1Q, R11 may be the same or different, and represent a hydrogen atom or a methyl group, and each of r, s, and t independently represents a whole number from 0 to 10.

/(och2chr12)u (13) f—(0CH2CHR13)v-* (式中,R12、R13、R14可爲相同或相異,且代表氫原子或甲 基,u、v、w各自獨立地代表0至1〇之整數。) 本發明之較佳哌哄衍生物的具體例子可爲下述(14)和(15) 化學式所表示的化合物/ (och2chr12) u (13) f— (0CH2CHR13) v- * (where R12, R13, and R14 can be the same or different and represent a hydrogen atom or a methyl group, u, v, and w each independently represent 0 An integer from 1 to 10.) Specific examples of the preferred piperazine derivative of the present invention may be compounds represented by the following formulae (14) and (15)

(14) 五、發明説明(7 ) 雖然不欲限制本發明的哌畊衍生物之製造方法,但是其 方法例如爲使1分子中具有2個以上的下述式(III)所表示的 基之化合物(A)(14) V. Description of the invention (7) Although it is not intended to limit the method for producing piperidine derivatives of the present invention, the method is, for example, one or more molecules having two or more groups represented by the following formula (III) Compound (A)

(式中R1和X係如上述式(I)中所定義。) 與下述式(IV)所表示的化合物(B)反應(麥可反應)。(In the formula, R1 and X are as defined in the above formula (I).) Reaction with the compound (B) represented by the following formula (IV) (Michael reaction).

W.,·· αν) R^R4 (式中,R2、R3、R4和R5係如上述式⑴中所定義。) 式(I)中,R2、R3、R4和R5較佳爲氫原子或甲基,特佳 爲氫原子。 上述化合物(A)可爲具有2個以上的式(III)所表示的基之 化合物,雖然不特別限制該基所接合的基,但是該基 較佳爲有基,例如可爲含雜原子的烴基。雜原子例如爲 氧、氮、硫等,其中較佳爲氧。 該含有雜原子的烴基例如可爲含有雜原子的碳數2至 100的伸烷基。 因此,上述化合物(A)的較佳例子可爲式(v)化合物。 507393 五、發明説明(8 )W., ... αν) R ^ R4 (wherein R2, R3, R4, and R5 are as defined in the above formula ⑴). In formula (I), R2, R3, R4, and R5 are preferably hydrogen atoms or Methyl, particularly preferably a hydrogen atom. The compound (A) may be a compound having two or more groups represented by the formula (III). Although the group to which the group is bonded is not particularly limited, the group is preferably a group, and may be a heteroatom-containing group, for example. Alkyl. Heteroatoms are, for example, oxygen, nitrogen, sulfur and the like, and among them, oxygen is preferred. The hetero atom-containing hydrocarbon group may be, for example, an alkylene group having 2 to 100 carbon atoms containing a hetero atom. Therefore, a preferable example of the above-mentioned compound (A) may be a compound of formula (v). 507393 V. Description of the invention (8)

