JP2002093417A - Li-co base composite oxide, and positive plate and lithium ion secondary battery using the same - Google Patents

Li-co base composite oxide, and positive plate and lithium ion secondary battery using the same

Info

Publication number
JP2002093417A
JP2002093417A JP2000274975A JP2000274975A JP2002093417A JP 2002093417 A JP2002093417 A JP 2002093417A JP 2000274975 A JP2000274975 A JP 2000274975A JP 2000274975 A JP2000274975 A JP 2000274975A JP 2002093417 A JP2002093417 A JP 2002093417A
Authority
JP
Japan
Prior art keywords
particle size
composite oxide
ion secondary
secondary battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000274975A
Other languages
Japanese (ja)
Inventor
Itaru Gosho
至 御書
Mitsuhiro Marumoto
光弘 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2000274975A priority Critical patent/JP2002093417A/en
Publication of JP2002093417A publication Critical patent/JP2002093417A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery having excellent discharge load characteristic, a cycle characteristic, high coating intensity, and a high capacity, and Li-Co based composite oxide and a positive electrode plate used for the battery. SOLUTION: This lithium ion secondary battery and the positive plate use the Li-Co based composite oxide, in which the particle size mainly consists of a group of small particle size of 1 to 6 μm and a group of a large particle size of 15 to 22 μm, and a weight ratio of the small particle size group to the large particle size group is 0.25 to 0.60.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Li−Co(リチ
ウム−コバルト)系複合酸化物、この酸化物を有する正
極板、およびこの正極板を備えるリチウムイオン二次電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Li-Co (lithium-cobalt) composite oxide, a positive electrode plate having this oxide, and a lithium ion secondary battery including the positive electrode plate.

【0002】[0002]

【従来の技術】一般にリチウムイオン二次電池は、電解
液を含浸させたセパレータを正極板と負極板とで挟み込
んでなる構造を有している。正極板および負極板は、正
極活物質または負極活物質に導電材やバインダーなどを
混合した正極活物質組成物または負極活物質組成物を金
属箔などの集電体上に塗布し、乾燥・圧延を施して、正
極活物質層または負極活物質層を形成してなるものであ
る。正極活物質としては、化学的に安定で、取り扱いが
容易であり、しかも高容量の二次電池を製造できる点で
Li−Co系複合酸化物が最も多く実用に供されてい
る。また負極活物質としては黒鉛化炭素が一般に用いら
れる。
2. Description of the Related Art Generally, a lithium ion secondary battery has a structure in which a separator impregnated with an electrolyte is sandwiched between a positive electrode plate and a negative electrode plate. The positive electrode plate and the negative electrode plate are coated with a positive electrode active material composition or a negative electrode active material composition obtained by mixing a conductive material or a binder with the positive electrode active material or the negative electrode active material on a current collector such as a metal foil, and then dried and rolled. To form a positive electrode active material layer or a negative electrode active material layer. As the positive electrode active material, a Li-Co-based composite oxide is most often used in practice because it is chemically stable, easy to handle, and can produce a high-capacity secondary battery. Graphitized carbon is generally used as the negative electrode active material.

【0003】Li−Co系複合酸化物は、通常粒状で用
いられるが、その平均粒径によって、得られるリチウム
イオン二次電池の性能が左右される。たとえば、平均粒
径が5μm以下の微粉末状のLi−Co系複合酸化物を
用いると、放電負荷特性に優れ、高容量のリチウムイオ
ン二次電池を得ることができる。また、たとえば平均粒
径が15μm以上のLi−Co系複合酸化物を用いる
と、正極活物質組成物を集電体上に塗布する際の塗工密
度を増加でき、かつ異常な電池反応が起こりにくい安全
性の高いリチウムイオン二次電池を得ることができる。
[0003] The Li-Co-based composite oxide is usually used in a granular form, and the performance of the obtained lithium ion secondary battery is influenced by the average particle size. For example, when a finely powdered Li—Co-based composite oxide having an average particle diameter of 5 μm or less is used, a lithium ion secondary battery having excellent discharge load characteristics and a high capacity can be obtained. Further, for example, when a Li—Co-based composite oxide having an average particle size of 15 μm or more is used, the coating density when the positive electrode active material composition is coated on the current collector can be increased, and an abnormal battery reaction occurs. A highly safe lithium ion secondary battery can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら平均粒径
が5μm以下のLi−Co系複合酸化物を用いたリチウ
ムイオン二次電池では、正極活物質の密度が小さく、こ
のため正極活物質層を形成すべく正極活物質組成物を集
電体上に塗布する際の塗工密度が減少してしまい、体積
容量が減少したり、圧延率上昇により放電負荷特性が低
下する不具合がある。さらに該Li−Co系複合酸化物
が微粉末状であることで、充放電サイクルの繰り返しに
よって結晶性が劣化するためサイクル特性に劣る問題が
あった。
However, in a lithium ion secondary battery using an Li—Co-based composite oxide having an average particle size of 5 μm or less, the density of the positive electrode active material is small, so that the positive electrode active material layer is not formed. As a result, the coating density when the positive electrode active material composition is applied onto the current collector is reduced, so that the volume capacity is reduced, and the discharge load characteristics are reduced due to an increase in the rolling reduction. Further, when the Li-Co-based composite oxide is in the form of fine powder, the crystallinity is deteriorated due to the repetition of charge / discharge cycles, so that there is a problem that the cycle characteristics are inferior.

【0005】また平均粒径が15μm以上のLi−Co
系複合酸化物を用いたリチウムイオン二次電池では、抵
抗増大による放電負荷特性の低下が問題であった。
Further, Li-Co having an average particle diameter of 15 μm or more is used.
In a lithium ion secondary battery using a system composite oxide, there has been a problem that the discharge load characteristics decrease due to an increase in resistance.

【0006】本発明は、優れた放電負荷特性およびサイ
クル特性を有し、塗工密度が高く、高容量なリチウムイ
オン二次電池、およびそれに用いられるLi−Co系複
合酸化物、正極板を提供することをその目的とするもの
である。
The present invention provides a lithium ion secondary battery having excellent discharge load characteristics and cycle characteristics, a high coating density and a high capacity, and a Li-Co-based composite oxide and a positive electrode plate used therein. It is intended to do so.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を行った結果、本発明を完成す
るに至った。本発明は以下のとおりである。 (1)粒径が1μm〜6μmの小粒径群と、粒径が15
μm〜22μmの大粒径群とから主としてなるLi−C
o系複合酸化物であって、大粒径群に対する小粒径群の
重量比が0.25〜0.60であることを特徴とするL
i−Co系複合酸化物。 (2)上記(1)に記載のLi−Co系複合酸化物を、
正極活物質として有するリチウムイオン二次電池用正極
板。 (3)上記(2)に記載の正極板を備えるリチウムイオ
ン二次電池。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. The present invention is as follows. (1) A group of small particles having a particle size of 1 μm to 6 μm and a particle size of 15
Li-C mainly composed of a large particle size group of μm to 22 μm
An o-based composite oxide, wherein the weight ratio of the small particle size group to the large particle size group is 0.25 to 0.60.
i-Co-based composite oxide. (2) The Li-Co-based composite oxide according to the above (1),
A positive electrode plate for a lithium ion secondary battery having a positive electrode active material. (3) A lithium ion secondary battery including the positive electrode plate according to (2).

【0008】[0008]

【発明の実施の形態】本発明のLi−Co系複合酸化物
は、その粒径が1μm〜6μmのLi−Co系複合酸化
物(以下、小粒径群(A)ともいう。)と、その粒径が
15μm〜22μmのLi−Co系複合酸化物(以下、
大粒径群(B)もいう。)とから主としてなる。
BEST MODE FOR CARRYING OUT THE INVENTION The Li—Co-based composite oxide of the present invention has a particle size of 1 μm to 6 μm (hereinafter also referred to as a small particle group (A)). A Li—Co-based composite oxide having a particle size of 15 μm to 22 μm (hereinafter, referred to as “Li-Co based composite oxide
Also referred to as large particle size group (B). ).

【0009】本発明のLi−Co系複合酸化物は、上記
粒径を各々有する小粒径群(A)および大粒径群(B)
から主としてなるが、小粒径群(A)および大粒径群
(B)以外の粒径を有するLi−Co系複合酸化物(以
下、他の粒径群(C)ともいう。)を含んでいてもよ
い。他の粒径群(C)は、その粒径が1μm未満のも
の、その粒径が6μmを超えて15μm未満のもの、な
らびにその粒径が22μmを超えるものを含有する。本
発明のLi−Co系複合酸化物は、粒径が1μm未満の
ものを6重量%以上含有すると、充放電サイクルの繰り
返しによって結晶性が低下する不具合があり、粒径が6
μmを超えて15μm未満のものを8重量%以上含有す
ると、塗工密度が減少する不具合があり、また粒径が2
2μmを超えるものを5重量%以上含有すると、抵抗増
大により放電負荷特性が低下する不具合がある。したが
って本発明のLi−Co系複合酸化物においては、他の
粒径群(C)の含有量を可及的に少なくすることが望ま
しい。該他の粒径群(C)の含有量は、10重量%以下
が好ましく、5重量%以下がより好ましい。
The Li—Co-based composite oxide of the present invention has a small particle size group (A) and a large particle size group (B) each having the above particle size.
But a Li-Co-based composite oxide having a particle size other than the small particle size group (A) and the large particle size group (B) (hereinafter also referred to as other particle size group (C)). You may go out. Other particle size groups (C) include those having a particle size of less than 1 μm, those having a particle size of more than 6 μm and less than 15 μm, and those having a particle size of more than 22 μm. When the Li—Co-based composite oxide of the present invention contains 6% by weight or more having a particle size of less than 1 μm, there is a problem that crystallinity is reduced due to repetition of charge / discharge cycles.
When the content of more than 15 μm is more than 8% by weight, the coating density may be reduced, and
If the content exceeds 2 μm is contained in an amount of 5% by weight or more, there is a problem that the discharge load characteristics are deteriorated due to an increase in resistance. Therefore, in the Li—Co-based composite oxide of the present invention, it is desirable to reduce the content of the other particle size groups (C) as much as possible. The content of the other particle size group (C) is preferably 10% by weight or less, more preferably 5% by weight or less.

【0010】小粒径群(A)、大粒径群(B)および他
の粒径群(C)の粒径は、以下の方法により測定するこ
とができる。測定対象となるLi−Co系複合酸化物
を、水またはエタノールなどの有機溶媒に投入し、35
kHz〜40kHz程度の超音波を付与して約2分間分
散処理を行う。測定対象となるLi−Co系複合酸化物
の量は、分散処理後の分散液のレーザ透過率(入射光量
に対する出力光量の比)が70%〜95%となる量とす
る。この分散液をマイクロトラック粒度分析計にかけ、
レーザ光の散乱により個々のLi−Co系複合酸化物の
粒径を計測する。
The particle size of the small particle size group (A), large particle size group (B) and other particle size group (C) can be measured by the following method. The Li-Co-based composite oxide to be measured is introduced into an organic solvent such as water or ethanol, and 35
A dispersion process is performed for about 2 minutes by applying ultrasonic waves of about kHz to 40 kHz. The amount of the Li-Co-based composite oxide to be measured is such that the laser transmittance (the ratio of the output light amount to the incident light amount) of the dispersion liquid after the dispersion treatment is 70% to 95%. Run this dispersion on a Microtrac particle size analyzer,
The particle diameter of each Li-Co-based composite oxide is measured by scattering of laser light.

【0011】マイクロトラック粒度分析計では、観測さ
れた散乱強度分布に最も近い理論強度になる球形粒子群
の粒径分布を算出している。すなわち、Li−Co系複
合酸化物が、レーザ光の照射によって得られる投影像と
同面積の断面円を持つ球体であると想定し、この断面円
の直径(球相当径)が粒径として計測される。
In the Microtrac particle size analyzer, the particle size distribution of a spherical particle group having the theoretical intensity closest to the observed scattering intensity distribution is calculated. That is, assuming that the Li—Co-based composite oxide is a sphere having a cross-sectional circle having the same area as the projected image obtained by the irradiation of the laser beam, the diameter of this cross-sectional circle (equivalent sphere diameter) is measured as the particle diameter. Is done.

【0012】また本発明のLi−Co系複合酸化物は、
大粒径群(B)に対する小粒径群(A)の重量比が0.
25〜0.60、好ましくは0.30〜0.50であ
る。該重量比が0.25未満であると、放電負荷特性の
低下、容量の減少というような不具合がある。また該重
量比が0.60を超えると、塗工密度の減少、サイクル
特性の低下というような不具合がある。
Further, the Li—Co-based composite oxide of the present invention comprises:
The weight ratio of the small particle size group (A) to the large particle size group (B) is 0.
It is 25-0.60, preferably 0.30-0.50. If the weight ratio is less than 0.25, there are problems such as a decrease in discharge load characteristics and a decrease in capacity. On the other hand, when the weight ratio exceeds 0.60, there are disadvantages such as a decrease in coating density and a decrease in cycle characteristics.

【0013】本発明のLi−Co系複合酸化物として
は、LiCoO2、LiACo1-XMeX2で示されるも
のが挙げられる。後者において、Aは0.05〜1.
5、特に0.1〜1.1とするのが好ましい。Xは0.
01〜0.5、特に0.02〜0.2とするのが好まし
い。元素Meとしては、Zr、V、Cr、Mo、Mn、
Fe、Niなどの周期律表の3〜10族元素、B、A
l、Ge、Pb、Sn、Sbなどの13〜15族元素が
挙げられる。本発明においては、小粒径群(A)と大粒
径群(B)とで、Li−Co系複合酸化物は同じもので
あってもよく、また互いに異なるものであってもよい
が、小粒径群(A)および大粒径群(B)が、共にLi
CoO2で実現されるのが好ましい。
As the Li-Co-based composite oxide of the present invention, those represented by LiCoO 2 and Li A Co 1-x Me X O 2 can be mentioned. In the latter, A is 0.05-1.
5, preferably 0.1 to 1.1. X is 0.
It is preferably from 0.01 to 0.5, particularly preferably from 0.02 to 0.2. As the element Me, Zr, V, Cr, Mo, Mn,
Group 3-10 elements of the periodic table such as Fe and Ni, B and A
Group 13 to 15 elements such as l, Ge, Pb, Sn, and Sb. In the present invention, in the small particle size group (A) and the large particle size group (B), the Li—Co-based composite oxide may be the same or different from each other. Both the small particle size group (A) and the large particle size group (B)
It is preferably realized with CoO 2 .

【0014】次に、本発明のLi−Co系複合酸化物の
好ましい作製方法を以下に例示する。なお、本発明にお
いてLi−Co系複合酸化物の作製方法は以下の方法に
限定されるものではない。
Next, a preferred method for producing the Li—Co-based composite oxide of the present invention will be described below. In the present invention, the method for producing the Li—Co-based composite oxide is not limited to the following method.

【0015】上記作製方法の好ましい一例としては、出
発原料となるリチウム化合物とコバルト化合物とを、コ
バルトとリチウムとの原子比が1:1〜0.8:1とな
るように混合し、その混合物を温度700℃〜1200
℃の大気雰囲気下で、3時間〜50時間加熱するなどし
て反応させ、さらに反応して出来たものを粉砕して粒状
物とし、その中から上述の範囲内の粒径のものを振り分
けるといった方法が挙げられる。
As a preferred example of the above production method, a lithium compound as a starting material and a cobalt compound are mixed so that the atomic ratio of cobalt to lithium is 1: 1 to 0.8: 1, and the mixture is used. At a temperature of 700 ° C. to 1200 ° C.
In an air atmosphere at a temperature of 3 ° C., the reaction is carried out by heating for 3 hours to 50 hours, etc., and the product obtained by the reaction is further pulverized into granules, and those having a particle size within the above-mentioned range are sorted from among them. Method.

【0016】上記作製方法の好ましい他の例としては、
上記の粉砕して得られた粒状物をさらに熱処理する方
法、たとえば、この粉砕して得られた粒状物を400℃
〜750℃、特には450℃〜700℃程度の温度下で
0.5時間〜50時間、特には1時間〜20時間程度加
熱する方法が挙げられる。
Another preferable example of the above-mentioned manufacturing method is as follows.
A method of further heat-treating the granules obtained by the above-described pulverization.
To 750 ° C., particularly about 450 ° C. to 700 ° C., for 0.5 to 50 hours, particularly about 1 to 20 hours.

【0017】また、この粉砕して得られた粒状物の熱処
理は、どのような雰囲気下でも行うことができ、たとえ
ば、大気雰囲気下や、窒素またはアルゴンといった不活
性ガス雰囲気下で行うことができる。但し、雰囲気中に
炭酸ガスが存在すると、炭酸リチウムが生じて不純物の
含有量が増大するおそれがあるため、炭酸ガスの分圧が
10mmHg程度以下の雰囲気下で行うのが好ましい。
The heat treatment of the pulverized granular material can be performed in any atmosphere, for example, in an air atmosphere or an inert gas atmosphere such as nitrogen or argon. . However, if carbon dioxide gas is present in the atmosphere, lithium carbonate may be generated and the content of impurities may increase. Therefore, it is preferable to perform the process in an atmosphere where the partial pressure of the carbon dioxide gas is about 10 mmHg or less.

【0018】上記の出発原料となるリチウム化合物とし
ては、酸化リチウム、水酸化リチウム、ハロゲン化リチ
ウム、硝酸リチウム、シュウ酸リチウム、炭酸リチウム
などや、これらの混合物が挙げられる。出発原料となる
コバルト化合物としては、酸化コバルト、水酸化コバル
ト、ハロゲン化コバルト、硝酸コバルト、シュウ酸コバ
ルト、炭酸コバルトなどや、これらの混合物が挙げられ
る。なお、LiACo1 -XMeX2で示されるLi−Co
系複合酸化物を作製するのであれば、リチウム化合物と
コバルト化合物との混合物に、置換元素の化合物を必要
量添加すれば良い。
Examples of the lithium compound used as the starting material include lithium oxide, lithium hydroxide, lithium halide, lithium nitrate, lithium oxalate, lithium carbonate and the like, and mixtures thereof. Examples of the cobalt compound as a starting material include cobalt oxide, cobalt hydroxide, cobalt halide, cobalt nitrate, cobalt oxalate, cobalt carbonate, and the like, and a mixture thereof. Note that Li-Co represented by Li A Co 1 -x Me X O 2
If a composite oxide is to be produced, a required amount of a compound of a substitution element may be added to a mixture of a lithium compound and a cobalt compound.

【0019】本発明のLi−Co系複合酸化物は、小粒
径群(A)、大粒径群(B)および他の粒径群(C)を
合わせたLi−Co系複合酸化物全体の平均粒径が、好
ましくは6μm〜14μm、より好ましくは8μm〜1
2μmとなるように実現される。該平均粒径(μm)
は、上記のマイクロトラック粒度分析計を用いて上述の
ように個々の粒状物の粒径(D1、D2、D3・・)を
測定する際、各粒径毎の存在個数(N1、N2、N3・
・・)を計測し、得られた個々の粒子の粒径(D)と各
粒径毎の存在個数(N)とから、下記の式(1)を用い
て算出できる。 平均粒径(μm)=(ΣND3/ΣN)1/3(1)
The Li-Co-based composite oxide according to the present invention is a Li-Co-based composite oxide comprising a combination of a small particle size group (A), a large particle size group (B) and another particle size group (C). Has an average particle size of preferably 6 μm to 14 μm, more preferably 8 μm to 1 μm.
It is realized to be 2 μm. The average particle size (μm)
When measuring the particle size (D1, D2, D3...) Of each granular material as described above using the above-mentioned Microtrac particle size analyzer, the number of particles (N1, N2, N3)・
..) can be measured and calculated from the particle size (D) of the obtained individual particles and the number of existing particles (N) for each particle size by using the following equation (1). Average particle size (μm) = (ΣND 3 / ΣN) 1/3 (1)

【0020】本発明においては、小粒径群(A)および
大粒径群(B)を特定の重量比で配合することで、上記
範囲の平均粒径を実現する。これによって本発明のLi
−Co系複合酸化物は、小粒径群(A)を含有すること
で優れた放電負荷特性を有する高容量のリチウムイオン
二次電池を実現できる。また同時に、大粒径群(B)を
有することで高い塗工密度を有し、これによって体積容
量が増加するとともにサイクル特性に優れるリチウムイ
オン二次電池を実現できる。このように本発明において
は、小粒径群(A)および大粒径群(B)がそれぞれ備
える長所を引き出してなる高品位なリチウムイオン二次
電池を得ることができる。さらに、単一の粒径群を用い
て平均粒径を5μmを超えて15μm未満とした場合と
は異なり、大粒径群(B)の間に小粒径群(A)が充填
されるので、上記場合と比較して密度がより向上され、
したがってLi−Co系複合酸化物を有する正極活物質
組成物を集電体上に塗布する際の塗工密度をより向上で
きる。
In the present invention, the average particle diameter in the above range is realized by blending the small particle diameter group (A) and the large particle diameter group (B) at a specific weight ratio. Thereby, Li of the present invention
The -Co-based composite oxide can realize a high capacity lithium ion secondary battery having excellent discharge load characteristics by containing the small particle size group (A). At the same time, by having the large particle size group (B), a lithium ion secondary battery having a high coating density, thereby increasing the volume capacity and having excellent cycle characteristics can be realized. As described above, in the present invention, it is possible to obtain a high-quality lithium ion secondary battery that draws out advantages of the small particle size group (A) and the large particle size group (B). Further, unlike the case where the average particle size is set to more than 5 μm and less than 15 μm using a single particle size group, the small particle size group (A) is filled between the large particle size group (B). , The density is improved compared to the above case,
Therefore, the coating density when the positive electrode active material composition having the Li—Co-based composite oxide is coated on the current collector can be further improved.

【0021】本発明のリチウムイオン二次電池用正極板
は、上述のLi−Co系複合酸化物を、正極活物質とし
て有する。該正極板は、本発明のLi−Co系複合酸化
物、粒状の導電材およびバインダーを含有する正極活物
質組成物を、集電体上に層状に形成してなる正極活物質
層を有する。なお本明細書中でいう正極活物質層は、該
正極活物質組成物を集電体上に塗工して層状に成形した
ものをさし、成形前の正極活物質組成物は含まない。
The positive electrode plate for a lithium ion secondary battery of the present invention has the above-described Li-Co-based composite oxide as a positive electrode active material. The positive electrode plate has a positive electrode active material layer obtained by forming a positive electrode active material composition containing the Li-Co-based composite oxide, the granular conductive material, and the binder of the present invention in a layer on a current collector. In addition, the positive electrode active material layer referred to in the present specification refers to a layer obtained by applying the positive electrode active material composition on a current collector and forming the same into a layer, and does not include the positive electrode active material composition before the formation.

【0022】本発明において用いられる導電材として
は、当分野において広く一般的に用いられているものを
好適に用いることができ、特に限定されないが、たとえ
ば人造あるいは天然の黒鉛類、またはケッチェンブラッ
ク、アセチレンブラック、オイルファーネスブラック、
イクストラコンダクティブファーネスブラックなどのカ
ーボンブラック類などといった炭素材料が挙げられる。
なお、本発明でいう「粒状」には、鱗片状、球状、擬似
球状、塊状、ウィスカー状などが含まれるが、特に限定
するものではない。
As the conductive material used in the present invention, those widely and generally used in the art can be suitably used, and are not particularly limited. For example, artificial or natural graphites, or Ketjen black , Acetylene black, oil furnace black,
Examples include carbon materials such as carbon blacks such as extra conductive furnace black.
The term “granular” as used in the present invention includes, but is not particularly limited to, a scale, a sphere, a pseudo sphere, a lump, and a whisker.

【0023】本発明においては、互いに異なる粒径範囲
の二種以上の導電材を用いてもよいが、安定した各特性
を有するリチウムイオン二次電池を得るためには、一種
類の導電材を用いるのが好ましい。このような導電材
は、その粒径が0.5μm〜6μmであるのが好まし
く、1μm〜3μmであるのがより好ましい。上記のよ
うに一種類の導電材を用いる場合、その粒径が0.5μ
m未満であると、塗工密度の低下によって体積容量が減
少してしまうというような不具合があるため好ましくな
く、また6μmを超えると、分散性が低下することによ
り放電負荷特性が低下してしまうというような不具合が
あるため好ましくない。
In the present invention, two or more conductive materials having particle sizes different from each other may be used. However, in order to obtain a lithium ion secondary battery having stable characteristics, one kind of conductive material must be used. It is preferably used. Such a conductive material preferably has a particle size of 0.5 μm to 6 μm, and more preferably 1 μm to 3 μm. When one kind of conductive material is used as described above, the particle size is 0.5 μm.
If it is less than m, there is a problem that the volume capacity is reduced due to a decrease in the coating density, so that it is not preferable. If it exceeds 6 μm, the dispersibility is reduced and the discharge load characteristics are reduced. It is not preferable because of such defects.

【0024】なお、本発明でいう導電材の粒径とは、導
電材を構成する粒子を球体と想定したときの断面円の直
径(球相当径)をいい、電子顕微鏡を用いて測定でき
る。具体的には、最初に視野に粒子が20個以上入るよ
う倍率を設定して電子顕微鏡写真を撮影する。次に、写
真に写った各粒子の像の面積を算出し、さらにこの算出
された面積から同面積を持つ円の直径を算出する。導電
材を構成する粒子は、この直径の断面円をもつ球体と想
定し、この直径が導電材の粒径となる。
The particle size of the conductive material in the present invention refers to the diameter of a cross-sectional circle (equivalent sphere diameter) assuming that the particles constituting the conductive material are spherical, and can be measured using an electron microscope. Specifically, an electron microscope photograph is first taken with the magnification set so that 20 or more particles enter the visual field. Next, the area of the image of each particle in the photograph is calculated, and the diameter of a circle having the same area is calculated from the calculated area. The particles constituting the conductive material are assumed to be spheres having a cross section circle of this diameter, and this diameter is the particle size of the conductive material.

【0025】導電材の使用量は、従来と同様にたとえば
Li−Co系複合酸化物100重量部に対し、好ましく
は4重量部〜7重量部、より好ましくは5重量部〜6重
量部とすればよい。
The amount of the conductive material used is preferably 4 to 7 parts by weight, more preferably 5 to 6 parts by weight, based on 100 parts by weight of the Li—Co-based composite oxide, as in the prior art. I just need.

【0026】ここで、上記のように本発明のリチウムイ
オン二次電池用正極板においては一種類の粒径範囲の導
電材を用いる方が好ましいが、用いるLi−Co系複合
酸化物が上記のように互いに粒径範囲の異なる小粒径群
(A)と大粒径群(B)とを配合してなるものであるの
で、粒径範囲の異なる二種以上の導電材を用いたとして
も、一種の粒径範囲のLi−Co系複合酸化物を用いた
場合と比較して、正極活物質層内においてLi−Co系
複合酸化物および導電材の分散性が向上する利点もあ
る。したがって品質のばらつきが少なく、より安定した
上記各特性を有するリチウムイオン二次電池を得ること
ができる。
As described above, in the positive electrode plate for a lithium ion secondary battery of the present invention, it is preferable to use a conductive material having one kind of particle size range. As described above, since the small particle size group (A) and the large particle size group (B) having different particle size ranges are blended, even if two or more kinds of conductive materials having different particle size ranges are used. There is also an advantage that the dispersibility of the Li-Co-based composite oxide and the conductive material in the positive electrode active material layer is improved as compared with the case where a Li-Co-based composite oxide having one kind of particle size is used. Therefore, it is possible to obtain a lithium ion secondary battery having less variation in quality and more stable characteristics.

【0027】なお、正極活物質層を形成するためのバイ
ンダーとしては、従来と同様のもの、たとえばポリテト
ラフルオロエチレン、ポリフッ化ビニリデン、ポリエチ
レン、エチレン−プロピレン−ジエン系ポリマーなどが
好適に利用される。該バインダーは、正極活物質100
重量部に対し、好ましくは3重量部〜5重量部、より好
ましくは3.5重量部〜4.5重量部配合される。
As the binder for forming the positive electrode active material layer, the same binder as in the prior art, for example, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, ethylene-propylene-diene-based polymer and the like are preferably used. . The binder comprises a positive electrode active material 100
It is preferably added in an amount of 3 to 5 parts by weight, more preferably 3.5 to 4.5 parts by weight, based on parts by weight.

【0028】本発明において、正極板に用いられる集電
体としては、たとえばアルミニウム、アルミニウム合
金、チタンなどで形成された箔やエキスパンドメタルな
ど従来と同様のものが利用できる。
In the present invention, as a current collector used for the positive electrode plate, for example, a foil or an expanded metal formed of aluminum, an aluminum alloy, titanium, or the like can be used.

【0029】以下に、本発明における正極活物質層の形
成方法の好ましい一例を示す。本発明における正極活物
質層の形成方法は、基本的には、混練工程、塗布工
程、乾燥工程、圧延工程を有する。
Hereinafter, a preferred example of a method for forming a positive electrode active material layer in the present invention will be described. The method for forming a positive electrode active material layer in the present invention basically includes a kneading step, a coating step, a drying step, and a rolling step.

【0030】混練工程では、上記正極活物質組成物
を、従来公知のN−メチルピロリドン中で、たとえばプ
ラネタリディスパ混練装置(浅田鉄工所製)などの従来
公知の混練装置を用いて混練して均一に分散させ、スラ
リーとする。この混練工程の際の条件は、まず正極活物
質、導電材の全量を投入した後にポリフッ化ビニリデン
(PVdF)のN−メチルピロリドン溶液を加え、全体
がある程度の粘性を示す状態とする。
In the kneading step, the above-mentioned cathode active material composition is kneaded in a conventionally known N-methylpyrrolidone by using a conventionally known kneading apparatus such as a planetary dispersing kneading apparatus (manufactured by Asada Iron Works), and uniformly mixed. Into a slurry. The conditions in the kneading step are as follows. First, the positive electrode active material and the entire amount of the conductive material are charged, and then a solution of polyvinylidene fluoride (PVdF) in N-methylpyrrolidone is added so that the whole exhibits a certain degree of viscosity.

【0031】続く塗布工程では、上記のようにして得
られたスラリーを、集電体上に塗布する。該スラリーの
塗布は、当分野において通常行われているようにコンマ
ロールタイプあるいはダイコートタイプの塗工機などの
従来公知の器具を用いて行う。
In the subsequent coating step, the slurry obtained as described above is coated on a current collector. The application of the slurry is performed by using a conventionally known device such as a comma roll type or a die coat type coating machine as generally performed in the art.

【0032】乾燥工程では、集電体上に塗布されたス
ラリーを、温風乾燥炉などの従来公知の器具を用いて、
100℃〜200℃の温度範囲で、5分間〜20分間乾
燥させる。
In the drying step, the slurry applied on the current collector is removed by using a conventionally known appliance such as a hot air drying oven.
Dry in a temperature range of 100 ° C. to 200 ° C. for 5 minutes to 20 minutes.

【0033】続いて圧延工程では、圧延プレス機など
の装置を用いて、上記の集電体上で乾燥されたスラリー
を、圧延して層状とし、正極活物質層を形成する。本発
明においては、圧延温度が好ましくは15℃〜35℃、
かつ圧延率が好ましくは30%〜40%の当分野で一般
的な圧延条件のもとで圧延が施される。圧延して形成さ
れた正極活物質層の厚みは特には限定されないが、好ま
しくは60μm〜140μm程度である。
Subsequently, in a rolling step, the slurry dried on the current collector is rolled into a layer by using a device such as a rolling press to form a positive electrode active material layer. In the present invention, the rolling temperature is preferably 15 ° C to 35 ° C,
The rolling is carried out under rolling conditions which are generally 30% to 40% and are common in the art. The thickness of the positive electrode active material layer formed by rolling is not particularly limited, but is preferably about 60 μm to 140 μm.

【0034】本発明のリチウム二次電池は、上述した正
極板に加えて、さらに負極板、電解液などを備えるが、
これらについては特に限定されるものではなく、従来公
知の材料で好適に実現される。以下、本発明において用
いられる負極板および電解液の好ましい例を示す。
The lithium secondary battery of the present invention further comprises a negative electrode plate, an electrolytic solution, and the like in addition to the positive electrode plate described above.
These are not particularly limited, and are preferably realized by conventionally known materials. Hereinafter, preferable examples of the negative electrode plate and the electrolytic solution used in the present invention will be described.

【0035】本発明において負極板は、負極活物質にバ
インダーなどを混合させてなる負極活物質層を、集電体
上に設けて形成される。負極活物質としては、従来公知
の負極活物質と同様に黒鉛化炭素が用いられる。このよ
うな黒鉛化炭素としては、比表面積が好ましくは2.0
2/g以下、より好ましくは0.5m2/g〜1.5m
2/g、結晶格子の面間距離(d002)が好ましくは
0.3380nm以下、より好ましくは0.3355n
m〜0.3370nm、c軸方向の結晶子寸法(Lc)
が好ましくは30nm以上、より好ましくは40nm〜
70nmの黒鉛化炭素が特に好ましく用いられる。上記
の数値範囲を満たす黒鉛化炭素としては、たとえばメソ
フェーズ系黒鉛化炭素が挙げられる。
In the present invention, the negative electrode plate is formed by providing a negative electrode active material layer obtained by mixing a binder or the like with a negative electrode active material on a current collector. As the negative electrode active material, graphitized carbon is used in the same manner as a conventionally known negative electrode active material. Such a graphitized carbon preferably has a specific surface area of 2.0
m 2 / g or less, more preferably 0.5m 2 /g~1.5m
2 / g, the interplanar distance (d002) of the crystal lattice is preferably 0.3380 nm or less, more preferably 0.3355 n.
m to 0.3370 nm, crystallite size in the c-axis direction (Lc)
Is preferably 30 nm or more, more preferably 40 nm or more.
Graphitized carbon of 70 nm is particularly preferably used. Examples of the graphitized carbon satisfying the above numerical range include mesophase-based graphitized carbon.

【0036】なお、比表面積が2.0m2/gより大き
いと、電解液成分であるプロピレンカーボネートの分解
反応が充電時に発生し、電池容量が低下することがあり
好ましくない。また、結晶格子の面間距離(d002)
が0.3380nmを超えていたり、c軸方向の結晶子
寸法(Lc)が30nm未満であると、負極板の電位が
上昇して電池の平均放電電位が低下することがあり好ま
しくない。
If the specific surface area is larger than 2.0 m 2 / g, the decomposition reaction of propylene carbonate, which is an electrolytic solution component, occurs at the time of charging, and the battery capacity may be undesirably reduced. Further, the distance between planes of the crystal lattice (d002)
Exceeds 0.3380 nm, or the crystallite dimension (Lc) in the c-axis direction is less than 30 nm, the potential of the negative electrode plate may increase, and the average discharge potential of the battery may decrease.

【0037】なお、結晶格子の面間距離(d002)お
よびc軸方向の結晶子寸法(Lc)は、日本学術振興会
法により測定することができる。以下に具体的に説明す
る。
The inter-plane distance (d002) of the crystal lattice and the crystallite size (Lc) in the c-axis direction can be measured by the Japan Society for the Promotion of Science. This will be specifically described below.

【0038】最初に、X線標準用高純度シリコンをメノ
ウ乳鉢で325メッシュ標準篩以下に粉砕して標準物質
を作製し、この標準物質と被測定試料の黒鉛化炭素とを
メノウ乳鉢で混合(黒鉛化炭素100重量%に対して標
準物質10重量%)してX線用試料を作製する。このX
線用試料を、たとえばX線回析装置RINT2000
(理学電機社製、X線源:CuKα線)の試料板に均一
に充填する。次に、X線管球への印加電圧を40kV、
印加電流を50mAに設定し、更に走査範囲を2θ=2
3.5度〜29.5度、スキャンスピードを0.25度
/minとして、炭素の002ピークおよび標準物質の
111ピークを測定する。続いて、得られたピーク位置
およびその半値幅から、上記のX線回析装置に付属の黒
鉛化度計算用ソフトを用いて、結晶格子の面間距離(d
002)およびc軸方向の結晶子寸法(Lc)を算出す
る。
First, high-purity X-ray standard silicon is ground in an agate mortar to a size of 325 mesh standard sieve or less to prepare a standard substance, and this standard substance and the graphitized carbon of the sample to be measured are mixed in an agate mortar ( An X-ray sample is prepared using 100% by weight of graphitized carbon and 10% by weight of a standard substance. This X
For example, an X-ray diffraction apparatus RINT2000
(Rigaku Corporation, X-ray source: CuKα ray) A sample plate is uniformly filled. Next, the applied voltage to the X-ray tube was 40 kV,
The applied current was set to 50 mA, and the scanning range was 2θ = 2.
The 002 peak of carbon and the 111 peak of a standard substance are measured at 3.5 to 29.5 degrees and a scan speed of 0.25 degrees / min. Subsequently, from the obtained peak position and its half-value width, using the graphitization degree calculation software attached to the X-ray diffractometer, the interplanar distance (d) of the crystal lattice is used.
002) and the crystallite size (Lc) in the c-axis direction are calculated.

【0039】本発明において黒鉛化炭素の比表面積の測
定は、「粉体の材料化学」〔荒井康夫著、初版第9刷、
培風館(東京)発行、1995年〕の第178頁〜第1
84頁に記載された吸着法のうち、窒素を吸着体とする
気相吸着法(一点法)により行うことができる。このよ
うな窒素を吸着体とする気相吸着法を応用した該比表面
積の測定は、たとえば比表面積計モノソーブ(クアンタ
クロム社製)などを用いて好適に行うことができる。
In the present invention, the measurement of the specific surface area of graphitized carbon is carried out by the method described in “Material chemistry of powder” [Yasuo Arai, First Edition, 9th printing,
Baifukan (Tokyo), 1995], pages 178 to 1
Among the adsorption methods described on page 84, a gas-phase adsorption method using nitrogen as an adsorbent (one-point method) can be used. The measurement of the specific surface area using such a gas-phase adsorption method using nitrogen as an adsorbent can be suitably performed using, for example, a specific surface area meter Monosorb (manufactured by Quantachrome).

【0040】本発明において黒鉛化炭素は、通常の黒鉛
系負極活物質と同様に粒状で用いられる。黒鉛化炭素を
構成する粒子の形状は特に限定されるものではなく、鱗
片状、繊維状、球状、擬似球状、塊状、ウィスカー状な
どであれば良い。
In the present invention, the graphitized carbon is used in the form of particles similar to the usual graphite-based negative electrode active material. The shape of the particles constituting the graphitized carbon is not particularly limited, and may be flake-like, fibrous, spherical, pseudo-spherical, massive, or whisker-like.

【0041】なお、本発明のリチウムイオン二次電池に
おいて、負極活物質と共に用いるバインダーとしては、
従来と同様に、ポリテトラフルオロエチレン、ポリフッ
化ビニリデン、ポリエチレン、エチレン−プロピレン−
ジエン系ポリマーなどを用いることができる。また、負
極板に用いる集電体としては、従来と同様のものが利用
でき、銅、ニッケル、銀、ステンレスなどで形成された
箔やエキスパンドメタルが挙げられる。
In the lithium ion secondary battery of the present invention, the binder used together with the negative electrode active material includes:
As before, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, ethylene-propylene-
A diene polymer or the like can be used. Further, as the current collector used for the negative electrode plate, the same current collector as in the related art can be used, and examples thereof include a foil and an expanded metal formed of copper, nickel, silver, stainless steel, and the like.

【0042】本発明における電解液の溶媒としては、ジ
エチルカーボネート(DEC)およびエチルメチルカー
ボネート(EMC)から選ばれる少なくとも一種を含
み、更にエチレンカーボネート(EC)と、プロピレン
カーボネート(PC)と、ジメチルカーボネート(DM
C)とを含む混合物が用いられる。上記混合物を構成す
る各成分の混合比は、ジエチルカーボネートおよびエチ
ルメチルカーボネートから選ばれる少なくとも一種にお
いては、25体積%〜50体積%であるのが好ましく、
30体積%〜35体積%であるのがより好ましい。エチ
レンカーボネートにおいては混合比が4体積%〜20体
積%であるのが好ましく、6体積%〜18体積%である
のがより好ましい。プロピレンカーボネートにおいては
混合比が3体積%〜17体積%であるのが好ましく、5
体積%〜15体積%であるのがより好ましい。また、ジ
メチルカーボネートにおいては混合比が40体積%を超
えて60体積%以下であるのが好ましく、45体積%〜
55体積%であるのがより好ましい。なお本発明におい
て電解液にジエチルカーボネートおよびエチルメチルカ
ーボネートのどちらも混合させる場合には、これらを合
計した量が上記混合比を満たすものとする。
The solvent of the electrolyte in the present invention includes at least one selected from diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), and further includes ethylene carbonate (EC), propylene carbonate (PC), and dimethyl carbonate. (DM
C) is used. The mixing ratio of each component constituting the mixture is preferably 25% by volume to 50% by volume in at least one kind selected from diethyl carbonate and ethyl methyl carbonate,
More preferably, it is 30% by volume to 35% by volume. In ethylene carbonate, the mixing ratio is preferably from 4% by volume to 20% by volume, and more preferably from 6% by volume to 18% by volume. In propylene carbonate, the mixing ratio is preferably 3% by volume to 17% by volume, and preferably 5% by volume.
More preferably, it is from 15% by volume to 15% by volume. In dimethyl carbonate, the mixing ratio is preferably more than 40% by volume and 60% by volume or less,
More preferably, it is 55% by volume. When both diethyl carbonate and ethyl methyl carbonate are mixed with the electrolytic solution in the present invention, the total amount thereof satisfies the above mixing ratio.

【0043】ジエチルカーボネートおよびエチルメチル
カーボネートから選ばれる少なくとも一種においては、
上記混合比が25体積%未満であると電解液の凝固点が
上昇して、特に−20℃以下の低温下において、電池の
内部抵抗を増大させ、充放電サイクル特性および低温特
性を低下させることがあり好ましくない。一方、上記混
合比が50体積%を超えると電解液の粘度が上昇して電
池の内部抵抗を増大させ、充放電サイクル特性を低下さ
せることがあり好ましくない。
In at least one selected from diethyl carbonate and ethyl methyl carbonate,
When the mixing ratio is less than 25% by volume, the freezing point of the electrolytic solution increases, and particularly at a low temperature of −20 ° C. or lower, the internal resistance of the battery increases, and the charge / discharge cycle characteristics and low-temperature characteristics may decrease. There is not preferred. On the other hand, if the mixing ratio is more than 50% by volume, the viscosity of the electrolytic solution increases, the internal resistance of the battery increases, and the charge / discharge cycle characteristics may decrease.

【0044】エチレンカーボネートにおいては、上記混
合比が4体積%未満であると負極板表面で安定な皮膜が
形成されにくく、サイクル特性を低下させる恐れがあり
好ましくない。また上記混合比が20体積%を超える
と、電解液の粘度が上昇して電池の内部抵抗を増大さ
せ、充放電サイクル特性が低下させることがあり好まし
くない。
In the case of ethylene carbonate, if the mixing ratio is less than 4% by volume, it is difficult to form a stable film on the surface of the negative electrode plate, and the cycle characteristics may be deteriorated. On the other hand, when the mixing ratio exceeds 20% by volume, the viscosity of the electrolytic solution increases, the internal resistance of the battery increases, and the charge / discharge cycle characteristics may decrease.

【0045】プロピレンカーボネートにおいては、上記
混合比が3体積%未満であると充放電サイクルに伴うイ
ンピーダンスの増加の抑制効果が小さくなり、サイクル
特性を低下させる恐れがあり好ましくない。上記混合比
が17体積%を超えると、電解液の粘度が上昇して電池
の内部抵抗を増大させ、充放電サイクル特性を低下させ
ることがあり好ましくない。
In the case of propylene carbonate, if the mixing ratio is less than 3% by volume, the effect of suppressing the increase in impedance due to the charge / discharge cycle becomes small, and the cycle characteristics may be undesirably reduced. If the mixing ratio exceeds 17% by volume, the viscosity of the electrolytic solution increases, the internal resistance of the battery increases, and the charge / discharge cycle characteristics may deteriorate.

【0046】ジメチルカーボネートにおいては、上記混
合比が40体積%以下であると電解液の粘度が上昇して
電池の内部抵抗を増大させ、充放電サイクル特性を低下
させることがあり好ましくない。上記混合比が60体積
%を超えると、電解液の凝固点が上昇して、特に−20
℃以下の低温下において、電池の内部抵抗を増大させ、
サイクル特性および低温特性を低下させることがあり好
ましくない。
In the case of dimethyl carbonate, if the mixing ratio is 40% by volume or less, the viscosity of the electrolytic solution increases, the internal resistance of the battery increases, and the charge / discharge cycle characteristics are undesirably reduced. If the mixing ratio is more than 60% by volume, the freezing point of the electrolytic solution increases, and especially −20.
Under low temperature below ℃, increase the internal resistance of the battery,
The cycle characteristics and the low-temperature characteristics may deteriorate, which is not preferable.

【0047】本発明のリチウムイオン二次電池におい
て、電解液としては、上記の混合溶媒に、LiCl
4、LiBF4、LiPF6、LiAsF6、LiAlC
4、Li(CF3SO22Nといったリチウム塩から選
ばれる一種または二種以上を溶解したものを用いれば良
い。電解液のリチウム塩濃度は、好ましくは0.1モル
/L〜2モル/L、より好ましくは0.5モル/L〜
1.8モル/Lとなるように調製される。リチウム塩の
濃度が0.1モル/L未満であると、電解液としてのイ
オン伝導度が十分に得られず、電池としての機能が損な
われてしまい好ましくない。また該リチウム塩の濃度が
2モル/Lを超えると、電解液の粘度が上昇して低温特
性やハイレート特性が低下するため好ましくない。
In the lithium ion secondary battery according to the present invention, the electrolyte is LiCl
O 4, LiBF 4, LiPF 6 , LiAsF 6, LiAlC
One or two or more of lithium salts such as l 4 and Li (CF 3 SO 2 ) 2 N may be dissolved. The lithium salt concentration of the electrolytic solution is preferably 0.1 mol / L to 2 mol / L, more preferably 0.5 mol / L to
It is prepared to be 1.8 mol / L. If the concentration of the lithium salt is less than 0.1 mol / L, ionic conductivity as an electrolyte cannot be sufficiently obtained, and the function as a battery is undesirably impaired. On the other hand, if the concentration of the lithium salt exceeds 2 mol / L, the viscosity of the electrolytic solution increases, and the low-temperature characteristics and high-rate characteristics decrease, which is not preferable.

【0048】なお負極板の作製方法は、特には限定され
ず、当分野において一般的に行われている方法によって
好適に作製することができる。また上記正極板、負極
板、電解液を、従来から広く用いられているセパレー
タ、電池缶などを用いて当分野において一般的に行われ
ているように組立てることによって、本発明のリチウム
イオン二次電池を好適に製造することができる。
The method for producing the negative electrode plate is not particularly limited, and it can be suitably produced by a method generally used in the art. In addition, by assembling the positive electrode plate, the negative electrode plate, and the electrolyte using a widely used separator, battery can, and the like as generally performed in the art, the lithium ion secondary battery of the present invention is provided. A battery can be suitably manufactured.

【0049】[0049]

【実施例】以下、実施例を挙げて本発明を具体的に示
す。実際に、本発明のリチウムイオン二次電池を作製
し、評価を行なった。 実施例1 〔正極板の作製〕小粒径群A1(粒径:3μm)および
大粒径群B1(粒径:17μm)を、大粒径群B1に対
する小粒径群A1の重量比が0.30となるように混合
してなる本発明のLi−Co系複合酸化物(LiCoO
2)90重量部と、導電材となるMCMB(粒径:6μ
m)6重量部と、バインダーとなるポリフッ化ビニリデ
ン(PVdF)4重量部とを、N−メチルピロリドン中
に均一に分散してなる正極活物質組成物を、プラネタリ
ディスパ混練装置(浅田鉄工所製)を用いて混練してス
ラリーとした。Li−Co系複合酸化物全体の平均粒径
は、13μmであった。上記のLi−Co系複合酸化物
の粒径、平均粒径および導電材の粒径は、マイクロトラ
ック粒度分析計SALD−3000J(島津製作所製)
を用いて測定した。また上記のLi−Co系複合酸化物
および導電材の比表面積は、比表面積計モノソーブ(ク
アンタクロム社製)を用いて測定した。上記スラリーを
集電体となるアルミニウム箔(厚み:20μm)の両面
上に塗布し、乾燥させ、ついで室温で、35%の圧延率
にて圧延処理して正極活物質層を形成し、アルミニウム
箔の片面あたり18mg/cm2のLi−Co系複合酸
化物を有する正極板とした。
EXAMPLES The present invention will be specifically described below with reference to examples. Actually, a lithium ion secondary battery of the present invention was produced and evaluated. Example 1 [Preparation of Positive Electrode Plate] The small particle size group A1 (particle size: 3 μm) and the large particle size group B1 (particle size: 17 μm) were compared with the large particle size group B1 by a weight ratio of 0 to 0. The Li—Co-based composite oxide of the present invention (LiCoO
2 ) 90 parts by weight and MCMB (particle size: 6μ) to be a conductive material
m) A positive electrode active material composition obtained by uniformly dispersing 6 parts by weight and 4 parts by weight of polyvinylidene fluoride (PVdF) as a binder in N-methylpyrrolidone was mixed with a planetary disperser kneader (manufactured by Asada Iron Works). ) To obtain a slurry. The average particle size of the entire Li—Co-based composite oxide was 13 μm. The particle size, average particle size, and particle size of the conductive material of the above-described Li-Co-based composite oxide are measured using a microtrack particle size analyzer SALD-3000J (manufactured by Shimadzu Corporation)
It measured using. The specific surface area of the above-mentioned Li—Co-based composite oxide and the conductive material was measured using a specific surface area meter Monosorb (manufactured by Quantachrome). The slurry is applied on both sides of an aluminum foil (thickness: 20 μm) serving as a current collector, dried, and then rolled at room temperature at a rolling reduction of 35% to form a positive electrode active material layer. A positive electrode plate having 18 mg / cm 2 of a Li—Co-based composite oxide per one side was prepared.

【0050】〔負極板の作製〕負極活物質となる黒鉛化
炭素(ファイバー状黒鉛、比表面積:1.0m2/g、
結晶格子の面間距離:0.3360nm、c軸方向の結
晶子寸法:50nm)95重量部と、バインダーとなる
ポリフッ化ビニリデン(PVdF)5重量部と、N−メ
チルピロリドン50重量部とを混合してスラリー化し、
このスラリーを集電体となる銅箔(厚み14μm)の両
面に塗布し、乾燥させた。なお負極活物質の比表面積
は、上記と同様に比表面積計モノソーブ(クアンタクロ
ム社製)を用いて測定した。負極活物質の結晶格子の面
間距離およびc軸方向の結晶子寸法は、X線回析装置R
INT2000(理学電機社製、X線源:CuKα線)
を用い、上述した条件にて測定した。次に、この銅箔に
圧延温度:120℃、圧延率:22%の圧延条件で圧延
処理を施し、負極板を得た。
[Preparation of negative electrode plate] Graphitized carbon (fibrous graphite, specific surface area: 1.0 m 2 / g,
95 parts by weight of a plane distance between crystal lattices: 0.3360 nm, crystallite size in the c-axis direction: 50 nm), 5 parts by weight of polyvinylidene fluoride (PVdF) as a binder, and 50 parts by weight of N-methylpyrrolidone To make a slurry,
This slurry was applied to both surfaces of a copper foil (thickness: 14 μm) serving as a current collector, and dried. The specific surface area of the negative electrode active material was measured using a specific surface area monosorb (manufactured by Quantachrome) in the same manner as described above. The distance between the planes of the crystal lattice of the negative electrode active material and the crystallite size in the c-axis direction are determined by using an X-ray diffractometer R
INT2000 (Rigaku Corporation, X-ray source: CuKα ray)
Was measured under the conditions described above. Next, the copper foil was subjected to a rolling treatment under rolling conditions of a rolling temperature of 120 ° C. and a rolling ratio of 22% to obtain a negative electrode plate.

【0051】〔電解液の調製〕ジエチルカーボネート4
体積%と、エチルメチルカーボネート29体積%と、エ
チレンカーボネート11体積%と、プロピレンカーボネ
ート9体積%と、ジメチルカーボネート47体積%との
混合溶媒に、LiPF6を、その濃度が1.0モル/L
(調製後の電解液に対し)となるように溶解させて電解
液を調製した。
[Preparation of electrolyte solution] Diethyl carbonate 4
LiPF 6 in a mixed solvent of volume%, 29% by volume of ethyl methyl carbonate, 11% by volume of ethylene carbonate, 9% by volume of propylene carbonate, and 47% by volume of dimethyl carbonate at a concentration of 1.0 mol / L.
(To the prepared electrolyte solution) to prepare an electrolyte solution.

【0052】〔リチウムイオン二次電池の組立〕上記で
作製した正極板と負極板とを、多孔質のポリエチレン−
ポリプロピレン複合セパレータを介して捲巻し、これを
円筒型の電池缶(外径18mm、高さ650mm)に収
容した。さらに、上記で得た電解液をセパレータに含浸
させ、リチウムイオン二次電池を得た。
[Assembly of Lithium-ion Secondary Battery] The positive electrode plate and the negative electrode plate prepared above were
It was wound through a polypropylene composite separator and housed in a cylindrical battery can (outer diameter 18 mm, height 650 mm). Further, the electrolyte solution obtained above was impregnated in a separator to obtain a lithium ion secondary battery.

【0053】実施例2 上記小粒径群A1および大粒径群B1を、大粒径群B1
に対する小粒径群A1の重量比が0.45となるように
混合した以外は、実施例1と同様にしてリチウムイオン
二次電池を作製した。Li−Co系複合酸化物全体の平
均粒径は、10μmであった。
Example 2 The small particle size group A1 and the large particle size group B1 were replaced with the large particle size group B1.
A lithium ion secondary battery was manufactured in the same manner as in Example 1, except that the weight ratio of the small particle size group A1 to the mixture was 0.45. The average particle size of the entire Li—Co-based composite oxide was 10 μm.

【0054】実施例3 上記小粒径群A1および大粒径群B1を、大粒径群B1
に対する小粒径群A1の重量比が0.55となるように
混合した以外は、実施例1と同様にしてリチウムイオン
二次電池を作製した。Li−Co系複合酸化物全体の平
均粒径は、7μmであった。
Example 3 The small particle size group A1 and the large particle size group B1 were replaced with the large particle size group B1.
A lithium ion secondary battery was manufactured in the same manner as in Example 1, except that the weight ratio of the small particle size group A1 to the mixture was 0.55. The average particle size of the entire Li—Co-based composite oxide was 7 μm.

【0055】実施例4 小粒径群A2(粒径:5μm)および上記大粒径群B1
を、大粒径具B1に対する小粒径群A2の重量比が0.
30となるように混合した以外は、実施例1と同様にし
てリチウムイオン二次電池を作製した。Li−Co系複
合酸化物全体の平均粒径は、14μmであった。
Example 4 Small particle size group A2 (particle size: 5 μm) and large particle size group B1
And the weight ratio of the small particle size group A2 to the large particle size tool B1 is 0.1.
A lithium ion secondary battery was fabricated in the same manner as in Example 1, except that the mixture was adjusted to 30. The average particle size of the entire Li—Co-based composite oxide was 14 μm.

【0056】実施例5 上記小粒径群A2および大粒径群B1を、大粒径群B1
に対する小粒径群A2の重量比が0.60となるように
混合した以外は、実施例1と同様にしてリチウムイオン
二次電池を作製した。Li−Co系複合酸化物全体の平
均粒径は、8μmであった。
Example 5 The above-mentioned small particle size group A2 and large particle size group B1
A lithium ion secondary battery was manufactured in the same manner as in Example 1, except that the weight ratio of the small particle size group A2 to the mixture was 0.60. The average particle size of the entire Li—Co-based composite oxide was 8 μm.

【0057】実施例6 上記小粒径群A1および大粒径群B2(粒径:21μ
m)を、大粒径群B2に対する小粒径群A1の重量比が
0.40となるように混合した以外は、実施例1と同様
にしてリチウムイオン二次電池を作製した。Li−Co
系複合酸化物全体の平均粒径は、12μmであった。
Example 6 The small particle size group A1 and the large particle size group B2 (particle size: 21 μm)
m) was mixed in the same manner as in Example 1 except that the weight ratio of the small particle group A1 to the large particle group B2 was 0.40. Li-Co
The average particle size of the entire system composite oxide was 12 μm.

【0058】実施例7 上記小粒径群A1および大粒径群B2を、大粒径群B2
に対する小粒径群A1の重量比が0.55となるように
混合した以外は、実施例1と同様にしてリチウムイオン
二次電池を作製した。Li−Co系複合酸化物全体の平
均粒径は、9μmであった。
Example 7 The small particle size group A1 and the large particle size group B2 were replaced with the large particle size group B2.
A lithium ion secondary battery was manufactured in the same manner as in Example 1, except that the weight ratio of the small particle size group A1 to the mixture was 0.55. The average particle size of the entire Li—Co-based composite oxide was 9 μm.

【0059】比較例1 上記小粒径群A1および大粒径群B1を、大粒径群B1
に対する小粒径群A1の重量比が0.20となるように
混合した以外は、実施例1と同様にしてリチウムイオン
二次電池を作製した。Li−Co系複合酸化物全体の平
均粒径は、16μmであった。
Comparative Example 1 The above-described small particle size group A1 and large particle size group B1
A lithium ion secondary battery was manufactured in the same manner as in Example 1, except that the weight ratio of the small particle size group A1 to the mixture was 0.20. The average particle size of the entire Li—Co-based composite oxide was 16 μm.

【0060】比較例2 上記小粒径群A1および大粒径群B1を、大粒径群B1
に対する小粒径群A1の重量比が0.70となるように
混合した以外は、実施例1と同様にしてリチウムイオン
二次電池を作製した。Li−Co系複合酸化物全体の平
均粒径は、5μmであった。
Comparative Example 2 The small particle size group A1 and the large particle size group B1 were replaced with the large particle size group B1.
A lithium ion secondary battery was fabricated in the same manner as in Example 1, except that the weight ratio of the small particle size group A1 to the mixture was 0.70. The average particle size of the entire Li—Co-based composite oxide was 5 μm.

【0061】比較例3 上記小粒径群A1を単独で用いた以外は、実施例1と同
様にしてリチウムイオン二次電池を作製した。
Comparative Example 3 A lithium ion secondary battery was manufactured in the same manner as in Example 1 except that the above-mentioned small particle size group A1 was used alone.

【0062】比較例4 上記小粒径群A2を単独で用いた以外は、実施例1と同
様にしてリチウムイオン二次電池を作製した。
Comparative Example 4 A lithium ion secondary battery was fabricated in the same manner as in Example 1 except that the above-mentioned small particle size group A2 was used alone.

【0063】比較例5 上記大粒径群B1を単独で用いた以外は、実施例1と同
様にしてリチウムイオン二次電池を作製した。
Comparative Example 5 A lithium ion secondary battery was produced in the same manner as in Example 1, except that the above-mentioned large particle size group B1 was used alone.

【0064】比較例6 上記大粒径群B2を単独で用いた以外は、実施例1と同
様にしてリチウムイオン二次電池を作製した。
Comparative Example 6 A lithium ion secondary battery was produced in the same manner as in Example 1, except that the large particle size group B2 was used alone.

【0065】比較例7 他の粒径群C1(粒径:10μm)を単独で用いた以外
は、実施例1と同様にしてリチウムイオン二次電池を作
製した。
Comparative Example 7 A lithium ion secondary battery was manufactured in the same manner as in Example 1 except that the other particle size group C1 (particle size: 10 μm) was used alone.

【0066】比較例8 他の粒径群C2(粒径:24μm)を単独で用いた以外
は、実施例1と同様にしてリチウムイオン二次電池を作
製した。
Comparative Example 8 A lithium ion secondary battery was produced in the same manner as in Example 1, except that another particle size group C2 (particle size: 24 μm) was used alone.

【0067】上記のように作製した実施例1〜7および
比較例1〜8の各リチウムイオン二次電池について、以
下の手順でサイクル特性試験および放電負荷特性試験を
行った。
For the lithium ion secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 8 fabricated as described above, a cycle characteristic test and a discharge load characteristic test were performed in the following procedure.

【0068】〔サイクル特性試験〕上記で得られた各リ
チウムイオン二次電池について、1CA(1600m
A)の定電流で電圧の上限を4.2Vとした2.5時間
の充電と、充電後の1時間の休止と、1CAの定電
流で電圧が3.0Vとなる時点までの放電と、放電後
の1時間の休止との四工程を1サイクルとして、室温
(20℃)下で100回繰り返し、100サイクル目に
おける放電容量(mA・H)を初回の放電容量で割っ
て、容量維持率(%)をそれぞれ算出した。
[Cycle Characteristics Test] For each of the lithium ion secondary batteries obtained above, 1 CA (1600 m
A) charging for 2.5 hours with the upper limit of the voltage at 4.2 V at the constant current of A), pause for 1 hour after charging, and discharging until the voltage reaches 3.0 V at the constant current of 1 CA; The four steps of 1-hour pause after discharge as one cycle were repeated 100 times at room temperature (20 ° C.), and the discharge capacity (mA · H) at the 100th cycle was divided by the initial discharge capacity to obtain a capacity retention ratio. (%) Was calculated.

【0069】〔放電負荷特性試験〕上記で得られた各リ
チウムイオン二次電池について、1CAで充電電圧が
4.2Vとなるまで2.5時間充電し、1時間休止した
後、電圧が3.0Vとなるまで0.2CA(3200m
A)で放電を行った。1時間の休止後、1CAで充電電
圧が4.2Vとなるまで2.5時間充電して1時間休止
した後、電圧が3.0Vとなるまで2CA(3200m
A)で放電を行った。0.2CAでの放電における放電
容量(mA・H)に対する2CAでの放電における放電
容量(mA・H)の割合(%)を算出した。実施例1〜
7については表1に、比較例1〜8については表2に、
上記各試験結果をそれぞれ示す。
[Discharge Load Characteristic Test] Each of the lithium ion secondary batteries obtained above was charged at 1 CA for 2.5 hours until the charging voltage became 4.2 V, paused for 1 hour, and then turned to 3. 0.2 CA (3200 m
Discharge was performed in A). After a one-hour pause, the battery is charged for 2.5 hours at 1 CA until the charging voltage becomes 4.2 V, and then paused for one hour. Then, 2 CA (3200 m
Discharge was performed in A). The ratio (%) of the discharge capacity (mA · H) in the discharge at 2 CA to the discharge capacity (mA · H) in the discharge at 0.2 CA was calculated. Example 1
7 in Table 1 and Comparative Examples 1 to 8 in Table 2.
The results of each of the above tests are shown below.

【0070】[0070]

【表1】 [Table 1]

【0071】[0071]

【表2】 [Table 2]

【0072】[0072]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、優れた放電負荷特性およびサイクル特性を有
し、塗工密度が高く、高容量なリチウムイオン二次電
池、およびそれに用いられるLi−Co系複合酸化物、
正極板を提供することができる。本発明で得られたリチ
ウムイオン二次電池は、携帯電話、ノートパソコンなど
の携帯用機器などに好適に用いることができる。
As is apparent from the above description, according to the present invention, a lithium ion secondary battery having excellent discharge load characteristics and cycle characteristics, a high coating density, and a high capacity, and its use. Li-Co-based composite oxide,
A positive electrode plate can be provided. The lithium ion secondary battery obtained by the present invention can be suitably used for portable devices such as mobile phones and notebook computers.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AC06 AD04 5H029 AJ03 AJ12 AK03 AL07 AM03 AM04 AM05 AM07 DJ16 HJ01 HJ05 5H050 AA08 AA15 BA17 CA08 CB08 EA10 EA23 FA17 HA01 HA02 HA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G048 AA04 AC06 AD04 5H029 AJ03 AJ12 AK03 AL07 AM03 AM04 AM05 AM07 DJ16 HJ01 HJ05 5H050 AA08 AA15 BA17 CA08 CB08 EA10 EA23 FA17 HA01 HA02 HA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粒径が1μm〜6μmの小粒径群と、粒
径が15μm〜22μmの大粒径群とから主としてなる
Li−Co系複合酸化物であって、大粒径群に対する小
粒径群の重量比が0.25〜0.60であることを特徴
とするLi−Co系複合酸化物。
1. A Li—Co-based composite oxide mainly composed of a group of small particles having a particle size of 1 μm to 6 μm and a group of large particles having a particle size of 15 μm to 22 μm. A Li-Co-based composite oxide, wherein the weight ratio of the particle size groups is from 0.25 to 0.60.
【請求項2】 請求項1に記載のLi−Co系複合酸化
物を、正極活物質として有するリチウムイオン二次電池
用正極板。
2. A positive electrode plate for a lithium ion secondary battery, comprising the Li—Co-based composite oxide according to claim 1 as a positive electrode active material.
【請求項3】 請求項2に記載の正極板を備えるリチウ
ムイオン二次電池。
3. A lithium ion secondary battery comprising the positive electrode plate according to claim 2.
JP2000274975A 2000-09-11 2000-09-11 Li-co base composite oxide, and positive plate and lithium ion secondary battery using the same Pending JP2002093417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000274975A JP2002093417A (en) 2000-09-11 2000-09-11 Li-co base composite oxide, and positive plate and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000274975A JP2002093417A (en) 2000-09-11 2000-09-11 Li-co base composite oxide, and positive plate and lithium ion secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2002093417A true JP2002093417A (en) 2002-03-29

Family

ID=18760665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000274975A Pending JP2002093417A (en) 2000-09-11 2000-09-11 Li-co base composite oxide, and positive plate and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2002093417A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030125A1 (en) * 2002-09-26 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode active substance for lithium secondary battery and process for producing the same
JP2006228733A (en) * 2005-02-15 2006-08-31 Samsung Sdi Co Ltd Cathode active material, its manufacturing method and cathode as well as lithium cell using the material
JP2007026935A (en) * 2005-07-19 2007-02-01 Nec Tokin Corp Nonaqueous electrolyte secondary battery
CN100337351C (en) * 2002-11-29 2007-09-12 清美化学股份有限公司 Method for preparing positive electrode active material for lithium secondary cell
JP2007265758A (en) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd Nonaqueous secondary battery and its usage
JP2007302504A (en) * 2006-05-10 2007-11-22 Honjo Chemical Corp Lithium cobaltate particle and method for producing the same
WO2008078784A1 (en) 2006-12-26 2008-07-03 Santoku Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
CN100438152C (en) * 2002-09-28 2008-11-26 瓦尔塔汽车系统有限责任公司 Active mixed nickel hydroxide cathode material for alkaline storage batteries and process for its production
WO2009078125A1 (en) * 2007-12-14 2009-06-25 Panasonic Corporation Coating liquid for formation of positive electrode for lithium rechargeable battery, positive electrode for lithium rechargeable battery, and lithium rechargeable battery
WO2010086910A1 (en) * 2009-02-02 2010-08-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
US8192715B2 (en) 2006-12-28 2012-06-05 Agc Seimi Chemical Co., Ltd. Lithium-containing composite oxide and its production method
CN105489881A (en) * 2016-01-12 2016-04-13 哈尔滨工业大学 Method for improving tap density of ternary nickel-cobalt-manganese cathode material for lithium-ion battery
JP2016066584A (en) * 2014-05-09 2016-04-28 ソニー株式会社 Electrode, method of producing the same, battery, and electronic device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895225B1 (en) * 2002-09-26 2009-05-04 에이지씨 세이미 케미칼 가부시키가이샤 Positive electrode active substance for lithium secondary battery and process for producing the same
CN100382363C (en) * 2002-09-26 2008-04-16 清美化学股份有限公司 Positive active material for lithium secondary battery and its manufacturing method
US7824803B2 (en) 2002-09-26 2010-11-02 Seimi Chemical Co., Ltd. Positive electrode active substance for lithium secondary battery and process for producing the same
WO2004030125A1 (en) * 2002-09-26 2004-04-08 Seimi Chemical Co., Ltd. Positive electrode active substance for lithium secondary battery and process for producing the same
US7981547B2 (en) 2002-09-26 2011-07-19 Seimi Chemical Co., Ltd. Process for positive electrode active substance for lithium secondary battery
CN100438152C (en) * 2002-09-28 2008-11-26 瓦尔塔汽车系统有限责任公司 Active mixed nickel hydroxide cathode material for alkaline storage batteries and process for its production
CN100337351C (en) * 2002-11-29 2007-09-12 清美化学股份有限公司 Method for preparing positive electrode active material for lithium secondary cell
JP2006228733A (en) * 2005-02-15 2006-08-31 Samsung Sdi Co Ltd Cathode active material, its manufacturing method and cathode as well as lithium cell using the material
US8663846B2 (en) 2005-02-15 2014-03-04 Samsung Sdi Co., Ltd. Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
JP2007026935A (en) * 2005-07-19 2007-02-01 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP2007265758A (en) * 2006-03-28 2007-10-11 Hitachi Maxell Ltd Nonaqueous secondary battery and its usage
JP2007302504A (en) * 2006-05-10 2007-11-22 Honjo Chemical Corp Lithium cobaltate particle and method for producing the same
US8920687B2 (en) 2006-12-26 2014-12-30 Santoku Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
WO2008078784A1 (en) 2006-12-26 2008-07-03 Santoku Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
US8192715B2 (en) 2006-12-28 2012-06-05 Agc Seimi Chemical Co., Ltd. Lithium-containing composite oxide and its production method
JP2009146788A (en) * 2007-12-14 2009-07-02 Panasonic Corp Coating liquid for positive electrode formation for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2009078125A1 (en) * 2007-12-14 2009-06-25 Panasonic Corporation Coating liquid for formation of positive electrode for lithium rechargeable battery, positive electrode for lithium rechargeable battery, and lithium rechargeable battery
WO2010086910A1 (en) * 2009-02-02 2010-08-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2016066584A (en) * 2014-05-09 2016-04-28 ソニー株式会社 Electrode, method of producing the same, battery, and electronic device
CN105489881A (en) * 2016-01-12 2016-04-13 哈尔滨工业大学 Method for improving tap density of ternary nickel-cobalt-manganese cathode material for lithium-ion battery

Similar Documents

Publication Publication Date Title
EP2237347B1 (en) Positive electrode material, its manufacturing method and lithium batteries
JP4280012B2 (en) Lithium transition metal composite oxide
JP4268392B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
US7192672B2 (en) Process for producing positive electrode active material for lithium secondary battery
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP4644895B2 (en) Lithium secondary battery
JP4167654B2 (en) Method for producing lithium cobalt composite oxide for positive electrode of lithium secondary battery
WO2001091211A1 (en) Lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them
JP2005053764A (en) Lithium-nickel-manganese-cobalt multiple oxide and lithium-ion secondary battery using the same as positive electrode active material
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
JP2004220897A (en) Positive electrode active substance powder for lithium secondary battery
JP2011086617A (en) Carbon material for lithium-ion secondary battery
JP4734684B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, lithium secondary battery using the same, and aging treatment method for the secondary battery
JP2013091581A (en) Lithium composite oxide, manufacturing method for the same, and lithium ion secondary battery
JP2002093417A (en) Li-co base composite oxide, and positive plate and lithium ion secondary battery using the same
JP4021652B2 (en) Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate
JP6276573B2 (en) Anode material for secondary battery and secondary battery using the same
JP3273438B2 (en) Lithium ion secondary battery
JP2002270180A (en) Positive electrode active material composition, positive electrode plate with usage of the same, and lithium secondary battery
JP4053763B2 (en) Lithium ion secondary battery
JP2002324544A (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP2001068093A (en) Positive electrode active material composition and lithium ion secondary battery using the same
JP3323485B2 (en) Lithium ion secondary battery
JP4209646B2 (en) Method for producing lithium cobalt composite oxide for positive electrode of secondary battery
JP2002063937A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302