TW492207B - Positive electrode active material, positive electrode active material composition and lithium ion secondary battery - Google Patents

Positive electrode active material, positive electrode active material composition and lithium ion secondary battery Download PDF

Info

Publication number
TW492207B
TW492207B TW089109084A TW89109084A TW492207B TW 492207 B TW492207 B TW 492207B TW 089109084 A TW089109084 A TW 089109084A TW 89109084 A TW89109084 A TW 89109084A TW 492207 B TW492207 B TW 492207B
Authority
TW
Taiwan
Prior art keywords
discharge
active material
particle size
electrode active
positive electrode
Prior art date
Application number
TW089109084A
Other languages
Chinese (zh)
Inventor
Itaru Gosho
Ken Moriuchi
Kenichi Kizu
Toshihiro Zushi
Masahiro Kamauchi
Original Assignee
Mitsubishi Cable Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP13349799A external-priority patent/JP3308229B2/en
Priority claimed from JP11219326A external-priority patent/JP2001052697A/en
Priority claimed from JP11223089A external-priority patent/JP2001052682A/en
Priority claimed from JP23878599A external-priority patent/JP2001068093A/en
Application filed by Mitsubishi Cable Ind Ltd filed Critical Mitsubishi Cable Ind Ltd
Application granted granted Critical
Publication of TW492207B publication Critical patent/TW492207B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a positive electrode active material, a negative electrode active material and an electrolyte that are used alone or in combination to improve charge and discharge cycle characteristic, low temperature characteristic and safety of a non-aqueous electrolyic secondary battery, particularly a lithium ion secondary battery. Specifically, a particulate Li-transition metal composite oxide having an average particle size of not less than 10 μm, wherein [20/(specific surface area x average particle size)]=7-9, is used as a positive electrode active material.

Description

492207 i、發明說明( [發明領域] :I發明乃有關非水性電解質二次電池。更特 、發明乃有關鋰離子二次電池之改良,詳言之,為具 (請先閱讀背面之注音?事項再填寫本頁) 3充電及放電循環性質及鋰離子- ^ 、 畔卞一人電池安全性能力之正極 活性物質、正極活性物質組成物、及具有經改良之 放電循環性質、低溫性質及安全性之鐘離子二次電池。 [發明背景] _ 鋰離子二次電池具有優異之電動勢及電池電容,且因 具有高能量密度、高電壓等而較鎳_鎘電池等更為有利。近 年來,鋰離子二次電池在更為引人注意之同時,更常作為 ‘提携式裝置(例如行動電話及筆記型個人電腦)之驅動力。 ’文到如則述情形之激發,業界已於相關領域進行各種研究 以提供較尚性能之產品》詳言之,此等研究著重於鋰離子 二次電池構成材料(正極活性物質、負極活性物質、電解質 等)之性質及較佳組合。 1 就經離子二次電池之正極活性物質而言,曾有許多 經濟部智慧財產局員工消費合作社印製 過渡金屬複合氧化物(例如Li-Mn型複合氧化物、Li-Ni型 複合氧化物、Li-Co型複合氧化物等)被提出。其中,主要 使用Li_Co型複合氧化物,乃由於其具化學穩定性、容易 處理及具有製造高電容二次電池之能力。在進一步改良 Li-Co型複合氧化物、最後俾使改良使用Li_c〇型複合氧 化物作為二次電池之正極活性物質之性質上,也有許多建 i 議及報導。例如,JP-B_7-118318揭示LiCo02可改良二次 電池的放電電容,該LiCo02係藉添加多量的鋰化合物及鈷 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 1 311440 :207 A7 五、發明說明(2) 化合物、加熱該等化合物及藉水洗移除反應產物中未反應 之經化合物及碳酸鋰副產物而獲得者。 大體上,鋰離子二次電池之正極活性物質係以由導電 物質及以有機聚合物製得之黏合劑構成之組成物(下文亦 稱為正極活性物質組成物)製得之層,該導電物質可使用 各種石墨及碳黑。正極活性物質通常呈顆粒型式使用,各 顆粒分散於組成物之非導電性黏合劑中。導電物質不存在 時,由於黏合劑的作用,將導致正極活性物質中各顆粒呈 電絕緣狀癌,因而使得正極活性物質組成物層(下文亦稱 為正極活性物質層)實質上為電絕緣。導電物質係藉其存 在於正極活性物質諸顆粒之間,使諸顆粒導電而使此層具 導電性。結果’正極活性物質層整體上成為具導電性。如 前述,正極活性物質係呈顆粒型式使用。當粒度太小時, 於二次電池充電及放電期間,反應性有時變大到引發異常 電池反應至危險階段之程度。本發明人發現,從二次電池 的安全性觀點而言,正極活性物質之較佳平均粒度為不小 於1 0 # m。然而,不小於i 〇以m之平均粒度會降低正極活 性質之導電性,常導致充電及放電循環性質降低。 至於負極活性物質及電解質,舉例而言,JP-A_6-368()2 揭示鋰離子二次電池之充電及放電循環性質可藉使用以 Li-過渡金屬複合氧化物製得之正極活性物質、以特定之遞 青型碳纖維製得之負極活性物質、及選自由碳酸乙稀醋、 碳酸丙烯酯、碳酸丁烯酯、丁醯内酯、環丁楓、3-甲基 環丁碾、四氫呋喃、2·甲基四氫呋喃、乙腈、二甲氧乙浐' (請先閱讀背面之注咅?事項再填寫本頁) - - Γ - . mamme «ϋ 1 I HA-»— —Hal I 1 · I aam μη· mm amt > I 屢 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 2 311440 492207 A7 —— — ·»^Ζ···— _ 五、發明說明(3) --------------穿--- (請先閱讀背面之注意事項再填寫本頁) 二乙氧乙烷、二甲基亞楓、二噚茂烷、4·甲基二噚茂烷及 碳酸二乙醋所組成組群之-或多員之混合溶劑作為電解質 ,予以改良⑽削刪揭示鐘離子二次電池之充電及放 電循環性質可藉使用w Li_過渡金屬複合氧化物製得之正 極活性物質、石墨型碳材料作為負極活性物f、及碳酸乙 『基甲酯及碳酸二甲酯之混合溶劑作為電解質,且進一步以 此此〇 ♦劑與碳酸乙烯酯或碳酸丙烯酯之混合物作為附加 >成分予以改良。當欲添加該等成分時,必須注意添加碳酸 丙烯醋至作為負極活性物質之石墨型碳材料,將造成該溶 劑之分解,因此,於此情形下,以使用碳酸乙稀醋為佳; 而當負極活性物質為石墨以外之碳材料時,則以使用碳酸 ,丙浠酯為佳(見下文)。 如上述’鐘離子二次電池與鎳-鎘電池等相較下,就高 能量密度、高電壓等而言,具有許多優異之性質。另一方 面’則因於低溫放電時與於室溫放電之情形相較下,產生 I較低之放電電容及較低之放電電壓,而具有較不令人滿意 之低溫性質。特言之,於不高於-2(rc (及不高於-35°c)之極 -低溫度時,於放電之起始階段,其放電電壓急劇下降。於 '鋰離子二次電池之低溫放電曲線[橫轴二放電電容率, /縱轴:放電電壓(V)]中,最小值及最大值相繼出現在放電 ’電容率增加之方向。然而,在不高於-2〇。(:之極低溫度時, 最小值與最大值之差成為約0.3 (V)至〇·5 (V),及當放電 1 電容率為0%時,最小值與放電電壓之差成為約0·5 (V)至 1·0 (V),此導致放電起始階段電壓急劇下降。事實上,放 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 3 311440 A7 B7 五、發明說明(4) 電電壓可能落至各奘供# 谷裝備的止動電壓設定之下,因而使得該 裝備實際上無法操作。此低、、w 此低級度性質問題阻止電池在可能 於寒冷地方使用的觀測監視器、通訊裝置、電動車、電力 、存器上之應用。雖然藉由,例如,將電池置於較溫暖的 地方或施用加熱器以防止電池溫度落至某種程度以下之一 些措施可使電池用於前述裝備,惟將導致裝備之成本增 加。因此,經離子二次電池之主要問題在於克服低溫性質。 -般而言’鍾離子二次電池具有正極板與負極板經由隔離 物相互對立、電解質則裝填於兩電極間的間隙之架構。正 (負)極係藉由在電流收集體(例如金屬落)上形成以正(負) 極活性物質、導電物質及黏合劑製得之正⑷極活性物質 層而製造。如上述’正極活性物質及負極活性物質為顆粒 物,由於顆粒包含間隙,因而容許電解質通過間隙進入電 極中,發生充電及放電之化學變化。電極中更具活性之化 學變化將使電池電容、電容率性質及低溫性質獲得改良。 藉由增大活性物質之顆粒可獲得足夠的間隙,惟較大的粒 度減少活性物質之裝填密度及單位容積之電池電容。於低 溫不顯示增加黏度之電解質被視為可改良低溫性質,因為 匕谷許電解質於低溫時渗入電極中而不會降低活性物質之 後度。然而,於習知電解質中,低黏度與高凝固點息惠相 關。例如,於一般添加於電解質之諸成分中,添加較高量 碳酸二甲酯會降低電解質的黏度,惟亦相對地提高該電解 質的凝固點。 1 [發明概述] 請 先 閱 讀 背 之 注 意 事 項 t 寫 本 頁 裝· 訂 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 4 311440 經齊邨智慧时產¾員X.消費合泎fi中製 311440 492207 • * » A7 -__:__B7 五、發明說明(5) 因此本發明之目的在於提供作為非水性電解質二次電 池(特別是鋰離子二次電池)正極活性物質用之一種經改良 之Li-過渡金屬複合氧化物,其具有改良電池充電及放電 I循環性質之能力;以及含有該Li_過渡金屬複合氧化物作 ,為正極活性物質之鋰離子二次奄池(第一鋰離子二次電 池),。 本發明之目的亦在於提供具有經改良之導電性之正極 活性物質組成物,其含有平均粒度不小於1〇//111之正極活 性物質(Li-過渡金屬複合氧化物),就二次電池之安全性而 ό為較佳,以及含有此正極活性物質組成物之鋰離子二次 電池(第二鋰離子二次電池)。 ' 本發明之又一目的在於提供由於具充電及放電循環性 質改良能力之新穎負極活性物質、及電解質之組合,充電 及放電循環性質獲顯著改良之鋰離子二次電池(第三鋰離 子二次電池)。 本發明之尚一目的在於提供具有經充分改良之充電及 放電循環性質、貯存性質及低溫性質而未降低能量密度之 锂離子二次電池(第四鋰離子二次電池)。 進一步地,本發明之目的在於提供於低溫(不高於-2〇 °C,特別是不高於_35。〇時,因使用具有低黏度之特定電 解質,其放電電容及放電電壓不減少,因此,低溫下不固 化之鋰離子二次電池(第五鋰離子二次電池)。本發明之更 進一步目的在於提供在極低溫,特別是不高於_2() t,於放 電初始階段,其放電電壓不會急劇掉落之鋰離子二次電分 衣紙張尺度適用中關家標準(CNS)A4規格(210 X 297公髮) 5 ---------------裳-----:----訂--------- (請先閱讀背面之注意事項再填寫本頁) 492207 A7492207 i. Description of the invention ([Field of invention]: I The invention relates to non-aqueous electrolyte secondary batteries. More specifically, the invention relates to the improvement of lithium ion secondary batteries. In particular, it is a tool (please read the note on the back first? Please fill in this page again) 3Charge and discharge cycle properties and lithium ion-^, positive electrode active material, positive electrode active material composition for battery safety ability, and have improved discharge cycle properties, low temperature properties and safety [Background of the invention] _ Lithium-ion secondary batteries have excellent electromotive force and battery capacitance, and are more advantageous than nickel-cadmium batteries, etc. due to their high energy density and high voltage. In recent years, lithium At the same time, ion secondary batteries are more attractive, and they are more often used as a driving force for 'portable devices (such as mobile phones and notebook personal computers).' Various studies to provide products with relatively high performance "In detail, these studies focus on the lithium ion secondary battery constituent materials (positive active material, negative active material, Electrolytes, etc.) 1 As far as the positive electrode active materials of ion secondary batteries are concerned, many employees of the Intellectual Property Bureau of the Ministry of Economic Affairs have printed transition metal composite oxides (such as Li-Mn composite oxides) in consumer cooperatives. Materials, Li-Ni-type composite oxides, Li-Co-type composite oxides, etc.) are proposed. Among them, Li_Co-type composite oxides are mainly used because of their chemical stability, easy handling, and manufacturing of high-capacity secondary batteries There are also many suggestions and reports on the further improvement of the properties of Li-Co type composite oxides and finally the use of Li_co type composite oxides as the positive electrode active material of secondary batteries. For example, JP-B_7 -118318 reveals that LiCo02 can improve the discharge capacity of secondary batteries. The LiCo02 is based on the addition of a large amount of lithium compounds and cobalt. The paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) 1 311440: 207 A7 V. Description of the Invention (2) A compound, a compound obtained by heating these compounds and removing unreacted compounds and lithium carbonate by-products from the reaction product by washing with water. Generally, The positive electrode active material of an ion secondary battery is a layer made of a composition composed of a conductive material and a binder made of an organic polymer (hereinafter also referred to as a positive electrode active material composition). The conductive material can use various graphites. And carbon black. The positive electrode active material is usually used in the form of particles, and each particle is dispersed in the non-conductive adhesive of the composition. When the conductive material does not exist, the particles of the positive electrode active material will be electrically insulated due to the role of the binder. Cancerous, so that the positive electrode active material composition layer (hereinafter also referred to as the positive electrode active material layer) is substantially electrically insulating. The conductive material makes the layer conductive by virtue of its existence between the particles of the positive electrode active material. It is conductive. As a result, the positive electrode active material layer becomes conductive as a whole. As described above, the positive electrode active material is used in a particulate form. When the particle size is too small, during the charging and discharging of the secondary battery, the reactivity sometimes becomes large enough to cause an abnormal battery reaction to a dangerous stage. The present inventors have found that, from the viewpoint of safety of a secondary battery, a preferable average particle size of the positive electrode active material is not less than 10 #m. However, an average particle size of not less than i 0 and m will reduce the conductivity of the positive electrode activity, often resulting in a decrease in charge and discharge cycle properties. As for the negative electrode active material and electrolyte, for example, JP-A_6-368 () 2 reveals the charge and discharge cycle properties of lithium ion secondary batteries. By using a positive electrode active material made of a Li-transition metal composite oxide, A negative electrode active material made of specific green carbon fiber, and selected from the group consisting of ethylene carbonate, propylene carbonate, butene carbonate, butyrolactone, cyclobutane, 3-methylcyclobutane, tetrahydrofuran, 2 · Methyltetrahydrofuran, acetonitrile, dimethoxyacetamidine '(Please read the note on the back? Matters before filling out this page)--Γ-. Mamme «ϋ 1 I HA-» — —Hal I 1 · I aam μη · Mm amt > I Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the paper is printed in accordance with the Chinese National Standard (CNS) A4 (210 X 297 mm) 2 311440 492207 A7 —— —» ^^ ··· — _ 5. Description of the invention (3) -------------- Wear --- (Please read the precautions on the back before filling out this page) Diethoxyethane, dimethylene A mixed solvent of-or more members of the group consisting of maple, dioxane, 4-methyldioxane and diethyl carbonate It can be modified to reveal the charge and discharge cycle properties of the clock ion secondary battery. The positive electrode active material made of w Li_transition metal composite oxide, graphite-type carbon material can be used as negative electrode active material f, and ethyl carbonate. A mixed solvent of methyl methyl ester and dimethyl carbonate is used as an electrolyte, and a mixture of the above agent and ethylene carbonate or propylene carbonate is further modified as an additional ingredient. When you want to add these ingredients, you must pay attention to adding propylene carbonate to the graphite-type carbon material as the negative electrode active material, which will cause the decomposition of the solvent. Therefore, in this case, it is better to use ethylene carbonate; and when When the negative electrode active material is a carbon material other than graphite, it is preferable to use carbonic acid and propyl acetate (see below). As compared with the above-mentioned 'bell ion secondary battery, compared with nickel-cadmium batteries, etc., it has many excellent properties in terms of high energy density, high voltage, and the like. On the other hand, it has a lower unsatisfactory low-temperature property because it produces a lower discharge capacitance and a lower discharge voltage when compared with the case of discharging at room temperature during low-temperature discharge. In particular, at extremely low temperatures of not higher than -2 (rc (and not higher than -35 ° c)), the discharge voltage drops sharply during the initial stage of discharge. In the low-temperature discharge curve [horizontal axis two discharge permittivity, / vertical axis: discharge voltage (V)], the minimum value and the maximum value successively appear in the direction of discharge 'permittivity increase. However, it is not higher than -20. : At extremely low temperatures, the difference between the minimum and maximum values becomes approximately 0.3 (V) to 0.5 (V), and when the permittivity of discharge 1 is 0%, the difference between the minimum and discharge voltage becomes approximately 0 · 5 (V) to 1 · 0 (V), which leads to a sharp drop in the voltage at the beginning of the discharge. In fact, the size of the paper is applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm) 3 311440 A7 B7 5 4. Description of the invention (4) The electric voltage may fall below the stop voltage setting of each device. This makes the device practically inoperable. This low-level, low-level nature problem prevents the battery from being exposed to cold. Application of observation monitors, communication devices, electric vehicles, electric power, and storage devices used in local areas. Some measures to place the battery in a warmer place or apply a heater to prevent the battery temperature from falling below a certain level can make the battery used in the aforementioned equipment, but will increase the cost of the equipment. Therefore, the use of ion secondary batteries The main problem lies in overcoming low temperature properties.-In general, the clock ion secondary battery has a structure in which the positive electrode plate and the negative electrode plate are opposed to each other through a separator, and the electrolyte is filled in the gap between the two electrodes. The positive (negative) electrode is A positive electrode active material layer made of a positive (negative) electrode active material, a conductive material, and a binder is formed on a current collector (such as a metal drop). As described above, the “positive electrode active material and the negative electrode active material are particulates, because The particles contain gaps, which allows the electrolyte to enter the electrode through the gap, causing chemical changes in charging and discharging. The more active chemical changes in the electrode will improve the battery capacitance, permittivity properties, and low temperature properties. By increasing the active material's The particles can get enough space, but the larger particle size reduces the packing density of the active substance and the unit volume. Battery capacitance. Electrolytes that do not show increased viscosity at low temperatures are considered to improve low temperature properties, because Dagger Valley electrolyte penetrates into the electrode at low temperatures without lowering the degree of active material. However, in conventional electrolytes, low viscosity and The high freezing point is closely related. For example, in the components commonly added to the electrolyte, adding a higher amount of dimethyl carbonate will reduce the viscosity of the electrolyte, but also relatively increase the freezing point of the electrolyte. 1 [Overview of the Invention] Please read first Notes on the back t Write this page · Binding Printed by the Intellectual Property Bureau of the Ministry of Economy Employees' Cooperatives Printed on paper This paper applies Chinese National Standard (CNS) A4 (210 X 297 mm) 4 311440 X. Consumption combined with Fi 311440 492207 • * »A7 -__: __ B7 V. Description of the invention (5) Therefore, the object of the present invention is to provide positive electrode activity as a non-aqueous electrolyte secondary battery (especially a lithium ion secondary battery). An improved Li-transition metal composite oxide for substances, which has the ability to improve the cycle characteristics of battery charge and discharge; The Li_ containing transition metal composite oxide as as a positive electrode active material of a lithium ion secondary battery suddenly (the first lithium ion secondary battery) ,. The object of the present invention is also to provide a positive electrode active material composition having improved conductivity, which contains a positive electrode active material (Li-transition metal composite oxide) having an average particle size of not less than 10 // 111. It is preferable for safety and a lithium ion secondary battery (second lithium ion secondary battery) containing the positive electrode active material composition. '' Another object of the present invention is to provide a lithium ion secondary battery (third lithium ion secondary battery) having significantly improved charge and discharge cycle properties due to a combination of a novel negative active material having an ability to improve charge and discharge cycle properties and an electrolyte. battery). Another object of the present invention is to provide a lithium ion secondary battery (fourth lithium ion secondary battery) having sufficiently improved charge and discharge cycle properties, storage properties, and low temperature properties without reducing energy density. Further, the object of the present invention is to provide low-temperature (not higher than -20 ° C, especially not higher than -35 ° C), because the use of a specific electrolyte with a low viscosity, the discharge capacitance and discharge voltage are not reduced, Therefore, a lithium ion secondary battery (fifth lithium ion secondary battery) that does not solidify at low temperature. A further object of the present invention is to provide an extremely low temperature, especially not higher than _2 () t, in the initial stage of discharge, The paper size of the lithium ion secondary electrical clothing whose discharge voltage does not drop sharply is applicable to the Zhongguanjia Standard (CNS) A4 specification (210 X 297). 5 -------------- -Shang -----: ---- Order --------- (Please read the notes on the back before filling this page) 492207 A7

(第六鋰離子二次電池)。 為達成上述諸目的,本發明具有下列特性。 (請先閱讀S面之注意事項再填寫本頁)(Sixth lithium-ion secondary battery). To achieve the above objects, the present invention has the following characteristics. (Please read the precautions on S side before filling out this page)

於本發明之第-態樣中,係使用平均粒度不小於… m之粒狀L卜過渡金屬複合氧化物,其中⑽(比表面後(X 平均粒度)]=7-9,作為正極活性物質以?文良充電·放電循環 性質。 於本發明之第二態樣中,係使用平均粒度不小於1〇以 m之粒狀Li-過渡金屬複合氧化物作為正極活性物質,及併 行使用大粒度導電物質與小粒度導電物質之混合物,以改 良電池之安全性及充電-放電循環性質。 於本發明之第二態樣中,係使用比表面積不大於2 〇 m2/g、點陣平面(d002)間隔不大於0·338〇 nm及c_軸方向 (Lc)微晶大小不小於30 nm之石墨化碳作為負極活性物 質’及使用包括碳酸乙稀g旨、竣酸丙稀g旨、碳酸二甲醋及 選自由碳酸二乙酯及碳酸乙基甲酯所組成組群之至少一員 之電解質混合溶劑,以改良充電-放電循環性質。 經濟部智慧財產局員工消費合作社印製 於本發明之第四態樣中,係使用平均粒度不小於i 〇 V m之粒狀Li-過渡金屬複合氧化物,其中[2〇/(比表面積χ 平均粒度)]= 7-9,作為正極活性物質;使用大粒度導電物 質與小粒度導電物質之混合物作為導電物質;使用比表面 積不大於2.0 m2/g、點陣平面(d002)間隔不大於0.3380 nm 及c-軸方向(Lc)微晶大小不小於30 nm之石墨化碳作為負 極活性物質;及使用包括碳酸乙烯酯、碳酸丙烯酯、碳酸 二曱酯及選自由碳酸二乙酯及碳酸乙基甲酯所組成組群之 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 6 311440 4^2207In the first aspect of the present invention, a granular Lb transition metal composite oxide having an average particle size of not less than m is used, in which ⑽ (behind specific surface (X average particle size)) = 7-9 is used as a positive electrode active material In the second aspect of the present invention, a granular Li-transition metal composite oxide having an average particle size of not less than 10 m is used as a positive electrode active material, and a large particle size conductive material is used in parallel. A mixture of a substance and a small particle size conductive substance to improve battery safety and charge-discharge cycle properties. In the second aspect of the present invention, a specific surface area of not more than 200 m2 / g and a lattice plane (d002) are used. Graphitized carbon with an interval of not more than 0.338 nm and a crystallite size in the c-axis direction (Lc) of not less than 30 nm as a negative electrode active material 'and use of ethylene carbonate, acrylic acid, acrylic acid, and carbonic acid Methyl vinegar and an electrolyte mixed solvent selected from at least one member of the group consisting of diethyl carbonate and ethyl methyl carbonate to improve the charge-discharge cycle property. The Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs printed the first Four states , Use a granular Li-transition metal composite oxide with an average particle size of not less than i 0V m, where [20 / (specific surface area x average particle size)] = 7-9 as a positive electrode active material; use a large particle size conductive material As a conductive material, a mixture with a small-grained conductive material; a graphitization having a specific surface area not greater than 2.0 m2 / g, a lattice plane (d002) interval not greater than 0.3380 nm, and a crystallite size in the c-axis direction (Lc) of not less than 30 nm Carbon is used as the negative electrode active material; and the paper size including ethylene carbonate, propylene carbonate, dimethyl carbonate and a group selected from the group consisting of diethyl carbonate and ethyl methyl carbonate is applicable to China National Standard (CNS) A4 Specifications (210 X 297 mm) 6 311440 4 ^ 2207

五、發明說明(7) 至少一員之電解質混合溶劑以改良充電-放電循環性質、貯 存性質及低溫性質。 經濟部智慧財產局員工消費合作社印制π 於本發明之第五態樣中,係使用包括比例為4容積% 至10谷積%之碳酸乙稀醋、比例為1Q容積%至17容積% 之碳酸丙烯酯、比例為30容積%至40容積%之碳酸二甲 酯、及比例為40容積%至50容積%之選自由碳酸义乙酯 及碳酸乙基甲酯所組成組群之至少一員之電解質混合溶 I劑’以抑制於-20°C或-20°C以下時放電電容及放電電壓之 減少。 於本發明之第六態樣中,鋰離子二次電池於-2〇〇c之… 放電時’顯示⑴沒有最小值之倒斜(backslash)放電曲線、 ▲或(ii)於放電電容率增加方向出現最小值及最大值之放電 曲線、或(iii)於放電電容率增加方向出現第一最大值、最 小值及第二最大值之放電曲線,此三曲線係在橫軸顯示於 20 °C時以1C放電之放電電容(loo%)計之放電電容率與縱 齡轴顯示放電電壓之座標中作圖,其中,於曲線(ii)之情形 下’該最小值及該最大值之差不大於〇丨V,且當放電電 •容率為〇 %時,該最小值及放電電壓之差不大於0.3V,及, ,於曲線(iii)之情形下,該最小值及該第二最大值之差不大 •於01V,且當放電電容率為0%時,該最小值及放電電壓 ‘之差不大於0.3V,該電池於-20°C之1C放電時,放電電 容顯示不少於20 °C放電時放電電容之60%。 [圖式簡單說明] 第1圖顯示本發明經離子二次電池放電曲線之一實施 -------------裳-----r---訂---------線 (請先閱讀背面之注咅?事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 7 311440 米207 A7 五、發明說明(8) 例。 第2圖顯示本發明鋰離子二次電池放電曲線之另一實 施例。 第3圖顯示本發明鐘離子二次電池放電曲線之又一實 施例。 [發明詳述] 茲詳細說明本發明於下,使其成為顯而易見。 本發明之Li-過渡金屬複合氧化物為顆粒物質,其比表 面積(mVg)與平均粒度以岣之乘積滿足了式: 7$ [20/(比表面積χ平均粒度9 係作為非水性錢質二次電池(特別是鐘離子二次電池)之 正極活性物質。本發明之笛 ^ ^ ^ 之第一鋰離子二次電池含有此Li- 過渡金屬複合氧化物作為正極活性物質。 比表面積與平均粒度具有如式⑴所示特定關係之π 過渡金屬複合氧化物可由具下式⑺或(3)者所例示:5. Description of the invention (7) At least one of the electrolyte mixed solvents is used to improve the charge-discharge cycle properties, storage properties and low temperature properties. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs in the fifth aspect of the present invention, the use of vinegar carbonate including a ratio of 4% by volume to 10% by volume, and a ratio of 1Q% by volume to 17% by volume Propylene carbonate, dimethyl carbonate in a proportion of 30% to 40% by volume, and at least one member selected from the group consisting of ethyl ethyl carbonate and ethyl methyl carbonate in a ratio of 40% to 50% by volume The electrolyte mixed solvent I 'is used to suppress the decrease in discharge capacitance and discharge voltage when the temperature is below -20 ° C or below -20 ° C. In the sixth aspect of the present invention, the lithium ion secondary battery at the time of -200 ° C discharge shows 'backslash' discharge curve with no minimum value, ▲ or (ii) increases in discharge permittivity The discharge curve showing the minimum and maximum values in the direction, or (iii) the discharge curve showing the first maximum value, the minimum value, and the second maximum value in the direction of the increase in discharge permittivity. These three curves are displayed at 20 ° C on the horizontal axis. The discharge permittivity calculated as the discharge capacitance (loo%) of the discharge at 1C is plotted against the coordinates of the discharge voltage displayed on the vertical age axis. In the case of curve (ii), the difference between the minimum value and the maximum value is not different. Greater than 〇 丨 V, and when the discharge capacity is 0%, the difference between the minimum value and the discharge voltage is not greater than 0.3V, and, in the case of curve (iii), the minimum value and the second maximum The difference between the values is not too large. When the discharge capacitance is 0%, the difference between the minimum value and the discharge voltage is not greater than 0.3V. When the battery is discharged at 1C at -20 ° C, the discharge capacitance shows a lot. 60% of discharge capacitance when discharged at 20 ° C. [Brief Description of the Drawings] Figure 1 shows the implementation of the present invention through one of the discharge curves of an ion secondary battery ------------- Shang ----- r --- Order ---- ----- Line (Please read the note on the back? Matters before filling out this page) This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 7 311440 m 207 A7 V. Description of the invention ( 8) Examples. Fig. 2 shows another embodiment of the discharge curve of the lithium ion secondary battery of the present invention. Fig. 3 shows another embodiment of a discharge curve of a clock ion secondary battery according to the present invention. [Detailed Description of the Invention] The present invention is described in detail below to make it obvious. The Li-transition metal composite oxide of the present invention is a particulate material, and its specific surface area (mVg) and average particle size satisfy the formula by the product of 岣: 7 $ [20 / (specific surface area × average particle size 9) Positive electrode active material of secondary battery (especially clock ion secondary battery). The first lithium ion secondary battery of the flute ^ ^ ^ of the present invention contains this Li-transition metal composite oxide as a positive electrode active material. Specific surface area and average particle size A π transition metal composite oxide having a specific relationship as shown in formula ⑴ can be exemplified by the following formula ⑺ or (3):

LiAM1-xMex〇2 (2) 式中Μ為例如c〇、Ni、Mn、v ue等之過渡金屬,及LiAM1-xMex〇2 (2) where M is a transition metal such as c0, Ni, Mn, vue, etc., and

LiAM2-xMex〇4 (3) 式中M為例如Mn、Fe、Ni等之過炉金 中,Me為週期表…Λ 垃度金屬。於式⑺及(3)LiAM2-xMex〇4 (3) In the formula, M is a furnace gold such as Mn, Fe, Ni, etc. In the formula, Me is a periodic table ... Λ degree metal. Yu Shiji and (3)

Fe、C。Μ 族之元素,例如Zr、V、Cr、M。、Fe, C. Elements of group M, such as Zr, V, Cr, M. ,

Fe、Co、Mn、Ni 等Fe, Co, Mn, Ni, etc.

Ge ' Pb > Sn . Sb ^ , 族之元素,例如B、A卜 兩種Me與1^為不同之元素且Me可由 兩種或兩種以上元素所組成。 〗 式(2)令之A為0·05至 ---- 15 較好為 0.1 至 1·1,式(3) 本紙張尺度適用中國^^^^7¥17 8 (請先閱讀背面之注意事項再填寫本頁) 311440 492207 A7 ------ -B7___ 五、發明說明(9) 中之A為0.05至2.5,較佳為0.5至1.5。式(2)及(3)中之 X為0或0.01至0 5,較佳為〇 〇2至〇·2。當Me由兩種或 兩種以上元素組成時,X為該兩種或兩種以上元素之總Ge 'Pb > Sn. Sb ^, elements of the group, for example, B and Ab. Two Me and 1 ^ are different elements and Me may be composed of two or more elements. 〖Formula (2) Let A be from 0.05 to ---- 15, preferably 0.1 to 1.1, formula (3) This paper size is applicable to China ^^^^ 7 ¥ 17 8 (Please read the Note: Please fill in this page again) 311440 492207 A7 ------ -B7 ___ V. In the description of the invention (9), A is 0.05 to 2.5, preferably 0.5 to 1.5. X in the formulae (2) and (3) is 0 or 0.01 to 0 5, preferably 0.02 to 0.2. When Me consists of two or more elements, X is the total of the two or more elements

數。 式(2)及(3)之Li-過渡金屬複合氧化物之較佳實例包含number. Preferred examples of the Li-transition metal composite oxides of formulae (2) and (3) include

Li-Co型複合氧化物例如Li-Co type composite oxides such as

LiCo02、LiNi02、LiMn02、LiCo02, LiNi02, LiMn02,

LiMn(卜x)Alx〇2、LiMn(1_x)Cox02、LiMn(1-x_Y)AlxCoY02、 LiMn204、LiMn2.xC〇x04、LiMn2.xCoxGeY04、LiCo(1· x)Nix02、LiNi(1_x)Aix〇2、LiCo(i χ)Μηχ〇2 等,其中 〇 ! ^LiMn (Bux) Alx〇2, LiMn (1-x) Cox02, LiMn (1-x_Y) AlxCoY02, LiMn204, LiMn2.xC〇x04, LiMn2.xCoxGeY04, LiCo (1.x) Nix02, LiNi (1_x) Aix〇2 , LiCo (i χ) Μηχ〇2, etc., where 〇! ^

X 請 先 閱 面 之 注 意 事 項 再 填 寫 本 頁 k 及 〇」,較佳為 LiCo02、ΕίΜη(1-χ)€;οχ02、LiMn^u y)A1xCoy02、LiC〇(1-x)Nix02、LiCo(1-X)Mnx02 等,特佳為X Please read the notes on this page before filling in k and 〇 ", preferably LiCo02, ΕίΜη (1-χ) €; οχ02, LiMn ^ uy) A1xCoy02, LiC〇 (1-x) Nix02, LiCo (1 -X) Mnx02, etc., especially preferred

訂 IOrder I

LiCo02 oLiCo02 o

Li-過渡金屬複合氧化物需要滿足上述式(1),因為當 [20/(比表面積x平均粒度)]小於7或大於9時,該正極活 性物質本身之電阻增加,因而降低二次電池充電及放電循 〇環之性質’同時對鋰離子二次電池之低溫性質及貯存性質 也有不利之影響。 經 · 濟 部 智' 慧- 財 產" 局 4 員 工 消 費 合 作 社 印 製The Li-transition metal composite oxide needs to satisfy the above formula (1), because when [20 / (specific surface area x average particle size)] is less than 7 or greater than 9, the resistance of the positive electrode active material itself increases, thereby reducing the charging of the secondary battery. And the nature of the discharge cycle, it also adversely affects the low-temperature properties and storage properties of lithium ion secondary batteries. Printed by the Ministry of Economic Affairs and the Ministry of Economic Affairs' "Hui-Finance" " Bureau of Consumer and Consumer Affairs

Li-過渡金屬複合氧化物較佳為具有1〇/ζιη至25 am 之平均粒度,特佳為17以m至23 /z m。當平均粒度小於i 〇 //m時’傾向於發生異常之電池反應而較不安全;當平均 粒度超過25 時,電阻變高,傾向於降低鋰離子二次電 池每單位容積之能量密度。The Li-transition metal composite oxide preferably has an average particle size of 10 / ζιη to 25 am, and particularly preferably 17 to 23 / z m. When the average particle size is less than i 〇 // m, ′ tends to cause abnormal battery reactions and is less safe; when the average particle size exceeds 25, the resistance becomes higher, and the energy density per unit volume of the lithium ion secondary battery tends to decrease.

Li-過渡金屬複合氧化物較佳為具有〇1 至〇 3 m2/g之比表面積,特佳為〇15 m2/g至〇·25 m2/g 。當比 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 9 311440 A7The Li-transition metal composite oxide preferably has a specific surface area of 0.001 to 0.3 m2 / g, and particularly preferably 0.15 m2 / g to 0.25 m2 / g. Dangbi This paper size applies Chinese National Standard (CNS) A4 (210 X 297 public love) 9 311440 A7

492207 五、發明說明( 表面積小於0.1 m2/g時,電阻增加而充電及放電電容及電 容率性質傾向於降低;當比表面積超過0 3 m2/g時,易於 進行氧氣與活性物質之分離,因而可能損及安全。492207 V. Description of the invention (When the surface area is less than 0.1 m2 / g, the resistance increases and the charge and discharge capacitance and permittivity properties tend to decrease; when the specific surface area exceeds 0 3 m2 / g, it is easy to separate oxygen from the active material, so May compromise safety.

Li-過渡金屬複合氧化物之平均粒度係以下述方法予 以測定。首先,於有機液體(例如水、乙醇等)中澆鑄欲測 定之標的顆粒,於約35kHz至40kHz進行超音波處理約2 分鐘使其分散。顆粒之含量係於分散處理後,該分散體之 雷射透光率(出光量/入光量)為70%至95%。接著,將該分 散體施加於微執粒度分析儀(microtrack particie size analyzer),即可以雷射光束之擴散為基礎測定顆粒之粒度 (Dl、D2、D3 ·· ··)及各粒度之顆粒數(Ν1、Ν2、Ν3· ···)。 微執粒度分析儀計算具有最接近檢測者所測定之雷射 光束擴散強度分佈的理論強度分佈之球形顆粒組之粒度分 佈。亦即,假設顆粒具有與經由照射雷射光束所得投影影 像相同面積之圓形截面,取該截面圓之直徑作為粒度。 使用如上所得各顆粒之粒度(D)及具有各種粒度之顆 粒數(Ν),以下式(4)計算平均粒度(/z m): 平均粒度(以 m) = ( Σ ND3/ Σ N)1/3 (4)The average particle size of the Li-transition metal composite oxide was measured by the following method. First, the target particles to be measured are cast in an organic liquid (such as water, ethanol, etc.), and subjected to ultrasonic treatment at about 35 kHz to 40 kHz to disperse them. The content of the particles is that after the dispersion treatment, the laser light transmittance (light output / light input) of the dispersion is 70% to 95%. Next, the dispersion is applied to a microtrack particie size analyzer, and the particle size (Dl, D2, D3, ···) and the number of particles of each size can be measured based on the diffusion of the laser beam. (N1, N2, N3 ...). The particle size analyzer calculates the particle size distribution of a group of spherical particles having the theoretical intensity distribution closest to the laser beam diffusion intensity distribution measured by the detector. That is, it is assumed that the particle has a circular cross section with the same area as the projection image obtained by irradiating the laser beam, and the diameter of the cross section circle is taken as the particle size. Using the particle size (D) of each particle obtained above and the number of particles (N) with various particle sizes, the following formula (4) is used to calculate the average particle size (/ zm): Average particle size (in m) = (Σ ND3 / Σ N) 1 / 3 (4)

Li_過渡金屬複合氧化物具有藉氣相吸附法(單點法)測 定之比表面積,其中氮氣為吸附物,該吸附法見述於 Material Chemistry of Fine Particles(微細顆粒之材料化學) Yasuo Arai, first edition, 9th impression, Baifukan (Tokyo) pp.178-184(1995)- 舉例而言,Li_過渡金屬複合氧化物可藉下述諸方法予 請 先 閱 讀 背 面 之 注 意 事 項 再 填 Μ 本 頁 裝· 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 10 311440 492207 經濟部智慧財產局項工消費合作社印製 A7 五、發明說明( 以製造。其一方法包括將起始鋰化合物與所需過渡金屬化 合物混合’使過渡金屬對經之原子比為1 · 1至〇 8 · 1, - · · 於大 、氣中、溫度700°C至1200°c,加熱該混合物3至50小時使 算發生反應,將反應產物粉碎成為顆粒,及獲取平均粒产不 •小於10 # m而滿足上式者。 有一不同方法進一步包含於例如約400 °C至750 °c,特 別疋450C至700C ’將上述經粉碎之顆粒加熱約小時 >至5 0小時,特別是約1小時至2 0小時。顆粒較佳為具有 10以m至25//m之平均粒度,在經如此之加熱處理時,惟 有顆粒之粒度不改變比表面積才會減少,。結果,可容易 ,地獲得滿足上面諸式之Li-過渡金屬複合氧化物。 ▲ 經粉碎之顆粒係於任何氛圍中[可於大氣中或於惰性 氣體(例如氣氣、鼠氣)下]進行加熱處理。然而,當碳酸氣 體存在於該氛圍中時,會產生碳酸鋰而使不純物含量增 加。因此,該加熱處理較佳於碳酸氣體分壓不高於約 ► mmHg之氛圍中進行。 上述起始鋰化合物之具體實例為氧化鋰、氫氧化鋰、 •鹵化經、硝酸經、草酸鐘、碳酸經及其混合物。過渡金屬 、化合物之實例包含過渡金屬氧化物、過渡金屬氫氧化物、 ^過渡金屬_化物、過渡金屬硝酸鹽、過渡金屬草酸鹽、過 渡金屬碳酸鹽、及其混合物。當所需複合氧化物含有前述 式(2)及(3)令經取代之元素(Me)時,則於鋰化合物與過渡金 1 屬化合物混合物中添加需要量之該經取代元素(Me)之化合 物0 ^-----:----t---------線 f請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 11 311440 492207 經濟部智慧財產局員工消費合作社印製 12 A7 五、發明說明( 於本發明中’製取含有Li_過渡金屬複合氧化物作為正 極活性物質、導電物質及黏合劑之組成物(正極活性物質組 成物),及通常將此組成物形成層而得到正極活性物質層。 黏合劑之實例包含聚四氟乙烯、聚偏氟乙烯、聚乙稀、乙 烯-丙烯-二烯型聚合物等。導電物質可為天然或人造石墨 例如纖維狀石墨、鱗片狀石墨、球形石墨、導電性碳黑等。 每100重量份Li-過渡金屬複合氧化物所用黏合劑之量為 約1至10重量份,較佳為2至5重量份。每1〇〇重量份Li_transition metal composite oxide has a specific surface area measured by a gas phase adsorption method (single point method), in which nitrogen is an adsorbate, and the adsorption method is described in Material Chemistry of Fine Particles (yasuo Arai, first edition, 9th impression, Baifukan (Tokyo) pp.178-184 (1995)-For example, Li_transition metal composite oxide can be given by the following methods. Please read the precautions on the back before filling in this page. · Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 10 311440 492207 Printed by A7 of the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs One method involves mixing the starting lithium compound with the desired transition metal compound so that the atomic ratio of the transition metal to warp is 1 · 1 to 〇8 · 1,-·· in air, at a temperature of 700 ° C to 1200 ° C, heating the mixture for 3 to 50 hours to make the reaction occur, crush the reaction product into particles, and obtain an average particle yield of less than 10 # m and satisfy the above formula A different method further includes, for example, about 400 ° C to 750 ° C, specifically 450C to 700C, 'heating the above-mentioned pulverized particles for about hours> to 50 hours, particularly about 1 hour to 20 hours. It is preferred to have an average particle size of 10 m to 25 // m. When subjected to such a heat treatment, the specific surface area will be reduced only if the particle size does not change. As a result, Li- which satisfies the above formulas can be easily obtained. Transition metal composite oxide. ▲ The pulverized particles are heat treated in any atmosphere [may be in the atmosphere or under an inert gas (such as gas, rat gas). However, when carbon dioxide gas is present in this atmosphere Lithium carbonate will be generated to increase the content of impurities. Therefore, the heat treatment is preferably performed in an atmosphere in which the partial pressure of carbonic acid gas is not higher than about ► mmHg. Specific examples of the above-mentioned starting lithium compounds are lithium oxide, lithium hydroxide, • Halogenation, nitric acid, oxalic acid, carbonic acid and mixtures thereof. Examples of transition metals and compounds include transition metal oxides, transition metal hydroxides, transition metal oxides, Transition metal nitrates, transition metal oxalates, transition metal carbonates, and mixtures thereof. When the desired composite oxide contains the aforementioned formulae (2) and (3), the substituted element (Me) is used in lithium compounds. Add the required amount of the substituted element (Me) compound 0 to the mixture with the transition metal 1 metal compound ^ -----: ---- t --------- line f, please read the back Note: Please fill in this page again) This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210 X 297 mm) 11 311440 492207 Printed by Employee Consumer Cooperative of Intellectual Property Bureau of Ministry of Economic Affairs 12 A7 V. Description of the invention (in the present invention 'A composition (a positive electrode active material composition) containing a Li-transition metal composite oxide as a positive electrode active material, a conductive material, and a binder is prepared, and this composition is usually formed into a layer to obtain a positive electrode active material layer. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, ethylene-propylene-diene type polymers, and the like. The conductive substance may be natural or artificial graphite such as fibrous graphite, flaky graphite, spherical graphite, conductive carbon black, and the like. The amount of the binder used per 100 parts by weight of the Li-transition metal composite oxide is about 1 to 10 parts by weight, preferably 2 to 5 parts by weight. Per 100 parts by weight

Li-過渡金屬複合氧化物所用導電物質之量為約3至15重 量份,較佳為4至10重量份。正極活性物質層通常結合(黏 著)於電流收集體而形成正極。與正極活性物質層一起使用 之正極電流收集體較佳為導電金屬(例如鋁、鋁合金、鈦等) 之箔片或多孔箔片’其厚度為約1〇至1〇〇 " m,特別是約 15至5〇em,或厚度為約25至3〇〇#m,特別是約至 150以1!1之多孔金屬板(以1^11心(1111以31)等。黏著於正極電 流收集體之一表面之正極活性物質組成物之量通常為5至 40 mg/cm2,較佳為 1〇 至 3〇 mg/cm2。 、使用此Li_過渡金屬複合氧化物作為正極活性物質構 成鋰離子二次電池時’負極活性物質較佳為石墨例如各種 ,天然石墨及人造石墨(例如纖維狀石墨、鱗片狀石墨、球形 石墨等)或石墨型碳物質(例如石墨化碳)。將負極活性物質 與黏合劑混合成為組成物,然'後將其形成負極活性物質 層。黏合劑之實例包含先前於正極活性物質層所例示者。 如果需要’則可添加導電物質例如碳黑(特別是乙炔碳黑) 刚认! W _家鮮(CNS)T4_規格⑽以^^ 311440 — 17%—IIJIIIII — — — · I I — 卜— ·— I 一« — I! — — ! — —. (請先閱讀背面之注咅?事項再填寫本頁) 492207 A7 B7 五、發明說明( (請先閱讀背面之注音?事項再填寫本頁) 等。負極活性物質層通常結合(黏著)於電流收集體而形成 •I極。與負極活性物質層一起使用之負極電流收集體較佳 為導電金屬例如鋼、鎳、銀、sus等之箔片或多孔箔片 、其厚度為約5至100 v m,特別是約8至5〇以m,或厚度為 約20至3 00 " m,特別是約2S至1〇〇 "瓜之多孔金屬板 電解質可藉溶解鹽於有機溶劑中而獲得,該鹽之實例包含The amount of the conductive substance used in the Li-transition metal composite oxide is about 3 to 15 parts by weight, preferably 4 to 10 parts by weight. The positive electrode active material layer is usually bonded (adhered) to the current collector to form a positive electrode. The positive electrode current collector used with the positive electrode active material layer is preferably a foil or a porous foil of a conductive metal (such as aluminum, aluminum alloy, titanium, etc.), and its thickness is about 10 to 100 m, particularly It is about 15 to 50 μm, or a thickness of about 25 to 300 #m, especially about 1 to 1 porous metal plate (with 1 ^ 11 cores (1111 to 31), etc.) adheres to the positive current The amount of the positive electrode active material composition on one surface of the collector is usually 5 to 40 mg / cm2, preferably 10 to 30 mg / cm2. The lithium-transition metal composite oxide is used as the positive electrode active material to constitute lithium. In an ion secondary battery, the negative electrode active material is preferably graphite such as various types, natural graphite and artificial graphite (such as fibrous graphite, flaky graphite, spherical graphite, etc.) or graphite-type carbon materials (such as graphitized carbon). The substance is mixed with a binder to form a composition, and then it is formed into a negative electrode active material layer. Examples of the binder include those previously exemplified in the positive electrode active material layer. If necessary, a conductive substance such as carbon black (especially acetylene) may be added. Carbon black) W _ 家 鲜 (CNS) T4_Specifications ⑽ ^ 311440 — 17% —IIJIIIII — — — — — — — — — I — «— I! — —! — — (Please read the note on the back first (Please fill in this page for matters) 492207 A7 B7 V. Description of the invention ((Please read the note on the back? Matters before filling out this page), etc. The anode active material layer is usually bonded (adhered) to the current collector to form the I pole. The anode current collector used with the anode active material layer is preferably a foil or porous foil of a conductive metal such as steel, nickel, silver, sus, etc., and has a thickness of about 5 to 100 vm, especially about 8 to 5 〇In m, or a thickness of about 20 to 3 00 " m, especially about 2S to 100 " porous metal plate electrolyte of melons can be obtained by dissolving a salt in an organic solvent, examples of the salt include

LiC104、LiBF4、LiPF6、LiAsF6、LiAlCl4、Li(CF3S02)2N 丨等,係使用其一或多種之混合物。上述有機溶劑之實例包 含碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、 碳酸乙基甲酯、二甲基亞楓、環丁碾、丁醯内酯、U 一甲氧乙烷、N,N_二甲基甲醯胺、四氫咲喃、•二曙茂 -烷、2-甲基四氫呋喃、乙醚等,係使用其一或多種之混合 物。上述鹽於電解質中之濃度為約〇1至3 m〇1/L。 經濟部智慧財產局員工消費合作社印製 本發明之正極活性物質組成物至少含有平均粒度不小 於10/z m之L“過渡金屬複合氧化物作為正柽活性物質、 ►粒度不小於3Mm(較大尺寸)之導電物質顆粒,及粒度不大 於2以m(較小尺寸)之導電物質顆粒(第一具體實例);或含 •有平均粒度不小於10以〇!之Li_過渡金屬複合氧化物作為 .正極活性物質、粒度不小於3/zm(較大尺寸)之導電物質顆 .,粒,及具有3或3以上之縱橫比及不大於2/zm之纖維直 “徑(較小尺寸)之導電物質纖維(第二具體實例)。本發明之第 二鐘離子二次電池含有此二正極活性物質組成物之一者。 於此組成物中之正極活性物質,亦即\ Li_過渡金屬複 合氧化物,較佳為前述式(3)及(4)所示者,特佳為Lic〇〇 木紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ----------------- 13 311440 492207 A7 經濟部智慧財產局員工消費合作社印製LiC104, LiBF4, LiPF6, LiAsF6, LiAlCl4, Li (CF3S02) 2N, etc. use one or more kinds of mixtures thereof. Examples of the above-mentioned organic solvents include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl methylene maple, cyclobutadiene, butyrolactone, U-methoxyethyl Alkanes, N, N-dimethylformamidine, tetrahydrofuran, diisocene-alkane, 2-methyltetrahydrofuran, diethyl ether, etc. are used in a mixture of one or more of them. The concentration of the above salt in the electrolyte is about 0.01 to 3 mO1 / L. Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the positive electrode active material composition of the present invention contains at least L "transition metal composite oxide with an average particle size of not less than 10 / zm as a positive scandium active material, ► particle size of not less than 3Mm (larger size ) Conductive material particles, and conductive material particles with a particle size of not more than 2 m (smaller size) (first specific example); or Li_transition metal composite oxides with an average particle size of not less than 10% Positive electrode active material, conductive material particles with a particle size of not less than 3 / zm (larger size), particles, and straight diameters (smaller sizes) of fibers having an aspect ratio of 3 or more and not more than 2 / zm Conductive substance fiber (second specific example). The second ion secondary battery of the present invention contains one of these two positive electrode active material compositions. The positive electrode active material in this composition, that is, the \ Li_transition metal composite oxide, is preferably the one represented by the aforementioned formulas (3) and (4), particularly preferably the Lic00 wood paper size is applicable to Chinese national standards (CNS) A4 size (210 X 297 mm) ----------------- 13 311440 492207 A7 Printed by the Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs

492207 A7 B7 五、發明說明(15) 正極活性物質組成物供給鋰離子二次電池之安全性及 改良之充電及放電循環性質。為達此目的,Li_過渡金屬複 合氧化物(正極活性物質)具有不小於1 0 // m之平均粒度。 (請先.閱讀背面之注音?事項再填寫本頁} *當平均粒度太大時,Li-過渡金屬複合氧化物本身具有較大 •的電阻,即使添加導電性碳材質亦無法使正極活性物質組 成物之電阻減少。因此,平均粒度較佳為10/zm至30/zm, 特佳為10/zm至25/i m°Li-過渡金屬複合氧化物係藉先前 1所述方法測定平均粒度,比表面積與平均粒度之間的關係 滿足前述式(1)時,可產生更佳的結果。 於正極活性物質組成物之第一具體實例中,係使用粒 '度不小於3Wm之粒狀導電物質(下文稱為第一導電物質) -及粒度不大於2以m之粒狀導電物質(下文稱為第二導電物 質);於第二具體實例中,係使用前述第一導電物質及具有 3或3以上之縱橫比(纖維長度/纖維直徑)及不大於 之纖維直徑之纖維狀導電物質(下文稱為第三導電物質)。 本文所用之粒狀意指,惟不限於,鱗片狀、球形、擬球形、 膨鬆狀、鬚狀等。 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 如習知導電物質一樣,可使用碳物質作為第一導電物 質例如,可使用人造或天然石墨,及碳黑例如乙炔碳黑、 油爐黑、超導電爐黑等。欲達成改良之循環性質,此等碳 物質中’以使用石墨為較佳,特別是點陣平面(d〇〇2)間隔 不大於0.34㈣及c_軸方向(Lc)微晶大小不小於1〇咖之 石墨化碳。 1 上述點陣平面(d002)間隔及c-軸方向(Lc)微晶大小可 i纸張尺度^用中關家鮮(CNS)A4規格(210 X 297公髮) 15 311440 492207 A7 五、發明說明(16) 依據詳述於下之日本科學方法促進協會(japan Society for the Promotion 〇f science Method)之方法予以測定。 (請先閱讀背面之注意事項再填寫本頁) 於瑪竭研鉢中,將作為X射線標準物質用之高純度矽 粉碎至不大於325標準篩目之粒度。此標準物質及欲測定 之試樣(石墨化碳)於瑪竭研鉢中混合(石墨化碳:100 wt%, 標準物質:10 wt%),得到χ射線測定用試樣。將此X射線 試樣均勻地裝填於X射線繞射裝置(RINT2〇〇〇,RIGAKlJ ELECITKIC: CORPORATION 製造,X 射線源:CuK α 射線) 之樣品板中。於施加於χ射線管之電壓為4〇 kv、施加電 流50 mA、掃描範圍20=23 5。至29^ 、掃描速度〇 25 度/分鐘等條件下’測定碳之〇〇2峰及標準物質之m峰。 使用上述X射線繞射裝置備有之石墨化程度計算軟體,由 所得峰及其半寬峰之位置計算點陣平面(d〇〇2)間隔及卜轴 方向(Lc)微晶大小。 經濟部智慧財產局員工消費合作社印製 第導電物質係用以改良正極活性物質顆粒間之電連 結,應具有一定的大小以達成意指之電連結。粒度太大會 阻止正極活性物質之最密堆積’因此,以使用粒度為 至25//m之顆粒為佳。此外,以使用比表面積不大於 mVg,特別是i mVg至10m2/g之顆粒為佳。 假設構成第一導電物質之顆粒為球形,則第一導電物 質之粒度意指其截面圓之直徑,係使用如前述Li·過渡金 屬複合氧化物情形中之微軌粒度分析儀予以測定。 至於第二導電物質,和第一1 矛 导電物質一樣,可使用人 S或天然石墨,及4黑例二块碳黑、油爐黑、超導電; 本紙張尺度適用中國國家標準(CNS)A4規‘(21(^ 297公|^ 16 311440 經濟部智慧財產局員工消費合作社印製 五、發明說明(17) 黑等。 、· 第一導電物質係用以使正極活性物質顆粒的表面具導 電座’粒度太大會阻止此種效果。因此,以使用粒度為不 大於1 v m之顆粒為特佳。此外,以使用比表面積不小於 ;1 〇 m2/g ’特別是不小於15 m2/g之顆粒為佳。 假设構成第二導電物質之顆粒為球形,則第二導電物 質之粒度意指其截面圓之直徑,係使用微執粒度分析儀予 以測疋。當粒度小於1 V m時,於分散體令,顆粒傾向於 聚集成團。當粒度小於lem時,較好使用電子顯微鏡。 詳g之,將倍率設定於視野中含有至少20個顆粒之值,並 '拍攝電子顯微照片。接著,計算照片上各顆粒影像之面積。 由冲异出來的面積’計算具有相同面積的圓之直徑。假設 構成第一導電物質之顆粒為具有此直徑的截面圓之球體, 此直徑即視為第二導電物質之粒度。 第一導電物質及第二導電物質之比面積係以測量前述 1 過渡金屬複合氧化物比表面積之相同方式、藉由使用氮 氣作為吸附物之氣相吸附法(單點法)予以測定。 \ 至於第三導電物質,可使用各種碳纖維。詳言之,以 氣相生長法等製備之碳纖維、石墨化碳纖維例如中間相型 .石墨化碳等。該破纖維可為線型或捲曲型。 ^ 第三導電物質像第二導電物質一樣,係用以使正極活 性物質顆粒的表面具導電性,尺寸太大會阻止此種效果。 因此,以使用具有10至50縱橫比(纖雉長度/纖維直徑)之 顆粒為佳。此外,以使用纖維直徑不大於1 // m之顆粒為 ^-----:----^---------^ f請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 17 311440 492207 A7 ___ B7__ _ 五、發明說明(1S) 佳。 (請先閱讀背面之注咅?事項再填寫本頁) 像粒度不大於之第二導電物質一樣,第三導電 物質之縱橫比及纖維直徑係使用電子顯微鏡予以測定。詳 言之,將倍率設定於視野中含有至少20條纖維之值,並拍 攝電子顯微照片。接著,以測徑器測量照片上各纖維之纖 維直徑及纖維長度。線型纖維之纖維長度為纖維的一端至 另一端間之最短距離;捲曲型纖維之纖維長度為纖維上兩 個任選及最遠點間之距離。 當第一導電物質及第二導電物質或第三導電物質之用 量比太不平衡(太大或太小)時,同時使用前述具有較大尺 寸導電物質與具有較小尺寸導電物質之效果趨於降低。每 100重量份第一導電物質所用第二導電物質或第三導電物 質之量較佳為1重量份至200重量份。欲達成更佳改良之 導電性及安全性,較佳為5重量份至1〇〇重量份,特佳為 1〇重量份至50重量份。 經 濟 部 智 慧 財 產 局 員 工 消 費 合 作 社 印 製 母100重量份Li-過渡金屬複合氧化物所用導電物質之 總量,例如,為約3重量份至15重量份。於本發明中,由 於使用兩種不同尺寸的導電物質,所以每1〇〇重量份乙卜 過渡金屬複合氧化物,其用量較習知用量少例如3重量份 至1〇重量份,而可提供充足之賦與導電效果。因此,增加 Li-過渡金屬複合氧化物之量,結果,可增加電池電容S。 玲正極活性物質組成物之黏合劑可為聚彳四氟乙烯、聚偏 氟乙烯、聚乙烯、乙烯-丙烯-二烯型聚合5物等。每ι〇〇重 量份正極活性物質組成物所用黏合劑之量為1重量份至20 本紙張尺度適用T國國家標準(CNS)A4規格(21Q x 297公髮) 18 311440 492207 A7492207 A7 B7 V. Description of the invention (15) The safety of the positive electrode active material composition for lithium ion secondary batteries and improved charge and discharge cycle properties. To achieve this, the Li_transition metal composite oxide (positive electrode active material) has an average particle size of not less than 10 // m. (Please read the note on the back? Matters before filling out this page} * When the average particle size is too large, the Li-transition metal composite oxide itself has a large resistance. Even if a conductive carbon material is added, the positive electrode active material cannot be made. The resistance of the composition is reduced. Therefore, the average particle size is preferably 10 / zm to 30 / zm, particularly preferably 10 / zm to 25 / im °. The average particle size of the Li-transition metal composite oxide is determined by the method described in 1. When the relationship between the specific surface area and the average particle size satisfies the aforementioned formula (1), better results can be produced. In the first specific example of the positive electrode active material composition, a granular conductive material having a particle size of not less than 3 Wm is used. (Hereinafter referred to as the first conductive substance)-and a granular conductive substance having a particle size of not more than 2 m (hereinafter referred to as the second conductive substance); in the second specific example, the aforementioned first conductive substance is used and has 3 or An aspect ratio (fiber length / fiber diameter) of 3 or more and a fibrous conductive material (hereinafter referred to as a third conductive material) having a fiber diameter of not more than. The granular shape used herein means, but is not limited to, scaly, spherical, Pseudoball Bump-like, whisker-like, etc. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs as a conventional conductive substance, carbon can be used as the first conductive substance. For example, artificial or natural graphite can be used, and carbon black such as acetylene carbon. Black, oil furnace black, superconducting furnace black, etc. To achieve improved cycle properties, it is better to use graphite among these carbon materials, especially the lattice plane (dOO2) interval is not greater than 0.34㈣ and c _Graphic carbon with a crystallite size in the axial direction (Lc) of not less than 10. 1 The above lattice plane (d002) interval and the crystallite size in the c-axis direction (Lc) can be used on a paper scale. (CNS) A4 specification (210 X 297) 15 311440 492207 A7 V. Description of the invention (16) Measured in accordance with the method of the Japan Society for the Promotion 〇f science Method detailed below. (Please read the precautions on the back before filling this page.) In a Malex mortar, pulverize the high-purity silicon used as an X-ray standard substance to a particle size of no more than 325 standard mesh. This standard substance and the test to be determined kind( Inked carbon) was mixed in a mason mortar (graphitized carbon: 100 wt%, standard material: 10 wt%) to obtain a sample for X-ray measurement. This X-ray sample was uniformly filled in X-ray diffraction. Device (RINT2000, manufactured by RIGAKlJ ELECITKIC: CORPORATION, X-ray source: CuK α-ray) in a sample plate. The voltage applied to the x-ray tube is 40kv, the applied current is 50 mA, and the scanning range is 20 = 23 5 Measure the peak of carbon 0.02 and the peak of m of the standard material under conditions such as 29 and scanning speed 025 ° / min. The graphitization degree calculation software provided in the above-mentioned X-ray diffraction device was used to calculate the lattice plane (dOO2) interval and the crystallographic direction (Lc) crystallite size from the positions of the obtained peaks and their half-width peaks. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. The conductive material is used to improve the electrical connection between the positive electrode active material particles. It should have a certain size to achieve the intended electrical connection. If the particle size is too large, the closest packing of the positive electrode active material is prevented '. Therefore, it is preferable to use particles having a particle size of 25 // m. In addition, it is better to use particles whose specific surface area is not greater than mVg, especially from i mVg to 10m2 / g. Assuming that the particles constituting the first conductive substance are spherical, the particle size of the first conductive substance means the diameter of its cross-section circle, and it is measured using a micro-orbit particle size analyzer in the case of the aforementioned Li · transition metal composite oxide. As for the second conductive material, the same as the first 1 spear conductive material, human S or natural graphite can be used, and 4 black cases, two carbon blacks, oil furnace black, and super conductive; this paper size applies Chinese National Standards (CNS) A4 Regulations' (21 (^ 297 公 | ^ 16 311440 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, 5. Description of the Invention (17) Black, etc.) The first conductive substance is used to make the surface of the positive electrode active material particles The size of the conductive seat is too large to prevent this effect. Therefore, it is particularly preferable to use particles with a particle size of not more than 1 vm. In addition, use a specific surface area of not less than; 10 m2 / g ', especially not less than 15 m2 / g Assume that the particles constituting the second conductive material are spherical. The particle size of the second conductive material means the diameter of its cross-section circle, which is measured using a micro particle size analyzer. When the particle size is less than 1 V m, Due to the dispersion, the particles tend to agglomerate. When the particle size is less than lem, an electron microscope is preferred. For details, set the magnification to a value containing at least 20 particles in the visual field, and 'take an electron micrograph. Then, calculate The area of the image of each particle on the sheet. Calculate the diameter of a circle with the same area from the area of the difference. Assuming that the particles constituting the first conductive substance are spheres with a cross-section circle of this diameter, this diameter is regarded as the second conductive substance. The specific area of the first conductive material and the second conductive material is measured by the gas phase adsorption method (single-point method) using nitrogen as an adsorbent in the same manner as the specific surface area of the transition metal composite oxide 1 described above. As for the third conductive substance, various carbon fibers can be used. In particular, carbon fibers prepared by a vapor phase growth method, graphitized carbon fibers such as mesophase, graphitized carbon, etc. The broken fibers can be linear or crimped. ^ The third conductive material, like the second conductive material, is used to make the surface of the positive electrode active material particles conductive, and the size is too large to prevent this effect. Therefore, the use of 10 to 50 aspect ratio (fiber length / fiber Diameter) is better. In addition, the use of particles with a fiber diameter of no more than 1 // m is ^ -----: ---- ^ --------- ^ f Please read the back Note Please fill in this page for more details) This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 17 311440 492207 A7 ___ B7__ _ V. The invention description (1S) is good. (Please read the note on the back first? Please fill in this page again) Like the second conductive material whose particle size is not larger, the aspect ratio and fiber diameter of the third conductive material are measured using an electron microscope. In particular, set the magnification to a field of view containing at least 20 fibers Value, and take an electron micrograph. Next, use a caliper to measure the fiber diameter and fiber length of each fiber in the photo. The fiber length of the linear fiber is the shortest distance from one end to the other end of the fiber; the fiber length of the crimped fiber The distance between two optional and furthest points on the fiber. When the usage ratio of the first conductive material, the second conductive material, or the third conductive material is too unbalanced (too large or too small), the effect of using the aforementioned conductive material with a larger size and the conductive material with a smaller size tends to reduce. The amount of the second conductive substance or the third conductive substance used per 100 parts by weight of the first conductive substance is preferably 1 part by weight to 200 parts by weight. To achieve better improved conductivity and safety, it is preferably 5 parts by weight to 100 parts by weight, and particularly preferably 10 to 50 parts by weight. The total amount of conductive materials used in 100 parts by weight of Li-transition metal composite oxides printed by the Consumer Affairs Agency of the Intellectual Property Office of the Ministry of Economic Affairs is, for example, about 3 parts by weight to 15 parts by weight. In the present invention, since two conductive materials of different sizes are used, the amount of the ethylene oxide transition metal composite oxide per 100 parts by weight is less than the conventional amount, for example, 3 to 10 parts by weight, and may be Provides sufficient energization and conductive effect. Therefore, the amount of the Li-transition metal composite oxide is increased, and as a result, the battery capacity S can be increased. The binder of the positive electrode active material composition may be polyfluorinated tetrafluoroethylene, polyvinylidene fluoride, polyethylene, ethylene-propylene-diene polymer 5 or the like. The amount of the binder used per 100,000 parts by weight of the positive electrode active material composition is 1 part by weight to 20. This paper size is applicable to National Standard T (CNS) A4 (21Q x 297). 18 311440 492207 A7

五、發明說明(19) 重量份’較佳為1重量份至1〇重量份。 經 濟 智 慧 財 產” 局 員 工 消 費 合 作 社 印 製 電池之其他組成物質,伽‘ , 、 j如與正極活性物質組成物一 起構成正極之正極電流收隼微 g ; 杲體負極活性物質、負極電流 收集體、電解質(構成電解質之右挽 寅之有機溶劑)等較佳為前述發 -明(粒度與比表面積間具有特^關係之Li_過渡金屬複合氧 化物)所例示者。黏著於正極電流收集體之一表面之正極活 性物質組成物之量通常為之5至4 q 〕主40 mg/cm2,較佳為1〇至 30 mg/cm2 〇 本發明之第三鐘離子二次電池包括,比表面積不大於 2.0mVg、點陣平面(d002)間隔不大於〇 338〇nm& c軸方 向(Lc)微晶大小不小於30 nm之石墨化碳,作為負極活性 物質,及碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯及選自碳 酸二乙酯及碳酸乙基甲酯之至少一種之混合溶劑作為電解 質溶劑。 石墨化碳較佳為具有0.7 m2/g至1.5 m2/g之比表面 積,0.3350 nm至0.3370nm之點陣平面(d002)間隔,及40 nm至80nm之c-軸方向(Lc)微晶大小。 特定負極活性物質及電解質之組合,即使電解質混合 溶劑含EMC、DMC及PC,亦提供優異之放電循環性質, 而無如JP-A-7-14607所述混合溶劑之分解現像。當石墨化 碳具有大於2.0 m2/g之比表面積時,充電期間pc易於分 解而降低電容。當點陣平面(d002)間隔大於0.33 80 nm或 i 當c·軸方向(Lc)微晶大小小於30 nm時,負極活性物質中 經欲加反應(intercalation reaction)之可逆性不足,結果, -------------裝-----;----訂---------線 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 19 311440 4922075. Description of the invention (19) Part by weight 'is preferably 1 part by weight to 10 parts by weight. "Economic and intellectual property" Bureau ’s consumer cooperatives printed on other components of the battery, Gamma, j, together with the composition of the positive electrode active material constitutes the positive current of the positive electrode, micrograms; carcass negative active material, negative current collector, Electrolytes (organic solvents that make up the electrolyte of You Banyin) and the like are preferably exemplified by the aforementioned FA-Ming (Li_transition metal composite oxide having a special relationship between particle size and specific surface area). Adhesives to the positive current collector The amount of the positive electrode active material composition on one surface is usually 5 to 4q] The main 40 mg / cm2, preferably 10 to 30 mg / cm2. The third ion secondary battery of the present invention includes Graphitized carbon greater than 2.0mVg, lattice plane (d002) interval not greater than 0.338nm & c-axis direction (Lc) crystallite size not less than 30 nm, as a negative electrode active material, and ethylene carbonate, propylene carbonate, As the electrolyte solvent, dimethyl carbonate and a mixed solvent selected from at least one of diethyl carbonate and ethyl methyl carbonate are used. The graphitized carbon is preferably 0.7 m2 / g to 1.5 m2 / g. Surface area, lattice plane (d002) interval from 0.3350 nm to 0.3370 nm, and c-axis direction (Lc) crystallite size from 40 nm to 80 nm. Specific negative electrode active material and electrolyte combination, even if the electrolyte mixed solvent contains EMC, DMC And PC, also provide excellent discharge cycle properties, without the decomposition of mixed solvents as described in JP-A-7-14607. When graphitized carbon has a specific surface area greater than 2.0 m2 / g, pc is easily decomposed during charging and Decrease the capacitance. When the lattice plane (d002) interval is greater than 0.33 80 nm or i When the crystal size in the c-axis direction (Lc) is less than 30 nm, the reversibility of the negative active material through the intercalation reaction is insufficient. As a result, ------------- install -----; ---- order --------- line (please read the precautions on the back before filling this page) This paper size applies to China National Standard (CNS) A4 (210 X 297 public love) 19 311440 492207

五、發明說明(20) 電池之充電及放電循環性質降低。 像一般石墨型負極活性物質一樣, (請先閱讀背面之注意事項再填寫本頁) 狀態使用。構成石墨化碳之顆粒,其形m碳係呈粉末 可為鱗片狀、纖維狀、球形、擬’.、·、特別限制而 然而,從容易以負極活性物質組成物塗覆負極雷=等。 及塗覆後石墨化碳取向之觀點而一覆負極電流收集體 硯點而s,石墨化碳較好為鏞給 狀。因此,特佳為使用纖維狀中間相型石墨化碳,亦即維 中間相型石墨化碳纖維。中間相型石墨化碳纖維可藉由例 如下述方法予以製造。 積田例 首先,以溶嗔法將瀝青例如石油渥青、煤潰》歷 特別是’含有比例不少於70容積%的中間相之中間相湿 青,紡成長度約20〇/zm至300 /zm之纖維。於8〇〇。(:至 t:將此纖維碳化’並粉碎成具有適當尺寸例如平均纖維長 度約1以m至100/zm、平均纖維直徑約1以131至15以瓜之 纖維。於2500°C至3200°c,較佳為28〇〇〇c至32〇〇艺,加 經濟部智慧財產局員工消費合作社印製 熱經粉碎之纖維,使其石墨化而得到中間相型石墨化破纖 維。為了達到後文將述及之負極活性物質組成物於負極電 流收集體上之良好塗覆性,較佳為進行上述粉碎作用而使 平均纖維長度為lem至l〇〇vm,特別是3以111至5(^111, 甚或2/z m至25/z m,及平均纖維直徑為〇 5以^至15 v❿, 特別疋1 // m至1 5 // m,甚或5 // m至1 0以m。縱橫比(平 均纖維長度/平均纖維直徑)較佳為1至5。 石墨化碳之比面積係以前述測量Li-Co型複合氧化物 比表面積之相同方法[氣相吸附法(單點法)其中氮氣為吸 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 20 311440 Α7 Α7 經濟部智慧財產局員工消費合作社印制衣 五、發明說明(21 ) 附物]予以測定。石墨化碳之點陣平面(d〇〇2)間隔係依據前 述曰本科學方法促進協會之方法予以測定。 電解質混合溶劑具有任選之混合比率,然而,較佳為 •含有比例為25容積%至50容積%(特佳為3〇容積%至35 •容積%)之選自碳酸乙酯及碳酸乙基甲酯之至少一員,較佳 為含有比例為4容積%至20容積%(特佳為6容積%至18 容積%)之碳酸乙烯酯,較佳為含有比例為3容積%至17 谷積/。(特佳為5容積%至15容積%)之碳酸丙烯酯,及較 佳為含有比例為40容積%以上且不大於6〇容積❻‘(特佳為 45容積%至55容積%)之碳酸二甲酯。 當碳酸乙烯酯之含量少於4容積%時,無法於負極表 -面形成穩定之膜;其量超過20容積%時,電解質之黏度增 加,繼而提升電池之電阻,降低充電及放電循環性質。當 碳酸丙烯酯之含量少於3容積%時,與充電及放電循環相 關之阻抗增加被抑制至較小程度;而其量超過1 7容積% >時,電解質之黏度增加,繼而提升電池之電阻,降低充電 及放電循環性質。當碳酸二甲酯之含量不大於4〇容積% •時,電解質之黏度增加,繼而提升電池之電阻,降低充電 ,及放電循環性質;而其量超過60容積%時,電解質之凝固 、點提升而增加電池於低溫之電阻,降低低溫時之充電及放 -電循環性質。當碳酸乙酯及/或碳酸乙基甲酯之含量少於25 容積%時,電解質之凝固點增加且低溫時電池之電阻增 加,降低低溫時之充電及放電循環性質;而其量超過5〇 容積%時,電解質之黏度提升,使電池之電阻增加,降低 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 裝-----;----訂---------線 (請先閱讀背面之注咅?事項再填寫本頁) 21 311440 492207 A7 五、發明說明(22 充電及放電循環性質 (請先閱讀背面之注音?事項再填寫本頁) 負極活性物質與黏合劑混合形成組成物,然後使其形 成負極活性物質層。黏合劑之實例包含聚四氟乙烯、聚偏 氟乙烯、聚乙烯、乙烯_丙烯-二烯型聚合物等。需要時, 可添加導電物質,例如碳黑等。每1〇〇重量份負極活性物 質與黏合劑之總量,負極活性物質之用量為8〇至96重量 份,較佳為90至95重量份。負極電流收集體較佳為導電 金屬(例如銅、鎳、銀、sus等)之箔片或多孔箔片,其厚 度為約5至100/zm,特別是約8至5〇"m,或厚度為約 20至30〇/zm,特別是約25至1〇〇//m之多孔金屬板等。 黏著於負極電流收集體之一表面之負極活性物質組成物之 量通常為3至20 mg/cm2,較佳為5至15 mg/cm2。 電解質含有上述混合溶劑及於其中溶解一或多種u鹽V. Description of the invention (20) The charge and discharge cycle properties of the battery are reduced. Like ordinary graphite negative electrode active materials, (Please read the precautions on the back before filling this page). The particles constituting the graphitized carbon may be scaly, fibrous, spherical, pseudo-.., ..., particularly in the shape of m-based carbon. However, it is easy to coat the negative electrode with a negative electrode active material composition. From the viewpoint of the orientation of the graphitized carbon after coating, it is preferable to cover the anode current collector and the s, and the graphitized carbon is preferably saccharate. Therefore, it is particularly preferable to use fibrous mesophase graphitized carbon, that is, mesophase graphitized carbon fibers. The mesophase graphitized carbon fiber can be produced by, for example, the following method. First example of the Sake field, firstly, the asphalt, such as petroleum greens and coals, was melted by the dissolving method. In particular, the mesophase containing the mesophase with a proportion of not less than 70% by volume was wet blue and spun into a length of about 20 / zm to 300 zm fiber. At 800. (: To t: carbonize this fiber 'and pulverize it into fibers having an appropriate size such as an average fiber length of about 1 to 100 / zm and an average fiber diameter of about 1 to 131 to 15. At 2500 ° C to 3200 ° c, preferably from 2800c to 3200, plus the consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs to print the thermally pulverized fiber and graphitize it to obtain mesophase graphitized broken fibers. The good coatability of the negative electrode active material composition on the negative electrode current collector will be mentioned in the text. It is preferable to perform the above pulverization to make the average fiber length from lem to 100 vm, especially from 3 to 111 to 5 ( ^ 111, or even 2 / zm to 25 / zm, and the average fiber diameter is 0.05 to ^ to 15 v❿, especially 疋 1 // m to 1 5 // m, or even 5 // m to 10 to m. Vertical and horizontal The ratio (average fiber length / average fiber diameter) is preferably from 1 to 5. The specific area of graphitized carbon is the same method as the aforementioned method for measuring the specific surface area of Li-Co type composite oxides [the gas phase adsorption method (single point method) of which Nitrogen is used as the paper standard. Applicable to China National Standard (CNS) A4 (210 X 297 public love) 20 311440 Α7 Α7 Printed clothing by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (21) Attachment] to be measured. The lattice plane (d002) interval of graphitized carbon is based on the aforementioned method The electrolyte mixed solvent has an optional mixing ratio, however, it is preferably selected from the group consisting of ethyl carbonate and 25 vol% to 50 vol% (particularly 30 vol% to 35 vol%). At least one member of ethyl methyl carbonate, preferably containing 4 to 20% by volume (particularly 6 to 18% by volume), preferably containing 3 to 17% by volume Gu Ji / (excellently 5% to 15% by volume) propylene carbonate, and preferably contains a content of 40% by volume or more and not more than 60% by volume ❻ '(exclusively 45% to 55% by volume) When the content of ethylene carbonate is less than 4% by volume, a stable film cannot be formed on the surface of the negative electrode; when the amount exceeds 20% by volume, the viscosity of the electrolyte increases, which in turn increases the resistance of the battery. , Reduce the charge and discharge cycle properties When the content of propylene carbonate is less than 3% by volume, the increase in impedance related to the charge and discharge cycle is suppressed to a small degree; and when the amount exceeds 17% by volume >, the electrolyte viscosity increases, which in turn improves the battery The resistance decreases the charge and discharge cycle properties. When the content of dimethyl carbonate is not more than 40% by volume, the viscosity of the electrolyte increases, which in turn increases the battery resistance, reduces the charge and discharge cycle properties; and its amount exceeds 60 At% by volume, the solidification of the electrolyte and the point increase increase the resistance of the battery at low temperatures, reducing the charging and discharging-electricity cycling properties at low temperatures. When the content of ethyl carbonate and / or ethyl methyl carbonate is less than 25% by volume, the freezing point of the electrolyte increases and the resistance of the battery increases at low temperatures, reducing the charge and discharge cycle properties at low temperatures; and the amount exceeds 50% by volume At %%, the viscosity of the electrolyte increases, which increases the resistance of the battery and reduces the paper size. This paper applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm). -----; ---- Order ---- ----- Line (Please read the note on the back? Matters before filling this page) 21 311440 492207 A7 V. Description of the invention (22 Charging and discharging cycle properties (Please read the note on the back? Matters before filling out this page) The negative electrode active material is mixed with a binder to form a composition, and then it is formed into a negative electrode active material layer. Examples of the binder include polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, ethylene-propylene-diene type polymers, etc. Required In this case, a conductive material such as carbon black may be added. The amount of the negative electrode active material is 80 to 96 parts by weight, preferably 90 to 95 parts by weight, per 100 parts by weight of the total amount of the negative electrode active material and the binder. Negative current collector is better A foil or porous foil that is a conductive metal (such as copper, nickel, silver, sus, etc.) and has a thickness of about 5 to 100 / zm, especially about 8 to 50 m, or about 20 to 30 〇 / zm, especially a porous metal plate of about 25 to 100 // m, etc. The amount of the anode active material composition adhered to one surface of the anode current collector is usually 3 to 20 mg / cm2, preferably 5 to 15 mg / cm2. The electrolyte contains the above mixed solvent and one or more u salts dissolved therein

例如 LiC104、LiBF4、LiPF6、LiAsF6、LiAlCl4、U(CF3S02)2NFor example LiC104, LiBF4, LiPF6, LiAsF6, LiAlCl4, U (CF3S02) 2N

等。電解質之Li鹽濃度通常為約〇」m〇1/L至2 m〇1/L, 從充電及放電循環性質之觀點而言,較佳為約0.5 m〇l/L 至 1·8 mol/L ’ 特佳為約 〇 8 m〇i/L 至 1.5 mol/L。 經濟部智慧財產局員工消費合作社印製 正極活性物質由Li_過渡金屬複合氧化物所組成,此複 合氧化物較佳為具前述式(3)及(4)所示之組成物,特佳為Wait. The Li salt concentration of the electrolyte is usually about 0 mO1 / L to 2 mO1 / L, and from the viewpoint of charge and discharge cycle properties, it is preferably about 0.5 mOl / L to 1.8 mol / L. L 'is particularly preferably about 0.8 mOi / L to 1.5 mol / L. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. The positive electrode active material is composed of a Li-transition metal composite oxide. The composite oxide is preferably a composition represented by the above formulas (3) and (4). Particularly preferred is

LiCo02或LiACo1-xMex〇2(式中a、X及元素Me如上述定 義)’其平均粒度較佳為不小於1〇/zm。正極活性物質層之 黏合劑、導電物質及正極電流收集體較气為前述Li_過渡 金屬複合氧化物中所提及者。 1 本發明之第四鋰離子二次電池為前述L卜過渡金屬複 $張尺度適財關家標準(CNS)A4規格⑽x 29 22 311440 經 濟 部一 智 慧 財 產, 局 消 費 合 社 印 製 492207 A7 --- ---B7 _ 五、發明說明(23 ) 合氧化物、正極活性物質組成物及第三鋰離子二次電池之 組合。詳言之,係包括下列組成: •正極活性物質:平均粒度不小於1〇#m之粒狀Li-過渡 # 金屬複合氧化物,[2〇/(比表面積X平均粒度)]=7-9 ; -•導電物質:粒度不小於3/zm之粒狀導電物質及粒度不 大於2 # m之粒狀導電物質之混合物,或粒度不小於3 /zm之粒狀導電物質及具有3或3以上之縱橫比及不大 〖於2以m之纖維直徑之纖維狀導電物質之混合物; •負極活性物質··比表面積不大於2.0 m2/g、點陣平面間 隔不大於0.3 380 nm及c-軸方向(Lc)微晶大小不小於30 nm之石墨化碳; -•電解質混合溶劑:選自碳酸二乙酯及碳酸乙基甲酯之至 少一種、碳酸乙烯酯、碳酸丙烯酯及碳酸二甲酯之混合 溶劑。 這些組成物質[Li-過渡金屬複合氧化物(正極活性物 >質)、正極活性物質組成物、負極活性物質及電解質]各自 如上所述。電池之其他組成物質,例如正極電流從集體、 '負極活性物質組成物(負極活性物質層)及負極電流收集體 可與前述說明中所提及者相同。 此組成之鋰離子二次電池由於增效作用及前述三性質 之效果而可提供極為優異之電池性質。亦即,改良之充電 及放電循環性質延長電池之使用壽命;改良之貯存性質抑 制在習用經離子二次電池中由於全量充電靜置時造成嚴重 問題使性質降低;及可改良低溫性質。 -------------裝-----r---訂---------線 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 23 311440 492207 A7 B7 五、發明說明(24 ) 本發明之第五鐘離子二次電池使用比例為容積%至 50谷積/。(較佳為42容積%至48容積%)之選自碳酸二乙醋 及碳酸乙基甲酉曰之至少一種、比例為4容積%至10容積 %(較佳為6容積%至9容積%)之碳酸乙烯醋、比例為10 令積/。至17谷積%(較佳冑u容積%至14容積%)之碳酸丙 烯醋及比例為3G容積%至4G容積%(較佳為32容積%至 容積%)之碳酸二甲醋作為電解質溶劑。電解質因此具有低 黏度而不會於低溫時凝固。 當選自碳酸二乙醋及碳酸乙基f醋之至少-員所含比 例少於40容積%時’電解質於低溫凝固,链離子不能移 動’因而無法改良低溫性質;而其量超過5〇容積%時,電 解=黏度高,結果離子導電性變低,亦無法改良低溫性質。 當碳酸乙烯酯之混合比例少於4容積%時,鋰鹽未充分解 離,離子導電性變低而無法改良低溫性質;其量超過ι〇 容積%時,電解質黏度高,結果離子導電性變低’亦無法 改良低溫性質。當碳酸丙烯醋之含量少於1〇容積%時,鋰 鹽未充分解離’離子導電性變低而無法改良低溫性質;而 其量超過17容積。/〇時’電解質黏度高,結果離子導電性變 低,亦無法改良低溫性質。當碳酸二甲酯之含量少於% 容積%時,電解質黏度高’結果離子導電性變低,無法改 良低溫性質;而其量超過40容積%時,電解質於低溫凝 固,鋰離子不能移動,因而無法改良低溫性質。 溶解於電解質中之鋰鹽可為,例如/Licl〇4、uBF4、 LiPF6、UAsF6、LiAlCl4 ' Li(CF3S〇2)2N 等,可單獨使用一 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 311440 請 先 閲 讀 背 面 之 注 意 事 項 再 填 寫 本 頁 訂 經濟部智慧財產局員工消費合作社印製 24 492207 A7LiCo02 or LiACo1-xMex〇2 (wherein a, X and element Me are as defined above) ', and its average particle size is preferably not less than 10 / zm. The binder, conductive material and positive current collector of the positive electrode active material layer are those mentioned in the aforementioned Li-transition metal composite oxide. 1 The fourth lithium-ion secondary battery of the present invention is the above-mentioned transition metal complex standard (CNS) A4 specification 29 x 29 22 311440 a intellectual property of the Ministry of Economic Affairs, printed by the Bureau of Consumer Cooperatives 492207 A7- ---- B7 _ 5. Description of the invention (23) A combination of a composite oxide, a positive electrode active material composition, and a third lithium ion secondary battery. In detail, the system includes the following components: • Positive electrode active material: granular Li-transition # metal composite oxide with an average particle size of not less than 10 # m, [2〇 / (specific surface area X average particle size)] = 7-9 ;-• Conductive substance: a mixture of granular conductive substance having a particle size of not less than 3 / zm and a granular conductive substance having a particle size of not less than 2 # m, or a granular conductive substance having a particle size of not less than 3 / zm and having a particle size of 3 or more Aspect ratio and small [mixture of fibrous conductive materials with a fiber diameter of less than 2 m; • Negative electrode active material • Specific surface area not greater than 2.0 m2 / g, lattice plane spacing not greater than 0.3 380 nm, and c-axis Graphitized carbon with a crystallite size of not less than 30 nm in the direction (Lc);-• Electrolyte mixed solvent: at least one selected from the group consisting of diethyl carbonate and ethyl methyl carbonate, ethylene carbonate, propylene carbonate, and dimethyl carbonate Mixed solvents. Each of these constituent materials [Li-transition metal composite oxide (positive electrode active material), positive electrode active material composition, negative electrode active material, and electrolyte] is as described above. Other components of the battery, such as the positive current collector, the negative active material composition (negative active material layer), and the negative current collector, may be the same as those mentioned in the foregoing description. The lithium ion secondary battery having this composition can provide extremely excellent battery properties due to the synergistic effect and the effects of the foregoing three properties. That is, the improved charge and discharge cycle properties extend the life of the battery; the improved storage properties suppress the deterioration of properties in conventional ion secondary batteries due to serious problems caused by full charging when left to rest; and the low temperature properties can be improved. ------------- install ----- r --- order --------- line (please read the precautions on the back before filling this page) Applicable to China National Standard (CNS) A4 specification (210 X 297 public love) 23 311440 492207 A7 B7 V. Description of the invention (24) The usage ratio of the fifth clock ion secondary battery of the present invention is from vol% to 50 gv /. (Preferably 42 vol% to 48 vol%) at least one selected from the group consisting of diethyl carbonate and ethyl formazan carbonate in a ratio of 4 vol% to 10 vol% (preferably 6 vol% to 9 vol%) ) Of ethylene carbonate vinegar, the ratio is 10 reams /. Propylene carbonate to 17% by volume (preferably vol% to 14% by volume) and dimethyl carbonate having a ratio of 3G vol% to 4G vol% (preferably 32 vol% to vol%) as the electrolyte solvent . The electrolyte therefore has a low viscosity and does not solidify at low temperatures. When the ratio of at least -members selected from the group consisting of diethyl carbonate and ethyl f carbonate is less than 40% by volume, the electrolyte is solidified at low temperature, and chain ions cannot move, so the low-temperature properties cannot be improved; and the amount exceeds 50% by volume At this time, the electrolytic = viscosity is high, and as a result, the ion conductivity becomes low, and the low temperature properties cannot be improved. When the mixing ratio of ethylene carbonate is less than 4% by volume, the lithium salt is not sufficiently dissociated, and the ion conductivity becomes low to improve the low-temperature properties. When the amount exceeds ΙΟ % by volume, the electrolyte has a high viscosity, resulting in low ion conductivity. 'It is also impossible to improve low temperature properties. When the content of propylene carbonate is less than 10% by volume, the lithium salt is not sufficiently dissociated 'and the ionic conductivity becomes low to improve low-temperature properties; however, the amount exceeds 17% by volume. At 0 / ', the electrolyte has a high viscosity, and as a result, the ion conductivity becomes low, and the low-temperature properties cannot be improved. When the content of dimethyl carbonate is less than %% by volume, the electrolyte has a high viscosity. As a result, the ion conductivity becomes low and the low-temperature properties cannot be improved. When the amount exceeds 40% by volume, the electrolyte solidifies at low temperatures and lithium ions cannot move, so Unable to improve low temperature properties. The lithium salt dissolved in the electrolyte may be, for example, / Licl〇4, uBF4, LiPF6, UAsF6, LiAlCl4 'Li (CF3S〇2) 2N, etc., and it can be used alone. The paper size is applicable to the Chinese National Standard (CNS) A4 specification ( (210 X 297 mm) 311440 Please read the notes on the back before filling out this page. Ordered by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Consumption Cooperative 24 492207 A7

經濟部智慧財產局員工消費合作社印製 五、發明說明(26, mVg至i .5 mVg)、點陣平面(_2)間隔不大於〇 338〇腿(較 佳為0.3355 nm至0.337〇㈣及c_轴方向(Lc)微晶大小不 小於細(較佳為40 nm至7〇㈣之石墨化碳。此等石墨 化碳之實例包含中間相型石墨化碳。於較佳具體實例中, 係使用前述第三鐘離子二次電池之負極活性物質,其結果 為充電期間瑞酸丙稀醋之分解反應可充分被抑制,及電池 電容穩定;此外,負極電壓之增加可充分被抑制且電池之 平均放電電位穩定。負極活性物質顆粒之形狀並無特別限 制而可為鱗片狀、纖維狀、球形、擬球形、膨鬆狀、類狀 2。當負極活性物質為石墨化碳時,從負極電流收集體之 容易塗覆及顆粒取向(該取向對鋰之吸收及釋放有利)之觀 點而言’顆粒較好為纖維狀。因此’最好之石墨化碳為纖 維狀中間相型石墨化碳,亦即,中間相型石墨化碳纖維。 中間相型石墨化碳纖維之製造方法如上述。為使負極活性 物質層滿足上述特定填充率,將碳化纖維粉碎使平均纖維 長度為1/^至100#m,特別是3/^至5(^m,更佳為2 f m至25以m,及平均纖維直徑為〇 5#瓜至,特別 疋至15em,更佳為5//111至1〇#m。縱橫比(平均 纖維長度/平均纖維直徑)較佳為丨至5。上述石墨化碳之比 表面積、點陣平面間隔及c_軸方向(Lc)微晶大小係藉先前 所述之相同方法予以測定。 形成鋰離子二次電池負極活性物質層1所用之黏合劑與 上述相1¾。黏合劑之用量,每100重量份活性物質為4至 2〇重量伤’較佳為5至1〇重量份。對負極活性物質層而 t紙張尺度& τ國國家標準(CNS)A4規丨各(21G x 297公^· • I ---J — — — — — —--. I I 丨 l· I 1- 1 訂:--- ---- - , (請先閱讀背面之注意事項再填寫本頁) ' 26 311440 492207 五、發明說明(27, 。,導電物質並不特別需要,惟需要時可添加碳黑(特別是 乙炔碳黑)等。欲使用導電物質時,其量每100重量份活性 物質為0·1至10重量份,較佳為〇 5至5重量份。負極電 ‘机收集體較好為導電金屬(例如鋼、鎳、銀、sus等)之箔 _片或多孔落片,其厚度為約5至1〇〇/zm,特別是約8至 50# m,或厚度為約2〇至3〇〇^m,特別是約25至 m之多孔金屬板等。黏著於負極電流收集體之一表面之負 極活性物質組成物之量通常為3至2〇 mg/cm2,較佳為5 至 15 mg/cm2。 經濟部智慧財產局員工消費合作社印製 正極活性物質由Li-過渡金屬複合氧化物所組成,此複 合氧化物較佳為具有前述式(3)及(4)所示之組成物,特佳為 LiC〇02及LiAC〇1-xMex〇2(式中Α、χ及元素Me*上述定 義)’其平均粒度較佳為不小於1〇/zm。顆粒之比表面積與 平均粒度之乘積較佳為滿足前述式以符合前述正極活 性物質層之填充率。正極活性物質層之黏合劑、導電物質 .及正極電流收集體較佳為前述Li_過渡金屬複合氧化物中 所提及者。黏合劑之用量,相對於活性物質(每1〇〇重量份) 為2至8重量份,較佳為3至5重量份。導電物質之用量 每1〇〇重量份活性物質為4至10重量份,較佳為6至8 重量份。 本發明之第六鋰離子二次電池為前述u_過渡金屬複 合氧化物及前述正極活性物質組成物之組合,包括下列組 成: 1 、 •正極活性物質:比表面積(mvg)與平均粒度之乘積 木紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 27 311440 492207 五、發明說明(28 滿足前述式(1)且平均粒度不小於l〇V m之Li-過渡金屬 複合氧化物顆粒; •正極之導電物質:粒度不小於3以m之粒狀導電物質及 (請先閱讀背面之注意事項再填寫本頁) 粒度不大於2/zm之粒狀導電物質之混合物,或粒度不 小於3 // m之粒狀導電物質及具有3或3以上之縱橫比 及不大於2^m之纖維直徑之纖維狀導電物質之混合 物。 這些Li-過渡金屬複合氧化物及正極之導電物質均如 上所說明。其他組成物質,例如正極電流收集體、負極(負 極活性物質組成物、負極電流收集體)等可為上文提及者。 第1至3圖顯示本發明鋰離子二次電池之放電曲線, 其中橫座標軸顯示放電電容率(%),縱座標軸顯示放電電壓 (V) ’各放電曲線係於-20°C之1C放電時獲得。放電電容率 (%)係相對於20°C時1C放電之放電電容為1〇〇%而計算, 及顯示相對於該放電電容之比例。於放電期間設定截止電 壓時,則放電電容率係相對於到達截止電壓時之放電電容 而計算。於第1至3圖中,VF為戴止電壓。 經濟部智慧財產局員工消費合作社印製 第1圖中,放電曲線為沒有最小值之倒斜曲線,於放 電初期,電壓之激進下降被抑制住。帛2圖中,放電曲線 於放電電容率增加方向含有最小值及最大值,於放電初期 出現電壓下降;然而,該最小值及該最大值之差(Δνι)不 大於0.100,且當放電電容率為0%時,該最小值及放電電 壓之差UV2)不大於〇·3(ν);其電壓下降程度較習知情形 小。第3圖中,放電曲線於放電電容率增加方向含有第一 &紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公爱) '"""— ----- 28 311440 492207 A7 B7 五、發明說明(29 ) 最大值、最小值及第二最大值;同時,觀察到放電初期出 現電壓下降;然而,該最小值及該第二最大值之差(Δνΐ) •不大於0.1 (V),且當放電電容率為0°/。時,該最小值及放電 ;電壓之差(△ V2)不大於〇.3(V);其電壓下降程度較習知情 :-形小。如第1至3圖所示,於-20°C 1C放電之放電電容(mAh) ' 不少於20 °C 1C放電時放電電容(mAh)之6 0%。因此,於極 低溫區域,放電電容之下降程度較小。此鋰離子二次電池 i. 可抑制極低溫區域放電初期電壓之急劇下降。此外,亦可 抑制放電電容之降低。 鋰離子二次電池之電解質較佳為包括,碳酸乙烯酯、 碳酸丙烯酯、碳酸二甲酯及選自碳酸二乙酯及碳酸乙基甲 酿之至少一員,特佳為具有如有關前述第五鋰離子二次電 池所示之特定比例之混合溶劑,作為溶劑。 請 先 閱 讀 背 面 之 注 項 再 填 本 頁 kPrinted by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy _Axial direction (Lc) crystallite size is not less than a fine (preferably 40 nm to 70 ° C) graphitized carbon. Examples of these graphitized carbons include mesophase graphitized carbons. In preferred specific examples, the Using the negative electrode active material of the aforementioned third ion secondary battery, the result is that the decomposition reaction of acrylic acid vinegar during charging can be sufficiently suppressed, and the battery capacitance is stable; in addition, the increase in the negative electrode voltage can be sufficiently suppressed and the battery The average discharge potential is stable. The shape of the negative electrode active material particles is not particularly limited and may be scaly, fibrous, spherical, quasi-spherical, bulky, or similar. 2. When the negative electrode active material is graphitized carbon, current flows from the negative electrode. From the standpoint of easy coating and particle orientation of the collector (the orientation is favorable for lithium absorption and release), 'particles are preferably fibrous. Therefore,' the best graphitized carbon is a fibrous mesophase graphitized carbon, also Mesophase graphitized carbon fiber. The method for manufacturing mesophase graphitized carbon fiber is as described above. In order to make the negative electrode active material layer meet the above-mentioned specific filling rate, the carbonized fiber is pulverized so that the average fiber length is 1 / ^ to 100 # m, especially It is 3 / ^ to 5 (^ m, more preferably 2 fm to 25 to m), and the average fiber diameter is 0 ##, especially 疋 to 15em, and more preferably 5 // 111 to 10 # m. Vertical and horizontal The ratio (average fiber length / average fiber diameter) is preferably from 丨 to 5. The specific surface area of the above graphitized carbon, the lattice plane spacing, and the c-axis direction (Lc) crystallite size are determined by the same method as previously described The binder used to form the negative electrode active material layer 1 of the lithium ion secondary battery and the above-mentioned phase 1¾. The amount of the binder is 4 to 20 weight percent per 100 parts by weight of the active material, preferably 5 to 10 weight parts. For the negative electrode active material layer, t paper size & τ national national standard (CNS) A4 regulations each (21G x 297) ^ · • I --- J — — — — — —-. II 丨 l · I 1 -1 Order: ------------, (Please read the notes on the back before filling in this page) '26 311440 492207 (27,., Conductive materials are not particularly required, but carbon black (especially acetylene carbon black) can be added if necessary. When conductive materials are used, the amount is from 0.1 to 10 per 100 parts by weight of active material Part by weight, preferably from 0 to 5 parts by weight. The negative electrode collector is preferably a foil or porous sheet of a conductive metal (such as steel, nickel, silver, sus, etc.), and its thickness is about 5 to 100 / zm, particularly about 8 to 50 # m, or a porous metal plate having a thickness of about 20 to 300 μm, especially about 25 to m. The amount of the negative electrode active material composition adhered to one surface of the negative electrode current collector is usually 3 to 20 mg / cm2, preferably 5 to 15 mg / cm2. The positive electrode active material printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs is composed of a Li-transition metal composite oxide. The composite oxide preferably has a composition represented by the foregoing formulas (3) and (4), and particularly preferably LiCo 02 and LiAC 02-xMex 02 (wherein A, χ, and element Me * are defined above) 'their average particle sizes are preferably not less than 10 / zm. The product of the specific surface area of the particles and the average particle size preferably satisfies the aforementioned formula to comply with the filling rate of the aforementioned positive electrode active material layer. The binder, the conductive material, and the positive electrode current collector of the positive electrode active material layer are preferably those mentioned in the aforementioned Li-transition metal composite oxide. The amount of the binder is 2 to 8 parts by weight, preferably 3 to 5 parts by weight, relative to the active material (per 100 parts by weight). The amount of the conductive material is 4 to 10 parts by weight, preferably 6 to 8 parts by weight per 100 parts by weight of the active material. The sixth lithium ion secondary battery of the present invention is a combination of the aforementioned u_transition metal composite oxide and the aforementioned positive electrode active material composition, and includes the following components: 1. Positive electrode active material: the product of the specific surface area (mvg) and the average particle size The dimensions of the building block paper are in accordance with Chinese National Standard (CNS) A4 (210 X 297 public love) 27 311440 492207 V. Description of the invention (28 Li-transition metal composite oxidation that satisfies the above formula (1) and has an average particle size of not less than 10V m Particles; • conductive material of the positive electrode: a granular conductive material having a particle size of not less than 3 m and (please read the precautions on the back before filling this page) a mixture of granular conductive material having a particle size of not more than 2 / zm, or a particle size A mixture of a granular conductive material not less than 3 // m and a fibrous conductive material having an aspect ratio of 3 or more and a fiber diameter not greater than 2 ^ m. These Li-transition metal composite oxides and the conductive material of the positive electrode All are as described above. Other constituent materials, such as a positive current collector, a negative electrode (a negative active material composition, a negative current collector), etc. may be mentioned above. Figures 1 to 3 The discharge curve of the lithium ion secondary battery of the present invention is shown, wherein the horizontal axis shows the discharge permittivity (%), and the vertical axis shows the discharge voltage (V). 'Each discharge curve is obtained at 1C discharge at -20 ° C. Discharge permittivity (%) Is calculated based on 100% discharge capacitance at 1 ° C discharge at 20 ° C, and displays the ratio to the discharge capacitance. When the cut-off voltage is set during discharge, the discharge permittivity is relative to the cut-off The discharge capacitance at the time of voltage is calculated. In Figures 1 to 3, VF is the stop voltage. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 1. The discharge curve is a sloped curve with no minimum value. In the early stage, the radical drop of the voltage is suppressed. 图 中 2, the discharge curve contains the minimum and maximum values in the direction of the increase in discharge permittivity, and the voltage drop occurs in the early stage of the discharge; however, the difference between the minimum and maximum values (Δνι ) Is not greater than 0.100, and when the discharge capacitance ratio is 0%, the difference between the minimum value and the discharge voltage UV2) is not greater than 0.3 (ν); the degree of voltage drop is smaller than the conventional case. In Figure 3, the discharge curve contains the first & paper size in the direction of increasing the discharge permittivity. The paper size applies the Chinese National Standard (CNS) A4 specification (21〇X 297 public love) '" " " — ----- 28 311440 492207 A7 B7 V. Description of the invention (29) Maximum value, minimum value, and second maximum value; At the same time, a drop in voltage was observed at the beginning of the discharge; however, the difference between the minimum value and the second maximum value (Δνΐ) • Not more than 0.1 (V), and when the discharge capacitance is 0 ° /. When the minimum value and discharge; the voltage difference (△ V2) is not greater than 0.3 (V); the voltage drop is smaller than the conventionally known:-shape. As shown in Figures 1 to 3, the discharge capacity (mAh) at 1 ° C at -20 ° C is not less than 60% of the discharge capacity (mAh) at 1 ° C at 20 ° C. Therefore, in the extremely low temperature region, the decrease in the discharge capacitance is small. This lithium ion secondary battery i. It is possible to suppress a sharp drop in the initial voltage of the discharge in the extremely low temperature region. In addition, reduction in discharge capacitance can be suppressed. The electrolyte of the lithium ion secondary battery preferably includes at least one member selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate and ethyl methyl carbonate. As a solvent, a mixed solvent of a specific ratio shown in a lithium ion secondary battery is used. Please read the notes on the back before filling this page k

經· 濟~ 部 智乂 慧-財 產-· 局一 員 工 消 費 合 作 社 印 製 溶解於電解質中之鋰鹽較佳為前述第五鋰離子二次電 池所用者。亦即,電解質較佳為調整至具有0.5 mo 1/L至 1 ·5 mol/L,更佳為〇·7 mol/L至1 ·2 mol/L之鐘鹽濃度。 本發明之鐘離子二次電池可使用成為具有圓柱形、方 形、板狀等形狀之各種鋰離子二次電池,而無特別限制。 本發明之鐘離子二次電池可利用習知可得或未來將開發之 各種組成元件例如電池罐、電池蓋、安全架構、電極端點 等。 [較佳具體實例之說明] 兹參照實施例更詳細說明本發明,惟該等實施例不對 本發明構成局限。此外,比較例係闡明本發明之顯著效果。 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公釐) 29 311440 λ 492207 A7 B7 五、發明說明(30 ) 耋施例1 $ 4,比較例1反5 使(1;〇304與Li2C03以每1〇〇重量份c〇3〇4為42重量份Printed by a member of the Ministry of Economic Affairs, Intellectual Property, Property, and Consumer Affairs Co., Ltd. The lithium salt dissolved in the electrolyte is preferably used for the aforementioned fifth lithium ion secondary battery. That is, the electrolyte is preferably adjusted to have a bell salt concentration of 0.5 mol / L to 1.5 mol / L, and more preferably 0.7 mol / L to 1.2 mol / L. The bell ion secondary battery of the present invention can be used without limitation as various lithium ion secondary batteries having a shape such as a cylindrical shape, a square shape, or a plate shape. The bell ion secondary battery of the present invention can utilize various constituent elements such as a battery can, a battery cover, a safety structure, an electrode terminal, etc., which are conventionally available or will be developed in the future. [Explanation of preferred specific examples] The present invention will be described in more detail with reference to examples, but these examples do not limit the present invention. In addition, the comparative examples illustrate the significant effects of the present invention. This paper size applies the Chinese National Standard (CNS) A4 specification (21 × 297 mm) 29 311440 λ 492207 A7 B7 V. Description of the invention (30) 耋 Example 1 $ 4, Comparative Example 1 reverse 5 make (1; 〇 304 and Li2C03 are 42 parts by weight per 100 parts by weight of co3304.

Li2C03之比例混合,此均勻混合物於約980°C熔結約10小 時。將所得LiCo〇2膨鬆物於大氣中粉碎、分割及加熱處 理,得到表1所示實施例1至4及比較例1至5之Uc〇〇2 顆粒,其中比較例1至3之LiC 〇〇2顆粒未進行上述加熱處 理。 J1IJ------Μ裝—— (請先閱讀背面之注意事項再填寫本頁) tr· · 經濟部智慧財產局員工消費合作社印製 諸實施例及比較例LiCo〇2顆粒之加熱處理條件(溫度 及小時)、加熱處理後之平均粒度B、加熱處理後之比表面 積A、由於加熱處理之比表面積減少(△ A)、及(20/(AB)) 均示於表2,其中比較例1至3中LiCo02顆粒之平均粒度 B及比表面積A係使用未進行加熱處理之顆粒獲得。 表1 加熱處理 平均粒 度B (// m) 比表面 積A (m2/g) ΔΑ (%) 20/ (ΑΒ) 放電電 容保持 率(%) 溫度 re) 時間 (Hr) 實施例I 500 12 19.7 0.136 15.0 7.46 90·6— 實施例2 700 12 19·9 0.H6 27.5 8.66 91.2 實施例3 500 12 16.4 0.157 21·5 7.76 91.5 實施例4 600 12 13.0 0.214 23.6 7.19 90.4 比較例I - - 12.6 0.280 - 5.67 83.1 比較例2 - - 16.2 0.200 6·17 81.4~ 比較例3 - 19.4 0.160 - 6.44 78.3 比較例4 800 12 17.6 0.H5 22.5 9.88 82.6 比較例5 800 12 20.9 0.096 38.0 9.97 82.3 使實施例1至4及比較例1至5之LiCo02顆粒(90重 量份)與黏合劑聚偏氟乙烯(7重量份)、導$電劑乙炔碳黑(3 重量份)、及N-甲基-2-D比咯烷酮(70重量份)混合,得到漿 _% 311440 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 492207Li2C03 was mixed in a proportion, and the homogeneous mixture was sintered at about 980 ° C for about 10 hours. The obtained LiCo0 2 bulk was pulverized, divided and heated in the air to obtain Uc00 2 particles of Examples 1 to 4 and Comparative Examples 1 to 5 shown in Table 1, among which LiC of Comparative Examples 1 to 3. The 02 particles were not subjected to the above-mentioned heat treatment. J1IJ ------ M Pack—— (Please read the precautions on the back before filling in this page) tr · · Heat Treatment of LiCo〇2 Particles of Examples and Comparative Examples printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Conditions (temperature and hours), average particle size B after heat treatment, specific surface area A after heat treatment, specific surface area reduction due to heat treatment (ΔA), and (20 / (AB)) are shown in Table 2, where The average particle size B and specific surface area A of the LiCo02 particles in Comparative Examples 1 to 3 were obtained using particles that were not heat-treated. Table 1 Heat treatment average particle size B (// m) Specific surface area A (m2 / g) ΔΑ (%) 20 / (ΑΒ) Discharge capacity retention rate (%) Temperature re) Time (Hr) Example I 500 12 19.7 0.136 15.0 7.46 90 · 6— Example 2 700 12 19 · 9 0.H6 27.5 8.66 91.2 Example 3 500 12 16.4 0.157 21 · 5 7.76 91.5 Example 4 600 12 13.0 0.214 23.6 7.19 90.4 Comparative Example I--12.6 0.280- 5.67 83.1 Comparative Example 2--16.2 0.200 6.17 81.4 ~ Comparative Example 3-19.4 0.160-6.44 78.3 Comparative Example 4 800 12 17.6 0.H5 22.5 9.88 82.6 Comparative Example 5 800 12 20.9 0.096 38.0 9.97 82.3 Examples 1 to LiCo02 particles (90 parts by weight) of 4 and Comparative Examples 1 to 5 and a binder polyvinylidene fluoride (7 parts by weight), electroconductive agent acetylene carbon black (3 parts by weight), and N-methyl-2-D Pyrrolidone (70 parts by weight) is mixed to obtain pulp _% 311440 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) 492207

五、發明說明(3l ) 狀物。將此漿狀物施敷於欲作為電流收集體之2〇vm厚鋁 • ’自之雙面,乾燥及壓伸,得到由兩面各具有20 mg/cm2厚 正極活性物質組成物層之鋁箔製成的正極。5. Description of the invention (3l). This slurry was applied to a 20 vm-thick aluminum that was to be used as a current collector. "From both sides, dried and extruded, an aluminum foil with a 20 mg / cm2 thick positive electrode active material composition layer on each side was obtained. Into the positive electrode.