其中R係可含有雜原子的碳數2至100之烴基,η係2至10 之整數,R1係氫原子或低級烷基,較佳甲基,X係氧原 子、硫原子或NR6。R6代表氫原子或低級烷基。 化合物(Α)的較佳具體例子係多元醇的(甲基)丙烯酸酯, 如乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、 三乙二醇二(甲基)丙烯酸酯、四乙二醇二(甲基)丙烯酸酯、 1,2-丙二醇二(甲基)丙烯酸酯、i,3_丙二醇二(甲基)丙烯酸 酯、二丙二醇二(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸 酯、新戊二醇二(甲基)丙烯酸酯、新戊二醇乙氧基化物二 (甲基)丙烯酸酯、1,3-丁二醇二(甲基)丙烯酸酯、1,4-丁二醇 二(甲基)丙烯酸酯、2-丁-1,4-二醇二(甲基)丙烯酸酯、1,5-戊二醇二(甲基)丙烯酸酯、16-己二醇二(甲基)丙烯酸酯、 3·甲基-1,5-戊二醇二(甲基)丙烯酸酯、ι,9-壬二醇二(甲基) 丙烯酸酯、1,10-癸二醇二(甲基)丙烯酸酯、1,4-環己二醇二 (甲基)丙烯酸酯、三羥甲基丙烷乙氧基化物甲醚二(甲基)丙 「嫌酸酯、異戊四醇二(甲基)丙烯酸酯、雙酚A二(甲基)丙烯 酸酯、雙酚A-EO改質二(甲基)丙烯酸酯、雙酚F-E0改質 二(甲基)丙烯酸酯、氫醌二(甲基)丙烯酸酯、異三聚氰酸E〇 改質二(甲基)丙烯酸酯等的2官能之(甲基)丙烯酸酯,或三 -10- 507393__— ,8·η2〔;'Ιί.止 ’、 ί,-·Λ it 11 < ] yx^ ^SSSSSSSSSSmmmrnrnumm__·ν - 丨丨丨丨丨丨丨丨^ -------------丨丨丨_· _______ 丨丨丨丨丨丨 五、發明説明(9 ) 羥甲基乙烷三(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯 酸酯、三羥甲基丙烷ΕΟ改質三(甲基)丙烯酸酯、三羥甲基 丙烷ΡΟ改質三(甲基)丙烯酸酯、甘油ΡΟ改質三(甲基)丙烯 酸酯、異戊四醇三(甲基)丙烯酸酯、異戊四醇四(甲基)丙烯 酸酯、三羥甲基丙烷四(甲基)丙烯酸酯、異三聚氰酸ΕΟ改 質三(甲基)丙烯酸酯、三羥甲基丙烷四(甲基)丙烯酸酯、二 異戊四醇五(甲基)丙烯酸酯、二異戊四醇六(甲基)丙烯酸酯 等的多官能之(甲基)丙烯酸酯。其中較佳爲乙二醇二(甲基) 丙烯酸酯、三羥甲基丙烷三甲基丙烯酸酯或三羥申基丙烷 ΕΟ改質三甲基丙烯酸酯。 又,化合物(Α)的其它具體例子可爲聚醚多元醇、聚酯 多元醇、聚碳酸酯多元醇的(甲基)丙烯酸酯。該聚醚多元醇 係爲聚乙二醇、聚丙二醇、聚丁二醇或其之共聚物等。 又,該聚酯多元醇係爲藉由β-丙內酯、γ-丁內酯、δ-戊內 酯、ε-己內酯等的內酯之開環聚合所合成的多元醇,或藉由 乙二醇、1,2-丙二醇、1,3-丙二醇、1,4-丁二醇、新戊二 醇、1,5-戊二醇、1,6-己二醇、3-甲基-1,5-戊二醇、1,8-辛二 醇、1,9-壬二醇、1,1〇_癸二醇、二乙二醇、二丙二醇、丨,4一 環己二醇、三羥甲基丙烷、三羥甲基乙烷、異戊四醇、貳 三羥甲基丙烷、二異戊四醇、甘油、山梨糖醇等的多元醇 〃與碳酸二酯或光氣之聚縮合而合成的多元醇。 再者’具有式(III)之基的化合物(Α)之具體例子可爲1,2-乙二硫醇二(甲基)丙烯酸酯、1,2-丙二硫醇二(甲基)丙烯酸 酯、1,3-丙二硫醇二(甲基)丙烯酸酯、丨,‘丙二硫醇 -11- 507393 五、發明説明(1Q ) 二(甲基)丙烯酸酯、1,6-己二硫醇二(甲基)丙烯酸酯、2-氫 硫基乙硫醚二(甲基)丙烯酸酯、2,2’·氧基二硫醇二(甲基)丙 烯酸酯、三羥甲基丙烷三(2-氫硫基乙酸酯)三(甲基)丙烯酸 酯、三羥甲基丙烷三(3-氫硫基丙酸酯)三(甲基)丙烯酸酯、 三羥甲基乙烷三(2-氫硫基乙酸酯)三(甲基)丙烯酸酯、三羥 甲基丙烷三(3-氫硫基丙酸酯)三(甲基)丙烯酸酯、五異戊四 醇肆(2-氫硫基乙酸酯)四(甲基)丙烯酸酯、五異戊四醇肆(3-氫硫基丙酸酯)四(甲基)丙烯酸酯等的硫酯,或N,N,-伸乙基 雙(甲基)丙烯醯胺、N,N’-三亞甲基雙(甲基)丙烯醯胺、1,6-六亞甲基雙(甲基)丙烯醯胺、1,4-二(甲基)丙烯醯基哌哄、 1,3,5-三(甲基)丙烯醯基六氫-S-三畊等。 又,式(IV)所表示的上述哌畊衍生物之具體例子可爲哌 畊、2-甲基哌畊、2,3-二甲基哌哄、2,6-二甲基哌畊,其中 哌哄係較佳的。 可採用與一般麥可(Michael)加成反應同樣的方法和條件 來進行化合物(A)與化合物(B)的麥可加成反應以製造哌畊衍 生物。 即,在溶劑中或無溶劑下,混合化合物(A)與化合物 (B),於-20至150°C,較佳於0至loot:進行反應。就化合 物(A)與化合物(B)比例而言係使化合物(A)的共軛二鍵與化 ’:合物(B)的莫耳比在1:5至1··〇·5,較佳1:3至1:〇·75的範圍 內。 當使用溶劑時,溶劑例如可爲甲醇、乙醇、丙醇、丁 醇、乙二醇等的醇類,二氯甲烷、三氯甲烷、三氯乙烷等 -12- 507393 五、發明説明(11 ) 的鹵代烴,苯、甲苯、二甲苯等的芳烴,二甲醚、THF等 的醚類,碳酸二甲酯、碳酸乙基甲酯、碳酸二乙酯、碳酸 二丙酯等的碳酸酯類,醋酸乙酯、醋酸丙酯、醋酸甲酯等 的酯類。其中溶劑的使用量就相對於化合物(A)和化合物(B) 的總重量而言係0.5至20重量倍,較佳1至10重量倍。 反應結束後,爲了去除未反應的原料,可以進行減壓濃 縮。若混入原料內沒有問題的話,則未必要進行濃縮去除 。所得到的產物通常係爲混合物,不需要特別的精製操作 ,可用爲交聯劑。 本發明的哌畊衍生物通常由於是高黏度,而可視情況地 混合鈍性溶劑和低黏度的胺系交聯劑以便使用。鈍性溶劑 例如可爲水,或甲醇、乙醇、丙醇、丁醇、乙二醇等的醇 類,二氯甲烷、三氯甲烷、三氯乙烷等的鹵代烴,苯、甲 苯、二甲苯等的芳烴,二甲醚、THF等的醚類,碳酸二甲 酯、碳酸乙基甲酯、碳酸二乙酯、碳酸二丙酯等的碳酸酯 類,醋酸乙酯、醋酸丙酯、醋酸甲酯等的酯類。其中溶劑 的使用量就相對於哌畊衍生物而言係0.05至10重量倍,較 佳0.1至5重量倍。 本發明並提供一種具有優異性能的高分子固體電解質, 其係使用上述哌哄衍生物所獲得者。 < 本發明之高分子固體電解質,係爲在由上述哌哄衍生物 與分子中具有2個以上之(甲基)丙烯基的化合物(以下稱爲 化合物(X))的加成反應所形成的聚合物中,含有週期表第la 族之金屬鹽者。 -13- 507393 五、發明説明(12 ) 分子中具有2個以上之(甲基)丙烯基的化合物(X) 本發明之與上述哌哄衍生物反應所使用的化合物(X)係 爲1分子中具有2個以上之(甲基)丙烯基的化合物。此處將 丙烯基和甲基丙烯基一倂記載爲(甲基)丙烯基。化合物(X) 當以Mw表示分子量且以η表示(甲基)丙烯基的個數時, Mw/n値係希望能夠爲300至50,000,較佳400至1〇,〇〇〇, 在該範圍內由於交聯點的距離係適度的,所以能獲得保液 性優良且強度高的凝膠電解質。 該化合物(X)之例子可爲高分子量多元醇化合物的丙烯 酸或甲基丙烯酸酯。即,重得平均分子量爲900至 100,000,較佳1,000至20,000的多元醇化合物,例如聚碳 酸酯多元醇、聚酯多元醇、聚酯聚碳酸酯多元醇或聚醚多 元醇的丙烯酸或甲基丙烯酸酯。以下,將該丙烯酸或甲基 丙烯酸酯記載爲(甲基)丙烯酸酯。可單獨地或組合地使用該 化合物(X)。 (1)聚碳酸酯多元醇化合物的(甲基)丙烯酸酯 聚碳酸酯多元醇化合物可爲藉由二元或多元醇與碳酸 二酯或光氣之聚縮合所合成者。由所得到的多元醇化合物 開始之酯化反應係可用一般方法及條件來進行。例如,多 元醇化合物與丙烯酸鹵化物或甲基丙烯酸鹵化物於鹼的存 <在下進行縮合的方法,聚酯多元醇與丙烯酸或甲基丙烯酸 於酸觸媒的存在下進行縮合的方法等等。 以下中顯示所可能使用的多元醇的具體例子。其可單 獨使用或混合兩種以上來使用。 -14- 507393 五、發明説明(13 ) (1) 二醇類:乙二醇、二乙二醇、三乙二醇、聚乙二醇、丙 二醇、二丙二醇、三丙二醇、聚丙二醇、丨,3_丁二醇、丨,心 丁二醇、1,5-戊二醇、3-甲基-1,5-戊二醇、i,6-己二醇、l,8-辛二醇、1,3-雙(2-羥基乙氧基)苯、1,扣雙(2-羥基乙氧基) 苯、2-甲基-1,8-辛醇、1,9-壬二醇、1,4-環己二醇、1,4-環己 二烷甲醇。 (ii) 多元醇類:三羥甲基丙烷、三羥甲基乙烷、異戊四醇、 戴二經甲基丙院、二異戊四醇、甘油、山梨糖醇。 (iii) 與該多元醇類之羥基相對地,具有1至5當量的環氧乙 烷、環氧丙烷或其它環氧烷類所附加的羥基之醇類。 碳酸二酯例如可爲碳酸二甲酯、碳酸二乙酯、碳酸二 異丙酯、碳酸伸乙酯、碳酸伸丙酯等。 (2) 聚酯多元醇的(甲基)丙烯酸酯 聚酯多元醇可爲藉由羥基羧酸或內酯之聚縮合、或是 藉由多元醇與多元羧酸之聚縮合所合成者。 此處,羥基羧酸或內酯例如可爲羥乙酸、乳酸、β-丙內 酯、β-丁內酯、γ-丁內酯、γ-戊內酯、γ-己內酯、γ-庚內 酯、辛內酯、γ-壬內酯、γ-癸內酯、δ-戊內酯、β-甲基-δ-戊內酯、δ-己內酯、δ-辛內酯、δ-癸內酯、δ-壬內酯、ε-己 內酯等。而且,該羥基羧酸或內酯之聚縮合時’可以添加 ^作爲聚合引發劑的2至6元的多羥基化合物’以末端官能 基當作羥基。 作爲多元醇,可以使用與上述同樣的⑴二醇類以及(ii) 多元醇類。 -15- 507393 五、發明説明(14 ) 多元羧酸的例子可爲丙二酸、琥珀酸、戊二酸、己二 酸、富馬酸、馬來酸、環己烷-1,2-二羧酸、環己烷-i,4-二 竣酸、順式-四氫酞酸、酞酸、異酞酸、對酞酸等等。又, 亦可用使用對應於二羧酸的酸酐或二羧酸二烷酯。 (3) 聚酯碳酸酯多元醇的(甲基)丙烯酸酯 聚酯碳酸酯多元醇可由上述的聚酯多元醇與碳酸二酯 或光氣來合成。碳酸二酯的例子爲碳酸二甲酯、碳酸二乙 酯、碳酸二異丙酯、碳酸二苯酯、碳酸伸乙酯、碳酸伸丙 酯等,可單獨使用它或以兩種以上的組合來使用它。聚酯 碳酸酯多元醇的丙烯酸酯或甲基丙烯酸酯之轉換,係可與 聚碳酸酯多元醇之酯化同樣地進行。 (4) 聚醚多元醇的(甲基)丙烯酸酯 聚醚多元醇可藉由環氧烷類之聚合或多元醇與氧化烯的 加成反應而獲得。環氧烷類的例子可爲環氧乙烷、環氧丙 烷、氧雜環丁烷、四氫呋喃等。可單獨使用它或以兩種以 上的組合來使用它。作爲多元醇,可以使用與上述同樣的⑴ 二醇類以及(ii)多元醇類。而且,聚醚多元醇的丙烯酸酯或 甲基丙烯酸酯之轉換,係可與聚碳酸酯多元醇之酯化同樣 地進行。 當使用目前所詳述的高分子量多元醇的(甲基)丙烯酸酯 〃作爲化合物(X)時,所合成的聚合物之交聯點間距離係適度 長而離子傳導性高,加上凝膠電解質中的凝膠之保液性優 良而能獲得優良的電解質。 聚合物的製造方法 -16- 507393 五、發明説明(15 ) 以化合物(X)與上述哌畊衍生物之麥可加成反應所製造 的聚合物較佳爲具有10,000以上的重量平均分子量。特別 地,作爲凝膠電解質時,在電解液之溶劑中低溶解性的高 分子量交聯聚合物係重要的。可在大體上相同於一般麥可 加成反應的方法和條件下進行製造方法。 在溶劑中或無溶劑下,混合化合物(X)與上述哌哄衍生 物,於-20至150°C,較佳於0至100°c溫度使兩者進行反 應。化合物(X)的(甲基)丙烯基與上述哌哄衍生物的胺基之 比例爲1:5至5:1,較佳1:3至3:1 (莫耳比)。 當使用溶劑時,其可爲以上所舉例的化合物。溶劑的使 用量,就相對於化合物(X)與上述哌畊衍生物的總重量而 言,係0.5至20重量倍,較佳1至10重量倍。 (a) 醇類:甲醇、乙醇、丙醇、丁醇、乙二醇, (b) 鹵代烴類:二氯甲烷、三氯甲烷、三氯乙烷, (c) 芳烴類:苯、甲苯、二甲苯, (d) 飽和烴類:己烷、丁烷、癸烷、環己烷, (e) 醚類:二甲醚、四氫呋喃, (f) 碳酸酯類:碳酸伸乙酯、碳酸伸丙酯、碳酸二甲酯、 碳酸乙基甲酯、碳酸二乙酯、碳酸二丙酯, (g) 酯類:醋酸乙酯、醋酸丙酯、醋酸甲酯、γ-丁內酯、 < δ-戊內酯、ε-己內酯。 麥可加成反後所生成的聚合物可得到爲粉末狀、薄膜 狀、凝膠狀等形狀,而可利用作爲固體電解質。溶劑存在 下所進行的反應通常形成凝膠形式的產物,可使用該凝膠 -17- 507393 五、發明説明(16 ) 狀物的原樣作爲高分子電解質的材料。而且若需要,可能 使用經乾燥、去除溶劑後的薄膜狀或粉末狀聚合物。 又,作爲具有足夠強度的高分子固體電解質材料,則較 佳爲聚合物中形成有交聯點。因此,化合物(X)與上述哌畊 衍生物的一部分或全部係宜使用分子中具有3個以上的(甲 基)丙嫌基之成分作爲化合物(X),或使用1分子中具有3個 以上的亞胺基之成分作爲上述哌畊衍生物。 高分子固體雷解質 本發明提供之高分子固體電解質,係爲在由上述化合物 (X)與上述哌畊衍生物之麥可加成反應所製造的聚合物中, 含有週期表第la族之金屬鹽者。 週期表第la族之金屬鹽者可爲鋰、鈉、鉀等之化合 物,較佳爲一種以上由 LiC104、LiBF4、LiPF6、 LiN(CF3CH2S〇2)2、LiCF3S〇3、LiN(CF3S〇2)2、LiC(CF3S02)3 所選出的鋰鹽。固體電解質中的金屬鹽濃度宜爲0.1至 1〇(莫耳/升)。 依本發明,聚合物中含有週期表第la族之金屬鹽時, 係意味藉由所有可能的摻合方法使該金屬鹽存在於聚合物 中。例如,可爲預先使化合物(X)與上述哌畊衍生物之麥可 加成反應所製造的聚合物均勻混合週期表第la族之金屬鹽 <的方法,或是使化合物(X)、上述哌哄衍生物和週期表第la 族之金屬鹽均勻混合後,才進行麥可加成反應之方法。特 別地在採用後者方法時,由於能容易獲得金屬鹽均勻分散 於由化合物(X)與上述哌畊衍生物所製造的聚合物中,故係 -18- 507393 五、發明説明(17 ) 較佳的。 例如,添加化合物(X)、上述哌畊衍生物、週期表第Ia 族之金屬鹽、視需要選用的溶劑,將所獲得的均勻混合物 塗佈在平坦的基板上’然後視需要可加熱,進行反應及膠 化。如此,可獲得厚度0.1至1000微米的固體電解質薄 膜。若加熱的話,則溫度範圍爲不會使電解質鹽分解的範 圍,例如30至100°c,較佳40至90°C。再者,若作爲原料 的化合物(X)與上述哌畊衍生物化合物之化學構造能在室溫 快速進行麥可反應時,選擇該化合物則未必定要加熱。 又,本發明所關於的高分子固體電解質,除了由化合物 (X)與上述哌畊衍生物所製造的聚合物以及週期表第la族的 金屬鹽之外,相對於100重量份由化合物(X)與上述哌畊衍 生物所製造的聚合物,可有0至5,000重量份的碳酸酯等之 非水溶劑,較佳100至2,000重量份。聚合物中若含有非水 溶劑時,則於製造高分子固體電解質之時,可以進行與非 水溶劑共存之狀態的麥可加成反應,以及聚合後沈浸在非 水溶劑中的方法等。 作爲非水溶劑,較佳爲使用碳酸酯或內酯。碳酸酯的例 子可爲碳酸伸乙酯、碳酸伸丙酯、碳酸二甲酯、碳酸乙基 甲酯、碳酸二乙酯、碳酸二丙酯等的鏈狀或環狀碳酸酯, 、而內酯的例子可爲γ-丁內酯、δ-戊內酯、ε-己內酯等。 本發明所關於的高分子固體電解質於含有非溶劑的狀態 時’係具有優良的保液性,而且離子傳導性高。該高分子 固體電解質例如可用於一次電池、二次電池、電容器、電 -19- 507393 五、發明説明(18 ) 致變色顯示元件等的電化學元件、醫療用引動器等。特別 地,該高分子固體電解質適合作用代替鋰二次電池的有機 電解液之用途。再者,亦可以利用作爲將粉末狀電極材分 散固定於集電體上用的黏著材。 二次電池 本發明所關於的二次電池係由含負極活性物質的負極、 含正極活性物質的正極、及配置其間的上述高分子固體電 解質所構成。 作爲負極活性物質,金屬鋰、含鋰的合金、或可能摻 雜鋰離子或未摻雜的材料。該可能摻雜鋰或未摻雜鋰的材 料可適當地選自碳質材料、氧化錫、或過渡金屬氮化合物 等。其中可能摻雜鋰或未摻雜鋰的材料較佳係碳質材料, 其亦可爲石墨或非晶形碳。具體的例子可爲活性碳、碳纖 維、中介碳微珠、天然石墨。 正極活性物質例如可爲MoS2、TiS2、Mn02、V205等的 過渡金屬氧化物或過渡金屬硫化物、LiCo02、LiMn02、 LiMn204、LiNi02、LiNhCou^C^等之鋰和過渡金屬所成之 複合氧化物、聚苯胺、聚噻吩、聚吡唑、聚乙炔、多並苯 (polyacene)、二氫硫基噻二唑/聚苯胺複合體等的導電性高 分子化合物、二硫化物。其中較佳爲由鋰和過渡金屬所成 ':之複合氧化物。 當使用該高分子固體電解質於二次電池時,該高分子固 體電解質預先形成薄膜狀,夾入正極與負極之間以製造電 池。代替薄膜狀,可配置預先以凝膠狀形成的高分子電解 -20- 507393 五、發明説明(19 ) 質。 又,在形成正極、隔板、負極的三層構造後,電池製程 具有將它們浸入電解液中之步驟,可使用由化合物(X)、上 述哌畊衍生物、週期表第la族之金屬鹽及非水溶劑所成的 溶液來代替電解液,浸入其中,之後使膠化之方法。在各 種情況中,若使用前述本發明所關於的高分子固體電解 質,則能將習用的電池製程之改變壓制到最小程度,而能 製造二次電池。 電池的形狀可爲薄膜型、硬幣型、圓筒型或方型等的任 意形狀。 實例 以下說明本發明的具體實例,然其絕非用於限制本發 明。 (合成例1) 於設有攪拌機、溫度計和精餾塔的玻璃反應器中,加入 11.2克三羥甲基丙烷三甲基丙烯酸酯(三菱縲縈株式會社製 品)、8.61克甲醇及8.87克哌畊,於室溫攪拌1小時及於80 t攪拌3小時。之後,添加20.0克碳酸二乙酯使均勻溶解 後,在減壓下濃縮以完全去除未反應的哌畊。獲得產物, 其爲無色黏稠油狀物質。產量爲17.5克。 r 所獲得的無色黏稠油狀物質經NMR分析和IR分析,由 以下數據得知產物爲三羥甲基丙烷三甲基丙烯酸酯-哌畊加 成物(TMP-Pi)。 (1) 1H NMR 分析結果:(σ ppm,CDC13) -21 - 507393 五、發明説明(2Q ) 0·91 (3H),1·10~1·17 (9H), 1·45~1·58 (2H), 1.76 (3H),2.2〜2.9 (33Η), 4.06 (6Η) (2) IR分析結果:(cnT1,聚乙稀膜) 3272 、 1739 、 1461 、 1376 、 1246 、 1173 於所得到的TMP-Pi中,加入混合同樣重量的碳酸二乙 酯,而獲得TMP-Pi的50%碳酸二乙酯溶液。 (合成例2) 於設有攪拌機、溫度計和精餾塔的玻璃反應器中,加入 9.9(K克乙二醇二甲基丙烯酸酯、8.69克甲醇及8.61克哌 哄,於室溫攪拌1小時及於80°C攪拌3小時。之後,添加 20.0克碳酸二乙酯使均勻溶解後,在減壓下濃縮以完全去 除未反應的哌畊。獲得產物,其爲無色黏稠油狀物質。產 量爲17.4克。 所獲得的無色黏稠油狀物質經NMR分析和IR分析,由 以下數據得知產物爲乙二醇二甲基丙烯酸酯-哌哄加成物 (EGDMA-Pi)。 (1) 1H NMR 分析結果:(σ ppm,CDC13) 1.12-1.17 (6), 1.45-1.58 (2H), 2.2-2.9 (24H), 4.29 (4H) (2) IR分析結果:(cm·1,聚乙烯膜) 2490 、 2808 、 1739 、 1460 、 1377 、 1243 、 1173 < 於所得到的EGDMA-Pi中,加入混合同樣重量的碳酸二 乙酯,而獲得EGDMA-Pi的50%碳酸二乙酯溶液。 (合成例3) 於設有攪拌機、溫度計和精餾塔的玻璃反應器中,加入 -22- 507393 五、發明説明(21 ) 50·6克三羥甲基丙烷之氧化乙烯加成物(〇H値:433,日本 乳化劑株式會社製品)、20克甲基丙烯酸、1.01克對甲苯磺 酸水合物、26毫克4-甲氧基酚及50毫升甲苯,進行5小時 的回流,將所產生的水移除到反應系統外。溫度下降到50 它後,添加3.0克科華特(譯音)500(協和化學工業株式會社 製品),於50°C攪拌一小時。再冷卻至室溫後,過濾掉不溶 物,於減壓下濃縮濾液以獲得三甲基丙烯酸酯(TMP-EOTMA),其爲無色油狀物。產量31.3克。 其次,於設有攪拌機、溫度計和精餾塔的玻璃反應器 中,力I]入15.0克由以上反應所得到的TMP-EOTMA、6.5克 甲醇及6.24克哌哄,於室溫攪拌1小時及於80°C攪拌3小 時。之後,添加15.0克碳酸二乙酯使均勻溶解後,在減壓 下濃縮以完全去除未反應的哌畊。獲得產物,其爲無色黏 稠油狀物質。產量爲18.6克。 所獲得的無色黏稠油狀物質經NMR分析和IR分析,由 以下數據得知產物爲乙二醇二甲基丙烯酸酯-哌畊加成物 (TMPE〇-Pi)。 (1) 1H NMR 分析結果:(σ ppm,CDC13) 0.83(3Η),1·10〜1·17(9Η),1·37〜1·43(2Η),1·76(3Η),2·2〜2.9 (36Η), 3.5-3.7 (24Η), 4.22 (6Η) v(2)IR分析結果〖(cm·1,聚乙烯膜) 2940 、 2874 、 1736、 1460、 1376、 1246、 1118 於所得到的TMPEO-Pi中,加入混合同樣重量的碳酸二 乙酯,而獲得TMPEO-Pi的50%碳酸二乙酯溶液。 -23- 507393 五、發明説明(22 ) (合成例4) 於設有攪拌機、溫度計和精餾塔的玻璃反應器中,加入 40.3克聚己內酯三醇(OH値:83.4,大西爾化學工業株式會 社製品)、4.32克丙烯酸、0.80克對甲苯磺酸水合物、0.08 克4-甲氧基酚及40毫升甲苯’進行5小時的回流,將所產 生的水移除到反應系統外。溫度下降到5(TC後,添加4.〇 克科華特(譯音)500(協和化學工業株式會社製品),於50°c 攪拌一小時。再冷卻至室溫後,過濾掉不溶物,於減壓下 濃縮濾液以獲得聚己內酯三甲基丙烯酸酯(PCL-TA),其爲 無色油狀物。產量41.0克。 (合成例5) 聚碳酸酯聚丙烯酸酯之合成 於設有攪拌機、溫度計和精餾塔的玻璃製反應容器中, 混入32.0克三羥甲基丙烷-EO加成物(1莫耳的三羥甲基丙 烷與3莫耳的氧化乙烯之加成物,日本乳化劑株式會社製 品)、114.6克二乙二醇、124.3克碳酸二甲酯及0.23克作爲 觸媒的28%甲氧鈉之甲醇溶液。於常壓下95t將該混合液 保持2小時,之後經歷5小時使溫度上升至150°C,再於 150 °C加熱4小時以餾出反應所生成的甲醇。其次,於 5mmHg的減壓下保持在150〜155t,餾出伴隨聚合反應所生 成的10.3克二乙二醇。之後,冷卻至室溫,添加100毫升 V三氯甲烷和2.3克活性白土,於55°C攪拌1小時。再冷卻 至室溫後,過濾活性白土,濃縮濾液而獲得145克聚碳酸 酯多元醇,其爲黏稠油狀物。由GPC分析的結果得知該產 物的重量平均分子量爲4,200。 -24- 507393 五、發明説明(23 ) 其次,在設有攪拌機、溫度計和滴液漏斗的玻璃製反應 容器中’混入30.1克上述聚碳酸酯多元醇、8.7克三乙胺及 100毫升一氯甲院’及冷卻至5°C。將7.8克丙條醯氯經由 滴液漏斗滴下,歷20分鐘,接著再於5 °C攪拌1小時。徐 徐升溫到室溫,在室溫另攪拌2小時。過濾反應液,用飽 和食鹽水來洗濾液,在無水硫酸錳上乾燥,濃度而得到 2.91克聚碳酸酯聚丙烯酸酯,其爲淡黃色黏稠油狀物。 (合成例6)聚酯三丙烯酸酯 於設有攪拌機、溫度計和狄恩史塔克的玻璃反應器中, 加入40.0克由己二酸、3-甲基-1,5-戊二醇和三羥甲基丙烷 (〇H値:84,可拉雷株式會社製品)、4.32克丙烯酸、0.80 克對甲苯磺酸水合物、0.08克4-甲氧基酚及40毫升甲苯, 進行5小時的回流,將所產生的水移除到反應系統外。溫 度下降到50°C後,添加1.23克乙酐,接著於該溫度繼續攪 拌1小時。然後,添加4.0克氧化鎂,於50°C攪拌1小時。 再冷卻至室溫後,過濾掉不溶物,於減壓下濃縮濾液以獲 得聚酯三丙烯酸酯,其爲無色油狀物。產量40.8克。 (實例1) 於10毫升容量的樣品瓶中,使0.313克由合成例4所合 成的PCL-TA混合4.40克由LiPF6溶解於碳酸伸乙酯和碳酸 r二乙酯的容積比1:1之混合溶劑中所成的1莫耳/升溶液 後,將0.247克由合成例1所合成的TMP-Pi加到該溶液 中,於室溫攪拌混合以調製成均勻的溶液。室溫中3小時 後發生凝膠化,而在4小時後完全硬化,獲得不會液分離 -25- 507393 五、發明説明(24 )、 的保液性優良之凝膠。 (實例2) 同樣地使0.654克由合成例4所合成的PCL-TA混合 1.854克由LiPF6溶解於碳酸伸乙酯和碳酸二乙酯的容積比 1:1之混合溶劑中所成的1莫耳/升溶液後,將0.492克由合 成例2所合成的EGDMA-Pi加到該溶液中,於室溫攪拌混合 以調製成均勻的溶液。室溫中24小時後發生凝膠化,而在 30小時後完全硬化,獲得不會液分離的保液性優良之凝 膠。, (實例3) 同樣地使0.179克由合成例4所合成的PCL-TA混合 2.979克由LiPF6溶解於碳酸伸乙酯和碳酸二乙酯的容積比 1:1之混合溶劑中所成的1莫耳/升溶液後,將0.342克由合 成例3所合成的TMPEO-Pi加到該溶液中,於室溫攪拌混合 以調製成均勻的溶液。室溫中15小時後發生凝膠化,而在 20小時後完全硬化,獲得不會液分離的保液性優良之凝 膠。 (比較例1) 同樣地使0.928克由合成例4所合成的PCL-TA混合 3.927克由LiPF6溶解於碳酸伸乙酯和碳酸二乙酯的容積比 ,1:1之混合溶劑中所成的1莫耳/升溶液後,將〇.07 17克二 伸乙三胺MPEO-Pi加到該溶液中,於室溫攪拌混合以調製 成均勻的溶液。室溫中經過一星期而不會發生凝膠化,保 持調製時的均勻溶液狀態。 -26- 507393 五、發明説明(25 ) (比較例2) 同樣地使0.450克由合成例4所合成的PCL-TA混合 2.050克由LiPF6溶解於碳酸伸乙酯和碳酸二乙酯的容積比 1:1之混合溶劑中所成的1莫耳/升溶液後,將0.056克濟艾 夫明T403i(沙特克若科米卡魯社製品)加到該溶液中,於室 溫攪拌混合以調製成均勻的溶液。室溫中經過一星期而不 會發生凝膠化,保持調製時的均勻溶液狀態。 (實例4) 使1.48克由合成例5所合成的聚碳酸酯聚丙烯酸酯混合 7.54克由LiPF6溶解於碳酸伸乙酯和碳酸伸丙酯的重量比 1:1之混合溶劑中所成的1莫耳/升濃度之電解液後,將1.03 克由合成例1所製造的TMP-Pi的50%碳酸二乙酯溶液加到 該溶液中,使用磁攪拌器於室溫攪拌。約經過30分鐘後, 形成凝膠狀,成爲沒有流動性。將該凝膠放置在室溫中歷 24小時,而沒有看到液的分離,可知道其爲具有良好的保 液性。 於玻璃基板上黏貼內徑20毫米的矽摻膠製型框,將150 微升先前調製之膠化前的溶液滴到型框內。基板係放置於 氮氣箱內所設的加熱板上,於室溫放置12小時而硬化,形 成高分子電解質薄膜。 Γ 所得到的薄膜具有370微米的厚度。對該薄膜衝製成10 毫米直徑。以SUS製電極夾持,使用索拉特隆1 255Β來測 量複數阻抗,求得分析的離子傳導度,爲2.039mS/cm。 (實例5) -27- 507393 五、發明説明(26 ) 以相同於實例4者進行操作,但是用1.72克由合成例6 所製造的聚酯三丙烯酸酯代替由合成例5所製造的聚碳酸 酯聚丙烯酸酯,結果約1小時硬化。將其之凝膠放置在室 溫中歷24小時,亦沒有看到液的分離,可知道其爲具有良 好的保液性。又,與實例1同樣地製作厚度370微米的高分 子電解質薄膜。求得所獲得的高分子電解質之離子傳導 度’爲 1 · 3 πι S / c m。 (實例6) 以相同於實例4者進行操作,但是用1.39克三羥甲基 丙烷環氧乙烷改質的三丙烯酸酯(新中村化學株式會社製品, Mw = 1600)代替由合成例4所製造的聚碳酸酯聚丙烯酸酯, 結果約1小時硬化。將其之凝膠放置在室溫中歷24小時, 亦沒有看到液的分離,可知道其爲具有良好的保液性。 又,與實例4同樣地製作厚度370微米的高分子電解質薄 膜。求得所獲得的高分子電解質之離子傳導度,結果爲 3.0mS/cm 〇 (實例7) <均勻電解液之調製> 使1·48克由合成例6所合成的聚酯聚丙烯酸酯混合7.54 克由LiPF6溶解於碳酸伸乙酯和碳酸二乙酯的體積比1:1之 ·:_混合溶劑中所成的1莫耳/升濃度之非水電解液後,將L03 克由合成例1所製造的三羥甲基丙烷三甲基丙烯酸酯-哌_ 加成物(TMP-Pi)之50%碳酸二乙酯溶液加到該溶液中,於室 溫攪拌10分鐘而調製得均勻的溶液。 -2 8 - 507393 五、發明説明(27 ) <負極之製作> 使90重量份的大阪氣體(株)製的美梭碳微珠(商品名; MCMB6-28,d002=0.337nm,密度 2.17g/cm3)之碳粉混合 1〇 重量份的作爲黏合劑之聚偏二氟乙烯,使分散於溶劑N—甲 基吡咯啶酮中,而調製成糊狀的負極混合劑漿體。其次, 將該負極混合劑塗佈在厚度20微米的帶狀銅箔製之負極集 電體上,乾燥後獲得帶狀的碳負極。乾燥後的負極混合劑 之厚度爲25微米。再者,將該帶狀電極中衝製成直徑15毫 米的圓盤狀,其後壓縮成型以成爲負極電極。 <正極之製作> 將91重量份的本庄凱密卡兒(株)製的LiC〇02(商品名: HLC-21,平均粒徑8微米)微粒子、6重量份作爲導電材的 石墨及3重量份作爲黏合劑的聚偏二氟乙烯混合以調製正 極混合劑,使分散於N-甲基吡咯啶酮中而獲得正極漿體。 將該漿體塗佈在厚度20微米的帶狀鋁箔製之正極集電體 上,使乾燥、壓縮成形而獲得帶狀正極。乾燥後的正極混 合劑之厚度爲40微米。其後,將該帶狀電極中衝製成直徑 15毫米的圓盤狀以作爲正極電極。 <電池之製作> 準備如此所獲得的圓盤狀負極和圓盤狀正極,以及以厚 r度200微米的聚酯不織布作成隔板。於不銹鋼製的2032尺 寸之電池罐內,依序將負極、隔板、正極積層後,注入上 述的均勻電解液。其後,將不銹鋼板收納於電池罐內,使 聚丙烯製的墊片置於其間,用電池罐蓋密封。接著,將電 -29- 507393 五、發明説明(28 ) 池靜置於室溫中12小時,先使所注入的電解液之成分硬 化。結果,保持電池內的氣密性,而能獲得直徑20毫米、 高度3.2毫米的硬幣型電池。 <電池的性能試驗> 使用所製作的鈕扣型二次電池,以室溫在2.7V-4.2V間 以1mA的充放電重複20次循環。結果,首次放電容量爲每 克LiC〇02有140(mAh/g),20次循環的容量保持率爲97%。 (參考例) 於實例7中,使用由LiPF6溶解於碳酸伸乙酯和碳酸二 乙酯的體積比1:1比例之混合溶劑中所成的1.0(莫耳/升)濃 度之非水電解液以代替所使用的均勻電解液以外,其它與 實例4同樣地來製作硬幣型電池,進行同樣的電池性能試 驗,結果首次放電容量爲每克LiCo02有142(mAh/g),20次 循環的容量保持率爲97%。 產業上的利用可能性 本發明的新穎哌畊衍生物係具有低蒸氣壓、低刺激性、 作爲丙烯酸酯的常溫硬化劑、交聯劑之優良特性,而且能 獲得具有保液性優良的凝膠之高分子固體。 又,本發明以化合物(A)和化合物(B)之反應以獲得哌畊 衍生物的方法係適用於效率高地製造該新穎哌畊衍生物。 本發明的高分子固體電解質係具有高的離子傳導度,同 時保持電化學的安定性。該膜狀物係可撓性的,而凝膠狀 物係具有優良的保液性。 在製造該高分子固體電解質的基質之聚合物時,哌畊衍 -30- 507393 五、發明説明(29 ) 生物與分子中具有2個以上之(甲基)丙烯基之化合物(X)係 不需要使用特殊的裝置,而且製造時不需要使用特別的高 溫,能容易且快速地進行反應。再者,該高分子固體電解 質不會發生影響電解質之性能的副產物。 因此,該高分子固體電解質適用於用於一次電池、二次 電池、電容器、電致變色顯示元件等的電化學元件、醫療 用引動器等。 特別地,含該高分子固體電解質的二次電池不但具有優 良的充放電特性等之電池性能,而且不必擔心電池的·漏 液,因此可提高電池的可靠性。 -31 -Among them, R is a hydrocarbon group having 2 to 100 carbon atoms which may contain a hetero atom, η is an integer of 2 to 10, R1 is a hydrogen atom or a lower alkyl group, preferably methyl, X is an oxygen atom, a sulfur atom, or NR6. R6 represents a hydrogen atom or a lower alkyl group. Preferred specific examples of the compound (A) are (meth) acrylates of polyhydric alcohols, such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and triethylene glycol di ( Meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,2-propylene glycol di (meth) acrylate, i, 3-propanediol di (meth) acrylate, dipropylene glycol di (methyl) ) Acrylate, tripropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, neopentyl glycol ethoxylate di (meth) acrylate, 1,3-butanediol di (Meth) acrylate, 1,4-butanediol di (meth) acrylate, 2-but-1,4-diol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate Base) acrylate, 16-hexanediol di (meth) acrylate, 3 · methyl-1,5-pentanediol di (meth) acrylate, ι, 9-nonanediol di (methyl) Acrylate, 1,10-decanediol di (meth) acrylate, 1,4-cyclohexanediol di (meth) acrylate, trimethylolpropane ethoxylate methyl ether di (methyl) C "Like esters, isopentaerythritol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol A-EO modified di (meth) acrylate, bisphenol F-E0 modified Bifunctional (meth) acrylates such as di (meth) acrylate, hydroquinone di (meth) acrylate, isotricyanic acid E0 modified di (meth) acrylate, or tri-10 -507393 __—, 8 · η2 [; 'Ιί. 止', ί, -ΛΛ 11 <] yx ^ ^ SSSSSSSSSSmmmrnrnumm__ · ν-丨 丨 丨 丨 丨 丨 丨 丨 ^ ------------- 丨 丨 丨 _______ 丨 丨 丨 丨 丨 丨 V. Description of the invention (9 ) Hydroxymethylethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane E0 modified tri (meth) acrylate, trimethylolpropane P0 modified Modified tris (meth) acrylate, glycerol PO modified tris (meth) acrylate, isopentaerythritol tris (meth) acrylate, isopentaerythritol tetra (meth) acrylate, trimethylolpropane Tetra (meth) acrylate, isotricyanate E0 modified tri (meth) acrylate, trimethylolpropane tetra (meth) acrylate, diisopentaerythritol penta (meth) acrylate, Multifunctional (meth) acrylate such as diisopentaerythritol hexa (meth) acrylate. Among them, ethylene glycol di (meth) acrylate, trimethylolpropane trimethacrylate, or trimethylolpropane E0 modified trimethacrylate is preferred. Further, other specific examples of the compound (A) may be (meth) acrylates of polyether polyol, polyester polyol, and polycarbonate polyol. The polyether polyol is polyethylene glycol, polypropylene glycol, polybutylene glycol, or a copolymer thereof. The polyester polyol is a polyol synthesized by ring-opening polymerization of lactones such as β-propiolactone, γ-butyrolactone, δ-valerolactone, and ε-caprolactone, or by using From ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl -1,5-pentanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanediol, Polyols such as trimethylolpropane, trimethylolethane, isopentyl alcohol, trimethylolpropane, diisopentaerythritol, glycerol, sorbitol, etc. Polycarbonate with carbonate diesters or phosgene Polyol synthesized by condensation. Further, specific examples of the compound (A) having a group of the formula (III) include 1,2-ethanedithiol di (meth) acrylate, and 1,2-propanedithiol di (meth) acrylic acid. Esters, 1,3-propanedithiol di (meth) acrylate, 丨 'propanedithiol-11- 507393 5. Description of the invention (1Q) di (meth) acrylate, 1,6-hexanedi Thiol di (meth) acrylate, 2-hydrothioethyl sulfide di (meth) acrylate, 2,2 '· oxydithiol di (meth) acrylate, trimethylolpropane tri (2-hydrothiothioacetate) tri (meth) acrylate, trimethylolpropane tri (3-hydrothiopropionate) tri (meth) acrylate, trimethylolethane tri ( 2-Hydroxythioacetate) tri (meth) acrylate, trimethylolpropane tris (3-hydrothiopropionate) tri (meth) acrylate, pentaisopentaerythritol (2- Thioesters such as hydrothioacetate) tetra (meth) acrylate, pentaisopentaerythritol (3-hydrothiopropionate) tetra (meth) acrylate, or N, N,- Ethylbis (meth) acrylamide, N, N'-trimethylene Bis (meth) acrylamide, 1,6-hexamethylenebis (meth) acrylamide, 1,4-bis (meth) acrylamide, 1,3,5-tris (methyl Group) Propylene amidino hexahydro-S-Sangen and so on. Further, specific examples of the piperin derivative represented by the formula (IV) include piperin, 2-methylpiperin, 2,3-dimethylpiperazine, and 2,6-dimethylpiperin, among which Pipeline is preferred. The Michael addition reaction of the compound (A) and the compound (B) can be carried out using the same method and conditions as in the general Michael addition reaction to produce a piperidine derivative. That is, the compound (A) and the compound (B) are mixed in a solvent or without a solvent, and the reaction is performed at -20 to 150 ° C, preferably 0 to loot. The ratio of the compound (A) to the compound (B) is such that the molar ratio of the conjugated double bond of the compound (A) to the compound (B) is 1: 5 to 1 ···· 0.5, It is preferably in the range of 1: 3 to 1: 0.75. When a solvent is used, the solvent may be, for example, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methylene chloride, chloroform, trichloroethane, etc. -12-507393 V. Description of the invention (11 ), Halogenated hydrocarbons, aromatic hydrocarbons such as benzene, toluene, xylene, ethers such as dimethyl ether, THF, carbonates such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, dipropyl carbonate, etc. Types, such as ethyl acetate, propyl acetate, methyl acetate and the like. The amount of the solvent used is 0.5 to 20 times by weight, and preferably 1 to 10 times by weight, with respect to the total weight of the compound (A) and the compound (B). After completion of the reaction, in order to remove unreacted raw materials, it may be concentrated under reduced pressure. If there is no problem in mixing into the raw materials, it is not necessary to carry out concentration removal. The obtained product is usually a mixture, which does not require a special refining operation, and can be used as a crosslinking agent. The piperin derivative of the present invention is usually highly viscous, and optionally, an inert solvent and a low-viscosity amine-based crosslinking agent are mixed for use. The inert solvent may be, for example, water or alcohols such as methanol, ethanol, propanol, butanol, and ethylene glycol; halogenated hydrocarbons such as dichloromethane, chloroform, and trichloroethane; benzene, toluene, and dichloromethane; Aromatics such as toluene, ethers such as dimethyl ether, THF, carbonates such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and dipropyl carbonate, ethyl acetate, propyl acetate, and acetic acid Esters such as methyl esters. Among them, the amount of the solvent used is 0.05 to 10 times by weight, and more preferably 0.1 to 5 times by weight, relative to the piperin derivative. The present invention also provides a polymer solid electrolyte having excellent properties, which is obtained by using the above-mentioned piperidine derivative. < The polymer solid electrolyte of the present invention is formed by the addition reaction of the above-mentioned piperidine derivative with a compound having two or more (meth) propenyl groups in the molecule (hereinafter referred to as compound (X)). Polymers containing metal salts of group la of the periodic table. -13- 507393 V. Description of the invention (12) Compound (X) having two or more (meth) propenyl groups in the molecule The compound (X) used in the reaction with the above-mentioned piperazine derivative is 1 molecule A compound having two or more (meth) propenyl groups. Here, propenyl and methpropenyl are collectively described as (meth) propenyl. Compound (X) When the molecular weight is represented by Mw and the number of (meth) propenyl groups is represented by η, the Mw / n 値 system is preferably 300 to 50,000, preferably 400 to 10,000, in this range. Since the distance between the crosslinking points is moderate, a gel electrolyte having excellent liquid retention and high strength can be obtained. Examples of the compound (X) may be acrylic acid or methacrylate of a high molecular weight polyol compound. That is, a polyol compound having an average molecular weight of 900 to 100,000, preferably 1,000 to 20,000, such as acrylic polyol of polycarbonate polyol, polyester polyol, polyester polycarbonate polyol or polyether polyol, is obtained. Methacrylate. Hereinafter, this acrylic acid or methacrylate is described as (meth) acrylate. The compound (X) can be used singly or in combination. (1) (Meth) acrylates of polycarbonate polyol compounds Polycarbonate polyol compounds can be synthesized by polycondensation of a dihydric or polyhydric alcohol with a carbonic acid diester or phosgene. The esterification reaction starting from the obtained polyol compound can be carried out by general methods and conditions. For example, the presence of polyhydric alcohol compounds with acrylic halides or methacrylic halides in a base < A method of performing condensation in the following, a method of performing condensation of polyester polyol and acrylic acid or methacrylic acid in the presence of an acid catalyst, and the like. Specific examples of the polyols that may be used are shown below. They can be used alone or in combination of two or more. -14- 507393 V. Description of the invention (13) (1) Diols: ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 丨, 3-butanediol, chlorobutanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, i, 6-hexanediol, 1,8-octanediol, 1,3-bis (2-hydroxyethoxy) benzene, 1,2-bis (2-hydroxyethoxy) benzene, 2-methyl-1,8-octanol, 1,9-nonanediol, 1 , 4-cyclohexanediol, 1,4-cyclohexanedioxane methanol. (ii) Polyols: trimethylolpropane, trimethylolethane, isopentaerythritol, Dai Di Jing methylpropane, diisopentaerythritol, glycerol, sorbitol. (iii) Alcohols having 1 to 5 equivalents of hydroxyl groups attached to ethylene oxide, propylene oxide, or other alkylene oxides, as opposed to the hydroxyl groups of the polyol. The carbonic acid diester may be, for example, dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, ethylene carbonate, propylene carbonate, or the like. (2) (Meth) acrylates of polyester polyols Polyester polyols can be synthesized by polycondensation of hydroxycarboxylic acids or lactones, or by polycondensation of polyols and polycarboxylic acids. Here, the hydroxycarboxylic acid or lactone may be, for example, glycolic acid, lactic acid, β-propiolactone, β-butyrolactone, γ-butyrolactone, γ-valerolactone, γ-caprolactone, γ-heptyl Lactone, caprolactone, γ-nonolactone, γ-decanolactone, δ-valerolactone, β-methyl-δ-valerolactone, δ-caprolactone, δ-caprolactone, δ- Decanolactone, δ-nonolactone, ε-caprolactone and the like. In addition, during the polycondensation of the hydroxycarboxylic acid or lactone, a 2- to 6-membered polyhydroxy compound as a polymerization initiator may be added, and a terminal functional group is used as a hydroxyl group. As the polyol, the same fluorene glycols and (ii) polyols as described above can be used. -15- 507393 V. Description of the invention (14) Examples of polycarboxylic acids may be malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid, cyclohexane-1, 2-di Carboxylic acid, cyclohexane-i, 4-dicarboxylic acid, cis-tetrahydrophthalic acid, phthalic acid, isophthalic acid, terephthalic acid, and the like. Further, an acid anhydride or a dialkyl dicarboxylic acid corresponding to a dicarboxylic acid may be used. (3) (Meth) acrylates of polyester carbonate polyols Polyester carbonate polyols can be synthesized from the above-mentioned polyester polyols and carbonate diesters or phosgene. Examples of carbonic acid diesters are dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, diphenyl carbonate, ethylene carbonate, propylene carbonate, etc., which can be used alone or in a combination of two or more. use it. The conversion of the acrylate or methacrylate of the polyester carbonate polyol can be performed in the same manner as the esterification of the polycarbonate polyol. (4) (Meth) acrylates of polyether polyols Polyether polyols can be obtained by polymerization of alkylene oxides or addition reactions of polyols and alkylene oxides. Examples of the alkylene oxides are ethylene oxide, propylene oxide, oxetane, tetrahydrofuran and the like. It can be used alone or in a combination of two or more. As the polyol, the same fluorene glycols and (ii) polyols as described above can be used. The conversion of the acrylate or methacrylate of the polyether polyol can be performed in the same manner as the esterification of the polycarbonate polyol. When the (meth) acrylic acid ester 〃 of the high molecular weight polyol described in detail is used as the compound (X), the distance between the crosslinking points of the synthesized polymer is moderately long and the ion conductivity is high. The gel in the electrolyte is excellent in liquid holding property, and an excellent electrolyte can be obtained. Method for producing polymer -16-507393 V. Description of the invention (15) It is preferable that the polymer produced by the addition reaction of compound (X) with the above-mentioned pipertin derivative has a weight average molecular weight of 10,000 or more. Particularly, as a gel electrolyte, a high-molecular-weight crosslinked polymer having low solubility in a solvent of an electrolytic solution is important. The manufacturing method can be carried out under substantially the same method and conditions as those of a general Michael addition reaction. The compound (X) and the above-mentioned piperazine derivative are mixed in a solvent or without a solvent, and the two are reacted at a temperature of -20 to 150 ° C, preferably 0 to 100 ° c. The ratio of the (meth) propenyl group of the compound (X) to the amine group of the above-mentioned pipe derivative is 1: 5 to 5: 1, preferably 1: 3 to 3: 1 (molar ratio). When a solvent is used, it may be the compound exemplified above. The amount of the solvent to be used is 0.5 to 20 times by weight, and preferably 1 to 10 times by weight, based on the total weight of the compound (X) and the piperidine derivative. (a) Alcohols: methanol, ethanol, propanol, butanol, ethylene glycol, (b) Halogenated hydrocarbons: dichloromethane, chloroform, trichloroethane, (c) Aromatic hydrocarbons: benzene, toluene , Xylene, (d) saturated hydrocarbons: hexane, butane, decane, cyclohexane, (e) ethers: dimethyl ether, tetrahydrofuran, (f) carbonates: ethyl carbonate, carbonate Propyl ester, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, dipropyl carbonate, (g) esters: ethyl acetate, propyl acetate, methyl acetate, γ-butyrolactone, < δ-valerolactone and ε-caprolactone. The polymer produced by the Michael addition reaction can be obtained in the form of powder, film, or gel, and can be used as a solid electrolyte. The reaction in the presence of a solvent usually forms a product in the form of a gel. The gel can be used as a material for a polymer electrolyte as described in (16) of the invention. Also, if necessary, it is possible to use a film-like or powdery polymer after drying and solvent removal. In addition, as a polymer solid electrolyte material having sufficient strength, it is preferred that a crosslinking point is formed in a polymer. Therefore, it is preferable that a part or all of the compound (X) and the piperidine derivative use a component having three or more (meth) propanyl groups in the molecule as the compound (X), or use three or more in one molecule. The imine group component is used as the above-mentioned pipertin derivative. Polymer solid electrolyte The polymer solid electrolyte provided by the present invention is a polymer produced by the addition reaction of the compound (X) with the piperidine derivative described above, and contains a polymer of group la of the periodic table. Metal salter. The metal salt of Group Ia of the periodic table may be a compound of lithium, sodium, potassium, etc., preferably one or more of LiC104, LiBF4, LiPF6, LiN (CF3CH2S〇2) 2, LiCF3S〇3, LiN (CF3S〇2) 2. LiC (CF3S02) 3 selected lithium salt. The concentration of the metal salt in the solid electrolyte is preferably 0.1 to 10 (mol / liter). According to the present invention, when a polymer contains a metal salt of group la of the periodic table, it means that the metal salt is present in the polymer by all possible blending methods. For example, it may be a polymer prepared by subjecting the compound (X) and the piperon derivative to a macer addition reaction in advance to uniformly mix a metal salt of group la of the periodic table. < The method, or the method of performing the Michael addition reaction after uniformly mixing the compound (X), the above-mentioned piperazine derivative and the metal salt of Group la of the periodic table. Especially when the latter method is adopted, since the metal salt can be easily dispersed uniformly in the polymer made from the compound (X) and the piperin derivative described above, it is -18-507393. V. Description of the invention (17) is preferred of. For example, the compound (X), the above-mentioned pipertin derivative, the metal salt of Group Ia of the periodic table, and a solvent selected as needed are added, and the obtained homogeneous mixture is coated on a flat substrate. Reaction and gelation. In this way, a solid electrolyte film having a thickness of 0.1 to 1000 m can be obtained. If heated, the temperature range is a range that does not decompose the electrolyte salt, for example, 30 to 100 ° C, preferably 40 to 90 ° C. In addition, if the chemical structure of the compound (X) as the raw material and the piperidine derivative compound can quickly perform a Michael reaction at room temperature, the compound is not necessarily selected to be heated. In addition, the polymer solid electrolyte according to the present invention, in addition to the polymer produced from the compound (X) and the piperin derivative, and the metal salt of Group la of the Periodic Table, is contained with respect to 100 parts by weight of the compound (X The polymer produced by the above-mentioned piperin derivative may have a non-aqueous solvent such as carbonate in an amount of 0 to 5,000 parts by weight, and preferably 100 to 2,000 parts by weight. If the polymer contains a non-aqueous solvent, the method of coexisting with a non-aqueous solvent in the presence of a non-aqueous solvent and the method of immersing in a non-aqueous solvent after polymerization can be performed when the polymer solid electrolyte is produced. As the non-aqueous solvent, carbonate or lactone is preferably used. Examples of carbonates may be chain or cyclic carbonates such as ethyl carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, dipropyl carbonate, and the like, and lactones Examples may be γ-butyrolactone, δ-valerolactone, ε-caprolactone and the like. When the polymer solid electrolyte of the present invention contains a non-solvent, the system has excellent liquid retention and high ion conductivity. The polymer solid electrolyte can be used in, for example, primary batteries, secondary batteries, capacitors, electricity, etc. V. Description of the Invention (18) Electrochemical elements such as a color-changing display element, medical actuators, and the like. In particular, the polymer solid electrolyte is suitable for use as an organic electrolyte for a lithium secondary battery. Furthermore, it can also be used as an adhesive material for dispersing and fixing a powdery electrode material to a current collector. Secondary battery The secondary battery of the present invention is composed of a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material, and the above-mentioned polymer solid electrolyte disposed therebetween. As the negative electrode active material, metallic lithium, a lithium-containing alloy, or a material that may be doped with lithium ions or undoped. The lithium-doped or undoped material may be appropriately selected from carbonaceous materials, tin oxide, transition metal nitrogen compounds, and the like. Among them, the material that may be doped with lithium or undoped lithium is preferably a carbonaceous material, and it may also be graphite or amorphous carbon. Specific examples may be activated carbon, carbon fiber, intermediate carbon microbeads, and natural graphite. The positive electrode active material may be, for example, a transition metal oxide or transition metal sulfide such as MoS2, TiS2, Mn02, V205, or a composite oxide formed of lithium and a transition metal such as lithium, such as LiCo02, LiMn02, LiMn204, LiNi02, LiNhCou ^ C ^, Conductive polymer compounds such as polyaniline, polythiophene, polypyrazole, polyacetylene, polyacene, dihydrothiothiadiazole / polyaniline complex, and disulfides. Among these, a ': composite oxide formed of lithium and a transition metal is preferred. When the polymer solid electrolyte is used in a secondary battery, the polymer solid electrolyte is formed into a thin film shape in advance, and is sandwiched between a positive electrode and a negative electrode to manufacture a battery. Instead of a thin film, a polymer electrolyte formed in the form of a gel in advance can be arranged. -20- 507393 V. Description of the invention (19). In addition, after the three-layer structure of the positive electrode, the separator, and the negative electrode is formed, the battery manufacturing process has a step of immersing them in the electrolytic solution. The compound (X), the piperin derivative, and the metal salt of group la of the periodic table can be used A solution made of a non-aqueous solvent instead of the electrolyte, immersed in it, and then gelatinized. In each case, if the above-mentioned polymer solid electrolyte according to the present invention is used, it is possible to suppress changes in the conventional battery manufacturing process to a minimum, and it is possible to manufacture a secondary battery. The shape of the battery may be any shape such as a film type, a coin type, a cylindrical type, or a square type. EXAMPLES Specific examples of the present invention are described below, but they are by no means intended to limit the present invention. (Synthesis Example 1) A glass reactor equipped with a stirrer, a thermometer, and a rectification column was charged with 11.2 g of trimethylolpropane trimethacrylate (manufactured by Mitsubishi Electric Corporation), 8.61 g of methanol, and 8.87 g of piperazine. Plow, stir at room temperature for 1 hour and at 80 t for 3 hours. After that, 20.0 g of diethyl carbonate was added to dissolve uniformly, and then concentrated under reduced pressure to completely remove unreacted piperidine. The product is obtained as a colorless viscous oily substance. The yield was 17.5 grams. r The obtained colorless viscous oily substance was analyzed by NMR and IR. From the following data, it was found that the product was trimethylolpropane trimethacrylate-pigenol adduct (TMP-Pi). (1) 1H NMR analysis results: (σ ppm, CDC13) -21-507393 V. Description of the invention (2Q) 0 · 91 (3H), 1 · 10 ~ 1 · 17 (9H), 1 · 45 ~ 1 · 58 (2H), 1.76 (3H), 2.2 ~ 2.9 (33Η), 4.06 (6Η) (2) IR analysis results: (cnT1, polyethylene film) 3272, 1739, 1461, 1376, 1246, 1173 To TMP-Pi, diethyl carbonate of the same weight was added and mixed to obtain a 50% diethyl carbonate solution of TMP-Pi. (Synthesis Example 2) A glass reactor equipped with a stirrer, a thermometer, and a rectification column was charged with 9.9 (K g of ethylene glycol dimethacrylate, 8.69 g of methanol, and 8.61 g of piperidine, and stirred at room temperature for 1 hour. And stirred at 80 ° C for 3 hours. After that, 20.0 g of diethyl carbonate was added to dissolve uniformly, and then concentrated under reduced pressure to completely remove unreacted piperidine. The product was obtained as a colorless viscous oily substance. The yield was 17.4 g. The obtained colorless, viscous oily substance was analyzed by NMR and IR. From the following data, it was found that the product was an ethylene glycol dimethacrylate-piperazine adduct (EGDMA-Pi). (1) 1H NMR Analysis results: (σ ppm, CDC13) 1.12-1.17 (6), 1.45-1.58 (2H), 2.2-2.9 (24H), 4.29 (4H) (2) IR analysis results: (cm · 1, polyethylene film) 2490, 2808, 1739, 1460, 1377, 1243, 1173 < To the obtained EGDMA-Pi, diethyl carbonate of the same weight was added and mixed to obtain a 50% diethyl carbonate solution of EGDMA-Pi. (Synthesis Example 3) In a glass reactor equipped with a stirrer, a thermometer, and a rectification column, -22-507393 was added. V. Description of the invention (21) 50 · 6 g of trimethylolpropane ethylene oxide adduct (〇 H 値: 433, product of Japan Emulsifier Co., Ltd.), 20 g of methacrylic acid, 1.01 g of p-toluenesulfonic acid hydrate, 26 mg of 4-methoxyphenol and 50 ml of toluene, and refluxed for 5 hours. Water is removed outside the reaction system. After the temperature dropped to 50 ° C, 3.0 g of Cowart 500 (produced by Kyowa Chemical Industry Co., Ltd.) was added, and the mixture was stirred at 50 ° C for one hour. After cooling to room temperature again, insoluble matter was filtered off, and the filtrate was concentrated under reduced pressure to obtain trimethacrylate (TMP-EOTMA) as a colorless oil. Yield 31.3 grams. Next, in a glass reactor equipped with a stirrer, a thermometer, and a rectification column, force 1] g of TMP-EOTMA obtained from the above reaction, 6.5 g of methanol, and 6.24 g of piperazine, and stir at room temperature for 1 hour and Stir at 80 ° C for 3 hours. After that, 15.0 g of diethyl carbonate was added to dissolve uniformly, and then concentrated under reduced pressure to completely remove unreacted piperidine. The product was obtained as a colorless viscous oily substance. The yield was 18.6 grams. The obtained colorless viscous oily substance was analyzed by NMR analysis and IR analysis, and it was found from the following data that the product was ethylene glycol dimethacrylate-piperon adduct (TMPE0-Pi). (1) 1H NMR analysis results: (σ ppm, CDC13) 0.83 (3Η), 1.10 to 1.17 (9Η), 1.37 to 1.43 (2Η), 1.76 (3Η), 2 · 2 ~ 2.9 (36Η), 3.5-3.7 (24Η), 4.22 (6Η) v (2) IR analysis results [(cm · 1, polyethylene film) 2940, 2874, 1736, 1460, 1376, 1246, 1118 To the obtained TMPEO-Pi, diethyl carbonate of the same weight was added and mixed to obtain a 50% diethyl carbonate solution of TMPEO-Pi. -23- 507393 V. Description of the invention (22) (Synthesis example 4) In a glass reactor equipped with a stirrer, a thermometer and a rectification column, 40.3 g of polycaprolactone triol (OH 値: 83.4, Dasir Chemical) Industrial Co., Ltd.), 4.32 g of acrylic acid, 0.80 g of p-toluenesulfonic acid hydrate, 0.08 g of 4-methoxyphenol and 40 ml of toluene 'were refluxed for 5 hours, and the generated water was removed from the reaction system. After the temperature dropped to 5 ° C, 4.0 grams of Cowart 500 (produced by Kyowa Chemical Industry Co., Ltd.) were added, and the mixture was stirred at 50 ° C for one hour. After cooling to room temperature, the insoluble matter was filtered off, and The filtrate was concentrated under reduced pressure to obtain polycaprolactone trimethacrylate (PCL-TA) as a colorless oil. Yield 41.0 g. (Synthesis Example 5) Synthesis of polycarbonate polyacrylate was provided with a stirrer , Thermometer and rectification tower glass reaction vessel, 32.0 g of trimethylolpropane-EO adduct (1 mole of trimethylolpropane and 3 mole of ethylene oxide adduct, Japan Emulsion Co., Ltd.), 114.6 g of diethylene glycol, 124.3 g of dimethyl carbonate, and 0.23 g of a methanol solution of 28% sodium methoxide as a catalyst. The mixture was kept at 95t under normal pressure for 2 hours, and then went through The temperature was raised to 150 ° C for 5 hours, and then heated at 150 ° C for 4 hours to distill the methanol produced by the reaction. Next, it was kept at 150 ~ 155t under a reduced pressure of 5mmHg, and the 10.3 produced by the polymerization reaction was distilled off. G of diethylene glycol. After that, cool to room temperature and add 100 ml of Vtrichloro And 2.3 g of activated white clay, stirred at 55 ° C. for 1 hour. After cooling to room temperature, the activated white clay was filtered, and the filtrate was concentrated to obtain 145 g of a polycarbonate polyol, which is a viscous oil. Results from GPC analysis It was found that the weight average molecular weight of the product was 4,200. -24-507393 V. Description of the Invention (23) Second, 30.1 g of the above-mentioned polycarbonate polyol was 'mixed' in a glass reaction container provided with a stirrer, a thermometer, and a dropping funnel. , 8.7 g of triethylamine and 100 ml of monochloromethane, and cooled to 5 ° C. Drop 7.8 g of triamcinolone through a dropping funnel for 20 minutes, and then stir at 5 ° C for 1 hour. Slowly warm up The mixture was stirred at room temperature for another 2 hours. The reaction solution was filtered, and the filtrate was washed with saturated brine, dried over anhydrous manganese sulfate, and concentrated to obtain 2.91 g of polycarbonate polyacrylate, which was a pale yellow viscous oil. (Synthesis Example 6) Polyester triacrylate was placed in a glass reactor equipped with a stirrer, a thermometer, and Dean Stark, and 40.0 g of adipic acid, 3-methyl-1,5-pentanediol, and trimethyl ether were charged. Methylolpropane (〇H 値: 84, kolaré Products of Shishi Club), 4.32 g of acrylic acid, 0.80 g of p-toluenesulfonic acid hydrate, 0.08 g of 4-methoxyphenol and 40 ml of toluene, and refluxed for 5 hours to remove the generated water outside the reaction system. Temperature After dropping to 50 ° C, add 1.23g of acetic anhydride, and then continue stirring at this temperature for 1 hour. Then, add 4.0g of magnesium oxide and stir at 50 ° C for 1 hour. After cooling to room temperature, insoluble matter is filtered off, The filtrate was concentrated under reduced pressure to obtain a polyester triacrylate as a colorless oil. Yield 40.8 g. (Example 1) In a 10 ml capacity sample bottle, 0.313 g of the PCL- synthesized in Synthesis Example 4 was used. TA was mixed with 4.40 g of a 1 mol / liter solution of LiPF6 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1, and then 0.247 g of TMP synthesized in Synthesis Example 1 -Pi was added to the solution, and stirred and mixed at room temperature to prepare a homogeneous solution. Gelation occurred after 3 hours at room temperature, and was completely hardened after 4 hours, and liquid separation was not obtained. -25- 507393 V. Description of the Invention (24) A gel with excellent liquid retention. (Example 2) Similarly, 0.654 g of PCL-TA synthesized in Synthesis Example 4 was mixed with 1.854 g of LiPF6 in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1. After ear / liter of solution, 0.492 g of EGDMA-Pi synthesized in Synthesis Example 2 was added to the solution, and stirred and mixed at room temperature to prepare a homogeneous solution. Gelation occurred after 24 hours at room temperature, and completely hardened after 30 hours to obtain a gel having excellent liquid retention without liquid separation. (Example 3) Similarly, 0.179 g of PCL-TA synthesized in Synthesis Example 4 was mixed with 2.979 g of LiPF6 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1. After the mole / liter solution, 0.342 g of TMPEO-Pi synthesized in Synthesis Example 3 was added to the solution, and stirred and mixed at room temperature to prepare a homogeneous solution. Gelation occurred after 15 hours at room temperature, and completely hardened after 20 hours to obtain a gel having excellent liquid retention without liquid separation. (Comparative Example 1) 0.928 g of PCL-TA synthesized in Synthesis Example 4 was mixed with 3.927 g of LiPF6 in a volume ratio of ethylene carbonate and diethyl carbonate in a 1: 1 mixed solvent. After 1 mol / L solution, 0.07 17 g of diethylene glycol triamine MPEO-Pi was added to the solution, and stirred and mixed at room temperature to prepare a homogeneous solution. Gelation did not occur after one week at room temperature, and a uniform solution state was maintained during preparation. -26- 507393 V. Explanation of the Invention (25) (Comparative Example 2) Similarly, 0.450 g of PCL-TA synthesized in Synthesis Example 4 was mixed with 2.050 g of volume ratio of LiPF6 dissolved in ethylene carbonate and diethyl carbonate. After a 1 mol / liter solution made in a 1: 1 mixed solvent, 0.056 g of Ziefmin T403i (product of Saudi Kroko Mikalu) was added to the solution, and stirred and mixed at room temperature to prepare Into a homogeneous solution. Gelation does not occur after one week at room temperature, and a uniform solution state during preparation is maintained. (Example 4) 1.48 g of the polycarbonate polyacrylate synthesized in Synthesis Example 5 was mixed with 7.54 g of LiPF6 in a mixed solvent of 1: 1 and propylene carbonate in a weight ratio of 1: 1. After a molar / liter concentration of the electrolytic solution, 1.03 g of a 50% diethyl carbonate solution of TMP-Pi manufactured in Synthesis Example 1 was added to the solution, and stirred at room temperature using a magnetic stirrer. After about 30 minutes, a gel was formed and no fluidity was observed. The gel was left to stand at room temperature for 24 hours, and no separation of the liquid was observed, and it was found that it had good liquid retention. A 20 mm inner diameter silicon-doped plastic frame was stuck on a glass substrate, and 150 microliters of the previously prepared solution before gelation was dropped into the frame. The substrate was placed on a heating plate provided in a nitrogen box, and was allowed to harden at room temperature for 12 hours to form a polymer electrolyte film. The resulting film had a thickness of 370 microns. The film was punched to a diameter of 10 mm. It was held by an electrode made of SUS, and the complex impedance was measured using Solatron 1 255B. The ion conductivity was determined to be 2.039 mS / cm. (Example 5) -27- 507393 V. Description of the invention (26) The same operation as in Example 4 was performed, but 1.72 g of the polyester triacrylate produced in Synthesis Example 6 was used instead of the polycarbonate produced in Synthesis Example 5. Ester polyacrylate, and as a result hardened in about 1 hour. The gel was left at room temperature for 24 hours, and no separation of the liquid was observed. It was found that the gel had good liquid retention. In the same manner as in Example 1, a polymer electrolyte film having a thickness of 370 m was produced. The ionic conductivity of the obtained polymer electrolyte was determined to be 1 · 3 π S / cm. (Example 6) The same operation as in Example 4 was performed except that 1.39 g of trimethylolpropane ethylene oxide modified triacrylate (manufactured by Shin Nakamura Chemical Co., Ltd., Mw = 1600) was used in place of Synthetic Example 4. The manufactured polycarbonate polyacrylate hardened in about 1 hour. When the gel was left at room temperature for 24 hours, no separation of the liquid was observed, and it was found that it had good liquid retention. A polymer electrolyte film having a thickness of 370 m was produced in the same manner as in Example 4. The ion conductivity of the obtained polymer electrolyte was found to be 3.0 mS / cm 〇 (Example 7) < Preparation of homogeneous electrolyte > 1.48 g of the polyester polyacrylate synthesized in Synthesis Example 6 was mixed with 7.54 g of LiPF6 dissolved in ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1. : _ After the non-aqueous electrolyte solution having a concentration of 1 mole / liter in the mixed solvent, L03 g of the trimethylolpropane trimethacrylate-piperidine_TM_ produced by Synthesis Example 1 (TMP- Pi) 50% diethyl carbonate solution was added to the solution, and stirred at room temperature for 10 minutes to prepare a uniform solution. -2 8-507393 V. Description of the Invention (27) < Production of Negative Electrode > 90 parts by weight of carbon powder of Mesos carbon microbeads (trade name; MCMB6-28, d002 = 0.337nm, density 2.17g / cm3) made by Osaka Gas Co., Ltd. were mixed by 10 weight Parts of polyvinylidene fluoride as a binder were dispersed in a solvent N-methylpyrrolidone to prepare a paste-like negative electrode mixture slurry. Next, this negative electrode mixture was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 20 m, and a strip-shaped carbon negative electrode was obtained after drying. The thickness of the dried negative electrode mixture was 25 m. Further, the strip-shaped electrode was punched into a disk shape having a diameter of 15 mm, and thereafter compression-molded to form a negative electrode. < Production of the positive electrode > 91 parts by weight of LiC02 (trade name: HLC-21, average particle size: 8 microns) microparticles made by Honjo Camikale Co., Ltd., 6 parts by weight of graphite as a conductive material, and 3 parts by weight of polyvinylidene fluoride as a binder was mixed to prepare a positive electrode mixture, and dispersed in N-methylpyrrolidone to obtain a positive electrode slurry. This slurry was applied to a positive electrode current collector made of a strip-shaped aluminum foil having a thickness of 20 m, and dried and compressed to obtain a strip-shaped positive electrode. The thickness of the dried positive electrode mixture was 40 m. Thereafter, the strip-shaped electrode was punched into a disk shape with a diameter of 15 mm to serve as a positive electrode. < Production of battery > The thus obtained disk-shaped negative electrode and disk-shaped positive electrode were prepared, and a polyester nonwoven fabric having a thickness of 200 m was used as a separator. In a 2032-inch stainless steel battery can, a negative electrode, a separator, and a positive electrode were sequentially laminated, and then the uniform electrolyte was injected. Thereafter, a stainless steel plate was housed in a battery can with a polypropylene gasket therebetween, and sealed with a battery can lid. Next, place the battery at -29- 507393 5. Description of the Invention (28) The battery is left at room temperature for 12 hours to harden the components of the injected electrolyte. As a result, while maintaining the airtightness in the battery, a coin-type battery with a diameter of 20 mm and a height of 3.2 mm can be obtained. < Performance test of battery > Using the fabricated button-type secondary battery, 20 cycles were repeated at a room temperature of 2.7V-4.2V at a charge and discharge of 1 mA. As a result, the first discharge capacity was 140 (mAh / g) per gram of LiCO2, and the capacity retention rate at 20 cycles was 97%. (Reference example) In Example 7, a non-aqueous electrolyte solution having a concentration of 1.0 (mol / liter) formed by dissolving LiPF6 in a mixed solvent of 1: 1 and volume ratios of ethylene carbonate and diethyl carbonate was used. A coin-type battery was produced in the same manner as in Example 4 except that the uniform electrolyte was used. The same battery performance test was performed. As a result, the first discharge capacity was 142 (mAh / g) per gram of LiCo02, and the capacity was 20 cycles. The retention rate is 97%. Industrial Applicability The novel pipertin derivative of the present invention has low vapor pressure, low irritation, excellent properties as a normal temperature curing agent and a cross-linking agent for acrylic esters, and can obtain a gel having excellent liquid retention properties. Polymer solids. The method of the present invention for obtaining a piperidine derivative by reacting a compound (A) and a compound (B) is suitable for efficiently producing the novel piperidine derivative. The polymer solid electrolyte system of the present invention has high ionic conductivity while maintaining electrochemical stability. The film is flexible, while the gel is excellent in liquid retention. When manufacturing the polymer of the matrix of the polymer solid electrolyte, Pi Gengyan-30- 507393 V. Description of the invention (29) Compounds (X) having two or more (meth) propenyl groups in the biology and molecules are not A special device is required, and a special high temperature is not required during production, and the reaction can be performed easily and quickly. Furthermore, the polymer solid electrolyte does not cause by-products which affect the performance of the electrolyte. Therefore, this polymer solid electrolyte is suitable for use in electrochemical devices, medical actuators, and the like for primary batteries, secondary batteries, capacitors, electrochromic display devices, and the like. In particular, the secondary battery containing the polymer solid electrolyte not only has excellent battery performance such as excellent charge and discharge characteristics, but also does not need to worry about battery leakage and leakage, so that the reliability of the battery can be improved. -31-

Claims (1)

六、申請專利範圍 1·一種哌畊衍生物,其爲1分子中具有2個以上之式⑴所表 示的基之化合物,6. Scope of patent application 1. A pipertin derivative, which is a compound having 2 or more groups represented by the formula (1) in one molecule, 其中R1、R2、R3、R4和R5可爲相同或相異,且代表氫原 子或低級烷基,X代表氧原子、硫原子或NR6,其中R6係 氫原子或低級烷基,★代表接合位置。 2·如申請專利範圍第1項之哌哄衍生物,其中Rl、R2、R3、 R4和R5可爲相同或相異,且代表氫原子或甲基。 3·如申請專利範圍第1項之哌畊衍生物,其中該化合物係爲 下式(II)所表示之化合物,R1, R2, R3, R4, and R5 can be the same or different, and represent a hydrogen atom or a lower alkyl group, X represents an oxygen atom, a sulfur atom, or NR6, where R6 is a hydrogen atom or a lower alkyl group, and ★ represents a bonding position . 2. The pipe derivative according to item 1 of the scope of patent application, wherein R1, R2, R3, R4 and R5 may be the same or different and represent a hydrogen atom or a methyl group. 3. The piperin derivative according to item 1 of the application, wherein the compound is a compound represented by the following formula (II), X— R (Π) 0 / η 其中R爲可含有雜原子的碳數2至100之烴基,η爲2至 10之整數,R1、R2、R3、R4和R5可爲相同或相異,且代 表氫原子或低級烷基,X代表氧原子、硫原子或NR6,其 中R6係氫原子或低級烷基。 4.如申請專利範圍第3項之哌畊衍生物,其中R1、R2、R3、 -32- 507393 六、申請專利範圍 R4和R5可爲相同或相異,且代表氫原子或甲基。 5·—種高分子固體電解質,其係爲在由如申請專利範圍第1 至4項中任一項之哌哄衍生物與分子中具有2個以上之 (甲基)丙烯基之化合物(X)的加成反應所形成的聚合物中, 含有週期表第la族之金屬鹽所形成者。 6·如申請專利範圍第5項之高分子固體電解質,其中化合物 (X)係爲至少一'種選自於聚碳酸醋多兀醇、聚醋多元醇、 聚酯碳酸酯多元醇的多元醇化合物之(甲基)丙烯酸酯。 7·如申請專利範圍第5項之高分子固體電解質,其中該聚合 物係爲哌畊衍生物的胺基與化合物(X)的(甲基)丙烯基之 1:5至5:1(莫耳比)的麥可(Michael)加成反應所形成的聚合 物。 8·如申請專利範圍第5項之高分子固體電解質,其中該週期 表第la族之金屬鹽係爲至少一種選自於LiC104、LiBF4、 LiPF6、LiN(CF3CH2S〇2)2、LiCF3S〇3、LiN(CF3S〇2)2、 LiC(CF3S02)3 的化合物。 9. 如申請專利範圍第5至8項中任一項之高分子固體電解 質,其中該聚合物係爲保持於非水溶劑的凝膠狀物。 10. —種二次電池,其特徵爲含有如申請專利範圍第5至9 項中任一項之高分子固體電解質。 11. 一種二次電池,其特徵爲包括如申請專利範圍第5至9 項中任一項之高分子固體電解質;負極,其含有至少一 種選自於金屬鋰、含鋰的合金、可能經鋰離子摻雜和未 摻雜的碳質材料、可能經鋰離子摻雜和未摻雜的氧化 -33- 507393—___________: —:Ί :溆m丨,止I ί年月.:當i I ί3 ^ I 六、申請專利範圍 錫、可能經鋰離子摻雜和未摻雜的矽、及可能經鋰離子 摻雜和未摻雜的氧化鈦作爲負極活性物質;正極,其含 有鋰和過渡金屬之複合氧化物作爲正極活性物質。 12.—種製造如申請專利範圍第1項之哌畊衍生物的方法, 其特徵在於使1分子中具有2個以上的下述式(III)所表示 的基之化合物(A)X— R (Π) 0 / η, where R is a hydrocarbon group having 2 to 100 carbon atoms which may contain a hetero atom, η is an integer from 2 to 10, R1, R2, R3, R4, and R5 may be the same or different, and Represents a hydrogen atom or a lower alkyl group, and X represents an oxygen atom, a sulfur atom, or NR6, wherein R6 is a hydrogen atom or a lower alkyl group. 4. The piperin derivative according to item 3 of the scope of patent application, in which R1, R2, R3, -32- 507393 6. The scope of patent application, R4 and R5 may be the same or different, and represent a hydrogen atom or a methyl group. 5 · —A polymer solid electrolyte, which is a compound (X) having two or more (meth) propenyl groups in the molecule from the pipe derivative and any one of the claims 1 to 4 in the scope of the patent application. The polymer formed by the addition reaction) contains a metal salt of Group 1a of the periodic table. 6. The polymer solid electrolyte according to item 5 of the application, wherein the compound (X) is at least one kind of a polyol selected from the group consisting of a polycarbonate polyol, a polyester polyol, and a polyester carbonate polyol. (Meth) acrylates of compounds. 7. The polymer solid electrolyte according to item 5 of the patent application, wherein the polymer is 1: 5 to 5: 1 (mol) of the amine group of the piperin derivative and the (meth) propenyl group of the compound (X). Ear ratio) polymer formed by Michael addition reaction. 8. The polymer solid electrolyte according to item 5 of the application, wherein the metal salt of group la of the periodic table is at least one kind selected from LiC104, LiBF4, LiPF6, LiN (CF3CH2S〇2) 2, LiCF3S〇3, LiN (CF3S02) 2, LiC (CF3S02) 3. 9. The polymer solid electrolyte according to any one of claims 5 to 8, wherein the polymer is a gel-like substance kept in a non-aqueous solvent. 10. A secondary battery, characterized in that it contains a polymer solid electrolyte according to any one of claims 5 to 9 of the scope of patent application. 11. A secondary battery, comprising a polymer solid electrolyte as claimed in any one of claims 5 to 9; a negative electrode containing at least one selected from the group consisting of metallic lithium, lithium-containing alloys, and possibly lithium Ion-doped and undoped carbonaceous materials, which may be doped and undoped with lithium ions -33- 507393 —___________: —: Ί: 丨 m 丨, only I ί 月.: 当 i I ί3 ^ I VI. Patent scope Tin, silicon that may be doped and undoped with lithium ions, and titanium oxide that may be doped and undoped with lithium ions are used as negative electrode active materials; the positive electrode contains lithium and transition metals. The composite oxide serves as a positive electrode active material. 12. A method for producing a piperidine derivative according to item 1 of the patent application, characterized in that a compound (A) having two or more groups represented by the following formula (III) in one molecule is used. (III) 式中R1和X係如上述式(I)中所定義) 與下述式(IV)所表示的化合物(B)反應, (IV) R2 R5 HN NH(III) wherein R1 and X are as defined in the above formula (I)) react with the compound (B) represented by the following formula (IV), (IV) R2 R5 HN NH (式中,R2、R3、R4和R5係如上述式⑴中所定義)。 ia如申請專利範圍第12項的方法,其中式(III)中的R1和式 (IV)中的R2、R3、R4和R5可爲相同或相異,且代表氫原 子或甲基。 14.如申請專利範圍第12或13項的方法,其中該化合物(A) 與該化合物(B)的加入比爲1:5至1:0.5的莫耳比。 -34-(In the formula, R2, R3, R4 and R5 are as defined in the above formula (I)). ia The method of claim 12 wherein R1 in formula (III) and R2, R3, R4 and R5 in formula (IV) may be the same or different, and represent a hydrogen atom or a methyl group. 14. The method of claim 12 or 13, wherein the compound (A) and the compound (B) are added at a molar ratio of 1: 5 to 1: 0.5. -34-
TW090114398A 1999-12-15 2001-06-14 Piperazine derivative, process for preparing it, polymeric solid electrolyte and secondary battery TW507393B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35576899 1999-12-15
JP2000191793A JP2001291529A (en) 1999-12-15 2000-06-26 Polymer solid electrolyte and secondary battery
JP2000232921A JP2002047279A (en) 2000-08-01 2000-08-01 Piperazine derivative and method for producing the same

Publications (1)

Publication Number Publication Date
TW507393B true TW507393B (en) 2002-10-21

Family

ID=27625265

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090114398A TW507393B (en) 1999-12-15 2001-06-14 Piperazine derivative, process for preparing it, polymeric solid electrolyte and secondary battery

Country Status (1)

Country Link
TW (1) TW507393B (en)

Similar Documents

Publication Publication Date Title
TWI304803B (en) Additives for non-aqueous electrolytes and electrochemical device using the same
JP2005350673A (en) Polysiloxane compound and solid polymer electrolytic composition using the same
JP4995185B2 (en) Cyclic siloxane compound crosslinking agent, solid polymer electrolyte composition containing the crosslinking agent, and solid polymer electrolyte for small lithium polymer secondary battery
Zaheer et al. An in situ polymerized comb-like PLA/PEG-based solid polymer electrolyte for lithium metal batteries
JP2011074317A (en) Method of manufacturing polyradical compound
JP2002280075A (en) Polyalkylene oxide-based solid polymer electrolytic composition
TW200402161A (en) Electrolyte compositions
JP3880750B2 (en) Polymer solid electrolyte
TW507393B (en) Piperazine derivative, process for preparing it, polymeric solid electrolyte and secondary battery
KR20030051620A (en) Piperazine derivative, process for producing the same, polymeric solid electrolyte, and secondary battery
KR101190145B1 (en) Polymer electrolyte composite containing the amine acrylate compounds and lithium-polymer secondary battery using the same
JP2002033017A (en) Polymer solid electrolyte and secondary battery
JP4693248B2 (en) Polymer solid electrolyte and secondary battery
JP2002033015A (en) Polymer solid electrolyte and secondary battery
JP2001291529A (en) Polymer solid electrolyte and secondary battery
WO2002102786A1 (en) Piperazine derivative, process for producing the same, polymeric solid electrolyte, and secondary battery
JPWO2012111335A1 (en) Electrode protective film forming agent
JP2000351843A (en) Polycarbonate polyol, polycarbonate polyol (meth) acrylate, and their use
JP5843891B2 (en) Polymer, method for producing the same, and power storage device
JP2000100441A (en) Negative electrode for lithium battery and manufacture therefor
JP4925499B2 (en) Polymer solid electrolyte and secondary battery
JP5443931B2 (en) Secondary battery
JP2006086101A (en) Electrolyte composition and battery
JP6157202B2 (en) Binder for polymer and power storage device
JP5678394B2 (en) Batteries containing polytrimethylene oxide and polytrimethylene oxide as electrolyte

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees