TWI304803B - Additives for non-aqueous electrolytes and electrochemical device using the same - Google Patents

Additives for non-aqueous electrolytes and electrochemical device using the same Download PDF

Info

Publication number
TWI304803B
TWI304803B TW095134005A TW95134005A TWI304803B TW I304803 B TWI304803 B TW I304803B TW 095134005 A TW095134005 A TW 095134005A TW 95134005 A TW95134005 A TW 95134005A TW I304803 B TWI304803 B TW I304803B
Authority
TW
Taiwan
Prior art keywords
group
compound
electrolyte
battery
electrode
Prior art date
Application number
TW095134005A
Other languages
Chinese (zh)
Other versions
TW200710072A (en
Inventor
Ho Chun Lee
Tae Yoon Park
Yong Su Choi
Soo Jin Yoon
Hong Kyu Park
Original Assignee
Lg Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Chemical Ltd filed Critical Lg Chemical Ltd
Publication of TW200710072A publication Critical patent/TW200710072A/en
Application granted granted Critical
Publication of TWI304803B publication Critical patent/TWI304803B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

1304803 九、發明說明: 【發明所屬之技術領域】 本發明係關於—種電池使用之電解質,其包括非水溶性 電解質用的-種添加物,能夠改善電池的循環特性以及高 溫特性。同時,本發明係關於—種具有改善熱安全性之電 極’以及-電化學裝置,較佳地為包括該添加物之—非水 溶性電解質二次電池。[Technical Field] The present invention relates to an electrolyte for use in a battery, which comprises an additive for a water-insoluble electrolyte, which can improve cycle characteristics and high temperature characteristics of the battery. Meanwhile, the present invention relates to an electrode having improved heat safety and an electrochemical device, preferably a non-aqueous electrolyte secondary battery including the additive.

10 1510 15

【先前技術】 近年來,有鑑於能量儲存科技的蓬勃發展。電池的使用 已擴大運用在行動電話、攝錄相機、筆記型電腦、個人電 :以及t + _媒介的儲存能源’所以針對電池所作之研 九::展已逐漸地具體化。&觀察中,電化學裝置的領域 獲侍取大的庄恩’於其中較受關注為可充/放電二次電池的 發展。最近’此類電池的發展,已積極研究朝向設計可提 :改善的電容量密度以及特定能量的一種新穎電極及電 7所使用的一次電池中,鐘二次電池於}则年代早 =發而件’由於具有高驅動電壓並且能量密度遠大於傳 ^電池’例如Ni-MH、Ni_Cd以及硫酸·錯電池的優點,使 :成為眾人注目之焦點。然而,此類鋰二次電池卻在重複 叙:::環期間,產生品質降低的-問題。當-電池的驅 、、子溫度上升,上述問題變的更為嚴重。因此,一種可 、°非水/合性電解質鋰二次電池的高溫壽命特性之方 20 1304803 法成為不間斷的需求。 韓國早期公開專利編號0450199以及美國專利編號 2002-0197537 ’揭露經由使用下述分子式2所表示的一種 績酸鹽類化合物作為一電解質用添加物,進而提供改善電 池循ί衣特性以及南溫特性的一種方法。 [分子式2][Prior Art] In recent years, there has been a boom in energy storage technology. The use of batteries has been expanded to include mobile phones, camcorders, notebook computers, personal computers: and t + _ media storage energy. So research on batteries IX:: The exhibition has gradually become more concrete. In the observation, the field of electrochemical devices has been favored by the large Zhuang En, which has received more attention as the development of rechargeable/discharge secondary batteries. Recently, the development of such batteries has been actively studied in the design: a new type of electrode for improving the capacitance density and specific energy, and the primary battery used in the electric battery. The piece 'because of the high driving voltage and the energy density is much larger than the advantages of the battery, such as Ni-MH, Ni_Cd and sulfuric acid/wrong battery, makes it the focus of attention. However, such lithium secondary batteries have a problem of degraded quality during repeated repetition of the ::: ring. The above problem becomes more serious when the temperature of the battery and the temperature of the battery rises. Therefore, the high temperature life characteristics of a non-aqueous/composite electrolyte lithium secondary battery 20 1304803 method has become an uninterrupted demand. Korean Laid-Open Patent No. 0450199 and U.S. Patent No. 2002-0197537' disclose the use of a compound acid salt compound represented by the following formula 2 as an electrolyte additive, thereby providing an improvement in battery characteristics and south temperature characteristics. a way. [Molecular Formula 2]

4 o=s: %, 其中Ri以及R2各自表示 π必% 万货丞 此外’曰本早期公開專利編號2000-13304揭露以下主 10 为子式3所表示的一種化合物,進而改善電池的的壽命半 性以及儲存特性。 [分子式3] Q %4 o=s: %, where Ri and R2 each represent π must be 万 万 丞 丞 曰 曰 早期 早期 早期 早期 早期 早期 早期 早期 早期 早期 早期 早期 早期 早期 早期 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 Semi-sexuality and storage characteristics. [Molecular Formula 3] Q %

Q 其中R表示一燒基。 15 如上所述,眾所皆知當使用磺酸鹽(S03)類化合物作為 電解質用添加物,可以改善電池的品質。 【發明内容】 本^明之發明者為了改善電池的品質,已使用一續酸鹽 20 =〇3)類化口物進行諸多研究。最後,本發明之發明者發現, 田使用種以—特定取代基取代之磺酸鹽類化合物(例 1304803 -如,至少一種取代基選自一氰基、一異氰酸基、一硫氰酸 :基及一異硫氰酸基,取代一磺酸鹽類化合物)作為電解質用 的一添加物,相較於不具有上述取代基的一傳統磺酸鹽類 化合物,有可能明顯地改善一鋰電池的壽命特性以及高溫 5 穩定性。 因此,本發明之一主要目的,係提供一種電池使用之電 解質’其包括一磺酸鹽類化合物,其具有至少一種上述提 及的取代基,一電極在電極活性材料上包括上述化合物, 泰 以及包括該電解質及/或電極的一電化學裝置。 1〇 依本發明之一態樣所述,係提供一種電池使用之電解 質,其組成包括:(a) —電解質鹽類;(b) 一電解質溶劑; 以及(c) 一磺酸鹽類化合物,其包括選自由一氰基卜cN)、 一異氰酸基(-NCO)、一硫氰酸基(_SCN)以及一異硫氰酸基 (-NCS)所組成之群組中至少一種拉電子基(EWG)。同時提 15供一電化學裝置,較佳地為一包括該電解質之鋰二次電池。 依本發明之另一態樣所述,係提供包括一磺酸鹽類化合 • 物的一電極或其一化學反應產物,部份或全部形成於其表 面,其中磺酸鹽類化合物,包含選自由一氰基(_CN)、一異 氰酸基(-NCO)、一硫氰酸基(_SCN)以及一異硫氰酸基(_Ncs) 20所組成之群組中至少一種拉電子基(EWG)。同時提供一電 化學裝置,較佳地為一包括該電極之鋰二次電池。 下文中’本發明將詳盡敘述。 本發明係經由包括一磺酸鹽類化合物,其一基本成份以 一特疋取代基取代,例如至少一種取代基選自一氰基、一 1304803 進而提供電解 異最> 酸基、一硫蕾酿且,、, 爪虱馱基以及一異硫氰酸基 質的特性。 由於上述特性,當相較於—電池,其所使用的電解質包 不具有上述取代基的—傳統非取代續酸鹽類化合物,依 5本發明所述之鐘二次電池,可以實現良好的壽命特性以及 南溫特性。以此可認為由於下述機構,當相較於其他類似 的貝酸鹽類化合物’以至少一種拉電子基(ewg)所取代的 磺酸鹽類化合物,可以提供較良好的影響。 (1)一般而言,當化合物經電化學反應進而還原或氧化 Π)時,具有烯基的化合物會產生聚合反應,致使—種高分子 薄膜形成。事實上’具有—傳統魏基(s〇3)、—烯基或其 他相似基團的傳統型磺酸鹽類化合物(韓國專利0450199及 美國專利2002-0197537,分子式2),於第一次充電循環後立 即在陽極及陰極表面形成一高分子薄膜。高分子薄膜可提 15供作為一鈍化層,如此添加物及電解質將不再分解,由此 抑制因一電解質溶劑共-置入於電極活性材料之中,所導致 一電極活性材料與一電解質溶劑之間的副反應,以及一電 極結構的崩潰。同時,高分子薄膜可作為鋰離子的通道, 由此將電池品質降低的情形減至最低。 20 依本發明所述,具有一磺酸基(S〇3)及一烯基的磺酸鹽 類化合物可以進一步以一拉電子基(EWG)取代,例如一氰 基(-CN)、一異氰酸基(-NCO)、一硫氰酸基(_SCN)或一異硫 氰酸基(-NCS)。 相較於以一供電子基(EDG)取代或非取代的傳統型項 1304803 酸鹽類化合物,以至少一種拉電子基取代基所取代的磺酸 鹽類化合物’其顯示一減少的還原電位(以一半電池而言為 —增加的還原電位)’以此方式可輕易的在一低初始電壓下 進行分解,並且顯示與陽極的高反應性。因此,當依本發 明所述之磺酸鹽類化合物使用於一電解質内時,藉由磺酸 鹽類化合物可到達一足夠的程度,可能改善一電池的整體 D口質。更特別地,在第一次充電循環之後,續酸鹽類化合 物可以立即分解形成一位於陽極表面’穩固且稠厚的 薄膜’藉此降低電池的不可逆電容量。最後,可能改善包 括谷量以及壽命特性的電池整體品質。 由此可知一化合物所減少的特性可能主要受化合物内 的電子效應所影響。換言之,當一具有供給電子能力的取 代基導人化合物中時,化合物具有—增加的電子密度。因 15 20 此’备-供電子基導入一添加物中,進而增加添加物的還 原電位(以一半電池而言為降低還原電位),將不利還原反應 的執行3 #面,如此文所述,當一拉電子基(e獨)導 入-確酸鹽類添加物化合物中時,確酸鹽類化合物具有一 降低的還原電位(以—半電池而言為增加還原電位),此將有 利於陽極執行還原反應。 ⑺另外,依本發明所述,將取代基導人績酸鹽類化合 二氰基(-CN)、—異氛酸基(_NC。)、―硫氰酸基 (-)或-異硫氰酸基(_NCS)為具有一高偶極矩之拉電子 ^述取代基可以與暴露在一電極活性材料表面的一過 渡金屬、過渡金屬氧化物或—含储料形成-強力鍵結。Q wherein R represents a burning group. 15 As described above, it is well known that when a sulfonate (S03) compound is used as an additive for an electrolyte, the quality of the battery can be improved. SUMMARY OF THE INVENTION In order to improve the quality of a battery, the inventors of the present invention have conducted many studies using a continuous acid salt 20 = 〇3). Finally, the inventors of the present invention have found that sulfonate compounds substituted with a specific substituent are used in the field (Example 1304803 - eg, at least one substituent is selected from the group consisting of a cyano group, an isocyanate group, a thiocyanate group a base and an isothiocyanate group, a monosulfonate compound as an additive for an electrolyte, which is capable of significantly improving a lithium battery as compared with a conventional sulfonate compound having no such substituent. The life characteristics of the pool and the stability of the high temperature 5 . Accordingly, it is a primary object of the present invention to provide an electrolyte for use in a battery comprising a monosulfonate compound having at least one of the above-mentioned substituents, an electrode comprising the above compound on the electrode active material, An electrochemical device comprising the electrolyte and/or electrode. 1 . According to one aspect of the invention, there is provided an electrolyte for use in a battery, comprising: (a) an electrolyte salt; (b) an electrolyte solvent; and (c) a sulfonate compound, It comprises at least one pull electron selected from the group consisting of monocyano bN), monoisocyanato (-NCO), monothiocyanate (_SCN), and isothiocyanate (-NCS). Base (EWG). At the same time, an electrochemical device, preferably a lithium secondary battery including the electrolyte, is provided. According to another aspect of the present invention, there is provided an electrode comprising a monosulfonate compound or a chemical reaction product thereof, partially or wholly formed on a surface thereof, wherein the sulfonate compound comprises At least one electron withdrawing group (EWG) of a group consisting of free-cyano (_CN), mono-isocyanate (-NCO), monothiocyanate (_SCN), and isothiocyanate (_Ncs) 20 ). Also provided is an electrochemical device, preferably a lithium secondary battery comprising the electrode. Hereinafter, the present invention will be described in detail. The present invention is based on the inclusion of a monosulfonate compound, one of which is substituted with a special substituent, for example, at least one substituent is selected from the group consisting of a cyano group, a 1304803 to provide an electrolysis difference, an acid group, a sulfur bud. Brewed,,,,,,,,,,,,,,,,,,,,,,,,,, Due to the above characteristics, when compared with a battery, the electrolyte used does not have the above-mentioned substituent - the conventional non-substituted sodium salt compound, according to the clock secondary battery of the invention, a good life can be achieved. Characteristics and south temperature characteristics. From this, it can be considered that a sulfonate compound substituted with at least one electron-withdrawing group (ewg) in comparison with other similar beryllate compounds can provide a relatively good influence due to the following mechanism. (1) In general, when a compound is electrochemically reacted to reduce or oxidize ruthenium, a compound having an alkenyl group is polymerized, resulting in formation of a polymer film. In fact, a conventional sulfonate compound having a conventional Wei group (s〇3), an alkenyl group or the like (Korean Patent 0450199 and US Patent 2002-0197537, Formula 2) is charged for the first time. Immediately after the cycle, a polymer film was formed on the surfaces of the anode and the cathode. The polymer film can be provided as a passivation layer, so that the additive and the electrolyte will not be decomposed, thereby inhibiting the co-injection of an electrolyte solvent into the electrode active material, resulting in an electrode active material and an electrolyte solvent. The side reaction between, as well as the collapse of an electrode structure. At the same time, the polymer film can serve as a channel for lithium ions, thereby minimizing the deterioration of battery quality. According to the present invention, the sulfonate compound having a monosulfonic acid group (S〇3) and a monoalkenyl group may be further substituted with an electron withdrawing group (EWG), for example, a cyano group (-CN), a different Cyanate group (-NCO), monothiocyanate (_SCN) or isothiocyanate (-NCS). A sulfonate compound substituted with at least one electron-donating substituent, which exhibits a reduced reduction potential, compared to a conventional type 1304803 acid salt compound substituted or unsubstituted with an electron-donating group (EDG) In the case of half of the battery - an increased reduction potential - in this way it is easy to decompose at a low initial voltage and exhibit high reactivity with the anode. Therefore, when the sulfonate compound according to the present invention is used in an electrolyte, the sulfonate compound can reach a sufficient degree, possibly improving the overall D quality of a battery. More specifically, after the first charge cycle, the acid salt compound can be immediately decomposed to form a "stable and thick film" on the surface of the anode, thereby reducing the irreversible capacity of the cell. Finally, it is possible to improve the overall quality of the battery, including the amount of grain and life characteristics. It follows that the reduced properties of a compound may be primarily affected by the electronic effects within the compound. In other words, the compound has an increased electron density when it is in a substituent-containing compound having an electron-donating ability. Since 15 20 of this 'ready-electron-donating group is introduced into an additive, thereby increasing the reduction potential of the additive (reducing the reduction potential in the case of a half cell), the execution of the adverse reduction reaction is unavoidable, as described herein, When a pull-electron group (e-only) is introduced into the compound of the acid salt additive, it is confirmed that the acid salt compound has a reduced reduction potential (in the case of a half-cell, the reduction potential is increased), which is advantageous for the anode. Perform a reduction reaction. (7) In addition, according to the invention, the substituent is introduced into a diacid salt of a dicyano group (-CN), an iso-acid group (-NC.), a thiocyanate group (-) or an isothiocyanate. The acid group (_NCS) is a pull-electron substituent having a high dipole moment which can be formed into a strong bond with a transition metal, a transition metal oxide or a stor-containing material exposed on the surface of an electrode active material.

9 1304803 - 特別地,取代基可以在45t:的高溫或更高溫度下,愈 , ㈣性材料表面形成—較強鍵結,進而形成—類似複合物 的保護層。從此,於電池的第一次充電循環後,且有上述 取代基的續酸鹽類化合物當被一電極的表面吸附時立即形 5 =⑽薄膜。基於此-結果,相較於—非取代續酸鹽類 口勿’依本發明所述之續酸鹽類化合物較易形成一穩固 且稿厚的薄膜。同時,合成的純化薄膜經強力鍵结至—電 ㈣㈣料的表面,如祕化_可韓持其在重複充/放 ^盾環時的穩定性以及結構完整性,進而可以維持電池的 1〇品質。依本發明所述之績酸鹽類化合物可以明顯地改善電 池的循環特性,特別是在饥的高溫或更高溫度下。 *依本發明所述,形成電池用之電解質的基本成分之一為 —續酸鹽類化合物。此化合物不特別限制,只要為一續酸 鹽類化合物,具有選自由一氰基(_CN)、一異氰酸基 15 (-NC〇)、—硫氰酸基(-SCN)及—異硫氰酸基(-NCS)所組I 的群組中至少一種拉電子基(EWG)。特別地,較佳為使用 • i述續酸鹽類化合物,並進一步包含-烯基,當化合物經 電化學反應進而還原或氧化時,可產生一聚合反應。 續酸鹽類化合物可以經由下述分子式1表示· 2〇 [分子式1] '·9 1304803 - In particular, the substituents can be formed at a high temperature of 45t: or higher, and the surface of the (four) material is formed - stronger bonding, thereby forming a protective layer similar to the composite. From then on, after the first charge cycle of the battery, and the above-mentioned substituent-based acid salt compound is immediately adsorbed by the surface of an electrode, 5 = (10) film. Based on this result, it is easier to form a stable and thicker film than the "n-substituted acid salt" according to the present invention. At the same time, the synthesized purified film is strongly bonded to the surface of the electric (4) (four) material, such as the secretification _ can hold its stability and structural integrity in the repeated charge / release shield ring, and thus can maintain the quality of the battery. The acid salt compounds according to the present invention can significantly improve the cycle characteristics of the battery, especially at high temperatures or higher temperatures. * According to the present invention, one of the essential components for forming an electrolyte for a battery is a - a hydrochloride compound. The compound is not particularly limited as long as it is a monobasic acid compound having a selected from the group consisting of a monocyano group (-CN), an isocyanate group 15 (-NC〇), a thiocyanate group (-SCN), and an isosulfur At least one electron withdrawing group (EWG) of the group of groups I of cyanate groups (-NCS). In particular, it is preferred to use a sulfonate compound and further contain an alkenyl group, and when the compound is electrochemically reacted to be reduced or oxidized, a polymerization reaction can be produced. The hydrochloride compound can be represented by the following formula 1: 2 〇 [Formula 1] '·

其中R丨為一 C2〜C10烯基;以及 I為選自由一C1〜C10烷基、烯基、芳香基以及含有至 1304803 ' 少—種取代基選自—氰基(_CN)、—異氰酸基(视〇)、-硫 • 11酸基(·_)及-異硫減基(姻8)的苯基所組成 中的一官能基。 、 分子式1所表示的化合物不僅具有—烯基,還具有一拉 5電子基(EWG),例如一氮基、一異氮酸基、一硫氮酸基及 -異硫氰酸基。從此,化合物輕易在—低初始電壓下進行 分解’並且在第-次充電循環後立即於陽極表面上形成一 穩固且稍厚的阳薄膜。同時,化合物形成-種陰極保護薄 攀 ㈣,係經由上述取代基與-陰極活性材料表面之間的一化 10學鍵結而形成,其與SEI薄膜同時形成。換言之,化合物提 供上述取代基内出現的未共用電子對,進而形成:配位 鍵,由此形成一種類似複合物的保護薄膜。因此,由於保 •«卿成在二電極上,可以改善與陽極有關之壽命特性 $循環特性的品質’以及與陰極有關之高溫儲存特性的品 15貝。基於此一結果,可能改善電池的整體品質,並且同時 改善電池的安全性。 • 其他磺酸鹽類化合物具有不同於上述取代基的取代 基,其可提供類似上述機構的一功能機構,進而改善電池 品質者,皆可視為包含於本發明之範圍。 20 雖然磺酸鹽類化合物的使用量可以經由控制以便於改 善電池的整體品質,所以較佳的使用量為佔丨〇〇重量份之電 解質的0· 1〜10重量份。如果化合物的使用量低於〇.丨重量 份,可能無法有效地改善電池的壽命特性以及高溫特性。 另一方面,如果化合物的使用量高於10重量份,不可逆電 11 1304803 谷量增加,可能導致電池在整體品質方面的降低。 電池所用之電解質,所添加之化合物可包括本技術領 域眾所周知的傳統式化合物,例如,一電解質鹽類以及一 有機溶劑。 5 可使用於本發明之電解質鹽類包括以分子式A+B-所表 不的一鹽類,其中A+表示選自由Li+、Na+、K+及其結合所 組成之群組中的一鹼性金屬陽離子,以及B_表示選自由 PF6、BF4、ci、Br、r、C104、AsF6、CH3C(V、N(CF3S02)2-、 C(CF2S〇2)3·及其化合物所組成之群組中的一陰離子。一鋰 10鹽尤其適合。鋰鹽其舉例不特別限制,可包括:LiC1〇4、Wherein R is a C2~C10 alkenyl group; and I is selected from the group consisting of a C1~C10 alkyl group, an alkenyl group, an aryl group, and a substituent containing up to 1304803'. The substituent is selected from the group consisting of -cyano (_CN), isocyanide A monofunctional group consisting of a phenyl group of an acid group (such as an anthracene), a sulfur group, an acid group (.-), and an isothiol group (inclusion 8). The compound represented by the formula 1 has not only an -alkenyl group but also a 5-electron group (EWG) such as a mono-nitro group, an iso-azide group, a monothiol group and an isothiocyanate group. From then on, the compound readily decomposes at a low initial voltage and forms a firm and slightly thicker positive film on the surface of the anode immediately after the first charge cycle. At the same time, the compound is formed into a cathodic protection thin layer (4) which is formed by a bond between the above substituent and the surface of the cathode active material, which is formed simultaneously with the SEI film. In other words, the compound provides an unshared electron pair present in the above substituent, thereby forming a coordination bond, thereby forming a protective film similar to the composite. Therefore, since the protective layer is on the two electrodes, it is possible to improve the life characteristics associated with the anode, the quality of the cycle characteristics, and the high-temperature storage characteristics associated with the cathode. Based on this result, it is possible to improve the overall quality of the battery and at the same time improve the safety of the battery. • Other sulfonate compounds having a substituent different from the above substituents, which can provide a functional mechanism similar to the above mechanism, and thus improve the battery quality, can be considered to be included in the scope of the present invention. 20 Although the amount of the sulfonate compound used can be controlled to improve the overall quality of the battery, it is preferably used in an amount of from 0.1 to 10 parts by weight based on the mass of the electrolyte. If the amount of the compound used is less than 〇.丨 by weight, the life characteristics and high temperature characteristics of the battery may not be effectively improved. On the other hand, if the amount of the compound used is more than 10 parts by weight, the increase in the amount of irreversible electricity 11 1304803 may result in a decrease in the overall quality of the battery. The electrolyte used in the battery, the compound to be added may include conventional compounds well known in the art, for example, an electrolyte salt and an organic solvent. 5 The electrolyte salts which can be used in the present invention include a salt represented by the formula A+B-, wherein A+ represents an alkali metal cation selected from the group consisting of Li+, Na+, K+ and combinations thereof. And B_ represents a group selected from the group consisting of PF6, BF4, ci, Br, r, C104, AsF6, CH3C (V, N(CF3S02)2-, C(CF2S〇2)3, and a compound thereof An anion. A lithium 10 salt is particularly suitable. The lithium salt is not particularly limited as an example and may include: LiC1〇4,

LiCF3S03、LiPF6、LiBF4、LiAsF6、LiN(CF3S02)2及其混合 物。 可使用於本發明之有機溶劑包括本技術領域眾所周知 的傳統式溶劑,例如環狀碳酸酯及/或直鏈狀碳酸酯。有機 15 溶劑之舉例不特別限制’可包括:碳酸丙烯酯(PC)、碳酸乙 烯醋(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二 丙酯(DPC)、二甲基磺酸、乙腈、二曱氧基乙烷、二乙氧基 乙烧、四氫呋喃、N-曱基_2-吡喀烷酮(NMP)、碳酸曱乙酯 (EMC)、γ-丁酸内酯(GBL)、氟化碳酸乙烯酯(FEC)、曱酸曱 2〇 酯、曱酸乙酯、曱酸丙酯、乙酸曱酯、乙酸乙酯、乙酸丙 酯、乙酸戊酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丙酸丁 醋或其一混合物。上述有機溶劑之齒素衍生物亦可使用。 此外’本發明k供一電極,其包括一續酸鹽類化合物或 其一化學反應產物,部份或全部形成於其表面,其中磺酸 12 1304803 盟類化合物包含選自由 及一異硫氰酸基所組成之群組中至少一種取代基 電極可以為陽極’包括一固態電解質介面(SEi)薄膜, 經由上述磺酸鹽類化合物的電化學反應,部份或全部的形 成於其表面上;以及/或者陰極包括一類似複合物之保護薄 膜,經由一電極活性材料表面與選自由一氰基、一異氰酸 基、一硫氰酸基及一異硫氰酸基所組成之群組中的至少一 取代基之間的化學鍵結而形成。如果可以,保護薄膜較佳 形成於二電極的表面,以便於改善電池的整體品質。 電極具有位於陽極及/或陰極表面的一保護薄膜,可以 經由使用上述電解質的電池,進行充/放電循環而得,如此 電解質内的磺酸鹽類化合物之EWG取代基(例如一氰基、一 15 20 異氰酸基、-硫氰酸基或一異硫氰酸基)可以與電極活性材 料的表面在原處形成一種複合物。一變化中,續酸 合物可以塗佈在一電極活性材料的表面,或者可以:其他 材料以組合物方式形成電極。另一變化中 物可以塗佈在形成電極的一起始物表面。 電池所包括的電極,其表面—堅輯合物的形成, ::二!Γ性材料表面’以具有至少-種_的續酸 含碳材料、—過渡金屬或—過渡金屬氧化 、 予反應而侍,則電極内的含碳材料、過渡金 屬或過渡金屬氧化物可 又“ 放電循環,二 。以此方式’於重複充/ 出。此外預㈣渡金屬從f極活性材料部分溶釋 虽任何外部物理衝擊施加於電池時,可以抑制LiCF3S03, LiPF6, LiBF4, LiAsF6, LiN(CF3S02)2 and mixtures thereof. The organic solvent which can be used in the present invention includes conventional solvents well known in the art, such as cyclic carbonates and/or linear carbonates. Examples of the organic 15 solvent are not particularly limited 'may include: propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), Dimethylsulfonic acid, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-fluorenyl-2-pyrrolidone (NMP), ethyl cerium carbonate (EMC), γ-butyl Acid lactone (GBL), fluorinated ethylene carbonate (FEC), decyl decanoate, ethyl decanoate, propyl citrate, decyl acetate, ethyl acetate, propyl acetate, amyl acetate, C Methyl ester, ethyl propionate, propyl propionate, butyl acetonate or a mixture thereof. A dentate derivative of the above organic solvent can also be used. Further, the present invention provides an electrode comprising a hydrogenate compound or a chemical reaction product thereof, partially or wholly formed on the surface thereof, wherein the sulfonic acid 12 1304803 class compound comprises a compound selected from the group consisting of and an isothiocyanate. At least one of the substituent electrodes in the group consisting of the bases may be an anode comprising a solid electrolyte interface (SEi) film, partially or wholly formed on the surface thereof by electrochemical reaction of the above sulfonate compound; And the cathode comprises a protective film similar to the composite, via an electrode active material surface and a group selected from the group consisting of a cyano group, an isocyanate group, a thiocyanate group and an isothiocyanate group. Formed by chemical bonding between at least one substituent. If possible, a protective film is preferably formed on the surface of the two electrodes in order to improve the overall quality of the battery. The electrode has a protective film on the surface of the anode and/or the cathode, which can be obtained by charging/discharging the battery through the electrolyte using the electrolyte, such as an EWG substituent of the sulfonate compound in the electrolyte (for example, a cyano group, a 15 20 isocyanate group, -thiocyanate group or monoisothiocyanate group may form a complex with the surface of the electrode active material. In one variation, the contiguous acid compound may be coated on the surface of an electrode active material, or other materials may be used to form the electrode in a composition. Another variation may be applied to the surface of a starting material forming the electrode. The electrode included in the battery, the surface-forming composition, the surface of the second material, the surface of the material is oxidized by a continuous acid carbonaceous material having at least one species, a transition metal or a transition metal. The carbonaceous material, transition metal or transition metal oxide in the electrode can be "discharge cycle, two. in this way" in repeated charge / discharge. In addition, the pre-(four) metal is partially dissolved from the f-active material, although any When external physical impact is applied to the battery, it can be suppressed

13 1304803 5 10 15 20 因電極表面與電解質之間直接接觸所導致的放熱反應以及 阻止電極活性材料結構的崩潰。最後,可以預防電池因内 部溫度增加所導致的燃燒及爆炸。特別地,相較於室溫時 的保護措施,含有EWG取代基的磺酸鹽類化合物可以在 45 C的同溫或更南溫度下更強硬的保護電極表面。因此, 可以提供電極良好的熱穩定性。 依本發明所述之電極,其形成可以經由運用本技術領域 所熟知的一方法,係將一電極活性材料塗佈在一現今通用 的集電器上。此方法的一具體實施例中,一電極泥狀物包 含一陰極活性材料或一陽極活性材料,將其塗佈在一現今 通用的集電器上’然後乾燥。在此同時,視需要可以添加 一小量的導電劑及/或黏著劑。 特別地,陰極活性材料可以包括近來一傳統電化學裝置 的陰極内所使用的任何陰極活性材料。陰極活性材料其舉 例不特別限制,可包括:鋰過渡金屬複合氧化物,包括13 1304803 5 10 15 20 The exothermic reaction caused by direct contact between the electrode surface and the electrolyte and the collapse of the electrode active material structure. Finally, it is possible to prevent the battery from burning and exploding due to an increase in internal temperature. In particular, the sulfonate compound containing an EWG substituent can protect the surface of the electrode tougher at a temperature of 45 C or more at a temperature than that at room temperature. Therefore, good thermal stability of the electrode can be provided. The electrode according to the present invention can be formed by applying an electrode active material to a current general-purpose current collector by using a method well known in the art. In a specific embodiment of the method, an electrode slurry comprises a cathode active material or an anode active material which is applied to a current common current collector' and then dried. At the same time, a small amount of a conductive agent and/or an adhesive may be added as needed. In particular, the cathode active material may comprise any of the cathode active materials used in the cathode of a conventional electrochemical device. The cathode active material is not particularly limited, and may include: a lithium transition metal composite oxide, including

LiMxOy(其中 μ為 Co、Ni、Mn、C〇aNibMnc),例如鐘猛複合 氧化物(例如LiMhCU)、鋰鎳氧化物(例如LiNi〇2)、鋰鈷氧 化物(例如LiCo〇2) ’或其他氧化物包含部份過渡金屬以錳、 鎳及鈷所取代;硫屬化合物(例如二氧化猛、二氧化鈦、二 氧化鉬等等);或其他類似化合物。此類舉例中,特別合適 的為 LiC〇02 、 LiNi〇2 、 LiMn〇2 、 LiMn2〇4 ^LiMxOy (where μ is Co, Ni, Mn, C〇aNibMnc), such as a bellocene composite oxide (such as LiMhCU), lithium nickel oxide (such as LiNi〇2), lithium cobalt oxide (such as LiCo〇2)' or Other oxides include a portion of the transition metal substituted with manganese, nickel, and cobalt; chalcogen compounds (e.g., oxidized, titanium dioxide, molybdenum dioxide, etc.); or other similar compounds. Among such examples, LiC〇02, LiNi〇2, LiMn〇2, LiMn2〇4 ^ are particularly suitable.

Li(NiaCobMnc)02(其中 〇<a<1,0<b<a,〇<c<1,、Li(NiaCobMnc)02 (where 〇<a<1,0<b<a,〇<c<1,

LiNi^yCovO^ LiC〇1.YMnY〇2> LiNi^yMnyO^^. t 0^Y<1) > Li(NiaCobMnc)04(其中 〇<a<2,〇<b<2,〇<c<2,a+b+c==2) 14 1304803 極活性材料可以包括近來—傳統電化學裝置的 内所使用的任何陽極活性材料。陽極 不特別限制’可包括··鐘嵌入材料,例如鐘金屬上例 活性碳、石墨或其他含碳材料。陰極現行集 ,八舉例不特別限制,可包括A、鎳或其-組合物所形 成的金屬薄片。陽極現行集電器其舉例不特別限制,可包 括:銅、金、鎳、銅合金或其一組合物所形成的金屬薄片。 兴例著劑’可以使用—現行使料黏著劑。黏著劑其 :不特別限制,可包括:PVDF(聚偏二氣乙婦)或 稀丁二烯橡膠)。 、个 再者,本發明提供—電化學裝置,其組成包括-陰極、 • —陽極以及—電解質’其中電解質包括具有上述ewg 15基_酸鹽類化合物;以及/或者陰極與陽極任—或兩者包 ίί有上述EWG取代基或其—化學反應產物之碌酸鹽類化 • s物,部份或全部形成於其表面。 電化學裝置包括内部可執行電化學反應的任何裝置 化學裝置其舉財特職制,可包括:所有種類的一次電 20 人電池、燃料電池、太陽能電池、電容器或類似穿 置^交佳地,電化學裝置為一二次電池,更特別地為一鐘 一人:池’例如一鋰金屬二次電池、一鋰離子二次電池、 -鋰尚分子二次電池或—鋰離子高分子二次電池。 依本發明所述之電化學裝置可以經由使用本技術領域 15 1304803 所熟知的方法而得。LiNi^yCovO^ LiC〇1.YMnY〇2> LiNi^yMnyO^^.t 0^Y<1) > Li(NiaCobMnc)04 (where 〇<a<2, 〇<b<2, 〇<;c<2, a+b+c==2) 14 1304803 The polar active material may include any of the anode active materials used in the conventional-conventional electrochemical device. The anode is not particularly limited and may include a bell-embedded material such as activated carbon, graphite or other carbonaceous material on the bell metal. The cathode current set, the eighth example is not particularly limited, and may include a metal foil formed of A, nickel or a composition thereof. The anode current collector is not particularly limited as an example, and may include a metal foil formed of copper, gold, nickel, a copper alloy or a combination thereof. It is possible to use the current adhesive. The adhesive: it is not particularly limited and may include: PVDF (polyethylene dioxide) or dilute butadiene rubber. Further, the present invention provides an electrochemical device comprising: a cathode, an anode, and an electrolyte, wherein the electrolyte comprises the above-mentioned ewg 15 group-acid compound; and/or the cathode and the anode are either - or both The above-mentioned EWG substituent or the chemical reaction product thereof is partially or wholly formed on the surface thereof. The electrochemical device includes any device chemical device that can perform an electrochemical reaction internally, and the financial device may include: all kinds of primary electric 20-person batteries, fuel cells, solar cells, capacitors or the like. The device is a secondary battery, more specifically one clock: a pool 'for example, a lithium metal secondary battery, a lithium ion secondary battery, a lithium secondary battery or a lithium ion secondary battery. The electrochemical device according to the invention can be obtained by using a method well known in the art.

化μ上述方式所獲得的電化學裝置,其外形不特別限制。電 予裝置可以為一圓柱形、稜柱形、袋型或硬幣型裝置。The electrochemical device obtained by the above method is not particularly limited in shape. The electric device can be a cylindrical, prismatic, pouch or coin type device.

【實施方式】 下述將具體說明本發明之較佳實施例,但本發明所主張 之權力範圍自應以申請專利範圍為準,而非僅限於下述實 施例。 實施例1 Μ.電解質之製備 1Μ LiPFg溶於EC:EMC(3:7)的一混合溶劑中,使用作 為一電解質,以及添加使用量為2 〇重量份,以分子式4 所表示的化合物: 【分子式4]DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention are described in detail below, but the scope of the invention is intended to be limited by the scope of the claims. Example 1 Preparation of Electrolyte 1 LiPFg was dissolved in a mixed solvent of EC:EMC (3:7), and used as an electrolyte, and added in an amount of 2 parts by weight, represented by the formula 4: Molecular formula 4]

1-2.半電池之製造 使用人造石墨作為陰極,以及使用鋰金屬薄片作為陽 16 1304803 極以便於以一傳統方式提供一硬瞥型半電池。依實施例 Μ所述而獲得的電解質注入此半電池中。 1 -3.全電池之製造 使用〇括LiCo02之陰極以及包括人造石墨之陽極,以 5便於以一傳統方式提供-硬帶型電池。依實施例Μ所述 而獲得的電解質注入此全電池中。 實施例2 除了以刀子式5所表示的化合物,2〇重量份的使用量 添加至電解質,取代分子式4所表示的化合物之外,其餘 )採用與實施例1所述的相同方式獲得一電解質、一半電池 及一全電池。1-2. Fabrication of half-cells Artificial graphite was used as the cathode, and lithium metal foil was used as the anode 16 1304803 pole to provide a hard-type half-cell in a conventional manner. The electrolyte obtained as described in Example 注入 was injected into the half cell. 1-3. Manufacture of a full battery A cathode including LiCo02 and an anode including artificial graphite are used to facilitate the supply of a hardband type battery in a conventional manner. The electrolyte obtained as described in Example 注入 was injected into this full battery. Example 2 An electrolyte was obtained in the same manner as in Example 1 except that the compound represented by the formula 5 was used, and 2 parts by weight of the compound was added to the electrolyte, instead of the compound represented by the formula 4. Half battery and one full battery.

【分子式5J[Molecular formula 5J

15 I比較例1〜3鋰二次電池之製造】 比較例1 除了以分子式6所表示的化合物,2.G重量份的使用量 添加至電解質,取代分子式4所表示的化合物之外,其餘 以實施例1所述的相同方式獲得一電解質、一半電池^ 20 全電池。 [分子式61 17 130480315 I Comparative Example 1 to 3 Production of Lithium Secondary Battery] Comparative Example 1 In addition to the compound represented by the formula 6, the amount of 2. G parts by weight was added to the electrolyte, and the compound represented by the formula 4 was substituted. In the same manner as described in Example 1, an electrolyte, a half battery, and a full battery were obtained. [Molecular formula 61 17 1304803

比較例2 、”了 X刀子式7所表不的化合物,2.0重量份的使用量 添加至電解質’取代分子式4所表示的化合物之外,其餘 以實施例i所述的相同方式獲得—電解f、—半電池及_ [分子式7】Comparative Example 2, "The compound represented by the X-knife type 7, the amount of 2.0 parts by weight added to the electrolyte' was substituted for the compound represented by the formula 4, and the other was obtained in the same manner as described in Example i - electrolysis f ,—half battery and _ [Molecular Formula 7]

10 比較例3 除了使用沒有添加物的傳統電解f之外,其餘採用與實 施例1所述的相同方式獲得一電解質、一半電池及一全電 池。 15測試例1:磺酸鹽類化合物還原電位之測定 經由使用實施例2及比較例1〜3所製備之電解質,依 傳統方式所獲得的各個硬幣型半電池,於〇 ic下放電至 5mV。然後,以一 dQ/dV標繪圖對測試結果作圖。圖i顯 示此標繪圖。 20 測試後,相較於比較例1〜3所獲得的半電池,實施例2 的半電池,使用含-氰基之續酸鹽類化合物作為電解質的 18 1304803 « —基本成分’其在—較高電位處(對-全電池而言為-較低 電位)顯示—還原波峰。因此’由上述結果可見導入—拉電 子基(EWG)導致該陽極處—續酸鹽類化合物的還原電 化。 測試例2:陽極處形成之SEI薄膜的測定 下述測試之執行係為了測定依本發明所述,於—陽極表 面從具有-拉電子基之績酸鹽類化合物所形成的一阳 膜。10 Comparative Example 3 An electrolyte, a half cell, and an all-electric battery were obtained in the same manner as described in Example 1, except that the conventional electrolysis f without additives was used. 15 Test Example 1: Measurement of reduction potential of sulfonate-based compound Each of the coin-type half-cells obtained by the conventional method was discharged to 5 mV under 〇 ic by using the electrolyte prepared in Example 2 and Comparative Examples 1 to 3. Then, the test results are plotted with a dQ/dV plot. Figure i shows this plot. After the test, compared with the half-cells obtained in Comparative Examples 1 to 3, the half-cell of Example 2 used 18 1304803 «-basic component' as the electrolyte containing the -cyano-based hydrochloride compound as the electrolyte. The high potential (for the full battery - lower potential) shows - the reduction peak. Therefore, it can be seen from the above results that the introduction-electron-based (EWG) causes the reductive electrochemistry of the acid-based compound at the anode. Test Example 2: Measurement of SEI film formed at the anode The following test was carried out to determine a positive film formed on the surface of the anode from the acid compound having a -electron group based on the present invention.

汉比較例 10 -/77谩侍的谷個經—孓 電池(全電池)’在23C下以G.2C進行充/放電循環三次,然 後在-放電狀態下,收集各個電池的陽極。陽極以DSC(微 差掃描熱量儀)進行分析。結果如圖2所示。由圖中可見陽 極表面t SE!薄膜因熱崩潰所產生的放射波峰出現在 70〜l〇〇°C的範圍内。 如圖2所示’陽極表面·的崩潰所產生的放熱反應變 化係導因於電解質用添加物的種類。此外,所有上述測試 結果證明電解質用添加物’依本發明所述參與陽極處· 薄膜之形成。 測试例3:電池高溫擴環特性之評估 下述/貝J減之執行係為了評估依本發明所述之一裡二次 電池的品質。 — 使用包括以含氰基續酸鹽類化合物作為電解質用添加 物之實施例1及2的鐘二次電池(全電池),作為測試樣品。 為了檢驗之用’使用包括不包含氰基之續酸鹽類化合物作 19 1304803 Π用添加物的電解質或傳統電解質的比較例Η的 電=個電池在_溫度,4.2〜3ν的一電壓範圍,以一 0.5C電/瓜進行重複充/放電循環。 5 15 20 m 式後,依比較例3所製作’使用傳統電解質的電池, ’其循環特性顯示明顯地下降。依比較例1 之電池’使用不包含氰基續酸鹽類化合物,以及依 所製作之電池,具有—氰基但不包含婦基的績酸鹽 口物其循%特性皆顯示—明顯地下降(請參考圖3)。 此意謂著當使用傳統續酸鹽類化合物,無法形成一純化層 (卿至-足夠程度。相反地,實施例i及2使用含氛基確 酸鹽類化合物作為電解質用添加物,即使在60次循環後, 循環特性也只顯示些微的下降。實施例i & 2的電池顯示 良好的循環特性以及高溫下改善的壽命特性(請參考圖3)。 —由前文可知,依本發明所述之鋰電池,其使用具有一 特疋拉電子基作為添加物的—續酸鹽類 質’能夠提供明顯改善的高溫壽命特性。 ^電解 雖然本發明6以目前認為最實用的與較佳的具體實施 例來做書名’無人應當瞭解本發明並非只限於此處所揭露 之具體實施例與圖示,相反地’而是意指涵蓋在隨付申請 專利範圍之精神與範圍下所做的各種修飾及變化。 月 【圖式簡單說明】 圖1係為本發明實施例2及比較例1〜3中,使用包括 電解質的半電池,進行測量所獲得之各個電解質的還原電 20 13〇48〇3 位顯示圖。 圖2係為本發明實施例1、實施例2以及比較例i 半電池進行充/放電循環後’從半電池所收集的各中’ .. Μ嗯極活 性材料’經微差掃描熱量儀(DSC)所測量之結果顯示圖。 圖3係為本發明實施例1、實施例2以及比較例1〜3中, 鋰二次電池之高溫(6〇。〇特性顯示圖。 主要元件符號說明 無The comparative example 10 -/77 谷 个 经 孓 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 电池 在 在 电池 在 在 23 23 23 23 23 The anode was analyzed by DSC (Micro Scanning Calorimeter). The result is shown in Figure 2. It can be seen from the figure that the radio wave peak generated by the thermal collapse of the anode surface t SE! film appears in the range of 70 to l ° ° C. The change in the exothermic reaction caused by the collapse of the anode surface as shown in Fig. 2 is due to the type of the additive for the electrolyte. Further, all of the above test results demonstrate that the electrolyte additive ' participates in the formation of the film at the anode according to the present invention. Test Example 3: Evaluation of high-temperature expansion characteristics of the battery The following operation was performed to evaluate the quality of the secondary battery according to one aspect of the present invention. — As a test sample, a clock secondary battery (whole battery) including Examples 1 and 2 containing a cyano group-containing compound as an electrolyte additive was used. For the purpose of testing, use a comparative example of an electrolyte or a conventional electrolyte comprising a compound containing no cyano group as a 191304803 添加 additive; a battery at a temperature range of 4.2 to 3 ν, The charge/discharge cycle was repeated with a 0.5 C electric/melon. After the 5 15 20 m type, the battery produced by Comparative Example 3 using a conventional electrolyte showed a marked decrease in cycle characteristics. According to the battery of Comparative Example 1, the use of a compound containing no cyano sulphate, and a battery having a cyano group but not containing a gynecological group, showed a significant decrease in the % characteristic. (Please refer to Figure 3). This means that when a conventional hydrogenate compound is used, a purification layer cannot be formed (several to a sufficient extent. Conversely, Examples i and 2 use an organic acid-containing compound as an electrolyte additive, even in After 60 cycles, the cycle characteristics showed only a slight decrease. The batteries of Examples i & 2 showed good cycle characteristics and improved life characteristics at high temperatures (please refer to Figure 3). - As can be seen from the foregoing, according to the present invention The lithium battery described above, which uses a polythene-based electron group as an additive, can provide significantly improved high-temperature lifetime characteristics. ^Electrolysis Although the present invention 6 is currently considered to be the most practical and preferred DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION The present invention is not limited to the specific embodiments and illustrations disclosed herein. Instead, it is intended to cover various modifications that are included in the spirit and scope of the claims. And a change. [Simplified description of the drawings] Fig. 1 shows the electric power obtained by measuring the half-cell including the electrolyte in the second embodiment and the comparative examples 1 to 3 of the present invention. Fig. 2 shows the "collected from the half-cells" after the charge/discharge cycles of the first, second and comparative examples of the first embodiment of the present invention. Fig. 3 shows the results of the measurement of the results of the measurement by the differential scanning calorimeter (DSC). Fig. 3 shows the high temperature of the lithium secondary battery in the embodiment 1, the embodiment 2 and the comparative examples 1 to 3. (6〇.〇Characteristics display diagram. Main component symbol description

21twenty one

Claims (1)

十、申請專利範圍: 1·一種電池用之電解質,其組成包括: (a) —電解質鹽類; (b) —電解質溶劑;以及 (c) 一磺酸鹽類化合物’其包含選自由一氰基(_CN)、 一異氰酸基(-NCO)、一硫氰酸基(_SCN)及一異硫氰酸基 (-NCS)所組成的群組中的至少一種拉電子基(eWg)。 2. 依申請專利範圍第1項所述之電解質,其中該磺酸鹽 類化合物具有一烯基。 3. 依申請專利範圍第1項所述之電解質,其中該確酸鹽 類化合物為一可以經由下述分子式丨所表示之化合物: [分子式1]X. Application Patent Range: 1. An electrolyte for a battery comprising: (a) an electrolyte salt; (b) an electrolyte solvent; and (c) a monosulfonate compound selected from the group consisting of a cyanide At least one electron-withdrawing group (eWg) of the group consisting of a group (-CN), an isocyanato group (-NCO), a thiocyanate group (-SCN), and an isothiocyanate group (-NCS). 2. The electrolyte according to claim 1, wherein the sulfonate compound has an alkenyl group. 3. The electrolyte according to claim 1, wherein the acid salt compound is a compound which can be represented by the following formula: [Formula 1] 〇 其中R!為一 C2〜CIO烯基;以及 15 R2為選自由一 C1〜c 10烷基、烯基、芳香基以及含有至 少一種取代基選自一氰基(_CN)、一異氰酸基(_NC〇)、一硫 氰酸基(-SCN)及一異硫氰酸基(_NCS)的苯基所組成的群組 中的一官能基。 4.依申請專利範圍第丨項所述之電解質,其中該磺酸鹽 20類化合物於電池内執行一電化學反應,進而形成一鈍化 層,由於導入拉電子基(EWG),因而顯示—下降的還原電 位。 22 1304803 5·依申請專利範圍第i項所述之電解質,其中該 類化合物較用量佔1曝量份電解質軌HG重量份。 6·種電極’包括一石黃酸鹽類化合物或其一化學反應產 物,部份或全部形成於其表面,其中該績酸鹽類化合 物:包含選“一氰基、一異氰酸基、一硫氰酸 基以及一異硫氰酸基所組成之群組中至少一種拉 電子基(EWG)。Wherein R! is a C2~CIO alkenyl group; and 15 R2 is selected from the group consisting of a C1~c10 alkyl group, an alkenyl group, an aryl group, and at least one substituent selected from the group consisting of a cyano group (-CN), an isocyanate A monofunctional group of the group consisting of phenyl group (_NC〇), thiocyanate group (-SCN) and phenyl group of isothiocyanate group (_NCS). 4. The electrolyte according to the invention of claim 2, wherein the sulfonate compound 20 performs an electrochemical reaction in the battery to form a passivation layer, which exhibits a drop due to introduction of an electron withdrawing group (EWG). Reduction potential. 22 1304803 5. The electrolyte according to claim i, wherein the compound is used in an amount of 1 part by weight of the electrolyte rail HG. 6. The electrode 'includes a rhein compound or a chemical reaction product thereof, which is partially or wholly formed on the surface thereof, wherein the acid salt compound comprises: a monocyano group, an isocyanate group, and a At least one electron withdrawing group (EWG) of the group consisting of a thiocyanate group and an isothiocyanate group. 10 7.依申請專利範圍第6項所述之電極,其中該磺酸鹽類 化合物為一可以經由下述分子式1所表示之化合物. [分子式1]10. The electrode according to claim 6, wherein the sulfonate compound is a compound which can be represented by the following formula 1. [Formula 1] r2 其中R!為一 C2〜CIO烯基;以及 I為選自由一C1〜C10烷基、烯基、芳香基以及含有至 少-,取代基選自-氰基、一異氰酸基、一硫氮酸基及一 鲁I5 異硫氰酸基的苯基所組成的群組中的—官能基。 8. 依申請專利範圍第6項所述之電極,其中包括一固態 電解質介面(SEI)薄膜,經由該磺酸鹽類化合物的電化學反 應’部份或全部的形成於其表面上。 9. 依申請專利範圍第6項所述之電極,其中包括一類似 20複合物保護層,經由一電極活性材料表面與包含於該磺酸 鹽類化合物巾選自由一氰基、一#氛酸基、一石危氛酸基及 一異硫氰酸基所組成之群組中的至少一取代基之間的化學 鍵結而形成。 23R2 wherein R! is a C2~CIO alkenyl group; and I is selected from the group consisting of a C1 to C10 alkyl group, an alkenyl group, an aryl group, and a group containing at least a substituent selected from the group consisting of a -cyano group, an isocyanate group, and a sulfur. a functional group in the group consisting of a nitro acid group and a phenyl group of a ruthenium I5 isothiocyanate group. 8. The electrode according to claim 6, wherein a solid electrolyte interface (SEI) film is formed on the surface of the electrode via the electrochemical reaction of the sulfonate compound. 9. The electrode according to claim 6, wherein the electrode comprises a protective layer similar to 20, and the surface of the active material and the sulfonate-containing compound are selected from the group consisting of a cyano group and a sulphuric acid. Formed by a chemical bond between at least one substituent in the group consisting of a rock, a rocky acid group, and an isothiocyanate group. twenty three
TW095134005A 2005-09-15 2006-09-14 Additives for non-aqueous electrolytes and electrochemical device using the same TWI304803B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20050086143 2005-09-15

Publications (2)

Publication Number Publication Date
TW200710072A TW200710072A (en) 2007-03-16
TWI304803B true TWI304803B (en) 2009-01-01

Family

ID=38067382

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095134005A TWI304803B (en) 2005-09-15 2006-09-14 Additives for non-aqueous electrolytes and electrochemical device using the same

Country Status (3)

Country Link
CN (1) CN101263628B (en)
TW (1) TWI304803B (en)
WO (1) WO2007061180A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116525945A (en) 2011-02-10 2023-08-01 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using same
US10243242B2 (en) 2013-12-20 2019-03-26 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2015147003A1 (en) * 2014-03-27 2015-10-01 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery and module
US11784303B2 (en) 2015-09-22 2023-10-10 Ii-Vi Delaware, Inc. Immobilized chalcogen and use thereof in a rechargeable battery
CN105336991B (en) * 2015-12-09 2018-04-03 九江天赐高新材料有限公司 Lithium ion battery high-voltage electrolyte
CN108075187B (en) * 2016-11-10 2020-09-11 宁德时代新能源科技股份有限公司 Electrolyte solution and secondary battery
KR102160709B1 (en) * 2017-04-14 2020-09-28 주식회사 엘지화학 Polymer solid electrolyte and lithium secondary battery comprising the same
DE102018201274A1 (en) * 2018-01-29 2019-08-01 Robert Bosch Gmbh Active material with covalently bonded solid-electrolyte interphase
DE112020000025T5 (en) * 2019-02-08 2021-01-28 Consejo Superior De Investigaciones Cientificas (Csic) IMMOBILIZED SELENIUM IN A POROUS CARBON WITH THE PRESENCE OF OXYGEN AND USES IN A RECHARGEABLE BATTERY
KR20210026500A (en) * 2019-08-30 2021-03-10 주식회사 엘지화학 Non-aqueous electrolyte and lithium secondary battery comprising the same
KR20210026503A (en) * 2019-08-30 2021-03-10 주식회사 엘지화학 Electrolyte additives for electrolyte, non-aqueous electrolyte and secondary battery comprising same
CN113030061B (en) * 2021-03-11 2022-08-02 湖南大学 Method for rapidly characterizing purity of titanium dioxide
CN117501504A (en) * 2022-05-16 2024-02-02 宁德时代新能源科技股份有限公司 Secondary battery, battery module, battery pack and power utilization device thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448275B2 (en) * 2001-05-11 2010-04-07 三星エスディアイ株式会社 ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
DE10163458A1 (en) * 2001-12-21 2003-07-03 Merck Patent Gmbh Process for the preparation of perfluoroalkanesulfonic acid esters and their salts
KR100515298B1 (en) * 2003-03-24 2005-09-15 삼성에스디아이 주식회사 A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100642435B1 (en) * 2003-12-30 2006-11-03 제일모직주식회사 Nonaqueous Electrolyte for Battery

Also Published As

Publication number Publication date
WO2007061180A1 (en) 2007-05-31
CN101263628B (en) 2010-11-03
CN101263628A (en) 2008-09-10
TW200710072A (en) 2007-03-16

Similar Documents

Publication Publication Date Title
TWI304803B (en) Additives for non-aqueous electrolytes and electrochemical device using the same
US9466856B2 (en) Non-aqueous electrolyte and electrochemical device comprising the same
US7824578B2 (en) Additives for non-aqueous electrolytes and electrochemical device using the same
KR100605060B1 (en) Non-aqueous electrolyte battery
JP4981368B2 (en) Organic electrolyte and lithium battery using the same
US8101302B2 (en) Redox shuttles for high voltage cathodes
TWI423495B (en) Electrolyte comprising eutectic mixture and secondary battery using the same
JP5378367B2 (en) Non-aqueous electrolyte and electrochemical device including the same
KR100746479B1 (en) Additives for non-aqueous electrolytes and electrochemical device using the same
JP4527690B2 (en) Organic electrolyte and lithium battery using the same
JP2019530955A (en) Non-aqueous electrolyte and lithium secondary battery including the same
US10862167B2 (en) High-temperature lithium-ion battery electrolyte and production method thereof, and high-temperature lithium-ion battery
US10199686B2 (en) Organic electrolytic solution and lithium battery including the same
CN104956536B (en) Lithium secondary battery
KR100371403B1 (en) New electrolytes and lithium ion battery using the same
CN108352572B (en) Additive for nonaqueous electrolyte solution, and electricity storage device
JP4527689B2 (en) Organic electrolyte and lithium battery using the same
US7226703B2 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
JP4149681B2 (en) Lithium secondary battery and method for producing lithium secondary battery
US7422827B2 (en) Nonaqueous electrolyte
JP6017803B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
KR101521646B1 (en) Secondary battery with high capacity and longevity comprising silazane-based compound
KR101537848B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR102135218B1 (en) Electrolyte for aqueous rechargeable lithium ion battery, and aqueous rechargeable lithium ion battery comprising the same
KR20200106429A (en) Substituted ring-type Isothiazole compounds, non-aqueous solution electrolyte agent comprising thereof and lithium secondary battery comprising the same