使鱗片狀石墨(90重量份)、聚偏氟乙烯(1()重量份)及 N·甲基-2_D比咯烷酮(2〇〇重量份)混合,得到漿狀物。將此 漿狀物施敷於欲作為電流收集體之厚鋼箔之雙面, 請 先 閱 讀 背 δ 之 注Flaky graphite (90 parts by weight), polyvinylidene fluoride (1 (parts by weight)), and N · methyl-2_D than pyrrolidone (200 parts by weight) were mixed to obtain a slurry. Apply this slurry to both sides of the thick steel foil that is to be used as a current collector, please read the note on the back δ

乾燥及壓伸,得到由兩面各具有10 4 mg/cm2厚負極活性寒 物質組成物層之鋼箔製成的負極。 | — 將該正極及負極經由多孔聚乙烯隔離物纏繞,得到高| k 度65 mm、外徑18 mm之圓柱形鋰離子二次電池(放電電 容:1500 mAh)。至於電解質,係將溶解1莫耳LiPF6於含 碳酸乙烯酯、碳酸丙烯酯及碳酸二乙酯(混合容積比3 :2:5) 之混合溶劑中所得溶液裝填於上述正極及負極之間。 依據下述充電及放電循環試驗法評估鋰離子二次電池 之充電及放電循環性質,並將第100循環之放電電容保持 ❸率(%)示於表1。 [充電及放電循環試驗法] 訂 * 經 濟 部… 智· 慧 財. 產' 局 員 工 消 費 合 作 社 印 製 一個循環包括於2.6 mA恒定電流及每1 cm2正極4.2 V 恒定電壓下充電2.5小時、充電後靜置1小時、於每1 cm2 正極1.3 mA恒定電流下放電至端點電壓為3 V為止及於放 電後靜置1小時。於室溫(20°C )重複此循環100次。從各 循環之放電電流及放電小時計算放電電容(mA · H)。放電 i 電容保持率(%)為各循環放電電容相對於初始放電電容之 比0 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 31 311440 492207 A7 -- B7 五、發明說明(32 ) 由表1可知含有(20/(AB))值落於前述式(1)範圍以外之 比較例1至5之LiCo02顆粒作為正極活性物質之鋰離子二 次電池’於第1〇〇循環顯示不大於85%之放電電容保持 率。對照之下,含有(20/(AB))值在前述式(1)範圍以内之實 施例1至4之LiCo02顆粒作為正極活性物質之鋰離子二次 電池’於第100循環顯示不小於90%之高放電電容保持 率,證實其優異之充電及放電循環性質。 實施例5至1 〇,比較6至10 於下述實施例5至10及比較例6至10中,Li_過渡金 屬複合氧化物之平均粒度及粒度不小於l#m之導電物質 之粒度係以SHIMADZU CORPORATION製造之 SALD3 000J予以測定;粒度小於1 a m之導電物質之粒度 及纖維狀導電物質之縱橫比與纖維直徑係以掃描式電子顯 微鏡(SEM)予以測定。 實施例5 使LiCoO2(90重量份,平均粒度20 # m)、球形人造石 墨(6重量份,粒度6 # m)、油爐黑(1重量份,粒度40 nm, 比表面積700 m2/g)、及聚偏氟乙烯(3重量份,黏合劑)均 勻分散於N-甲基·2-Π比洛娱:酮中,得到漿狀物。將此漿狀 物施敷於欲作為電流收集體之20/zm厚鋁箔雙面,乾燥及 壓伸,得到由兩面各具有20 mg/cm2 LiCo02之鋁羯製成的 正極。 i 實施例6 使LiCoO2(90重量份,平均粒度20 // m)、人造鱗片狀 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) % (請先閱讀背面之注意事項再填寫本頁) -n I n n n~n n 一見,I I- mmm— n 經濟部智慧財產局員工消費合作社印製 492207 A7 B7 五、發明說明(33 ) 石墨(5重量份,粒度1〇 vm)、膨鬆狀人造石墨(2重量份, 粒度Ι/zm,比表面積20mvg)及聚偏氟乙烯(3重量份,黏 合劑)均勻分散於N-甲基-2-哦咯烷酮中,得到聚狀物。以 &與實施例5相同之方式,使用此漿狀物製得具有與實施例 -5相同結構之正極’係由兩面各具有2〇 mg/cm2 LiCo02之 20/z m厚鋁箔製成Q 實施例7 使LiCo〇2(90重量份,平均粒度i5/zm)、人造鱗片狀 石墨(6重量份,粒度丨〇以m)、以氣相生長法製造之碳纖維 (1重量份’纖維直徑〇、3 // m,縱橫比20)及聚偏氟乙烯(3 重量份’黏合劑)均勻分散於甲基-2-D比咯烷_中,得到 衆狀物。以與實施例5相同之方式,使用此漿狀物製得具 有與實施例5相同結構之正極,係由兩面各具有20 mg/cm2 LiCo〇2之20以m厚銘箔製成Q 實施例8 以與實施例5相同之方式,惟以平均粒度1 5以m之 LiCo〇2取代平均粒度20/zm之LiCo02,製得具有與實施 例5相同結構之正極,係由兩面各具有2〇 mg/cm2 LiCo02 之20/zm厚鋁箔製成。 ‘實施例9 以與實施例5相同之方式,惟以人造鱗片狀石墨(粒度 10 # m)取代人造球形石墨(粒度6 /z m),製得具有與實施例 :( 5相同結構之正極,係由兩面各具有20 mg/cm2 LiCo02之 20 // m厚鋁箔製成。 --------------裝--- (請先閱讀背面之注意事項再填寫本頁) . 經濟部^曰慧財產局員工消費合作社印製 本紙張尺度適用國國豕標準(CNS)A4規格(210 X 297公髮) 33 311440 A7The anode was made by drying and pressing to obtain a negative electrode made of a steel foil with a thickness of 10 4 mg / cm2 of a negative electrode active cold substance composition layer on each side. | — The positive and negative electrodes were wound through a porous polyethylene separator to obtain a cylindrical lithium ion secondary battery (discharge capacity: 1500 mAh) with a height of 65 mm and an outer diameter of 18 mm. As for the electrolyte, a solution obtained by dissolving 1 mol of LiPF6 in a mixed solvent containing ethylene carbonate, propylene carbonate, and diethyl carbonate (mixing volume ratio 3: 2: 5) was charged between the above-mentioned positive electrode and negative electrode. The charge and discharge cycle characteristics of the lithium ion secondary battery were evaluated according to the following charge and discharge cycle test methods. Table 1 shows the discharge capacity retention rate (%) at the 100th cycle. [Charging and Discharging Cycle Test Method] Order * Ministry of Economic Affairs ... Intellectual Property · Intellectual Property. The Bureau's Consumer Cooperatives printed a cycle including charging at a constant current of 2.6 mA and a constant voltage of 4.2 V per 1 cm2 of positive voltage for 2.5 hours. After charging Let stand for 1 hour, discharge at a constant current of 1.3 mA per 1 cm2 of the positive electrode until the terminal voltage reaches 3 V, and leave it for 1 hour after discharge. Repeat this cycle 100 times at room temperature (20 ° C). Calculate the discharge capacitance (mA · H) from the discharge current and discharge hours for each cycle. Discharge i The capacitance retention rate (%) is the ratio of each cyclic discharge capacitance to the initial discharge capacitance. 0 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 31 311440 492207 A7-B7 V. Invention Explanation (32) From Table 1, it can be seen that the lithium ion secondary battery containing the LiCo02 particles of Comparative Examples 1 to 5 in which the value of (20 / (AB)) falls outside the range of the aforementioned formula (1) as a positive electrode active material is in the first tenth. 〇The cycle shows the discharge capacitor retention rate not more than 85%. In contrast, a lithium ion secondary battery containing LiCo02 particles of Examples 1 to 4 having a value of (20 / (AB)) within the range of the foregoing formula (1) as a positive electrode active material was shown to be not less than 90% at the 100th cycle. Its high discharge capacity retention rate confirms its excellent charge and discharge cycle properties. Examples 5 to 10, Comparison 6 to 10 In the following Examples 5 to 10 and Comparative Examples 6 to 10, the average particle size of Li_transition metal composite oxide and the particle size of conductive materials with a particle size of not less than 1 # m Measured with SALD3 000J manufactured by SHIMADZU CORPORATION; the particle size of the conductive material with a particle size of less than 1 am, the aspect ratio and fiber diameter of the fibrous conductive material are measured with a scanning electron microscope (SEM). Example 5 LiCoO2 (90 parts by weight, average particle size 20 # m), spherical artificial graphite (6 parts by weight, particle size 6 # m), oil furnace black (1 part by weight, particle size 40 nm, specific surface area 700 m2 / g) , And polyvinylidene fluoride (3 parts by weight, a binder) were uniformly dispersed in N-methyl · 2-ΠBilodol: one to obtain a slurry. This slurry was applied to both sides of a 20 / zm-thick aluminum foil to be a current collector, dried, and extruded to obtain a positive electrode made of aluminum hafnium having 20 mg / cm2 LiCo02 on each side. i Example 6 Make LiCoO2 (90 parts by weight, average particle size 20 // m), artificial flakes. The size of this paper applies the Chinese National Standard (CNS) A4 (210 X 297 mm)% (Please read the precautions on the back first) Fill out this page again) -n I nnn ~ nn See you soon, I I- mmm— n Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economy 492207 A7 B7 V. Description of the invention (33) Graphite (5 parts by weight, particle size 10 vm) 1. Bulk artificial graphite (2 parts by weight, particle size 1 / zm, specific surface area 20mvg) and polyvinylidene fluoride (3 parts by weight, binder) are uniformly dispersed in N-methyl-2-ohrolidone to obtain Aggregate. In the same manner as in Example 5, a positive electrode having the same structure as in Example-5 was prepared using this slurry. The system was made from a 20 / zm thick aluminum foil with 20 mg / cm2 LiCo02 on each side. Example 7 LiCo〇2 (90 parts by weight, average particle size i5 / zm), artificial flaky graphite (6 parts by weight, particle size 丨 0 in m), and carbon fibers (1 part by weight 'fiber diameter. , 3 // m, aspect ratio 20) and polyvinylidene fluoride (3 parts by weight of 'binder') were uniformly dispersed in methyl-2-D-pyrrolidine to obtain a mass. In the same manner as in Example 5, a positive electrode having the same structure as in Example 5 was prepared by using this slurry, and Q was made of 20 m thick foil with 20 mg / cm2 LiCo〇2 on each side. Example Q 8 In the same manner as in Example 5, except that LiCo02 with an average particle size of 15 was replaced by LiCo02 with an average particle size of 20 / zm, a positive electrode having the same structure as that of Example 5 was prepared, with 20% on each side. Made of 20 / zm aluminum foil with mg / cm2 LiCo02. 'Example 9 In the same manner as in Example 5, except that artificial spherical graphite (particle size 10 # m) was used instead of artificial spherical graphite (particle size 6 / zm), a positive electrode having the same structure as in Example 5 was prepared. It is made of 20 // m thick aluminum foil with 20 mg / cm2 LiCo02 on each side. -------------- Packing --- (Please read the precautions on the back before filling this page ). Ministry of Economic Affairs ^ Yuehui Property Bureau employee consumer cooperatives printed this paper standard applicable to the national standard (CNS) A4 specifications (210 X 297 issued) 33 311440 A7

五、發明說明(34 ) 492207 實施你丨10 以與實施例5相同之方式,惟以人造球形石墨之用量 為4.5重量份及油爐黑之用量為25重量份,製得具有與 實施例5相同結構之正極,係由兩面各具有20 mg/cm2 LiCo〇2之20/im厚鋁箔製成。 比較例6 使LiCo〇2(94重量份,平均粒度20以m)、油爐黑重 量份’粒度40 nm,比表面積700 m2/g)及聚偏氟乙烯(3重 量份,黏合劑)均勻分散於N_甲基_2·π比咯烷酮中,得到裝 狀物。以與實施例5相同之方式,使用此漿狀物製得具有 與實施例5相同結構之正極,係由兩面各具有2〇 mg/cm2 LiCo02之20从m厚鋁箔製成。 比較例7 使LiCo〇2(90重量份,平均粒度20/zm)、人造鱗片狀 石墨(7重量份,粒度1〇 # m)及聚偏氟乙烯(3重量份,黏 合劑)均勻分散於N-甲基·2·Π比咯烷酮中,得到漿狀物。以 與實施例5相同之方式,使用此漿狀物製得具有與實施例 5相同結構之正極,係由兩面各具有20 mg/cm2 LiCo02之 20以m厚鋁箔製成。 比較例8 以與實施例5相同之方式,惟以平均粒度5 # m之 LiCo02取代平均粒度20/zm之LiCo02,製得由兩面各具 ί 有20 mg/cm2 LiCo02之20/zm厚鋁箔製成之正極。 比較例9 --S I I ί·— I 1 I I I I - · I 1 I l· — .1--訂·---— II ---. (請先閱讀背面之注咅P事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 34 311440 492207 經濟部智慧財產局員工消費合作社印製 Α7 Β7 五、發明說明(35) 使LiCo〇2(90重量份,平均粒度5//m)、人造鱗片狀 石墨(7重量份,粒度5 /z m)及聚偏氟乙烯(3重量份,黏合 劑)均勻分散於N-甲基-2-¾咯烷酮中,得到漿狀物。以與 %實施例5相同之方式’使用此浆狀物製得具有與實施例5 .相同結構之正極,係由兩面各具有20 mg/cm2 LiCo02之20 /z m厚鋁箔製成。 比較例 10 使LiCoO2(90重量份,平均粒度20/zm)、人造鱗片狀 石墨(6重量份,粒度10 # m)、石墨化碳纖維(1重量份, 纖維直徑5/z m,縱橫比2-3)及聚偏氟乙烯(3重量份,黏 •合劑)均勻分散於N-甲基-2-Π比咯烷酮中,得到漿狀物。以 -與實施例5相同之方式,使用此漿狀物製得具有與實施例 5相同結構之正極,係由兩面各具有20 mg/cm2 LiCo02之 20 /z m厚鋁箔製成。 將實施例5至10及比較例6至1 0製得之諸正極與以 ► 聚丙烯及聚乙烯製成之多孔隔離物及含有石墨化碳纖維作 為負極活性物質之負極纏繞,置於高度65 mm、外徑18 mm .之圓柱形罐中,製得鋰離子二次電池(放電電容·· 1500 .mAh)。至於電解質,係使用溶解LiPF6於含碳酸乙烯酯、 •碳酸丙烯酯及碳酸二乙酯(混合容積比3:2:5)之混合溶劑 ,中所得濃度為1 mol/L之溶液。 使鋰離子二次電池依據下述各試驗方法進行充電及放 ί 電循環試驗、高比率放電試驗、及鐵釘穿入試驗。結果示 於表2及表3。 - - -----------裝----l·---訂---------線 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 35 311440 4^2207 A7V. Description of the invention (34) 492207 Implementing you 丨 10 In the same manner as in Example 5, except that the amount of artificial spherical graphite is 4.5 parts by weight and the amount of oil furnace black is 25 parts by weight, it has the same properties as in Example 5. The positive electrode with the same structure is made of 20 / im thick aluminum foil with 20 mg / cm2 LiCo〇2 on each side. Comparative Example 6 LiCoO2 (94 parts by weight, average particle size 20 m), oil furnace black parts by weight 'particle size 40 nm, specific surface area 700 m2 / g) and polyvinylidene fluoride (3 parts by weight, binder) were made uniform It was dispersed in N_methyl_2 · π-pyrrolidone to obtain a charge. In the same manner as in Example 5, a positive electrode having the same structure as in Example 5 was prepared using this slurry, and was made of 20 m thick aluminum foil with 20 mg / cm2 LiCo02 on each side. Comparative Example 7 LiCo〇2 (90 parts by weight, average particle size 20 / zm), artificial flaky graphite (7 parts by weight, particle size 10 # m), and polyvinylidene fluoride (3 parts by weight, binder) were uniformly dispersed in In N-methyl · 2 · Π than pyrrolidone, a slurry was obtained. In the same manner as in Example 5, a positive electrode having the same structure as in Example 5 was prepared using this slurry, and was made of 20 m thick aluminum foil with 20 mg / cm2 LiCo02 on each side. Comparative Example 8 In the same manner as in Example 5 except that LiCo02 with an average particle size of 5 # m was used instead of LiCo02 with an average particle size of 20 / zm, a 20 / zm thick aluminum foil with 20 mg / cm2 LiCo02 on each side was prepared.成 之 POSITIVE. Comparative Example 9 --SII ί · — I 1 IIII-· I 1 I l · — .1--Order · ---— II ---. (Please read the note on the back of the page before completing this page) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs of the Consumer Cooperatives. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 34 311440 492207 Printed by the Intellectual Property Bureau of the Intellectual Property Bureau of the Employees Consumer Cooperatives. ) LiCoO2 (90 parts by weight, average particle size 5 // m), artificial flake graphite (7 parts by weight, particle size 5 / zm) and polyvinylidene fluoride (3 parts by weight, binder) are uniformly dispersed in N- In methyl-2-¾rolidone, a slurry was obtained. A positive electrode having the same structure as in Example 5. was prepared using this slurry in the same manner as in Example 5. It was made of a 20 / zm thick aluminum foil with 20 mg / cm2 LiCo02 on each side. Comparative Example 10 LiCoO2 (90 parts by weight, average particle size 20 / zm), artificial flaky graphite (6 parts by weight, particle size 10 # m), graphitized carbon fibers (1 part by weight, fiber diameter 5 / zm, aspect ratio 2- 3) and polyvinylidene fluoride (3 parts by weight, a binder) are uniformly dispersed in N-methyl-2-Π-pyrrolidone to obtain a slurry. In the same manner as in Example 5, a positive electrode having the same structure as in Example 5 was prepared using this slurry, and was made of a 20 / z m thick aluminum foil with 20 mg / cm2 LiCo02 on each side. The positive electrodes prepared in Examples 5 to 10 and Comparative Examples 6 to 10 were wound with a porous separator made of polypropylene and polyethylene and a negative electrode containing graphitized carbon fiber as a negative electrode active material, and placed at a height of 65 mm. In a cylindrical can with an outer diameter of 18 mm., A lithium-ion secondary battery (discharge capacity · 1500 .mAh) was prepared. As for the electrolyte, a solution of LiPF6 in a mixed solvent containing ethylene carbonate, propylene carbonate and diethyl carbonate (mixing volume ratio 3: 2: 5) was used, and the obtained concentration was 1 mol / L. The lithium-ion secondary battery was charged and discharged in accordance with the following test methods. The electric cycle test, the high-rate discharge test, and the nail penetration test. The results are shown in Tables 2 and 3. ------------- install ---- l · --- order --------- line (please read the precautions on the back before filling this page) Applicable to China National Standard (CNS) A4 (210 X 297 mm) 35 311440 4 ^ 2207 A7

(1)將電池以1.5 A電流充電2小時至電壓成為4 2 v, (ii)以1.5A放電至端點之間的電壓成為3V,及(η〗)放電 (請先閱讀背面之注意事項再壤寫本頁) 後靜置1小時,此二步驟構成一個循環。於室溫(2〇它)重 複此二步驟100個循環,測定各循環之放電電容㈤Ah)及 各循環之平均放電電壓。以各循環放電電容對初始放電電 谷之比作為放電電容保持率(%)。於初始循環及第1〇〇循環 之放電電容、平均放電電壓、及放電電容保持率均示於 表2 〇 [高比率放電試驗法] 電池之高比率放電包含:於15 A充電2小時至電壓 成為4·2 V、於〇·3 a放電至端點之間的電壓成為3 v、放 電後靜置1小時、於15 A充電2小時至電壓成為4 2 V、 及於3 A放電至端點之間的電壓成為3 v。測定〇3 A放電 之放電電容(a值)、3A放電之放電電容(1)值)、及其比率 (b/a) 〇 [鐵釘穿入試驗法] 經濟部智慧財產局員工消費合作社印製 電池以1·5 A充電至電壓成為4 3 v,其後立即以4 cm/sec插入外徑3 mm之鐵釘至穿入電池中心附近、正極 端點與負極端點之間。檢查電池出現燃燒的情形,計算因 而燃燒之電池數,並示於表3 。 I X 297公釐) 36 311440 492207 A7 B7 五、發明說明(37) 表2 經濟部智慧財產局員工消費合作社印製 充電及放電循環試驗 第1循環 第100循考 a 放電電容 (mAh) 平均放電 電壓 (V) 放電電容 (mAh) 平均放電 電壓 (V) 放電電容 保持率 (%) 實施例5 1500 3.74 1420 3.70 95 實施例6 1500 3.72 1400 3.69 93 實施例7 1500 3.71 1400 3.69 93 實施例8 1500 3.75 1410 3.71 94 實施例9 1500 3.73 1420 3.69 95 實施例10 1500 3.74 1390 3.69 93 比較例6 1500 3.65 1250 3.58 83 比較例7 1500 3.62 1230 3.56 82 比較例8 1500 3.73 1250 3.62 83 比較例9 1500 3.62 1200 3.55 80 比較例10 1500 3.62 1220 3.56 81 表3 放電電容(mAh) 鐵釘穿入試驗 0.3 A 放電 (a) 3 A 放電 (b) 放電 電容比 (b/a) 20個電池中 燃燒之電池個數 (個電池) 實施例5 1550 1460 94 0 實施例6 1550 1440 93 0 實施例7 1550 1450 94 0 實施例8 1550 1470 95 0 實施例9 1550 1450 94 0 實施例10 1550 1430 92 10 比較例6 1560 1340 86 0 比較例7 1560 1330 85 0 比較例8 1550 1430 92 20 比較例9 1570 1300 83 1 0 比較例10 1560 1320 85 0 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 37 311440 -----------— II --- (請先閱讀背面之注意事項再填寫本頁) -線· 492207 A7 B7 五、發明說明(38 ) 由表2及表3清楚看出,本發明實施例5至實施例i 〇 之經離子二次電池,於充電及放電循環試驗中第1〇〇循環 之放電電容、平均放電電壓及放電電容保持率,及於高比 率放電試驗中之b值及放電電容比均優於比較例6至比較 例10之鐘離子二次電池。此外,於鐵釘穿入試驗中也顯示 優異之結果,證實其具較高之安全性。 一般而言,高比率放電敏感地受鋰離子二次電池的電 極電阻之影響’其中較高之電極電阻使放電電容減少。較 大的b及b/a值意謂較小之電極電阻。於表2中,本發明 實施例5至實施例1 〇之鋰離子二次電池與比較例6至比較 例1 0之鋰離子二次電池相較下,均具有較大值,其較小之 電極電阻顯然係同時並用較大尺寸導電物質及較小尺寸導 電物質之效果。 於鐵釘牙入试驗中,比較例6、7、9與10之裡離子二 次電池顯示較優異之結果,此為損失其充電及放電循環性 質及南比率放電性質所達成者。於比較例8之鋰離子二次 電池中’ LiCo〇2之平均粒度減為5以m以改良電池之充電 及放電循環性質,結果,於鐵釘穿入試驗中表現差。 實施例11至25,比較例11至 依下述方法製備用於製造諸實施例及比較例之鋰離子 二次電池所需之負極、正極及電解質混合溶劑。 [正極之製備](1) Charge the battery at 1.5 A for 2 hours until the voltage becomes 4 2 v, (ii) Discharge at 1.5 A until the voltage between the terminals becomes 3 V, and (η) discharge (please read the precautions on the back first) Write this page again) and let stand for 1 hour, these two steps constitute a cycle. Repeat these two steps at room temperature (20 ° C) for 100 cycles, and measure the discharge capacitance (Ah) of each cycle and the average discharge voltage of each cycle. The ratio of the discharge capacity of each cycle to the initial discharge valley was taken as the discharge capacity retention rate (%). The discharge capacity, average discharge voltage, and discharge capacity retention rate in the initial cycle and the 100th cycle are shown in Table 2. [High-rate discharge test method] The high-rate discharge of the battery includes: charging at 15 A for 2 hours to the voltage It became 4 · 2 V, and the voltage between the discharge to the end point was 3 v, and the voltage between the discharge and the end point was 3 v. After the discharge, it stood for 1 hour, and was charged at 15 A for 2 hours until the voltage became 4 2 V, and the discharge was made to 3 A. The voltage between the points becomes 3 v. Measure the discharge capacitance (a value) of 3 A discharge, the discharge capacitance (1) value of 3 A discharge, and its ratio (b / a). [[Iron nail penetration test method] The battery was charged at 1 · 5 A to a voltage of 4 3 V, and immediately after that, an iron nail with an outer diameter of 3 mm was inserted at 4 cm / sec to penetrate into the vicinity of the center of the battery, between the positive terminal and the negative terminal. Check the burning situation of the battery, and calculate the number of batteries that burn because of this. IX 297 mm) 36 311440 492207 A7 B7 V. Description of the invention (37) Table 2 Charge and discharge cycle test printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 1st cycle 100th test a Discharge capacitor (mAh) Average discharge voltage (V) Discharge capacitance (mAh) Average discharge voltage (V) Discharge capacitance retention rate (%) Example 5 1500 3.74 1420 3.70 95 Example 6 1500 3.72 1400 3.69 93 Example 7 1500 3.71 1400 3.69 93 Example 8 1500 3.75 1410 3.71 94 Example 9 1500 3.73 1420 3.69 95 Example 10 1500 3.74 1390 3.69 93 Comparative Example 6 1500 3.65 1250 3.58 83 Comparative Example 7 1500 3.62 1230 3.56 82 Comparative Example 8 1500 3.73 1250 3.62 83 Comparative Example 9 1500 3.62 1200 3.55 80 Comparative Example 10 1500 3.62 1220 3.56 81 Table 3 Discharge capacitance (mAh) Iron nail penetration test 0.3 A Discharge (a) 3 A Discharge (b) Discharge capacitance ratio (b / a) Number of batteries burned in 20 batteries (Batteries) Example 5 1550 1460 94 0 Example 6 1550 1440 93 0 Example 7 1550 1450 94 0 Example 8 1550 1470 95 0 Example 9 1550 1450 94 0 Example 10 1550 1430 92 10 Comparative Example 6 1560 1340 86 0 Comparative Example 7 1560 1330 85 0 Comparative Example 8 1550 1430 92 20 Comparative Example 9 1570 1300 83 1 0 Comparative Example 10 1560 1320 85 0 This paper is in accordance with the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 37 311440 ------------- II --- (Please read the notes on the back before filling out this page)-Line · 492207 A7 B7 V. Description of the invention (38) Tables 2 and 3 clearly show that the discharge capacity, average discharge voltage, and discharge capacity retention rate of the 100th cycle of the ion secondary batteries of Examples 5 to 10 of the present invention in the charge and discharge cycle test. The b value and discharge capacity ratio in the high-rate discharge test are better than those of the bell-ion secondary battery of Comparative Examples 6 to 10. In addition, it also showed excellent results in the nail penetration test, confirming its high safety. In general, high-rate discharge is sensitively affected by the electrode resistance of a lithium-ion secondary battery ', among which higher electrode resistance reduces the discharge capacitance. Larger b and b / a values mean lower electrode resistance. In Table 2, the lithium ion secondary batteries of Examples 5 to 10 of the present invention have a larger value compared with the lithium ion secondary batteries of Comparative Examples 6 to 10, which are smaller. Obviously, the electrode resistance is the effect of using a larger-sized conductive substance and a smaller-sized conductive substance together. In the iron nail penetration test, the ion secondary batteries of Comparative Examples 6, 7, 9, and 10 showed superior results, which was achieved by losing their charge and discharge cycle properties and south-rate discharge properties. In the lithium ion secondary battery of Comparative Example 8, the average particle size of ' LiCoO2 was reduced to 5 to m to improve the charge and discharge cycle characteristics of the battery. As a result, the performance was poor in the nail penetration test. Examples 11 to 25 and Comparative Examples 11 to The mixed solvents of the negative electrode, the positive electrode, and the electrolyte required for manufacturing the lithium ion secondary batteries of the Examples and Comparative Examples were prepared by the following methods. [Preparation of positive electrode]

製備下述(A-l、A-2)作為正極活性物質: (A-1)LiCo02:平均粒度為 (以 SHIMADZU C請先閱讀背面之注咅?事項再填寫本頁) 訂·Prepare the following (A-1, A-2) as the positive electrode active material: (A-1) LiCo02: average particle size is (for SHIMADZU C, please read the note on the back first? Matters before filling this page) Order ·

經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 38 311440 經濟部'智慧財產局員工消費合作社印製 492207 A7 B7 五、發明說明(39) CORPORATION製造之SALD3000J測定,下文相同),比 表面積為0·160 m2/g(以QUANTA CHROME製造之 ’ monosorb測定,下文相同); < (A-2) LiC 〇02 :平均粒度為18.4#m及比表面積為0.138 、· m2/g 〇 使LiCo〇2(90重量份)、聚偏氟乙烯(7重量份,黏合 劑)、乙炔黑(3重量份,導電劑)及N-甲基-24比咯烷明(7〇 | 重量份)混合,得到漿狀物。將此漿狀物施敷於欲作為電流 收集體之20 厚鋁箔雙面,乾燥及壓伸 結果’製得由兩面各具有20 mg/cm2厚正極活性物質 組成物層之IS 製成的兩種正極,亦即,LA-1(正極活性物 - 質:A-1)及LA-2(正極活性物質:A-2)。 [負極之製備] 製備如下文表4所示之六種(C-1至C-6)石墨化碳作為 負極活性物質。其中’ C -1至C-3涵蓋於本發明而C-4至 P C-6供比較用。 使石墨化碳(90重量份)、聚偏氟乙烯(1〇重量份,黏合 -劑)及甲基冬吡咯烷酮(200重量份)混合,得到漿狀物。 、將此漿狀物施敷於欲作為電流收集體之14//111厚鋼羯雙 面,乾燥及壓伸 結果’製得由兩面各具有10·4 mg/cm2厚負極活性物 質组成物層之銅箔製成的六種負極,亦即,GC-1(負極活 性物質·· C-l)、GC-2(負極活性物質:cj)、GC-3(負極活 性物質·· C-3)、GC-4(負極活性物質:C-4)、GC-5(負極活 --------- ---------·----訂---------線 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 39 311440 492207 A7 B7 五、發明說明(40 ) 性物質:C-5)及GC-6(負極活性物質:C-6) 表4 負極活性物質 C-1 C-2 C-3 C-4 C-5 C-6 比表面積 (m2/g) 1.2 1.4 0.7 8.7 1.9 4.5 D002 (nm) 0.3366 0.3361 0.3359 0.3354 0.3420 0.3368Printed by the Intellectual Property Bureau Employee Consumer Cooperatives of the Ministry of Economic Affairs This paper is printed in accordance with Chinese National Standard (CNS) A4 (210 X 297 public love) 38 311440 Ministry of Economic Affairs' Intellectual Property Bureau Employee Consumer Cooperatives printed by 492207 A7 B7 V. Description of the invention ( 39) SALD3000J manufactured by Corporation, same as below), specific surface area is 0 · 160 m2 / g (measured by 'monosorb manufactured by QUANTA CHROME, same below); < (A-2) LiC 〇02: average particle size is 18.4 #m and specific surface area are 0.138 m · g2 / g. LiCo〇2 (90 parts by weight), polyvinylidene fluoride (7 parts by weight, adhesive), acetylene black (3 parts by weight, conductive agent), and N-formaldehyde The base-24 was mixed with pyrrolidine (7〇 | parts by weight) to obtain a slurry. This slurry was applied to both sides of a 20-thick aluminum foil that was to be used as a current collector, and the results of drying and pressing were used to produce two kinds of IS made of IS with a 20 mg / cm2 thick positive electrode active material composition layer on each side. The positive electrode, that is, LA-1 (positive electrode active substance: A-1) and LA-2 (positive electrode active substance: A-2). [Preparation of negative electrode] Six types (C-1 to C-6) of graphitized carbon shown in Table 4 below were prepared as a negative electrode active material. Among them, 'C -1 to C-3 are included in the present invention and C-4 to P C-6 are used for comparison. Graphitized carbon (90 parts by weight), polyvinylidene fluoride (10 parts by weight, a binder) and methyl winter pyrrolidone (200 parts by weight) were mixed to obtain a slurry. 2. Apply this slurry to the double-sided 14 // 111-thick steel reeds that are to be used as current collectors, and the results of drying and stretching are used to prepare a negative electrode active material composition layer with 10.4 mg / cm2 thick on each side. Six types of negative electrodes made of copper foil, that is, GC-1 (negative electrode active material · Cl), GC-2 (negative electrode active material: cj), GC-3 (negative electrode active material · C-3), GC-4 (negative electrode active material: C-4), GC-5 (negative electrode active --------- --------- · ---- order ------- --- line (please read the notes on the back before filling this page) This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 39 311440 492207 A7 B7 V. Description of the invention (40) Sexual substances: C-5) and GC-6 (negative electrode active material: C-6) Table 4 Negative electrode active material C-1 C-2 C-3 C-4 C-5 C-6 Specific surface area (m2 / g) 1.2 1.4 0.7 8.7 1.9 4.5 D002 (nm) 0.3366 0.3361 0.3359 0.3354 0.3420 0.3368

(請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 [電解質溶劑之製備] 製備下文表5中所示之各種藏合溶劑作為電解質溶 劑。於表5所示之18種混合溶劑中,:MS-1至MS-1 j十 種為本發明所使用,MS-12至MS-18七種係供比較用。 表5 混合溶劑 混合溶劑 成分(%容豬比) EC PC DEC EMC DMC MS-1 6 9 4 31 50 MS-2 8 12 4 29 47 MS-3 10 15 4 27 44 MS-4 8 7 4 31 50 MS-5 11 9 4 29 47 MS-6 14 ^ 11 4 27 44 MS-7 11 5 4 31 —50 MS-8 14 6 4 29 —47 MS-9 18 8 4 27 44 MS-10 11 9 - 33 47 MS-11 11 9 33 • 47 MS-12 32 - 19 36 14 MS-13 37 - 63 - MS-14 42 - 36 ~Γ7 5 MS-15 25 - - 50 25 MS-16 - 25 - i5 0 25 MS-17 30 10 - 60 - MS-18 42 36 17 5 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 40 311440 492207 A7 B7 比較例11至17 五、發明說明(41 ) 复羞l教至21 將前述正極LA-1及負極GC-1經由多孔聚乙烯-聚丙烯 複合隔離物纏繞,得到高度65 mm、外徑1 8 mm之圓柱形 鋰離子二次電池(放電電容:13〇0 mAh)。至於電解質,係 將溶解1莫耳LiPF6於表5所示之混合溶劑(i L)中所得溶 液裝填於上述正極及負極之間。諸實施例及比較例所用混 合溶劑之種類均示於表5。 實施例22至25,比較例18至20 以與實施例11至21及比較例11至17相同之方式及 使用表7所示之正極、負極及混合溶劑,將該正極及負極 經由多孔聚乙烯-聚丙烯複合隔離物纏繞,得到高度6 5 mm、外徑18 mm之圓柱形鋰離子二次電池(放電電容:uoo mAh)p至於電解質,如實施π所述,係將溶解1莫耳LiPF6 於混合溶劑(1 L)中所得溶液裝填於正極及負極間。 依據下述充電及放電循環試驗法測定上述諸實施例及 比較例之鋰離子二次電池之充電及放電循環性質,並計算 於第100循環、第200循環、第300循環及第400循環之 放電電容保持率(%)。實施例11至2 1及比較例11至1 7 之結果示於表6 ;實施例22至25及比較例18至20之結 果示於表7。於比較例15及比較例17中,PC之分解阻止 充電及放電循環試驗之進行。於比較例18中,當試驗終止 時,第100循環之放電電容保持率降至38%。 i [充電及放電循環試驗法](Please read the precautions on the back before filling this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs [Preparation of Electrolyte Solvents] Prepare various Tibetan solvents as shown in Table 5 below as electrolyte solvents. Of the 18 mixed solvents shown in Table 5, ten MS-1 to MS-1 j are used in the present invention, and seven species MS-12 to MS-18 are used for comparison. Table 5 Mixed solvent components (% porcine ratio) EC PC DEC EMC DMC MS-1 6 9 4 31 50 MS-2 8 12 4 29 47 MS-3 10 15 4 27 44 MS-4 8 7 4 31 50 MS-5 11 9 4 29 47 MS-6 14 ^ 11 4 27 44 MS-7 11 5 4 31 —50 MS-8 14 6 4 29 —47 MS-9 18 8 4 27 44 MS-10 11 9-33 47 MS-11 11 9 33 • 47 MS-12 32-19 36 14 MS-13 37-63-MS-14 42-36 ~ Γ7 5 MS-15 25--50 25 MS-16-25-i5 0 25 MS-17 30 10-60-MS-18 42 36 17 5 This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 40 311440 492207 A7 B7 Comparative Examples 11 to 17 V. Description of Invention (41 ) Fu Shai teaches to 21 Wound the aforementioned positive electrode LA-1 and negative electrode GC-1 through a porous polyethylene-polypropylene composite separator to obtain a cylindrical lithium ion secondary battery with a height of 65 mm and an outer diameter of 18 mm (discharge Capacitance: 1300 mAh). As for the electrolyte, a solution obtained by dissolving 1 mol of LiPF6 in a mixed solvent (i L) shown in Table 5 was charged between the positive electrode and the negative electrode. Table 5 shows the types of mixed solvents used in the examples and comparative examples. Examples 22 to 25, Comparative Examples 18 to 20 In the same manner as in Examples 11 to 21 and Comparative Examples 11 to 17, and using the positive electrode, negative electrode, and mixed solvent shown in Table 7, the positive electrode and negative electrode were passed through porous polyethylene. -Polypropylene composite separator is wound to obtain a cylindrical lithium ion secondary battery (discharge capacitance: uoo mAh) with a height of 65 mm and an outer diameter of 18 mm. As for the electrolyte, as described in the implementation of π, it will dissolve 1 mole of LiPF6 The solution obtained in the mixed solvent (1 L) was charged between the positive electrode and the negative electrode. The charge and discharge cycle characteristics of the lithium-ion secondary batteries of the above examples and comparative examples were measured according to the following charge and discharge cycle test methods, and the discharges at the 100th, 200th, 300th, and 400th cycles were calculated. Capacitance retention rate (%). The results of Examples 11 to 21 and Comparative Examples 11 to 17 are shown in Table 6; the results of Examples 22 to 25 and Comparative Examples 18 to 20 are shown in Table 7. In Comparative Examples 15 and 17, the decomposition of the PC prevented the charge and discharge cycle tests from being performed. In Comparative Example 18, when the test was terminated, the discharge capacity retention rate at the 100th cycle was reduced to 38%. i [Charge and discharge cycle test method]

一個循環包括於2.6 mA恒定電流及每1 cm2正極4.2 V 本紙張尺度適用中國國家標準(CNS)A4規格(2㈣7公爱) 41 31144〇 -------------裝-----:----訂---------線 (請先閱讀背面之注咅?事項再填寫本頁) 經濟银智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 492207 A7 B7 五、發明說明(42 ) 恒定電壓下充電2.5小時、充電後靜置1小時、於每1 cm2 正極2.6 m A恒定電流下放電至端點電壓為3 V為止及於放 電後靜置1小時。於室溫(20°C )重複此循環400次。從各 循環之放電電流及放電小時計算放電電容(m A · H)。以各 循環放電電容相對於初始放電電容之比作為放電電容保持 率(%)。 (請先閱讀背面之注意事項再填寫本頁)One cycle includes a constant current of 2.6 mA and a positive voltage of 4.2 V per 1 cm2. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (2㈣7 public love) 41 31144〇 ------------- install- ----: ---- Order --------- line (Please read the note on the back? Matters before filling out this page) Printed by the Economic and Intellectual Property Bureau Staff Consumer Cooperatives Printed by the Ministry of Economic Affairs Intellectual Property Bureau Printed by the employee consumer cooperative 492207 A7 B7 V. Description of the invention (42) Charge at constant voltage for 2.5 hours, leave it for 1 hour after charging, discharge at a constant current of 2.6 m A per 1 cm2 of positive current to a terminal voltage of 3 V and Let stand for 1 hour after discharge. Repeat this cycle 400 times at room temperature (20 ° C). Calculate the discharge capacitance (m A · H) from the discharge current and discharge hours for each cycle. The ratio of the cyclic discharge capacity to the initial discharge capacity was taken as the discharge capacity retention rate (%). (Please read the notes on the back before filling this page)

表6 正極 負極 混合 溶劑 於各循環之放電電容保持率(%) 第100 循環 第200 循環 第300 循環 第400 循環 實施例11 LA_1 GC-1 MS-1 88 84 77 72 實施例12 LA-1 GCA MS-2 88 83 77 73 實施例13 LA-1 GC-1 MS-3 88 81 74 67 實施例14 LA_1 GC-1 MS-4 87 82 74 69 實施例15 LA-1 GC-1 MS-5 90 81 76 70 實施例16 LA-1 GC-1 MS-6 88 76 70 67 實施例17 LA-1 GC-1 MS-7 86 76 68 63 實施例18 LA-1 GC-1 MS-8 86 75 68 60 實施例19 LA-1 GC-1 MS-9 86 75 68 60 實施例20 LA-1 GC-1 MS-10 86 78 70 67 實施例21 LA-1 GC-1 MS-11 88 80 72 69 比較例11 LA-1 GC-1 MS-12 81 68 55 46 比較例12 LA-1 GC-1 MS-13 79 57 47 38 比較例13 LA-1 GC-1 MS-14 77 56 46 38 比較例14 LA-1 GC-1 MS-15 84 70 58 52 比較例15 LA-1 GC-1 MS-16 - - - 比較例16 LA-1 GC-1 MS-17 84 68 53 40 比較例17 LA-1 GC-1 MS-18 - - - - 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 42 311440 492207 五、發明說明(43 ) A7 B7 表 7 正極 負極 混合溶 劑 於各循環之放電電容保持率 第100 循環 第200 循環 第300 循環 第400 循環 實施例22 LA-1 GC-2 MS-5 87 81 77 73 實施例23 LA-1 GC-3 MS-5 92 87 83 80 實施例24 LA-2 GC-1 MS-1 88 82 78 72 實施例25 LA-2 GC-1 MS-2 88 83 79 74 比較例18 LA-1 GC-4 MS-5 38 麵 - 鳴 比較例19 LA-1 GC-5 MS-5 79 68 58 53 比較例20 LA-1 GC-6 MS-5 71 62 52 47 由表6及表7顯見,與比較例11至20相較下,實施 例11至25之所有鋰離子二次電池具有緩慢下降之放電電 容保持率。於各比較例之第400循環,其放電電容保持率 均低於60%,而各實施例則不然。特別顯著之事實為,使 用EC及PC之各實施例之鋰離子二次電池,與其中MS-16 不使用EC之比較例15、其中MS-12與MS-14不使用PC 之比較例11與13、及其中MS-17不使用DMC之比較例 16相較下,具有顯著優異之充電及放電循環性質。此效果 顯然係由於在使用石墨化碳作為負極活性物質時,同時使 用EC及PC所引起。 此外,由表7顯見,當使用含有本發明範圍以外之石 墨化碳之負極時,充電及放電循環性質不足。於比較例1 8 及比較例20中,由於使用具有過高比表面積及高結晶性之 石墨化碳而造成PC分解;不像比較例1夕及比較例1 7,由 於EC之保護膜而可能充電及放電。於比較例1 9中,係使 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 43 311440 ---II--II----- --- (請先閱讀背面之注意事項再填寫本頁) 訂: --線· 經濟部,智慧財產局員工消費合作社印製 492207 A7 ~—-------- 五、發明說明(44 ) 用低結晶性之石墨化碳(軟碳),pc不分解,惟鋰嵌加反應 之可逆性不足,繼而使充電及放電循環性質不足。 复Ai列26至29及比轉例91,22 t施例26 [正極之製備] 使欲作為正極活性物質、平均粒度2〇 β m(以salD_ 3000J測定)、比表面積012 mVg及[2〇(平均粒度X比表面 積)]為8.3之LiCo〇2(91重量份);欲作為導電物質之球形Table 6 Discharge capacity retention rate of positive and negative mixed solvents in each cycle (%) 100th cycle 200th cycle 300th cycle 400th cycle Example 11 LA_1 GC-1 MS-1 88 84 77 72 Example 12 LA-1 GCA MS-2 88 83 77 73 Example 13 LA-1 GC-1 MS-3 88 81 74 67 Example 14 LA_1 GC-1 MS-4 87 82 74 69 Example 15 LA-1 GC-1 MS-5 90 81 76 70 Example 16 LA-1 GC-1 MS-6 88 76 70 67 Example 17 LA-1 GC-1 MS-7 86 76 68 63 Example 18 LA-1 GC-1 MS-8 86 75 68 60 Example 19 LA-1 GC-1 MS-9 86 75 68 60 Example 20 LA-1 GC-1 MS-10 86 78 70 67 Example 21 LA-1 GC-1 MS-11 88 80 72 69 Compare Example 11 LA-1 GC-1 MS-12 81 68 55 46 Comparative Example 12 LA-1 GC-1 MS-13 79 57 47 38 Comparative Example 13 LA-1 GC-1 MS-14 77 56 46 38 Comparative Example 14 LA-1 GC-1 MS-15 84 70 58 52 Comparative Example 15 LA-1 GC-1 MS-16---Comparative Example 16 LA-1 GC-1 MS-17 84 68 53 40 Comparative Example 17 LA-1 GC-1 MS-18----This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 42 311440 492207 V. Description of the invention (43) A7 B7 Table 7 Positive and negative electrodes Discharge capacity retention rate of mixed solvent in each cycle 100th cycle 200th cycle 300th cycle 400th cycle Example 22 LA-1 GC-2 MS-5 87 81 77 73 Example 23 LA-1 GC-3 MS-5 92 87 83 80 Example 24 LA-2 GC-1 MS-1 88 82 78 72 Example 25 LA-2 GC-1 MS-2 88 83 79 74 Comparative Example 18 LA-1 GC-4 MS-5 38 sides -Naming Comparative Example 19 LA-1 GC-5 MS-5 79 68 58 53 Comparative Example 20 LA-1 GC-6 MS-5 71 62 52 47 As shown in Tables 6 and 7, compared with Comparative Examples 11 to 20 Next, all the lithium ion secondary batteries of Examples 11 to 25 had a slowly decreasing discharge capacity retention rate. At the 400th cycle of each comparative example, the discharge capacity retention ratios were all lower than 60%, but not in the examples. Particularly remarkable facts are the lithium ion secondary battery using each of the examples of EC and PC, and comparative example 15 in which MS-16 is not used in EC, and comparative example 11 in which MS-12 and MS-14 are not used in PC. 13. Compared with Comparative Example 16 in which MS-17 is not used with DMC, it has significantly superior charge and discharge cycle properties. This effect is apparently caused by the use of both EC and PC when graphitized carbon is used as the negative electrode active material. In addition, it is apparent from Table 7 that when using a negative electrode containing graphite carbon that is outside the scope of the present invention, the charge and discharge cycle properties are insufficient. In Comparative Example 18 and Comparative Example 20, PC was decomposed due to the use of graphitized carbon having an excessively high specific surface area and high crystallinity; unlike Comparative Example 1 and Comparative Example 17, it was possible due to the protective film of EC Charge and discharge. In Comparative Example 19, the paper size is adapted to the Chinese National Standard (CNS) A4 (210 X 297 mm) 43 311440 --- II--II ----- --- (Please read the back first Please pay attention to this page and fill in this page again) Order: --Line · Printed by the Ministry of Economic Affairs, Intellectual Property Bureau Staff Consumer Cooperative 492207 A7 ~ ——-------- 5. Description of the invention (44) Use of low crystallinity graphite Carbon (soft carbon), pc does not decompose, but the reversibility of lithium intercalation reaction is insufficient, and then the charging and discharging cycle properties are insufficient. Compound Ai columns 26 to 29 and specific conversion examples 91, 22 t Example 26 [Preparation of positive electrode] To be used as a positive electrode active material, average particle size 20 β m (measured by salD_ 3000J), specific surface area 012 mVg, and [2〇 (Average particle size X specific surface area)] LiCo〇2 (91 parts by weight) of 8.3; spherical shape to be used as a conductive material

石墨化碳(MCMB 6_28,5重量份,粒度6 # m) ; KETZEN BLACK ECP(1重量份,粒度0·01以m);及聚偏氟乙烯 (PVdF)(3重量份,黏合劑)均勻分散於N_甲基_2_吡咯烷酮 中’得到漿狀物。將此漿狀物施敷於欲作為電流收集體之 2〇 厚鋁箔雙面,乾燥及壓伸,得到由兩面各具有2〇 mg/cm2 LiCo02之鋁箔製成的正極。 [負極之製備] 使石墨化碳(Melblonmilled FM-14)(95重量份,負極活 性物質,比表面積:1.32 m2/g,點陣平面(d002)間隔··不大於 0.3364 nm,c-轴方向微晶大小:50 nm)、聚偏氟乙烯 (PVdF)(5重量份,負極黏合劑)及N-甲基-2-Π比咯烷酮(5〇 重量份)混合,得到漿狀物。將此漿狀物施敷於欲作為電流 從集體之14/zm厚銅箔雙面,乾燥及壓伸而製得負極。 [電解質之製備] 於含碳酸二乙酯(4容積%)、碳酸乙基甲酯(29容積 %)、碳酸乙烯酯(11容積%)、碳酸丙烯酯(9容積%)及碳酸 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) -1^----Γ--------- (請先閱讀背面之注意事項再填寫本頁) 訂:Graphitized carbon (MCMB 6_28, 5 parts by weight, particle size 6 # m); KETZEN BLACK ECP (1 part by weight, particle size 0 · 01 to m); and polyvinylidene fluoride (PVdF) (3 parts by weight, adhesive) uniform Dispersed in N-methyl-2-pyrrolidone 'to obtain a slurry. This slurry was applied to both sides of a 20-thick aluminum foil to be used as a current collector, dried and stretched to obtain a positive electrode made of aluminum foil with 20 mg / cm2 LiCo02 on each side. [Preparation of Negative Electrode] Graphitized carbon (Melblonmilled FM-14) (95 parts by weight, negative electrode active material, specific surface area: 1.32 m2 / g, lattice plane (d002) interval · 0.33 nm or less, c-axis direction Crystallite size: 50 nm), polyvinylidene fluoride (PVdF) (5 parts by weight, negative electrode binder) and N-methyl-2-Π-pyrrolidone (50 parts by weight) were mixed to obtain a slurry. This slurry was applied to a double-sided 14 / zm thick copper foil which was to be used as a current, dried, and stretched to obtain a negative electrode. [Preparation of Electrolyte] Paper containing diethyl carbonate (4% by volume), ethyl methyl carbonate (29% by volume), ethylene carbonate (11% by volume), propylene carbonate (9% by volume), and carbonate paper Applicable to China National Standard (CNS) A4 specification (210 X 297 public love) -1 ^ ---- Γ --------- (Please read the precautions on the back before filling this page) Order:

經濟部智慧財產局員工消費合作社印製 492207 A7 ----B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(45) 二甲醋(47容積%)之混合溶劑中溶解1^?匕至濃度為 mol/L(相對於製備後之電解質)而得電解質。 二[鋰離子二次電池之裝配] 、 將上述製得之正極及負極經由多孔聚乙烯-聚丙烯複 、合隔離物纏繞並置於圓柱形電池罐(外徑18 mm、高度6 5 mm)中。該隔離物以上述製備之電解質浸潰,得到本發明 之鋰離子二次電池。 使上述製得之鋰離子二次電池進行循環性質試驗、低 溫性質試驗及貯存性質試驗,結果示於表8。 [循環性質試驗] 於室溫(20°C),使上述製得之鋰離子二次電池進行5〇〇 循環之1C/1C充電及放電。從放電電流及放電小時計算第 1循環及第5 00循環之放電電容[〇1人· H]。將第500循環 之放電電容[mA ·Η]除以第1循環之放電電容· H]以 獲得放電電容保持率(%)。結果示於表8。 [低溫性質試驗] 於室溫,使上述製得之鋰離子二次電池充電並於_35 °C、大氣中靜置24小時。電池之充電係使1C (1600 mA) 恒定電流流動至電壓成為4·2 V為止,然後於4.2 V恒定 電壓使電流流動至總共充電2.5小時;於-35°C、大氣中, 以0.5 C (800 mAh)/2,5 V截止電壓使電池放電,並計算此 時之放電電容(mA · H)。於室溫(2〇°C )、在相同條件下, ί 進行充電-放電並計算放電電容(mA · Η)。將-3 5 °C時之放 電電容[mA · H]除以室溫時之放電電容[mA · H]以獲得放 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 45 311440 -------------05^ --- (請先閱讀背面之注意事項再填寫本頁) 言 Γ 良 ^VZZOl Α7 五、發明說明(46 電電容保持率(%)。結果示於表8。 [貯存性質試驗] 於至皿,使上述製得之鋰離子二次電池充電並於6〇 C、大氣_靜置40天。電池之充電係使1C (1600 mA)恒 疋電流流動至電麼成為4 2 v為止,然後於4 2 V恒定電 壓使電流流動至總共充電25小時;於巧。c、大氣中將電 池靜置24小時及於_5°C、大氣中,以j c (16〇〇 mAh)/2 5 v 截止電壓使電池放電,並計算此時之放電電容(m A · η)。 將此放電電容除以RT放電電容(以i c (16〇〇 mAh)/2 5 v 截止電壓放電)以獲得玫電電容保持率。結果示於表8。 本文中使用之RT放電電容意謂藉由使1 6〇〇 恒定 電流流動至電壓成為4·2 V為止,接著於4.2 V恒定電壓 使電流流動至總共充電2·5小時,然後於20。(:於800 mA 放電至電壓成為2·5 V所得之放電電容(mA · η)。 實施例27 以與實施例20相同之方式,惟係使用平均粒度i 6 # m 及比表面積0.17 m2/g之LiCo〇2作為正極活性物質,製得 經離子二次電池。此鐘離子二次電池與實施例2 6 一樣,進 行循環性質試驗、低溫性質試驗及貯存性質試驗,結果示 於表8。 實施例28 以與實施例26相同之方式,惟係使用粒度4 之石 墨化碳及粒度0 05 // m之KETZEN BLACK作為導電物 質,製得鋰離子二次電池。此鋰離子二次電池與實施例26 請 先 閱 讀 背 面 之 注 意 事 項 再 填 本 頁 訂 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 46 311440 492207 經濟部智慧財產局員工消費合作社印製 A7 五、發明說明(47 ) 一樣’進行循環性質試驗、低溫性質試驗及貯存性質試驗, 結果示於表8。 : 實施例29 v 以與實施例26相同之方式,惟係使用含碳酸二乙酯(6 •容積%)、碳酸乙基甲酯(27容積%)、碳酸乙烯酯(9容積%)、 碳酸丙烯醋(10容積〇/0)及碳酸二甲醋(48容積%)之混合溶 劑作為電解質溶劑,製得鋰離子二次電池。此鋰離子二次 •電池與實施例26 —樣,進行循環性質試驗、低溫性質試驗 及貯存性質試驗,結果示於表8<> 比較例21 •以與實施例2.6相同之方式,惟係使用Lic〇〇2[平均粒 ,度18“m、比表面積〇.19m2/g、2〇/(平均粒度、比表面積)·· 5.8]作為正極活性物質;單獨使用球形石墨化碳 6-28,6重量份,粒度3//〇〇作為導電物質;含碳酸乙烯 酯(30容積%)、碳酸丙烯酯(3〇容積%)及碳酸二甲酯容 齡積。/〇)之混合溶劑作為電解質溶劑,製得鋰離子二次電池。 此鋰離子二次電池與實施例26 一樣,進行循環性質試驗、 -低溫性質試驗及貯存性質試驗,結果示於表8。 比較例2? 以與實施例26相同之方式,惟係使用LiCo〇2[平均粒 •度比表面積010m2/g、20/(平均粒度χ比表面積): 10·5]作為正極活性物質;單獨使用碳黑重量份,粒度 0〇1产Π1)作為導電物質;含碳酸乙烯酯士〇容積%卜^酸 丙烯S旨(20容積%)及碳酸二甲醋(6〇容積%)之混合溶劑作 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公« ) -- 47 311440 -n I H ϋ ί n n I I -ϋ I ·ϋ I · ϋ n n a^i an I I』:°J· an ϋ n ϋ ϋ· I n I (請先閱讀背面之注意事項再填寫本頁) 492207 A7 B7 五、發明說明(48 ) (請先閱讀背面之注意事項再填寫本頁) 為電解質溶劑,製得鋰離子二次電池。此經離子二次電池 與實施例26 —樣,進行循環性質試驗、低溫性質試驗及貯 存性質試驗,結果示於表8。 表8 實施例 26 實施例 27 實施例 28 實施例 29 比較例 21 比較例 22 [循環性質J 放電電容保 持率(%) 85 82 83 80 50 40 [低溫性質] 放電電容保 持率(%) 88 83 81 81 未放電 20 [貯存性質] 放電電容保 持率(%) 80 82 82 81 未放電 未放電 從上述實施例26至29及比較例21、22顯見,使用本 發明之鋰離子二次電池使充電及放電循環性質、貯存性質 以及低溫性質獲得顯著的改良。 實施例30至38及比較例23至27 [電解質之製備] 經濟部智慧財產局員工消費合作社印製 用於實施例30至38及比較例23至27之鋰離子二次 電池之電解質溶劑係以表9所示之混合比率予以製備。使 LiPF0溶解於各溶劑中至濃度如表9所示,得到各鐘離子 二次電池之電解質。 [正極之製備] 使平均粒度17.5 “ m(以SALD_3000J測定)、比表面積 0.154 m2/g之LiCo〇2(91重量份,正極活性物質);石墨 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 48 311440 492207 A7 B7 五、發明說明(49 ) (請先閱讀背面之注意事項再填寫本頁) 粉(6重量份,正極導電物質);聚偏氟乙烯(3重量份,正 極黏合劑)及N-甲基-2-¾咯烷嗣(50重量份)混合,得到漿 •狀物。將此漿狀物施敷於欲作為電流收集體之2〇/zm厚鋁 、箔(550 mm X 55 mm)雙面,乾燥及壓伸,得到正極。該正 -極活性物質層填充率為70%。製造13組該正極供實施例 30至37及比較例23至27之鋰離子二次電池用。 以如上述之相同方式,惟係使用平均粒度16 ►比表面積為0.138〇12々之1^<:〇,製得不同之正極。此正極 顯示正極活性物質層之填充率為74%。使用此正極製成實 施例3 8之鋰離子二次電池。 [負極之製備] - 使平均纖維長度40 // m及平均纖維直徑8·8 β m之碳 經 濟 部 智· 慧 財 產. 局 員 工 消 費 合 作 社 印 製 纖維(95重量份,負極活性物質)、聚偏氟乙烯(5重量份, 負極黏合劑)及N-甲基-2-Π比咯烷酮(1〇〇重量份)混合,得到 漿狀物。將此漿狀物施敷於欲作為電流收集體之14以111厚 ►銅箔(595 mm X 57 mm)雙面,乾燥及壓伸,得到負極。該 負極活性物質層填充率為69〇/〇。製造13組該負極供實施 -例30至37及比較例23至27之鋰離子二次電池用。 η . 以如上述之相同方式,惟係使用平均纖維長度35〆m 及平均纖維直徑10//m之碳纖維,製得不同之負極。此負 ’極顯示負極活性物質層之填充率為72〇/0。使用此負極製成 實施例38之鋰離子二次電池。 i [鋰離子二次電池之裝配] 將上述製得之正極及負極經由多孔聚乙烯-聚丙烯複 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 49 311440 492207Printed by the Employees 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 492207 A7 ---- B7 Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. The electrolyte was obtained by reducing the concentration to mol / L (relative to the electrolyte after preparation). [Assembly of Lithium-ion secondary battery]. The positive and negative electrodes prepared above were wound through a porous polyethylene-polypropylene composite separator and placed in a cylindrical battery can (18 mm in outer diameter and 65 mm in height). . The separator was impregnated with the electrolyte prepared as described above to obtain the lithium ion secondary battery of the present invention. The lithium ion secondary battery prepared as described above was subjected to a cycle property test, a low temperature property test, and a storage property test. The results are shown in Table 8. [Cycle property test] At room temperature (20 ° C), the lithium ion secondary battery prepared as described above was charged and discharged at 1C / 1C for 5000 cycles. From the discharge current and the discharge hour, calculate the discharge capacitance [0 1 person · H] in the first cycle and the 500th cycle. Divide the discharge capacitance [mA · Η] in the 500th cycle by the discharge capacitance · H] in the first cycle to obtain the discharge capacitance retention (%). The results are shown in Table 8. [Low-temperature property test] The lithium ion secondary battery prepared above was charged at room temperature, and left at _35 ° C in the air for 24 hours. The battery was charged with a constant current of 1C (1600 mA) until the voltage reached 4 · 2 V, and then the current was charged at a constant voltage of 4.2 V for a total of 2.5 hours; at -35 ° C in the atmosphere at 0.5 C ( 800 mAh) / 2,5 V cut-off voltage to discharge the battery, and calculate the discharge capacitance (mA · H) at this time. At room temperature (20 ° C) and under the same conditions, charge and discharge and calculate the discharge capacitance (mA · Η). Divide the discharge capacitance [mA · H] at -3 5 ° C by the discharge capacitance [mA · H] at room temperature to obtain the paper size. Applicable to China National Standard (CNS) A4 (210 X 297) 45 311440 ------------- 05 ^ --- (Please read the precautions on the back before filling this page) Γ 良 ^ VZZOl Α7 V. Description of the invention (46 Capacitor retention rate ( %). The results are shown in Table 8. [Storage property test] The lithium-ion secondary battery prepared above was charged to a container and left at 60 ° C for 40 days in the atmosphere. The battery was charged at 1C (1600 mA) The constant current flows until the electricity becomes 4 2 V, and then the current flows at a constant voltage of 4 2 V for a total of 25 hours of charging; Yu Qiao. c. The battery is left to stand for 24 hours in the atmosphere and at _5 ° C In the atmosphere, the battery is discharged with a cut-off voltage of jc (1600 mAh) / 2 5 v, and the discharge capacitance (m A · η) at this time is calculated. Divide this discharge capacitance by the RT discharge capacitance (with ic (16 〇〇mAh) / 2 5 v cut-off voltage) to obtain the capacitance retention rate. The results are shown in Table 8. The RT discharge capacitor used in this article means that by making a constant current of 1600 Until the voltage reaches 4 · 2 V, a constant voltage of 4.2 V is applied to allow current to flow for a total of 2.5 hours, and then at 20. (: Discharge capacitance obtained by discharging at 800 mA to a voltage of 2 · 5 V (mA · η). Example 27 In the same manner as in Example 20, except that LiCoO2 having an average particle size of i 6 # m and a specific surface area of 0.17 m 2 / g was used as a positive electrode active material, a secondary ion battery was prepared. This clock The ion secondary battery was subjected to the cycle property test, low temperature property test, and storage property test in the same manner as in Example 26. The results are shown in Table 8. Example 28 In the same manner as in Example 26, except that the graphitization with particle size 4 was used Carbon and particle size 0 05 // m KETZEN BLACK as a conductive material to produce a lithium ion secondary battery. This lithium ion secondary battery and Example 26 Please read the precautions on the back before filling in this page to order the Intellectual Property Bureau of the Ministry of Economic Affairs Printed on employee papers by consumer cooperatives. Applicable to China National Standard (CNS) A4 specifications (210 X 297 public love) 46 311440 492207 Printed on A7 by employee consumer cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of invention (47 ) The same was performed for the cycle property test, low temperature property test, and storage property test, and the results are shown in Table 8. Example 29 v In the same manner as in Example 26 except that diethyl carbonate-containing (6 vol%) was used A mixed solvent of ethyl methyl carbonate (27% by volume), ethylene carbonate (9% by volume), propylene carbonate (10% by volume 0/0) and dimethyl carbonate (48% by volume) was used as an electrolyte solvent to prepare Lithium-ion secondary battery. This lithium ion secondary battery was tested in the same manner as in Example 26. The cycle property test, low-temperature property test, and storage property test were performed. The results are shown in Table 8 < > Comparative Example 21 In the same manner as in Example 2.6, except that Use Lic〇002 [average particle, degree 18 "m, specific surface area 0.19 m2 / g, 20 / (average particle size, specific surface area) · 5.8] as the positive electrode active material; spherical graphitized carbon 6-28 alone 6 parts by weight, with a particle size of 3 // 00 as a conductive substance; a mixed solvent containing ethylene carbonate (30% by volume), propylene carbonate (30% by volume), and dimethyl carbonate volume. An electrolyte solvent was used to prepare a lithium ion secondary battery. This lithium ion secondary battery was subjected to a cycle property test, a low temperature property test, and a storage property test in the same manner as in Example 26. The results are shown in Table 8. Comparative Example 2 Example 26 was performed in the same manner, except that LiCo〇2 [average particle size and specific surface area of 010 m2 / g, 20 / (average particle size x specific surface area): 10 · 5] was used as the positive electrode active material; carbon black alone was used in parts by weight, particle size 0〇1Product Π1) as a conductive substance; containing carbonic acid A mixed solvent of olefin ester and 0 vol% acrylic acid S (20 vol%) and dimethyl carbonate (60 vol%) is used as the standard for this paper. Chinese National Standard (CNS) A4 specification (210 X 297) « )-47 311440 -n IH ϋ ί nn II -ϋ I · ϋ I · ϋ nna ^ i an II 』: ° J · an ϋ n ϋ I · I n I (Please read the precautions on the back before filling in this Page) 492207 A7 B7 V. Description of the invention (48) (Please read the precautions on the back before filling this page) The lithium ion secondary battery was prepared as an electrolyte solvent. This ion secondary battery is the same as in Example 26. The cycle property test, low temperature property test, and storage property test were performed, and the results are shown in Table 8. Table 8 Example 26 Example 27 Example 28 Example 29 Comparative Example 21 Comparative Example 22 [Cyclic property J Discharge capacitance retention rate (%) 85 82 83 80 50 40 [Low temperature property] Discharge capacitance retention rate (%) 88 83 81 81 Not discharged 20 [Storage property] Discharge capacitance retention rate (%) 80 82 82 81 Undischarged and undischarged from the above Examples 26 to 29 And Comparative Examples 21 and 22 show that the lithium ion secondary battery using the present invention is used. Charging and discharging cycle properties, storage properties, and low-temperature properties were significantly improved. Examples 30 to 38 and Comparative Examples 23 to 27 [Preparation of Electrolyte] Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs for Examples 30 to 38 and The electrolyte solvents of the lithium ion secondary batteries of Comparative Examples 23 to 27 were prepared at the mixing ratios shown in Table 9. LiPF0 was dissolved in each solvent to a concentration as shown in Table 9 to obtain electrolytes for each ion secondary battery. [Preparation of the positive electrode] LiCo〇2 (91 parts by weight, positive electrode active material) with an average particle size of 17.5 "m (measured by SALD_3000J) and a specific surface area of 0.154 m2 / g; graphite This paper applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 48 311440 492207 A7 B7 V. Description of the invention (49) (Please read the precautions on the back before filling out this page) Powder (6 parts by weight, positive conductive material); polyvinylidene fluoride (3 weight Parts, positive electrode binder) and N-methyl-2-¾rolidine (50 parts by weight) were mixed to obtain a slurry. The slurry was applied to a thickness of 20 / zm to be a current collector. Aluminum and foil (550 mm X 55 mm) were double-sided, dried and stretched to obtain a positive electrode. The positive-polar active material layer filling rate was 70%. Thirteen sets of this positive electrode were manufactured for Examples 30 to 37 and Comparative Examples 23 to For lithium ion secondary batteries of 27. In the same manner as above, but using an average particle size of 16 ►Specific surface area is 0.138 〇12々 of 1 ^ <: 0, different positive electrodes were prepared. This positive electrode shows a positive electrode active material The filling rate of the layer was 74%. Using this positive electrode, the lithium ion secondary battery of Example 38 was prepared. [Preparation of Negative Electrode]-Intellectual Property and Intellectual Property of the Ministry of Carbon, made with an average fiber length of 40 // m and an average fiber diameter of 8 · 8 β m. Printed fibers (95 parts by weight, negative active material) of the Bureau ’s Consumer Cooperative, Polyvinylidene fluoride (5 parts by weight, a negative electrode binder) and N-methyl-2-Π-pyrrolidone (100 parts by weight) were mixed to obtain a slurry. This slurry was applied to the intended solution. 14 of the current collector was 111-thick ►copper foil (595 mm X 57 mm) on both sides, dried and pressed to obtain a negative electrode. The negative electrode active material layer filling rate was 69/0. 13 sets of this negative electrode were manufactured for implementation- For lithium ion secondary batteries of Examples 30 to 37 and Comparative Examples 23 to 27. η. In the same manner as above, except that carbon fibers having an average fiber length of 35〆m and an average fiber diameter of 10 // m were used, different results were obtained. The negative electrode. This negative electrode shows a filling rate of the negative electrode active material layer of 72/0. The negative electrode was used to prepare the lithium ion secondary battery of Example 38. i [Assembly of lithium ion secondary battery] The above was obtained The positive and negative electrodes are applied through porous polyethylene-polypropylene paper. National Standards (CNS) A4 size (210 X 297 mm) 49311440492207

五、發明說明(5〇 ) 合隔離物纏繞並置於圓柱形電池罐(外徑18 mm、高度 叫令°上述製備之電解質裝填於該正極及負極之間,^ f請先閱讀背面之注意事項再填寫本頁) 到實施例30至38及比較例23至27之鋰離子二太侍 [評估] 人^也。 於室溫,將上述製得之實施例30至38及比較例23至 27之鋰離子二次電池充電,其係以1C (1600 mA)恒定電流 充電至電壓成為4 2 v為止,然後以4.2 V恒定電壓充電, 虽充電時間達2 · 5小時,即停止充電。將鋰離子二次電池 置於-3 5°C之恒溫槽内,以〇 5 c (8〇〇 mAli)/2.5 V截止電壓 放電。 測量此時各鋰離子二次電池之放電電流及放電小時, 並計算放電電容(mAh)。以此放電電容除以室溫放電時之 放電電容(mAh)並乘以1〇〇,得到放電電容保持率(%)。結 果示於表9。放電時之能量(mWh)除以放電時之放電電容 (mAh)所得之中間電壓亦示於表9。 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 50 311440 492207 A7 B7 五、發明說明(51 ) 表9 電解質 玫電電 容保持 率 —中 電壓 (V) -__ 2.92 LiPF6 Mol/L EC 容積 % PC 容積 % DEC 容積 % EMC 容積 % DMC 容積 % 實施例30 1 8 12 15 30 35 80 比較例23 1 25 0 0 50 25 2.77 實施例31 1.4 8 12 17 29 34 71 2.94 實施例32 1.2 8 12 17 29 34 74 2.98 實施例33 1.0 8 12 17 29 34 ~~~--- 77 ~λ99^ 實施例34 0.8 8 12 17 29 34 66 2.84 比較例24 1 0 10 15 30 35 無作用 謙 比較例25 1 10 0 15 40 35 52 2.82 實施例35 1 8 12 0 45 35 76 2.90 實施例36 1 8 12 10 35 35 76 2.89 實施例37 1 8 12 15 30 35 78 2.91 實施例38 1 10 10 0 40 40 77 2.93 比較例26 1 10 10 0 30 50 2 2.81 比較例27 1 10 10 0 60 20 43 2.75 (請先閱讀背面之注意事項再填寫本頁) 由表9顯見,與比較例2 3至2 7之鋰離子二次電池相 較下,實施例30至38之鋰離子二次電池可抑制低溫時放 電電容(mAh)及中間電壓之降低。藉調整電解質各成分之 混合比率,可改良低溫性質。 經 濟 部 智 慧 財 產1 局 員 工 消 費 合 社 印 製 實施例39及比較例28至30 實施例39 [正極之製備] 使欲作為正極活性物質、平均粒度18//m(以SALD-3 000J測定)、比表面積〇·ΐ4 m2/g及[20/(¥均粒度x比表 面積)]為7.9之LiCo〇2(91重量份);欲作為導電物質之球 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 51 311440 492207 A7 B7 五、發明說明(《 )V. Description of the invention (50) The separator is wound and placed in a cylindrical battery can (18 mm outside diameter, height order °) The electrolyte prepared above is filled between the positive and negative electrodes. ^ F Please read the precautions on the back first (Fill in this page again) To the lithium-ion dianjis of Examples 30 to 38 and Comparative Examples 23 to 27 [Evaluation] person ^ also. The lithium ion secondary batteries of Examples 30 to 38 and Comparative Examples 23 to 27 prepared above were charged at room temperature, which were charged at a constant current of 1C (1600 mA) until the voltage became 4 2 v, and then 4.2 V constant voltage charging, although charging time reaches 2.5 hours, charging stops. The lithium ion secondary battery was placed in a constant temperature bath at -3 ° C and discharged at a cut-off voltage of 0 5 c (800 mAli) /2.5 V. Measure the discharge current and discharge hours of each lithium ion secondary battery at this time, and calculate the discharge capacity (mAh). Divide this discharge capacity by the discharge capacity (mAh) at room temperature and multiply by 100 to get the discharge capacity retention rate (%). The results are shown in Table 9. The intermediate voltage obtained by dividing the energy (mWh) during discharge by the discharge capacity (mAh) during discharge is also shown in Table 9. Printed on the paper by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the paper size applies to the Chinese National Standard (CNS) A4 (210 X 297 mm) 50 311440 492207 A7 B7 V. Description of the invention (51) Table 9 Electrolyte Rose Capacitance Retention Rate— Medium Voltage (V) -__ 2.92 LiPF6 Mol / L EC Volume% PC Volume% DEC Volume% EMC Volume% DMC Volume% Example 30 1 8 12 15 30 35 80 Comparative Example 23 1 25 0 0 50 25 2.77 Example 31 1.4 8 12 17 29 34 71 2.94 Example 32 1.2 8 12 17 29 34 74 2.98 Example 33 1.0 8 12 17 29 34 ~~~ --- 77 ~ λ99 ^ Example 34 0.8 8 12 17 29 34 66 2.84 Comparison Example 24 1 0 10 15 30 35 No effect Comparative Example 25 1 10 0 15 40 35 52 2.82 Example 35 1 8 12 0 45 35 76 2.90 Example 36 1 8 12 10 35 35 76 2.89 Example 37 1 8 12 15 30 35 78 2.91 Example 38 1 10 10 0 40 40 77 2.93 Comparative Example 26 1 10 10 0 30 50 2 2.81 Comparative Example 27 1 10 10 0 60 20 43 2.75 (Please read the precautions on the back before filling this page ) As apparent from Table 9, compared with the lithium ion secondary batteries of Comparative Examples 2 3 to 27, the lithium ion of Examples 30 to 38 The secondary battery can suppress the reduction of discharge capacity (mAh) and intermediate voltage at low temperatures. Low temperature properties can be improved by adjusting the mixing ratio of the electrolyte components. Example 39 and Comparative Examples 28 to 30 printed by the Consumer Cooperative of the Bureau of Intellectual Property of the Ministry of Economic Affairs Example 39 [Preparation of the positive electrode] The average particle size to be used as a positive electrode active material was 18 / m (measured by SALD-3 000J) , Specific surface area 0.4 m2 / g, and [20 / (¥ average particle size x specific surface area)] LiCo〇2 (91 parts by weight) with a value of 7.9; the size of the paper intended to be used as a conductive material applies the Chinese National Standard (CNS) A4 specifications (210 X 297 mm) 51 311440 492207 A7 B7 V. Description of the invention (")

形石墨化碳(MCMB 6-28,5重量份,粒度6 β m) ; KETZEN BLACK ECP(1重量份,粒度不大於0.01/zm);及聚偏氟 乙烯(PVdF)(3重量份,黏合劑)均勻分散於N-甲基-2-D比咯 (請先閱讀背面之注意事項再填寫本頁} 烷酮中,得到漿狀物。將此漿狀物施敷於欲作為電流收集 體之20 # m厚鋁箔雙面,乾燥及壓伸,得到由兩面各具有 20 mg/cm2 LiCo02之IS箔製成的正極。 [負極之製備] 使纖維狀石墨化碳(Melblonmilled FM-14)(95重量 份,負極活性物質)、聚偏氟乙烯(PVdF)(5重量份,負極黏 合劑)及N_甲基-2-D比咯烷酮(50重量份)混合,得到漿狀 物。將此漿狀物施敷於欲作為電流收集體之14#m厚鋼簿 雙面,乾燥及壓伸而製得負極。 [電解質之製備] 於含碳酸乙烯酯(EC,11容積%)、碳酸丙烯酯(PC,9 容積°/〇)、碳酸二乙酯(DEC,4容積%)、碳酸乙基甲酯 (EMC,29容積%)及碳酸二甲酯(DMC,47容積%)之混合 溶劑(1 L)中溶解1 mol LiPF6而得到電解質。 經濟部智慧財產局員工消費合作社印製 [鋰離子二次電池之裝配] 將上述製得之正極及負極經由多孔聚乙烯-聚丙烯複 合隔離物纏繞並置於圓柱形電池罐(外徑18 mm、高度6 5 mm)中。該隔離物以上述製備之電解質浸潰,得到本發明 之鋰離子二次電池。 [放電試驗] 於室溫,將上述製得之鋰離子二次電池充電,其係以 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) " 52 311440 492207 A7 五、發明說明(53 ) 1600 mA恒定電流充電至電壓成為4 2 v為止,然後以 V恒定電壓充電,當充電時間達3 5小時,即停止充電。 :將裡離子二次電池靜置於-2(TC、大氣中24小時,然後, ••以1.0 C (1600 mAli)/2,5 V截止電壓放電。測量當時之放 …電電谷率(A)及放電電壓(V)並作圖,其中橫座標軸為放電 ,電容率(%),縱座標軸為放電電壓(V)。結果,如第i圖, 圖形顯示沒有最小值之倒斜情形,未見急劇之電壓下降。 _►放電電容率(%)係相對於20。(:及2·5 V截止電壓下,進 行1C放電所得之放電電容(100%)。計算放電電容保持率 (%)及中間電壓(V),結果示於表10。放電電容保持率(%) 係將於-20 C之1C放電,電壓達到截止電壓(2 5V)時之放 電電容(mA· H)除以於2(TC之1C放電,電壓達到截止電 壓(2·5 V)時之放電電容(mA· H)而獲得。中間電壓係從於 -20°C之1C放電,電壓達到截止電壓(2 5 v)時之放電電容 (mA · H)及當時之放電能量· H)之50%獲得。 # 比較例28 以與實施例39相同之方式,惟係單獨使用球狀石墨化 碳(6重量份)作為正極導電物質得到正極,製得鋰離子二次 電池所仟鐘離子一次電池以與實施例39相同之方式放電 及作圖其中檢座標軸為放電電谷率(%),縱座標軸為放電 電壓(V)。結果,該圖形於放電電容率增加方向出現最小值 及最大值。如表10所示,該最小值及該最大值之差 為〇·33 V。該最小值為2 80 V,當放電電容率為時, 該最小值及放電電壓之差(ΔΥ】)為〇·3〇 ν,顯示電壓突然 請 先 閱 讀 背 面 之 注 意 事 項 再 填 寫裝 本衣 頁 訂 經 - 濟r 部 智V:· 慧… 財. 產· 局· 員 工 消 費 合 作 社 印 製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 53 311440Shaped graphitized carbon (MCMB 6-28, 5 parts by weight, particle size 6 β m); KETZEN BLACK ECP (1 part by weight, particle size not greater than 0.01 / zm); and polyvinylidene fluoride (PVdF) (3 parts by weight, adhesive) Agent) uniformly dispersed in N-methyl-2-D ratio (please read the precautions on the back before filling out this page} Alkanone to obtain a slurry. Apply this slurry to the current collector A 20 # m thick aluminum foil was double-sided, dried and stretched to obtain a positive electrode made of IS foil with 20 mg / cm2 LiCo02 on each side. [Preparation of the negative electrode] Fibrous graphitized carbon (Melblonmilled FM-14) ( 95 parts by weight of a negative electrode active material), polyvinylidene fluoride (PVdF) (5 parts by weight of a negative electrode binder) and N-methyl-2-D than pyrrolidone (50 parts by weight) were mixed to obtain a slurry. This slurry was applied on both sides of a 14 # m thick steel book which was to be used as a current collector, dried and pressed to obtain a negative electrode. [Preparation of Electrolyte] In a solution containing ethylene carbonate (EC, 11% by volume), Propylene carbonate (PC, 9 vol. ° / 〇), diethyl carbonate (DEC, 4 vol.%), Ethyl methyl carbonate (EMC, 29 vol.%), And dimethyl carbonate (DMC, 47 vol.) %) In a mixed solvent (1 L) to dissolve 1 mol of LiPF6 to obtain an electrolyte. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs [Assembly of Lithium Ion Batteries] The positive and negative electrodes prepared above were passed through porous polyethylene- A polypropylene composite separator was wound and placed in a cylindrical battery can (18 mm in outer diameter and 65 mm in height). The separator was impregnated with the electrolyte prepared above to obtain a lithium ion secondary battery of the present invention. [Discharge test] Charge the lithium-ion secondary battery prepared above at room temperature, which is in accordance with the Chinese National Standard (CNS) A4 (210 X 297 mm) at this paper size " 52 311440 492207 A7 V. Description of the invention (53 ) Charge at a constant current of 1600 mA until the voltage becomes 4 2 v, and then charge at a constant voltage of V. When the charging time reaches 35 hours, the charging is stopped.: Place the secondary ion battery in -2 (TC, air) 24 hours, then, •• Discharge at a cut-off voltage of 1.0 C (1600 mAli) / 2,5 V. Measure the electric discharge rate (A) and discharge voltage (V) at the time and plot it, where the horizontal axis is the discharge, Permittivity (%), ordinate It is the discharge voltage (V). As a result, as shown in Figure i, the graph shows that there is no slope of the minimum value, and no sharp voltage drop is seen. _►The discharge permittivity (%) is relative to 20. (: and 2.5 The discharge capacitance (100%) obtained by 1C discharge at V cut-off voltage. The discharge capacitance retention rate (%) and the intermediate voltage (V) were calculated. The results are shown in Table 10. Discharge capacitance retention rate (%) is the discharge capacitance (mA · H) when the voltage reaches 1C at -20 C and the voltage reaches the cutoff voltage (25V) divided by 2 (discharge at 1C of TC, the voltage reaches the cutoff voltage (2 · 5 V) is obtained from the discharge capacitance (mA · H). The intermediate voltage is the discharge capacitance (mA · H) when the voltage reaches 1C at -20 ° C and the voltage reaches the cut-off voltage (2 5 v). Obtained by 50% of the discharge energy (H). # Comparative Example 28 A positive electrode was obtained in the same manner as in Example 39 except that spherical graphitized carbon (6 parts by weight) was used as the conductive material of the positive electrode, and a clock ion primary battery for a lithium ion secondary battery was fabricated and implemented. Example 39 discharges and maps in the same manner. The axis of the inspection coordinate is the discharge valley rate (%), and the axis of the vertical coordinate is the discharge voltage (V). As a result, the pattern has a minimum value and a maximum value in the direction in which the discharge permittivity increases. As shown in Table 10, the difference between the minimum value and the maximum value was 0.33 V. The minimum value is 2 80 V. When the discharge capacity is constant, the difference between the minimum value and the discharge voltage (ΔΥ) is 0.30 ν. If the displayed voltage is abrupt, please read the precautions on the back first and then fill in this page. Scripture Book-Ministry of Education V: · Hui ... Finance. Industry, Bureau, Employee Cooperative Cooperatives Printed on this paper Standards applicable to Chinese National Standard (CNS) A4 (210 X 297 mm) 53 311440

492207 五、發明說明(54) 下降。同時如實施例39般,計算放電電容保持率(%)及中 間電壓(V)(表1〇)。 比較例29 以與實施例39相同之方式,惟係單獨使用粒度為〇」 V m之碳黑(1重量份)作為導電物質得到正極,製得鋰離子 二次電池。所得鋰離子二次電池以與實施例39相同之方式 放電及作圖,其中橫座標轴為放電電容率,縱座標轴為 放電電壓(V)。結果,如同比較例28,該圖形於放電電容 率增加方向出現最小值及最大值。如表1〇所示,該最小值 及該最大值之差(Δνΐ)為〇·28 v。該最小值為29〇 v,當 放電電容率為〇%時,該最小值及放電電壓之差(△ V2)為 〇·60 V,如同比較例28,顯示電壓突然下降。同時如實施 例39般,計算放電電容保持率(%)及中間電壓(v)(表1〇)。 比較例30 以與實施例39相同之方式,惟係單獨使用平均粒度18 /z m、比表面積 〇·2〇 m2/g(以 SALD-3000J 測定)及[20/(平 均粒度X比表面積)]為5.6之LiCo〇2型活性物質(91重量 份)作為正極活性物質得到正極,製得鋰離子二次電池。所 得链離子二次電池以與實施例39相同之方式放電,惟未發 生放電將無法作圖。 Γ%先閱讀背面之注意事項再填寫本頁} 訂· 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 54 311440 492207 A7 B7 五、發明說明(55 ) 表10 實施例39 比較例28 比較例29 比較例30 Δν^ν) 無最小值 0.33 0.28 不可能放電 AV2(v) 0.30 0.60 最小值(V) 2.80 2.90 中間值(V) 3,20 2.83 2.91 不可能放電 放電電容保 持率(%) 94 36 52 不可能放電 由表10顯見,與比較例28至30之鋰離子二次電池相 較下,實施例之鋰離子二次電池可抑制極低溫時放電電壓 之突然下降,此外,可抑制放電電容(mAh)及中間電壓之 降低。 本申請案係以於日本申請之133497/1999、 219326/1999 、 223089/1999 ' 238785/1999 、 290300/1999 及324602/1999之諸申請案為基礎,其内容均併入本文中 以資參考。 --------------裝--- (請先閱讀背面之注意事項再填寫本頁) - .線· 經濟部¥慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 55 311440492207 V. Description of invention (54) Decline. At the same time as in Example 39, the discharge capacity retention rate (%) and the intermediate voltage (V) were calculated (Table 10). Comparative Example 29 In the same manner as in Example 39, except that carbon black (1 part by weight) having a particle size of 0 "Vm was used alone as a conductive material to obtain a positive electrode, a lithium ion secondary battery was produced. The obtained lithium ion secondary battery was discharged and graphed in the same manner as in Example 39, wherein the horizontal axis is the discharge permittivity and the vertical axis is the discharge voltage (V). As a result, as in Comparative Example 28, the pattern showed a minimum value and a maximum value in the direction in which the discharge permittivity increased. As shown in Table 10, the difference (Δνΐ) between the minimum value and the maximum value was 0.28 v. The minimum value is 29 volts. When the discharge capacity ratio is 0%, the difference between the minimum value and the discharge voltage (ΔV2) is 0.60 V. As in Comparative Example 28, the display voltage suddenly drops. At the same time as in Example 39, the discharge capacity retention rate (%) and the intermediate voltage (v) were calculated (Table 10). Comparative Example 30 In the same manner as in Example 39, except that an average particle size of 18 / zm and a specific surface area of 0.20 m2 / g (measured by SALD-3000J) and [20 / (average particle size X specific surface area)] were used alone. A LiCo02 active material (91 parts by weight) having a value of 5.6 was used as a positive electrode active material to obtain a positive electrode, and a lithium ion secondary battery was prepared. The obtained chain ion secondary battery was discharged in the same manner as in Example 39, but it could not be mapped without discharging. Γ% Please read the notes on the back before filling in this page} Order · Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives This paper is printed in accordance with China National Standard (CNS) A4 (210 X 297 mm) 54 311440 492207 A7 B7 5 Description of the invention (55) Table 10 Example 39 Comparative Example 28 Comparative Example 29 Comparative Example 30 Δν ^ ν) No minimum value 0.33 0.28 Impossible discharge AV2 (v) 0.30 0.60 minimum value (V) 2.80 2.90 median value (V) 3,20 2.83 2.91 Impossible discharge capacity retention rate (%) 94 36 52 Impossible discharge is shown in Table 10, compared with the lithium ion secondary batteries of Comparative Examples 28 to 30, the lithium ion secondary batteries of Examples It can suppress the sudden drop of discharge voltage at extremely low temperature, and can also suppress the decrease of discharge capacitance (mAh) and intermediate voltage. This application is based on Japanese applications Nos. 133497/1999, 219326/1999, 223089/1999 '238785/1999, 290300/1999 and 324602/1999, the contents of which are incorporated herein by reference. -------------- Install --- (Please read the precautions on the back before filling out this page)-. Line · Ministry of Economic Affairs China National Standard (CNS) A4 (210 X 297 mm) 55 311440

Claims (1)

% 21 2 9 4 $1爹正, L' $上二 /.mXj 第89109084號專利申請案 申請專利範圍修正本 (91年1月8日) L 一種粒狀Li-過渡金屬複合氧化物,其比表面積(m2/g) 與平均粒度〇m)滿足下式: 7$ [20/(比表面積X平均粒度)]$9, 其中該過渡金屬化合物包括鈷、或鈷與至少一種過 渡金屬。 2·如申請專利範圍第1項之粒狀Li-過渡金屬複合氧化 物’其平均粒度為ΙΟ/zm至25/zm。 3·如申請專利範圍第丨或2項之Li-過渡金屬複合氧化 物’係藉由在400至750°C之高溫加熱處理Li-過渡金 屬複合氧化物顆粒0.5至50小時而獲得者。 4·如申請專利範圍第3項之Li_過渡金屬複合氧化物,係 藉由.以1:1至〇·8:1之鋰:過渡金屬原子比,將鋰化合 物與過渡金屬化合物混合;於大氣中、溫度7〇〇至丨2〇〇 C下’加熱該混合物3至5 0小時;及粉碎所得反應產 物而獲得者。 經濟部中央標準局員工福利委員會印製 H3 5. —種用於非水性電解質二次電池之正極活性物質,其特 徵係包括如申請專利範圍第1至4項中任一項之L卜過 渡金屬複合氧化物。 6. —種鋰離子二次電池,其特徵係包括如申請專利範圍第 5項之正極活性物質。 7· —種正極活性物質組成物,包括至少一種由過渡金 屬複合氧化合物組成之活性物質,其平均粒度不小於1〇 511440 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 492207 - H3 /zm; —種粒狀導電碳物質,其粒度不小K3"m;及 一種粒狀導電碳物質,其粒度不大於2//111, 其中該過渡金屬化合物包括始、或始與至少一種過 渡金屬。 8·如申請專利範圍第7項之正極活性物質組成物,其中該 粒度不大於2/zm之粒狀導電碳物質之含量,對1QQ重 量份該粒度不小於3/zm之粒狀導電碳物質而言為 量份至200重量份。 9· 一種正極活性物質組成物’包括至少一種由包括姑,或 鈷與至少一種過渡金屬之Li_過渡金屬複合氧化合物組 成之正極活性物質,其平均粒度不小於1 〇 V m ; —種粒 狀導電碳物質’其粒度不小於3//m;及一種纖維狀導 電碳物質,其具有3或3以上之縱橫比及不大於2#m 之纖維直徑。 10·如申請專利範圍第9項之正極活性物質組成物,其中該 ’纖維狀導電物質之含量比例,對100重量份該粒狀導電 物質而言為1重量份至200重量份。 經濟部中央標準局員工福利委員會印製 11.如申请專利範圍第7至10項中任一項之正極活性物質 .組成物’其中該Li-過渡金屬複合氧化物為Li_c〇型複 合氧化物。 12·—種經離子一次電池,其特徵係包括如申請專利範圍第 Π項之正極活性物質組成物。 13.—種經離子一次電池’係包括由比表面積不大於2〇 m2/g、點陣平面(d002)間隔不大於0.338〇11111及卜轴方 向(Lc)微晶大小不小於30 nm之石墨化碳所組成之負極 本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) JU44U 活性物質及包括碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯 及選自由碳酸二乙酯及碳酸乙基甲酯所組成組群之至 ’ 貝之電解質混合溶劑。 14.如申請專利範圍第13項之鋰離子二次電池,其中該混 合溶劑包括比例為25容積%至50容積%之該一員、比 例為4容積%至2〇容積%之碳酸乙烯酯、比例為3容積 %至17容積%之碳酸丙烯酯、及比例為大於4〇容積% 與不大於60容積%之碳酸二甲酯。 15·如申請專利範圍第13或μ項之鋰離子二次電池,其中 該正極活性物質包括Li-Co型複合氧化物。 16·如申請專利範圍第15項之鋰離子二次電池,其中該 Li-Co型複合氧化物為Lic〇〇2。 17·—種鐘離子二次電池,包括 (1)正極活性物質,其由平均粒度不小於丨〇 V m之 粒狀Li-過渡金屬複合氧化物所組成,其中[2〇/(平均粒 度X比表面積)]=7-9 ; 經濟部中央標準局員工福利委員會印製 (ii) 導電物質,其為粒度不小於3/zm之粒狀導電 物質及粒度不大於2/zm之粒狀導電物質之混合物;或 為粒度不小於3/zm之粒狀導電物質及具有3或3以上 之縱橫比及纖維直徑不大於2#m之纖維狀導電物質之 混合物; (iii) 負極活性物質,其由比表面積不大於2.0 m2/g、點陣平面間隔不大於〇 338〇 nm及…轴方向(Lc) 微晶大小不小於30 nm之石墨化碳所組成;及 (iv) 電解質混合溶劑’包括碳酸乙稀酯、碳酸丙稀 7ΓΠ40 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 〜~ ____________H3_ _ si、碳酸二甲酯及選自由碳酸二乙酯及碳酸乙基甲酯所 組成組群之至少一員。 18·如申請專利範圍第17項之鋰離子二次電池,其中該混 合溶劑包括比例為25容積%至50容積%之該一員、比 例為4容積%至2〇容積%之碳酸乙烯酯、比例為3容積 %至17容積%之碳酸丙烯酯、及比例為4〇容積%以上 且不大於60容積〇/0之碳酸二甲酯。 19·如申睛專利範圍第18項之鐘離子二次電池,其中該Li-過渡金屬複合氧化物為Li_C〇型複合氧化物。 20·—種鐘離子二次電池,其包括電解質混合溶劑,該混合 溶劑包括比例為40容積%至50容積%之選自由碳酸二 乙醋及碳酸乙基甲酯所組成組群之至少一員、比例為4 容積%至10容積%之碳酸乙烯酯、比例為1〇容積%至 17容積%之碳酸丙浠酯、及比例為30容積%至40容積 %之碳酸二甲g旨。 21.如申請專利範圍第2〇項之經離子二次電池,進一步包 括填充率為65%至8 5%之正極活性物質層及填充率為 65%至85%之負極活性物質層。 經濟部中央標準局員Η福利委員會印製 22·—種鋰離子二次電池,包括 (i) 正極活性物質,其由粒狀Li-過渡金屬複合氧化 物所組成,其中[20/(平均粒度X比表面積)]=7_9 ;及 (ii) 導電物質,其為粒度不小於3/zm之粒狀導電 物質及粒度不大於2//m之粒狀導電物質之混合物;或 為粒度不小於3/zm之粒狀導電物質及具有3或3以上 之縱橫比及纖維直徑不大於2/zm之纖維狀導電物質之 I紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公爱) ^ —J1I440--J 492207 混合物。 23·如申請專利範圍第22項之鋰離子二次電池,其中該Li_ 過渡金屬複合氧化物為Li_c〇型複合氧化物。 24·—種鐘離子二次電池,其於_2〇〇c之ic放電時,於橫座 標轴為以20 °C時1C放電之放電電容(100%)計之放電電 容率、及縱座標轴為放電電壓之座標中顯示沒有最小值 之倒斜(backslash)放電曲線,及於-20 °C之1C放電時, 顯示不少於20°C放電時放電電容之60%之放電電容。 25·—種鋰離子二次電池,其於_2(rCi ic放電時,於橫座 標軸為以20°C時1C放電之放電電容(100%)計之放電電 容率、及縱座標轴為放電電壓之座標中顯示於放電電容 率增加方向出現最小值及最大值之放電曲線,其中該最 小值及該最大值之差不大於〇·1 V,且當放電電容率為 〇%時,該最小值及放電電壓之差不大於0,3 V,及於-20 °C之1C放電時,顯示不少於20°C放電時放電電容之 60%之放電電容。 經濟部中央標準局員工福利委員會印製 26·—種鋰離子二次電池,其於-20 °C之1C放電時,於橫座 標抽為以20°C時1C放電之放電電容(100%)計之放電電 容率、及縱座標轴為放電電壓之座標中顯示於放電電容 率增加方向出現第一最大值、最小值及第二最大值之放 電曲線,其中該最小值及該第二最大值之差不大於0.1 V,且當放電電容率為〇%時,該最小值及放電電壓之 差不大於0.3 V,及於-20 °C之1C放電時,顯示不少於 20°C放電時放電電容60%之放電電容。 iII44U 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公爱)% 21 2 9 4 $ 1 Dazheng, L '$ 上 二 /.mXj No. 89109084 Patent Application Amendment to Patent Scope (January 8, 91) L A granular Li-transition metal composite oxide, the ratio The surface area (m2 / g) and average particle size 0m) satisfy the following formula: 7 $ [20 / (specific surface area X average particle size)] $ 9, wherein the transition metal compound includes cobalt, or cobalt and at least one transition metal. 2. The granular Li-transition metal composite oxide 'according to item 1 of the scope of the patent application has an average particle size of 10 / zm to 25 / zm. 3. Li-transition metal composite oxides such as those in the patent application No. 丨 or 2 are obtained by heat-treating Li-transition metal composite oxide particles at a high temperature of 400 to 750 ° C for 0.5 to 50 hours. 4. If the Li-transition metal composite oxide in item 3 of the scope of the patent application, the lithium compound and the transition metal compound are mixed at a lithium: transition metal atomic ratio of 1: 1 to 0.8: 1; The mixture is heated in the atmosphere at a temperature of 700 to 2000C for 3 to 50 hours; and the obtained reaction product is pulverized. Printed by the Staff Welfare Committee of the Central Standards Bureau of the Ministry of Economic Affairs H3 5.-A positive electrode active material for non-aqueous electrolyte secondary batteries, which features L transition metals such as any one of the scope of patent applications 1 to 4 Compound oxide. 6. A lithium-ion secondary battery characterized by including a positive electrode active material as described in item 5 of the patent application. 7 · —A kind of positive electrode active material composition, including at least one active material composed of transition metal compound oxygen compound, the average particle size of which is not less than 10511440 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) ) 492207-H3 / zm; — a granular conductive carbon material with a particle size not smaller than K3 "m; and a granular conductive carbon material with a particle size not larger than 2 // 111, where the transition metal compound includes With at least one transition metal. 8. The positive electrode active material composition according to item 7 of the scope of patent application, wherein the content of the granular conductive carbon material having a particle size of not more than 2 / zm is not less than 3 / zm of the granular conductive carbon material having a particle size of 1QQ by weight. In terms of amount to 200 parts by weight. 9. A composition of a positive electrode active material 'including at least one positive electrode active material composed of a Li-transition metal composite oxygen compound comprising cobalt or cobalt and at least one transition metal, the average particle size of which is not less than 10 V m; A conductive carbonaceous material having a particle size of not less than 3 // m; and a fibrous conductive carbon material having an aspect ratio of 3 or more and a fiber diameter of not more than 2 # m. 10. The positive electrode active material composition according to item 9 of the application, wherein the content ratio of the fibrous conductive material is 1 to 200 parts by weight for 100 parts by weight of the granular conductive material. Printed by the Staff Welfare Committee of the Central Standards Bureau of the Ministry of Economic Affairs. 11. The positive electrode active material according to any one of the 7th to 10th scope of the patent application. Composition 'wherein the Li-transition metal composite oxide is a Li_co type composite oxide. 12. A kind of primary ion battery, characterized in that it includes a positive electrode active material composition such as the one in the scope of the patent application. 13.—A kind of primary ion battery includes graphitization with a specific surface area of not more than 20 m2 / g, a lattice plane (d002) interval of not more than 0.338〇11111, and a crystallite size (Lc) of not less than 30 nm. Carbon made of negative electrode This paper size is applicable to Chinese National Standard (CNS) A4 specification (210 X 297 mm) JU44U active material and includes ethylene carbonate, propylene carbonate, dimethyl carbonate and selected from the group consisting of diethyl carbonate and carbonic acid A group of ethyl methyl esters to the electrolyte mixed solvent. 14. The lithium ion secondary battery according to item 13 of the patent application, wherein the mixed solvent includes the member having a proportion of 25% by volume to 50% by volume and a proportion of 4% by volume to 20% by volume of ethylene carbonate. It is propylene carbonate of 3% to 17% by volume, and dimethyl carbonate in a proportion of more than 40% by volume and not more than 60% by volume. 15. A lithium ion secondary battery as claimed in item 13 or µ, wherein the positive electrode active material includes a Li-Co type composite oxide. 16. The lithium-ion secondary battery according to item 15 of the application, wherein the Li-Co type composite oxide is Lico002. 17. · A clock ion secondary battery, including (1) a positive electrode active material, which is composed of granular Li-transition metal composite oxides having an average particle size of not less than 0 V m, where [2〇 / (average particle size X (Specific surface area)] = 7-9; Printed by the Staff Welfare Committee of the Central Standards Bureau of the Ministry of Economic Affairs (ii) Conductive substances, which are granular conductive substances with a particle size of not less than 3 / zm and granular conductive substances with a particle size of not less than 2 / zm Mixture; or a mixture of granular conductive materials with a particle size of not less than 3 / zm and fibrous conductive materials with an aspect ratio of 3 or more and a fiber diameter of not more than 2 # m; (iii) a negative electrode active material Graphite carbon composed of graphitized carbon with a surface area of not less than 2.0 m2 / g, a lattice plane spacing of not less than 0.338 nm, and an axial direction (Lc) of a crystallite size of not less than 30 nm; and (iv) an electrolyte mixed solvent 'including ethyl carbonate Dilute ester, propylene carbonate 7ΓΠ40 This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) ~~ ____________H3_ _ si, dimethyl carbonate and selected from the group consisting of diethyl carbonate and ethyl methyl carbonate At least one member of a group. 18. The lithium ion secondary battery according to item 17 of the scope of patent application, wherein the mixed solvent includes the member having a proportion of 25% by volume to 50% by volume and a proportion of 4% by volume to 20% by volume of ethylene carbonate. It is propylene carbonate of 3% to 17% by volume, and dimethyl carbonate in a proportion of 40% by volume or more and not more than 60% by volume of 0/0. 19. The clock ion secondary battery of item 18 in the patent scope of Shenyan, wherein the Li-transition metal composite oxide is a Li_C0 type composite oxide. 20 · —A clock ion secondary battery comprising an electrolyte mixed solvent including at least one member selected from the group consisting of diethyl carbonate and ethyl methyl carbonate in a proportion of 40% by volume to 50% by volume, A vinyl carbonate having a proportion of 4 to 10% by volume, a propyl carbonate having a proportion of 10 to 17% by volume, and a dimethyl carbonate having a proportion of 30 to 40% by volume. 21. The ion secondary battery as claimed in claim 20, further comprising a positive active material layer having a filling rate of 65% to 85% and a negative active material layer having a filling rate of 65% to 85%. Member of the Central Standards Bureau of the Ministry of Economic Affairs and the Welfare Committee printed 22 · —lithium ion secondary batteries, including (i) a positive electrode active material composed of granular Li-transition metal composite oxides, where [20 / (average particle size X (Specific surface area)] = 7_9; and (ii) conductive material, which is a mixture of granular conductive material having a particle size of not less than 3 / zm and granular conductive material having a particle size of not less than 2 // m; or a particle size of not less than 3 / The paper size of the zm granular conductive material and the fibrous conductive material with an aspect ratio of 3 or more and a fiber diameter not greater than 2 / zm is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 public love) ^ — J1I440--J 492207 mixture. 23. The lithium ion secondary battery according to item 22 of the application, wherein the Li_transition metal composite oxide is a Li_co type composite oxide. 24 · —A kind of clock ion secondary battery whose discharge permittivity is calculated on the horizontal axis as the discharge capacitance (100%) of 1C discharge at 20 ° C and the vertical coordinate when the ic discharge of _2oc is performed. The axis shows the backslash discharge curve with no minimum value in the coordinates of the discharge voltage, and shows a discharge capacitance of not less than 60% of the discharge capacitance at a discharge of 20 ° C at 1C. 25 · —A lithium ion secondary battery whose discharge permittivity in terms of _2 (rCi ic discharge, discharge capacity (100%) at 1C discharge at 20 ° C, and vertical axis for discharge The voltage coordinates show the discharge curve with the minimum value and the maximum value in the direction of increasing the discharge permittivity, where the difference between the minimum value and the maximum value is not greater than 0.1 V, and when the discharge permittivity is 0%, the minimum The difference between the value and the discharge voltage is not more than 0,3 V, and when discharged at 1C at -20 ° C, it shows no less than 60% of the discharge capacitance of the discharge capacitor at 20 ° C. Staff Welfare Committee, Central Standards Bureau, Ministry of Economic Affairs Printed 26 · —a kind of lithium ion secondary battery, when discharging at 1C at -20 ° C, the discharge permittivity calculated as the discharge capacitance (100%) of 1C discharging at 20 ° C and the vertical discharge rate The coordinate axis shows the discharge curve in which the first maximum value, the minimum value, and the second maximum value appear in the direction of increase in discharge permittivity, where the difference between the minimum value and the second maximum value is not greater than 0.1 V, and When the discharge capacity is 0%, the difference between the minimum value and the discharge voltage is not the same. At 0.3 V and 1C discharge at -20 ° C, it shows no less than 60% of the discharge capacity at 20 ° C discharge. III44U This paper size is applicable to China National Standard (CNS) A4 (210 x 297 mm) Love)
TW089109084A 1999-05-14 2000-05-12 Positive electrode active material, positive electrode active material composition and lithium ion secondary battery TW492207B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP13349799A JP3308229B2 (en) 1999-05-14 1999-05-14 Li-Co based composite oxide
JP11219326A JP2001052697A (en) 1999-08-02 1999-08-02 Lithium secondary battery
JP11223089A JP2001052682A (en) 1999-08-05 1999-08-05 Lithium ion secondary battery
JP23878599A JP2001068093A (en) 1999-08-25 1999-08-25 Positive electrode active material composition and lithium ion secondary battery using the same
JP29030099 1999-10-12

Publications (1)

Publication Number Publication Date
TW492207B true TW492207B (en) 2002-06-21

Family

ID=27527344

Family Applications (1)

Application Number Title Priority Date Filing Date
TW089109084A TW492207B (en) 1999-05-14 2000-05-12 Positive electrode active material, positive electrode active material composition and lithium ion secondary battery

Country Status (1)

Country Link
TW (1) TW492207B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871380B2 (en) 2010-07-30 2014-10-28 Nissan Motor Co., Ltd. Laminated battery
US8889287B2 (en) 2010-09-01 2014-11-18 Nissan Motor Co., Ltd. Bipolar battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871380B2 (en) 2010-07-30 2014-10-28 Nissan Motor Co., Ltd. Laminated battery
US8889287B2 (en) 2010-09-01 2014-11-18 Nissan Motor Co., Ltd. Bipolar battery
TWI466358B (en) * 2010-09-01 2014-12-21 Nissan Motor Bipolar battery

Similar Documents

Publication Publication Date Title
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
TW531922B (en) Lithium secondary battery and its positive electrode active substance, positive plate, and manufacture method thereof
TWI331419B (en)
WO2021057428A1 (en) Secondary battery and battery module, battery pack and device containing same
TW511314B (en) Non-aqueous electrolyte secondary cell
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
WO2004102702A1 (en) Layered lithium nickel composite oxide powder and process for producing the same
JP2003221236A (en) Composite oxide containing lithium and nonaqueous secondary battery using it
JP2013058451A (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP2011086617A (en) Carbon material for lithium-ion secondary battery
JP2004146253A (en) Negative electrode and battery, and manufacturing method of these
JP2011105594A (en) Nickel-manganese-cobalt based complex oxide, laminar lithium-nickel-manganese-cobalt based complex oxide, positive electrode material for lithium secondary batteries, positive electrode using the material, and lithium secondary battery
US9023521B2 (en) Nonaqueous electrolyte secondary battery
JP2015028855A (en) Powder for negative electrode material of lithium ion secondary battery, and conductive assistant used therefor
JP2002251992A (en) Electrode material for nonaqueous solvent secondary battery, electrode and secondary battery
CN108373163A (en) A kind of the secondary cell polynary SiGe copper negative material of phosphorus containing defect and preparation method
CN115579468A (en) Anode active material for lithium secondary battery
JP3308232B2 (en) Li-Co-based composite oxide and method for producing the same
KR20110108301A (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP4021652B2 (en) Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate
JP2012079470A (en) Nonaqueous electrolyte secondary battery
JP2002093417A (en) Li-co base composite oxide, and positive plate and lithium ion secondary battery using the same
JP2003077459A (en) Positive electrode active material and positive electrode for lithium secondary battery and lithium secondary battery
JP3273438B2 (en) Lithium ion secondary battery
JP7122653B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees