TW504654B - Method to analyze fingerprint images - Google Patents

Method to analyze fingerprint images Download PDF

Info

Publication number
TW504654B
TW504654B TW090104546A TW90104546A TW504654B TW 504654 B TW504654 B TW 504654B TW 090104546 A TW090104546 A TW 090104546A TW 90104546 A TW90104546 A TW 90104546A TW 504654 B TW504654 B TW 504654B
Authority
TW
Taiwan
Prior art keywords
image
fingerprint
gray
images
total number
Prior art date
Application number
TW090104546A
Other languages
English (en)
Inventor
Ernst Haselsteiner
Stefan Jung
Henning Lorch
Brigitte Dr Wirtz
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Application granted granted Critical
Publication of TW504654B publication Critical patent/TW504654B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Collating Specific Patterns (AREA)
  • Image Input (AREA)
  • Image Analysis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

504654 五、發明說明(1) 本發明是有關一種分析以電子方式所產生的指紋影像所 用之方法,藉此尤其可區別活手指的真正影像與假手指的 影像。 人身識別用的生物統計方法可安裝在自動化的系統中。 此種系統處理該包括生物統計特徵的輸入資料且抽取各種 專屬於某一人的特徵。然而爲了可靠的識別,則須確保測 量裝置或影像接收裝置可以不被操控。在以電子方式來操 作的指紋感測器所進行之指紋辨識中,須使所置放之活手 指所造成之指紋影像可與一由虛僞企圖所產生的影像相區 別。有一系列的建議,以此等建議使一個活手指可根據生 物的特性(溫度,血壓,皮膚的電阻,覆蓋壓力,由汗水 分泌所造成的濕氣或類似物之測量來與一種死手指或僞手 指相區別。 本發明的目的是提供一種分析以電子方式所產生的指紋 影像所用之方法,藉此尤其可執行活手指的識別而不需額 外的費用。 此目的是以具有申請專利範圍第1項特徵的方法而解決 ,其它形式描述在申請專利範圍之附屬項中。 在本發明的方法中,使用由指紋感測器所產生的指紋影 像及其時間變化値,以便進行指紋影像的動態分析。 在借助於指紋感測器偵測指紋期間(較佳是當手指放在 感測器上時),在非常短的時間間隔中接收一系列各別之 指紋影像,偵測其不同處且由動態的改變値而獲得一準則 504654 五、 發明說明 ( 2〕 或 算 出 —' 特 殊 數 値,藉此使置 放 真 正 之活手 指 時 影 像 之 變 化 可 與 置 放 僞 手 指時影像的變 化 互 相 區別 〇 各指 紋 影 像 因 此 是 由 —. 個 電 子 方式來操作的指 紋 感 測器 所 測 定 以 作 爲 影 像 點 螢 幕 之 位 元 圖(b i t map) ,其: 具 有不 同 的 灰 色 値 J 其 然 後 被 二 進 位化(b i n a r y )。 以 下 將 依 據 圖 式來說明本發 明 〇 圖 式簡 單 說 明 • 第 1 圖 典 型 指 紋影像之黑白 輪 廓 0 第 1 圖 中 皮 膚 表面的小徑與 皺 紋 可 被良 好 的 辨 5511 識 〇 根 據 所使 用 指 紋 偵 測 器之解析能力 此指 紋線 之 ◊息 m. 緣 尤 其 可 具 有 不 同 的 灰色 等 級,其在圖中 未 顯 示 。此 影 像 是 由 多 個 小 的 影 像 點 (像素 :p i X e 1 )所組 j ,各, 像素 之 大 小 較 線 度 小 很 多 〇 此 圖 中 藉由寬的虛線 將 影 像 劃分成 較 大 的 區 塊 各 區 域 中各 白 存在多個各別的 影 像 點 〇 當 手 指 肚放 置 在爲此所設的 覆 蓋 面 (其中此影像被偵測) 上 時 , 此 種 指 紋 影像以指紋感 測 器 產 生。 當 置 放 手 指 時 ’ 首 先 當 然 不 是 使形成指紋所用 的 整 個 皮膚 表 面 與 該 覆 蓋 面 接 觸 > 且 當 將 手 指肚置放在感 測 器 上 時典 型 的 壓 力 尙未 到 達 〇 若 在 將 手指 放在感測器上 的 期 間 接收 —^ 系 列 的 指 紋 影 像 , 則 此 等 影 像 通常彼此不同 5 指 紋 首先 由 — 影 像 至 另 一 影 像 愈 來 愈 明 顯 ,顏色愈來愈 深 0 由 於不 同 的 機 械 特 性 > 則 對 於 此 影 像 系 列可根據放在 感 測 器 上的 是 活 手 指 或 是 僞 手指 來 觀 看 不 同 的特徵。本發 明 的 方法檢 查 這 些 特 徵 且 允 許 由 此 導 出活手指之辨識功能 -4 〇 504654 五、發明說明(3) 以下說明本方法目前的較佳實施形式。當一探測器(例 如手指肚)置放在指紋感測器上時,則在短的時間間隔中 接收由總數η個影像Bi所構成的影像序列。此種影像序列 可以用指紋感測器以足夠高的影像速率(影像序列頻率)來 顯示。此指紋影像是在各個影像點被掃瞄。因爲此等影像 點具有不同的亮度,則每一個影像點可對應一灰色値。一 個設有此種灰色値的影像可數位化成一個純粹黑白影像, 此時須確定·哪些影像點之灰色値較指定之臨界値 (threshold)還大。此等影像點於是保持被分派之二進位 的"1 ”,而其餘的影像點保持二進位的” 0 ”。當在一接收時 點該手指仍遠離指紋感測器時,一序列的第一個影像典型 上是由純粹的二進位的π 0 π所構成。最後所接收的影像然 後顯示在附圖之純粹之黑白結構中。 本發明的分析方法中重要的是,對於每一個以上述方式 被二進位化的影像而言,須決定這些被設置成” 1"之影像 點的總數心。對於此等總數而言,此等相繼之影像點之總 數的差異値須被確定:。此外,較佳是下述各影 像點之總數nedge,i被算出:這些影像點在影像Bi中第一 次被設置爲Π1Π(即,其在先前的影像中仍然是設爲 "0〃)且另外亦與一在先前影像中已被設爲"1 π的影像點(新 的邊緣點)相鄰。 此等新的邊緣點在假影像的序列中主要是產生於延長的 手指條紋中,較佳是對最後所接收的影像Βη算出這些被設 504654 五、發明說明(4) 置成” 1 π的影像點的總數nHdge,這些影像點沿著影像中所 描述的指紋線或是沿著此等指紋線(一度空間)之虛構之中 線而依序相隨或是沿著相對應的中線而依序相隨,這些中 線藉由影像中被設置成"1π的影像點所描述的指紋線的變 細而由電腦在(一度空間的)曲線上產生。 當需要運用此影像序列以確定一些特殊的影像時,則須 產生此分析方法之特別簡單與適當的形式,其中上述這些 特殊之影像在兩個接續的影像中被設置成Η1 ”的影像點之 數量上之差異値1對其總數η;」或&之比(ratio)超過了 預先設定的臨界値。因此一些影像被確定,這些影像中相 對於各個先前的影像來確定其灰色値之明顯的增加量。這 些特殊的影像被重疊,其方式是配屬各影像點的"0 "與π 1 π 以傳統的方式相加,因此產生一種具有多個不同灰色等級 的影像。已相加之影像中一個影像點的灰色等級因此指出 影像系列中的時點,此時有關的影像點保持足夠的黑色, 以便被設置成” 1 ”。 由灰色値分佈在已相加之影像中而可推知:此影像是否 由指紋感測器上置放真正之活手指之影像序列所產生。在 一由活手指所產生的影像中可以觀察到灰色値之均勻的分 佈(即,已變黑之區域的邊緣在時間的過程中首先只淺淡 地顯示且然後在所有的方向中顏色均勻地加深)。在一個 以仿冒手指所產生的影像中可以發覺一種不均勻的灰色分 佈(即,灰色値的增加首先是沿著仿冒的指紋線而產生) 504654 五、發明說明(5) 〇 當此辨識方法應被自動化時,則例如可對應於圖中所示 寬度的虛線使影像區域劃分成各個影像區塊。然後’在每 一個區塊中算出灰色値成份與灰色値分佈所需之値。爲此 目的而在每一區塊bj中算出該包括在此區塊中所有影像點 之灰色値之平均値# i,以及算出灰色値對此平均値的分散 値作爲標準差σ j。然後對所有區塊bj整體而言’可算出 此等標準差的平均値A ( · · · ^ j ·..)以及灰色値之平均値在 各個區塊中之分散値作爲標準差α(···/^·.·)。在藉由手 指的條紋與皴紋所設定之圖案之週期長度中選取區塊之邊 緣長度時,對真正之手指而言會在此等區塊(block)中形 成灰色値之較高的平均分散値’然而由於平均分佈’則對 所有的區塊而言平均値只有少量的分散値。在僞(仿冒)手 指中觀察到完全相反的特性。因此,在所考慮的情況中例 如以# ( · · · a j · · · ) / σ ( · · · // j · · ·)之商作爲劃分真正影像 與假影像用之適當的準則。 上述之變化例是特別佳的實施例’亦可不用特殊的影像 (其中可確定各灰色値相對於先前影像已大大地增加)來形 成整個影像序列,或由此序列中另外選取影像’以便藉由 重疊而產生上述灰色値影像。其它可能性在於:考慮該特 殊的總數以劃分成真正的影像與假影像。在典型的 真正影像中,上述之差異値L對nedge,i的比(ra t i 〇 )較小 (非常多的新設置成"1 "的影像點可使邊緣上變黑之區域 504654 五、發明說明(6 ) 增加)。反之,在典型之假手指的情況中只有相當少的邊 緣點變黑。因爲nedge i之和(sum)的絕對値由一個影像序 列到另一個影像序而變動,則以上述所界定的値^idge且 可能時以整個有效序列長度(黑色顯著增加的這些影像總 數)作爲標準是合理的。 對本發明中分析指紋影像用之方法而言重要的是:須計 算一序列之影像,這些影像在非常短的時間間隔中依序在 真正的指紋形成時被接收且各自根據灰色値所需的臨界値 而被二進位化。算出相對於先前影像而言已變化之影像點 之總數,這可用來使相關之影像由此序列濾除。相關之已 列入等級的影像可作爲分析用,例如,可在重疊影像中進 行上述灰色値分佈的分析,藉此可根據統計方法而測得的 特點在真影像與假影像之間進行區別。本發明之特別的優 點是此方法可藉助於電子電路而完全自動化。

Claims (1)

  1. 504654 正請If 質 内 li 予 正挺 〇之 六、申請專利範圍 第901 04 546號「指紋影像分析所用之方法」專利案 (9 1年7月修正) 六、申請專利範圍 1· 一種由電子方式所產生的指紋影像分析所用之方 法,其特徵爲具有以下步驟: (a) 在指紋借助於指紋感測器來偵測時,多個分佈在 影像點中的指紋影像I在時間上依序產生, (b) 對每一個指紋影像I須確定灰色値(黑色)超過 一預設値之各影像點的總數n i並儲存此總數η}, (c )時間上相繼產生的指紋影像之總數L之差異値 被算出並儲存,此値di用來分析影像 序列,以便在活手指所產生之影像序列及僞手指 所產生之影像序列之間進行區別。 2. 如申請專利範圍第1項之方法,其中 (d )對每一個在步驟(b )中所產生的指紋影像,確定其 影像點之特殊總數nedge,i,其第一次超過相關的 指紋影像Bi中預設之灰色値且鄰近於一些影像 點,這些影像點在先前的指紋影像中已超過 該預設之灰色値,以及 (e)在步驟c中由總數ni.ht所算出的差異値ch依 各自的比例(^/、^,^或而設定成兩個 所屬的特殊總數或nedge,i中之一。 3. 如申請專利範圍第1或2項之方法,其中 504654 % 六、申請專利範圍 (f) 對於最後所接收的指紋影像,須算出各影像點的 總數、ldge,這些影像點超過預先設定之灰色値且 沿著指紋影像中繼續出現的指紋線條或沿著指紋 線條之虛設的中間線或沿著相對應的中間線(其藉 由指紋線之變細而由電腦產生而成爲曲線)而彼此 接續,且此特殊的總數nedge,i藉由除以(divi sion) 總數nfidge而標準化。 4. 如申請專利範圍第1或2項之方法,其中 (g) 須確定特殊的指紋影像BguW,i,這些影像中比例 di/rii或比例、/心^超過一預設的臨界値。 5. 如申請專利範圍第4項之方法,其中 (h) 此步驟(g)中所確定之特殊指紋影像藉由 相加而轉換成具有灰色値等級的影像。 6. 如申請專利範圍第5項之方法,其中 (i) 在步驟h中所產生的影像被分配於區塊bj中, 在每一個區塊中算出灰色値的平均値/ij以及灰 色値對此平均値的分散値以作爲標準差σ j,商 //(•••CJj···) / CT(.../Zj···)由所有區塊之標 準差之平均値…與灰色値之平均値# j在各個區塊bj中之分散値(其作爲標準差σ (... // 3 ...))所形成,以便根據此商來區別真手指之 指紋影像與假手指之指紋影像。
    -10-
TW090104546A 2000-02-29 2001-02-27 Method to analyze fingerprint images TW504654B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10009539A DE10009539A1 (de) 2000-02-29 2000-02-29 Verfahren zur Analyse von Fingerabdruckbildern

Publications (1)

Publication Number Publication Date
TW504654B true TW504654B (en) 2002-10-01

Family

ID=7632835

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090104546A TW504654B (en) 2000-02-29 2001-02-27 Method to analyze fingerprint images

Country Status (8)

Country Link
US (1) US7133541B2 (zh)
EP (1) EP1259931B1 (zh)
JP (1) JP2003525501A (zh)
AT (1) ATE305641T1 (zh)
DE (2) DE10009539A1 (zh)
IL (1) IL151052A0 (zh)
TW (1) TW504654B (zh)
WO (1) WO2001065470A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10065338B4 (de) * 2000-12-27 2006-02-16 Infineon Technologies Ag Fingerabdruckidentifizierung mit Verformungsmessung zur Erhöhung der Fälschungssicherheit
DE10123330A1 (de) 2001-05-14 2002-11-28 Infineon Technologies Ag Verfahren zur Fälschungserkennung bei der Fingerabdruckerkennung unter Verwendung einer Texturklassifikation von Grauwertdifferenzbildern
DE10123367B4 (de) * 2001-05-14 2005-12-08 Infineon Technologies Ag Verfahren zur Fingerabdruckerkennung unter Verwendung von Bildsequenzen
DE10123331B4 (de) * 2001-05-14 2005-12-08 Infineon Technologies Ag Verfahren zur Fälschungserkennung bei der Fingerabdruckerkennung unter Verwendung des Verhältnisses von Fingerrillen und Fingerlinien
US20050152598A1 (en) * 2002-05-06 2005-07-14 Josef Birchbauer Quality history for biometric primary data
DE10222616A1 (de) * 2002-05-17 2003-12-04 Univ Albert Ludwigs Freiburg Fingerabdruck-Verifikationsmodul
US20040101172A1 (en) * 2002-11-26 2004-05-27 Stmicroelectronics, Inc. Imaging system with locator bar for accurate fingerprint recognition
FR2849246B1 (fr) * 2002-12-20 2006-03-10 Sagem Procede de determination du caractere vivant d'un element porteur d'une empreinte digitale
US20040252866A1 (en) * 2003-06-10 2004-12-16 Christel-Loic Tisse Generation of a typical image restored from a set of several images showing the same element
US7697729B2 (en) 2004-01-29 2010-04-13 Authentec, Inc. System for and method of finger initiated actions
US7280679B2 (en) 2004-10-08 2007-10-09 Atrua Technologies, Inc. System for and method of determining pressure on a finger sensor
US7831070B1 (en) 2005-02-18 2010-11-09 Authentec, Inc. Dynamic finger detection mechanism for a fingerprint sensor
US8231056B2 (en) 2005-04-08 2012-07-31 Authentec, Inc. System for and method of protecting an integrated circuit from over currents
JP4757071B2 (ja) * 2006-03-27 2011-08-24 富士通株式会社 指紋認証装置および情報処理装置
US8098906B2 (en) 2006-10-10 2012-01-17 West Virginia University Research Corp., Wvu Office Of Technology Transfer & Wvu Business Incubator Regional fingerprint liveness detection systems and methods
US8421890B2 (en) 2010-01-15 2013-04-16 Picofield Technologies, Inc. Electronic imager using an impedance sensor grid array and method of making
US8866347B2 (en) 2010-01-15 2014-10-21 Idex Asa Biometric image sensing
TWI473024B (zh) * 2011-12-23 2015-02-11 Nat Inst Chung Shan Science & Technology 活體指紋辨識技術
EP2958053A1 (en) 2012-04-10 2015-12-23 Idex Asa Biometric sensing
EP2981929B1 (en) 2013-04-02 2018-07-18 Precise Biometrics AB Fingerprint pore analysis for liveness detection
KR102338864B1 (ko) 2015-02-12 2021-12-13 삼성전자주식회사 전자 장치 및 전자 장치에서의 지문 등록 방법
CN106096359B (zh) 2016-05-30 2017-10-31 广东欧珀移动通信有限公司 一种解锁控制方法及移动终端
EP3679519B1 (en) * 2017-09-07 2024-11-06 Fingerprint Cards Anacatum IP AB Method and fingerprint sensing system for determining finger contact with a fingerprint sensor
CN111201537B (zh) 2017-10-18 2023-11-17 指纹卡安娜卡敦知识产权有限公司 在指纹分析中通过机器学习来区分活体手指与欺骗手指
US10552596B2 (en) 2017-12-20 2020-02-04 International Business Machines Corporation Biometric authentication
TWI679431B (zh) * 2018-07-31 2019-12-11 友達光電股份有限公司 指紋感測裝置及其檢測方法
CN110874845B (zh) * 2018-09-03 2022-06-21 中国科学院深圳先进技术研究院 图像平滑化的检测方法及装置
TWI792846B (zh) 2021-03-03 2023-02-11 神盾股份有限公司 屏下指紋感測裝置以及指紋感測方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368462A (en) * 1979-07-10 1983-01-11 Teledyne Industries, Inc. Line follower
US4525859A (en) * 1982-09-03 1985-06-25 Bowles Romald E Pattern recognition system
US4827527A (en) * 1984-08-30 1989-05-02 Nec Corporation Pre-processing system for pre-processing an image signal succession prior to identification
JPH0353385A (ja) * 1989-07-21 1991-03-07 Nippon Denki Sekiyuritei Syst Kk 特徴抽出装置
US5027401A (en) * 1990-07-03 1991-06-25 Soltesz John A System for the secure storage and transmission of data
US6263091B1 (en) * 1997-08-22 2001-07-17 International Business Machines Corporation System and method for identifying foreground and background portions of digitized images
US6195447B1 (en) * 1998-01-16 2001-02-27 Lucent Technologies Inc. System and method for fingerprint data verification
WO2001024700A1 (en) * 1999-10-07 2001-04-12 Veridicom, Inc. Spoof detection for biometric sensing systems

Also Published As

Publication number Publication date
US20030035571A1 (en) 2003-02-20
DE50107567D1 (de) 2005-11-03
ATE305641T1 (de) 2005-10-15
EP1259931A1 (de) 2002-11-27
IL151052A0 (en) 2003-04-10
EP1259931B1 (de) 2005-09-28
JP2003525501A (ja) 2003-08-26
DE10009539A1 (de) 2001-09-20
US7133541B2 (en) 2006-11-07
WO2001065470A1 (de) 2001-09-07

Similar Documents

Publication Publication Date Title
TW504654B (en) Method to analyze fingerprint images
CN1248153C (zh) 指纹辨识中使用灰阶微分影像的纹理分类辨识伪迹的方法
Ghiani et al. Review of the fingerprint liveness detection (LivDet) competition series: 2009 to 2015
DE69937142T2 (de) Fingerabdruck-identifikations/überprüfungssystem
US7120280B2 (en) Fingerprint template generation, verification and identification system
KR101314945B1 (ko) 가짜 손가락 판정 장치
US6895104B2 (en) Image identification system
US6807634B1 (en) Watermarks for customer identification
JP2004348674A (ja) 領域検出方法及びその装置
CN107545236A (zh) 用于确定个体的年龄的系统和方法
CN115661531A (zh) 基于图文的早期口腔癌识别方法、装置、设备及存储介质
JP2007080087A (ja) 顔部品抽出方法及び顔認証装置
CN109543593A (zh) 回放攻击的检测方法、电子设备及计算机可读存储介质
Huynh et al. Automatic classification of shoeprints for use in forensic science based on the Fourier transform
Swaminathan et al. Security of feature extraction in image hashing
CN110674830B (zh) 图像隐私识别方法、装置、计算机设备和存储介质
JPH03291776A (ja) 指紋画像処理装置
Su et al. Image quality measures for hierarchical decomposition of a shoeprint image
JP6390458B2 (ja) 情報処理装置、情報処理システム及び情報処理方法並びに情報処理用プログラム
Bresan et al. Exposing presentation attacks by a combination of multi-intrinsic image properties, convolutional networks and transfer learning
Pakala et al. Forgery Detection in Medical Image and Enhancement using Modified CLAHE Method
Dua'a Hamed et al. Finger knuckle recognition, a review on prospects and challenges based on PolyU dataset
JP3270925B2 (ja) 生体指識別方法
CN113256557B (zh) 一种基于舌象临症图像的中医舌态鉴别的方法及装置
JP2678021B2 (ja) 指紋画像入力装置

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees