JP2013091581A - Lithium composite oxide, manufacturing method for the same, and lithium ion secondary battery - Google Patents

Lithium composite oxide, manufacturing method for the same, and lithium ion secondary battery Download PDF

Info

Publication number
JP2013091581A
JP2013091581A JP2011234118A JP2011234118A JP2013091581A JP 2013091581 A JP2013091581 A JP 2013091581A JP 2011234118 A JP2011234118 A JP 2011234118A JP 2011234118 A JP2011234118 A JP 2011234118A JP 2013091581 A JP2013091581 A JP 2013091581A
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
lithium composite
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011234118A
Other languages
Japanese (ja)
Other versions
JP5741371B2 (en
Inventor
Junpei Terajima
純平 寺島
Yasuyuki Fujiwara
靖幸 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011234118A priority Critical patent/JP5741371B2/en
Publication of JP2013091581A publication Critical patent/JP2013091581A/en
Application granted granted Critical
Publication of JP5741371B2 publication Critical patent/JP5741371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lithium-rich type lithium composite oxide having a layered rock salt type structure capable of improving capacity retention when charging and discharging are repeated at a high potential of 4.5 V or higher, and its manufacturing method.SOLUTION: The lithium composite oxide includes a layered rock salt type structure expressed by the following formula, the lattice distortion obtained by the Halder Wafner method is 0.4% or less, and the crystallite size is 30 nm or less. The formula is LiMO(In the formula, M is at least one kind of a transition metal whose average valence is 4+, and includes at least one kind selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni and Cu, and 1.2≤x/y<2.0).

Description

本発明は、リチウム複合酸化物とその製造方法、及びリチウムイオン二次電池に関するものである。   The present invention relates to a lithium composite oxide, a method for producing the same, and a lithium ion secondary battery.

リチウムイオン二次電池は、リチウムイオンを可逆的に脱挿入可能な正極及び負極と、液状、ゲル状もしくは固体状の電解質とから概略構成され、高出力及び高エネルギー密度などの利点を有している。   A lithium ion secondary battery is generally composed of a positive electrode and a negative electrode capable of reversibly inserting and removing lithium ions, and a liquid, gel or solid electrolyte, and has advantages such as high output and high energy density. Yes.

リチウムイオン二次電池の正極活物質としては、LiCoO、LiNiO、あるいはこれらの置換系など、式LiMO(式中、Mは平均価数が4+である少なくとも1種の遷移金属)で表される層状岩塩型構造のリチウム複合酸化物が広く用いられている。 The positive electrode active material of the lithium ion secondary battery is represented by the formula LiMO 2 (wherein M is at least one transition metal having an average valence of 4+) such as LiCoO 2 , LiNiO 2 , or a substitution system thereof. Layered rock salt type lithium composite oxides are widely used.

層状岩塩型構造のリチウム複合酸化物においては、式Li2(式中、Mは平均価数が4+である少なくとも1種の遷移金属、1.2≦x/y<2.0)で表されるリチウム過剰系の材料がある(例えば特許文献1の実施例1〜4等)。
リチウム過剰系の材料では、リチウム非過剰系の材料に比較して、4.5V以上の高電位充電において高容量及び高エネルギーが得られる。
In a lithium composite oxide having a layered rock salt structure, the formula Li x M y O 2 (wherein M is at least one transition metal having an average valence of 4+, 1.2 ≦ x / y <2.0 ) (See Examples 1 to 4 of Patent Document 1).
With a lithium-excess material, a high capacity and high energy can be obtained at a high potential charge of 4.5 V or more as compared with a lithium non-excess material.

特開2007-220475号公報JP 2007-220475 A 特開2004-253169号公報JP 2004-253169 A

Atsushi Ito etc., Journal of Power Sources 195 (2010) 567-573.Atsushi Ito etc., Journal of Power Sources 195 (2010) 567-573. Marcel Poubaix, 1974, National Association of Corrosion Engineers, "Atlas of electrochemical equilibria in aqueous solutions"Marcel Poubaix, 1974, National Association of Corrosion Engineers, "Atlas of electrochemical equilibria in aqueous solutions"

層状岩塩型構造を有するリチウム過剰系のリチウム複合酸化物では、4.5V以上に充電しなければ充分な容量が得ることが難しい。そして、層状岩塩型構造を有するリチウム過剰系のリチウム複合酸化物では、4.5V以上の充電及びその放電を繰り返した際の結晶格子の膨張収縮が大きく、粒子にクラックが発生して劣化し、容量維持率の低下が生じやすい。
つまり、層状岩塩型構造を有するリチウム過剰系のリチウム複合酸化物では、高容量と4.5V以上の充電及びその放電を繰り返した際の容量維持率は互いに背反する特性であり、これらを両立することは難しい。この課題については、非特許文献1を参照されたい。
With a lithium-rich lithium composite oxide having a layered rock salt structure, it is difficult to obtain a sufficient capacity unless charged to 4.5 V or higher. And, in the lithium-rich lithium composite oxide having a layered rock salt structure, the expansion and contraction of the crystal lattice is large when the charge and discharge of 4.5 V or more are repeated, and the particles are cracked and deteriorated. The capacity maintenance rate is likely to decrease.
That is, in the lithium-rich lithium composite oxide having a layered rock salt type structure, the capacity retention rate when repeating high-capacity and 4.5V or higher charge and discharge is a contradictory characteristic, and both are compatible. It ’s difficult. Refer to Non-Patent Document 1 for this problem.

本発明の関連技術としては、特許文献2がある。
特許文献2には、下記式で表されるリチウム複合酸化物を含み、このリチウム複合酸化物を構成する遷移金属元素(M)に対して、(V+B)/M)=0.001〜0.05(モル比)のバナジウム(V)及び/又はボロン(B)を含有し、一次粒子径が1μm以上、結晶子サイズが450Å以上、かつ格子歪が0.05%以下である正極活物質が開示されている(請求項1)。
LiZ−δ(式中、MはCo又はNiを示し、(X/Y)=0.98〜1.02、(δ/Z)≦0.03)
As a related technique of the present invention, there is Patent Document 2.
Patent Document 2 includes a lithium composite oxide represented by the following formula, and (V + B) / M) = 0.001 to 0.00 with respect to the transition metal element (M) constituting the lithium composite oxide. A positive electrode active material containing 05 (molar ratio) vanadium (V) and / or boron (B), having a primary particle diameter of 1 μm or more, a crystallite size of 450 mm or more, and a lattice strain of 0.05% or less. (Claim 1).
Li X M Y O Z-δ (wherein M represents Co or Ni, (X / Y) = 0.98 to 1.02, (δ / Z) ≦ 0.03)

特許文献2には、上記正極活物質を用いることで、充放電サイクル特性が向上することが記載されている(段落0075)。   Patent Document 2 describes that the charge / discharge cycle characteristics are improved by using the positive electrode active material (paragraph 0075).

特許文献2はLi非過剰系に関するものであり、本発明が対象とするLi過剰系に関するものではない。
特許文献2におけるLi非過剰系では、4.5V以上の高電位の充電とその放電を繰り返した時の粒子クラック、及びそれによる容量維持率の低下の課題は、それ程大きくない
Patent Document 2 relates to a Li-excess system, and does not relate to a Li-excess system targeted by the present invention.
In the Li non-excess system in Patent Document 2, the problem of particle cracking when repeatedly charging and discharging at a high potential of 4.5 V or higher, and the decrease in capacity maintenance ratio due thereto is not so great.

したがって、本発明の対象とする4.5V以上の高電位の充電とその放電を繰り返した際の正極活物質の劣化がそれ程大きくないLi非過剰系の特許文献2の規定を、4.5V以上の高電位の充電とその放電を繰り返した際の正極活物質の劣化が起こりやすいLi過剰系にそのまま適用しても、サイクル充放電特性を良好に向上することはできない。   Therefore, the prescription in Patent Document 2 of Li-non-excess system in which the deterioration of the positive electrode active material is not so great when charging and discharging at a high potential of 4.5 V or more, which is the subject of the present invention, is 4.5 V or more. Even if it is applied as it is to a Li-excess system in which the positive electrode active material is likely to deteriorate when it is repeatedly charged and discharged at a high potential, cycle charge / discharge characteristics cannot be improved satisfactorily.

本発明は上記事情に鑑みてなされたものであり、4.5V以上の高電位で充放電を繰り返した際の容量維持率を向上することが可能な層状岩塩型構造を有するリチウム過剰系のリチウム複合酸化物とその製造方法を提供することを目的とするものである。
本明細書において、高電位は「4.5V以上」と定義する。
The present invention has been made in view of the above circumstances, and lithium-rich lithium having a layered rock-salt structure capable of improving the capacity retention rate when charging and discharging are repeated at a high potential of 4.5 V or higher. An object of the present invention is to provide a composite oxide and a method for producing the same.
In this specification, high potential is defined as “4.5 V or more”.

本発明のリチウム複合酸化物は、
下記式で表される層状岩塩型構造を有するリチウム複合酸化物であって、
Halder Wafner法により求められた格子歪が0.4%以下であり、結晶子サイズが30nm以下のリチウム複合酸化物である。
一般式:Li2
(式中、Mは平均価数が4+である少なくとも1種の遷移金属であり、Ti、V、Cr、Mn、Fe、Co、Ni、及びCuからなる群より選ばれた少なくとも1種を含む。
1.2≦x/y<2.0)
The lithium composite oxide of the present invention is
A lithium composite oxide having a layered rock salt structure represented by the following formula,
It is a lithium composite oxide having a lattice strain of 0.4% or less and a crystallite size of 30 nm or less determined by the Halder Wafner method.
General formula: Li x M y O 2
(In the formula, M is at least one transition metal having an average valence of 4+, and includes at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. .
1.2 ≦ x / y <2.0)

本明細書において、「格子歪」は、特に明記しない限り、「Halder Wafner法により求められた格子歪」であり、粉末XRD測定において、リガク社製の解析ソフトPDXLを用いて測定するものとする。
本明細書において、「結晶子サイズ」は、粉末XRD測定において、リガク社製の解析ソフトPDXLを用いて測定するものとする。
In this specification, “lattice strain” is “lattice strain obtained by the Halder Wafner method” unless otherwise specified, and is measured using analysis software PDXL manufactured by Rigaku Corporation in powder XRD measurement. .
In this specification, “crystallite size” is measured using analysis software PDXL manufactured by Rigaku Corporation in powder XRD measurement.

本発明のリチウム複合酸化物は、リチウムイオン二次電池に用いられる正極活物質用として好適である。   The lithium composite oxide of the present invention is suitable for a positive electrode active material used for a lithium ion secondary battery.

本発明のリチウムイオン二次電池は、上記の本発明のリチウム複合酸化物を正極活物質として用いたものである。   The lithium ion secondary battery of the present invention uses the above-described lithium composite oxide of the present invention as a positive electrode active material.

本発明によれば、4.5V以上の高電位で充放電を繰り返した際の容量維持率を向上することが可能な層状岩塩型構造を有するリチウム過剰系のリチウム複合酸化物とその製造方法を提供することができる。   According to the present invention, there is provided a lithium-rich lithium composite oxide having a layered rock salt structure capable of improving the capacity retention rate when charging and discharging are repeated at a high potential of 4.5 V or higher and a method for producing the same. Can be provided.

実施例1〜2、及び比較例1〜2で得られた正極活物質のXAFSパターンである。It is a XAFS pattern of the positive electrode active material obtained in Examples 1-2 and Comparative Examples 1-2. サイクル充放電後の実施例1の正極活物質のTEM像である。It is a TEM image of the positive electrode active material of Example 1 after cycle charging / discharging. サイクル充放電後の比較例2の正極活物質のTEM像である。It is a TEM image of the positive electrode active material of the comparative example 2 after cycle charging / discharging.

以下、本発明について詳述する。   Hereinafter, the present invention will be described in detail.

[リチウム複合酸化物]
本発明のリチウム複合酸化物は、
下記式で表される層状岩塩型構造を有するリチウム複合酸化物であって、
Halder Wafner法により求められた格子歪が0.4%以下であり、結晶子サイズが30nm以下のリチウム複合酸化物である。
一般式:Li2
(式中、Mは平均価数が4+である少なくとも1種の遷移金属であり、Ti、V、Cr、Mn、Fe、Co、Ni、及びCuからなる群より選ばれた少なくとも1種を含む。
1.2≦x/y<2.0)
[Lithium composite oxide]
The lithium composite oxide of the present invention is
A lithium composite oxide having a layered rock salt structure represented by the following formula,
It is a lithium composite oxide having a lattice strain of 0.4% or less and a crystallite size of 30 nm or less determined by the Halder Wafner method.
General formula: Li x M y O 2
(In the formula, M is at least one transition metal having an average valence of 4+, and includes at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. .
1.2 ≦ x / y <2.0)

本発明のリチウム複合酸化物は、1.2≦x/y<2.0を充足するリチウム過剰系である。かかるリチウム過剰系の材料では、リチウム非過剰系の材料に比較して、4.5V以上の高電位充電において高容量及び高エネルギーが得られる。   The lithium composite oxide of the present invention is a lithium-excess system that satisfies 1.2 ≦ x / y <2.0. With such a lithium-excess material, a high capacity and high energy can be obtained at a high potential charge of 4.5 V or higher, as compared with a lithium non-excess material.

4.5V以上の高電位充電においてより高い容量及びより高いエネルギーが得られることから、少なくとも1種の遷移金属MがMn、Co、及びNiから選ばれた少なくとも1種を含むことが好ましく、Mn、Co、及びNiを含む3元系が最も好ましい。   It is preferable that at least one transition metal M includes at least one selected from Mn, Co, and Ni because higher capacity and higher energy can be obtained in high potential charging of 4.5 V or more. Most preferred is a ternary system containing Ni, Co, and Ni.

本発明のリチウム複合酸化物は、リチウムイオン二次電池に用いられる正極活物質用として好適である。   The lithium composite oxide of the present invention is suitable for a positive electrode active material used for a lithium ion secondary battery.

「発明が解決しようとする課題」の項で説明したように、従来一般的には、層状岩塩型構造を有するリチウム過剰系のリチウム複合酸化物では、4.5V以上に充電しなければ充分な容量が得ることが難しい一方で、4.5V以上の充電及びその放電を繰り返した際の結晶格子の膨張収縮が大きく、粒子にクラックが発生して劣化し、容量維持率の低下が生じやすい傾向がある。   As explained in the section of “Problems to be Solved by the Invention”, conventionally, a lithium-rich lithium composite oxide having a layered rock salt structure is sufficient if it is not charged to 4.5 V or more. While it is difficult to obtain a capacity, the expansion and contraction of the crystal lattice is large when charging and discharging at 4.5 V or more are repeated, the particles tend to crack and deteriorate, and the capacity retention rate tends to decrease. There is.

本発明のリチウム複合酸化物は、格子歪が0.4%以下であり、結晶子サイズが30nm以下である。格子歪は0.3%以下であることが特に好ましい。
本発明者は、上記規定を充足するリチウム複合酸化物は、4.5V以上の充電とその放電を繰り返しても、結晶格子の膨張収縮による応力が緩和され、クラックの発生が抑制され、容量維持率を向上できることを見出している(後記[実施例]の項の表1を参照)。
The lithium composite oxide of the present invention has a lattice strain of 0.4% or less and a crystallite size of 30 nm or less. The lattice strain is particularly preferably 0.3% or less.
The present inventor found that the lithium composite oxide satisfying the above regulations relaxed the stress due to the expansion and contraction of the crystal lattice, and the generation of cracks was suppressed even when charging and discharging at 4.5 V or higher were repeated. It has been found that the rate can be improved (see Table 1 in the [Examples] section below).

本発明のリチウム複合酸化物は、従来のリチウム過剰系のリチウム複合酸化物では、4.5V以上の充電及びその放電を繰り返した際の結晶格子の膨張収縮が大きく、粒子にクラックが発生して劣化し、容量維持率の低下が生じやすい4.5V以上の充電条件で使用される場合に特に好適である。   In the lithium composite oxide of the present invention, the conventional lithium-rich lithium composite oxide has large expansion and contraction of the crystal lattice when charging and discharging of 4.5 V or more are repeated, and cracks are generated in the particles. This is particularly suitable when the battery is used under a charging condition of 4.5 V or more, which tends to deteriorate and cause a decrease in capacity retention rate.

本発明者は、本発明のリチウム複合酸化物を正極活物質として用いることで、25℃、充電電圧4.6V、放電電圧2.5V、及び、電流密度300mA/gの条件で100サイクルの充放電を行った後の放電容量と、同条件で10サイクルの充放電を行った後の放電容量との比から求められる容量維持率が、70.0%以上であるリチウムイオン二次電池を提供できることを見出している(後記[実施例]の項の表1を参照)。   By using the lithium composite oxide of the present invention as a positive electrode active material, the present inventor can charge 100 cycles under the conditions of 25 ° C., a charging voltage of 4.6 V, a discharging voltage of 2.5 V, and a current density of 300 mA / g. Provided is a lithium ion secondary battery having a capacity retention ratio of 70.0% or more obtained from a ratio between a discharge capacity after discharge and a discharge capacity after 10 cycles of charge and discharge under the same conditions (See Table 1 in the [Examples] section below).

格子歪が0.4%以下、好ましくは0.3%以下であり、結晶子サイズが30nm以下である本発明のリチウム複合酸化物は例えば、リチウム複合酸化物を合成後、表面酸化処理を行うことで、製造できる。   The lithium composite oxide of the present invention having a lattice strain of 0.4% or less, preferably 0.3% or less and a crystallite size of 30 nm or less is subjected to surface oxidation treatment after synthesizing the lithium composite oxide, for example. It can be manufactured.

表面酸化処理は、リチウムイオン二次電池を組み立てた後でもよいし、リチウムイオン二次電池を組み立てる前でもよい。   The surface oxidation treatment may be performed after the lithium ion secondary battery is assembled or before the lithium ion secondary battery is assembled.

表面酸化処理方法は特に制限されない。
表面酸化処理方法としては例えば、リチウムイオン二次電池の組立て後に、4.5V以上の電位まで充電し、この電位を5分間以上保持する方法が好ましい。この方法で酸化処理を実施する場合、4.5V以上の電位まで充電し、この電位を5分間以上保持した後、放電を実施してもよいし、実施しなくてもよい。
The surface oxidation treatment method is not particularly limited.
As the surface oxidation treatment method, for example, a method of charging to a potential of 4.5 V or more after assembling the lithium ion secondary battery and holding this potential for 5 minutes or more is preferable. When the oxidation treatment is performed by this method, the battery may be charged to a potential of 4.5 V or higher and held at this potential for 5 minutes or more, and then discharged or not.

本発明者は、後記[実施例]の項において、この方法により表面酸化処理を良好に行うことができることをXAFS分析により確認している(後記[実施例]の項の図1及び表1を参照)。また、この方法により表面酸化処理を実施したリチウム複合酸化物は格子歪が0.4%以下、好ましくは0.3%以下であり、結晶子サイズが30nm以下であることをXRD分析により確認している(後記[実施例]の項の表1を参照)。   The present inventor has confirmed by XAFS analysis that the surface oxidation treatment can be satisfactorily performed by this method in the section [Example] described later (see FIG. 1 and Table 1 in the section [Example] below). reference). Further, it was confirmed by XRD analysis that the lithium composite oxide subjected to the surface oxidation treatment by this method has a lattice strain of 0.4% or less, preferably 0.3% or less, and a crystallite size of 30 nm or less. (See Table 1 in the [Examples] section below).

リチウムイオン二次電池を組み立てる前にリチウム複合酸化物を表面酸化処理する方法としては、NOBF、I、O、あるいはHClO等のガスを用いて化学的に表面酸化処理する方法などが挙げられる。 As a method of subjecting the lithium composite oxide to surface oxidation treatment before assembling the lithium ion secondary battery, a method of chemically subjecting the lithium composite oxide to surface oxidation treatment using a gas such as NO 2 BF 4 , I 2 , O 3 , HClO, etc. Is mentioned.

リチウム複合酸化物においては、複数種類の表面酸化処理方法を組み合わせてもよい。   In the lithium composite oxide, a plurality of types of surface oxidation treatment methods may be combined.

[リチウム複合酸化物の製造方法]
以下、上記のリチウム複合酸化物の製造方法の一例について説明する。
[Method for producing lithium composite oxide]
Hereinafter, an example of the method for producing the lithium composite oxide will be described.

<工程(A)>
はじめに、最終的に製造するリチウム複合酸化物のすべての構成金属元素の金属塩をそれぞれ用意する。
例えば、3元系のリチウム複合酸化物であれば、Li源、Mn源、Co源、及びNi源をそれぞれ用意する。Li源、Mn源、Co源、及びNi源としては例えば、酢酸塩等が好ましい。
<Process (A)>
First, metal salts of all constituent metal elements of the lithium composite oxide to be finally produced are prepared.
For example, in the case of a ternary lithium composite oxide, a Li source, a Mn source, a Co source, and a Ni source are prepared. As the Li source, Mn source, Co source, and Ni source, for example, acetate is preferable.

最終的に製造するリチウム複合酸化物のすべての構成金属元素の金属塩をそれぞれ所望の金属組成比で配合し、水等を用いて溶解させる。溶液は酸を用いて、pHを酸性にすることが好ましい。
本発明者は、金属塩溶液のpHを酸性とすることで、金属塩溶液中に金属の酸化物及び水酸化物が生成されることを抑制し、金属イオンを液中に安定的に存在させることができることができること、これにより各金属が良好に分散した金属塩溶液が得られることを見出している。
金属塩溶液のpHは酸性であればよく、具体的には6未満が好ましく、3以下が特に好ましい。
Metal salts of all the constituent metal elements of the lithium composite oxide to be finally produced are blended at a desired metal composition ratio, and dissolved using water or the like. It is preferable that the solution is acidified with an acid.
The present inventor suppresses the generation of metal oxides and hydroxides in the metal salt solution by making the pH of the metal salt solution acidic, and allows the metal ions to exist stably in the liquid. It has been found that a metal salt solution in which each metal is well dispersed can be obtained.
The pH of the metal salt solution may be acidic, specifically less than 6 and particularly preferably 3 or less.

[背景技術]の項で挙げた非特許文献2のp.290には、Mnを含む溶液において、酸化マンガン及び水酸化マンガンが生成するpHと電位が記載されている。水溶液中では、図中のラインaからラインbの範囲内にある物質が安定に存在する。原料中のMnの価数は2+である。金属塩溶液中にこのMnイオンがイオンのまま安定に存在するには、ライン12、16、18、20よりも左側の条件である必要がある。pH8以下でライン12より左側の条件にすることができる。ライン16、18、20は、空気中の酸素とMnが反応可能な領域を示している。高濃度の酸素ガス雰囲気の条件であれば、ライン20を超える場合があり得るが、通常の空気雰囲気ではライン20を超えることはない。ライン16、18を超えないようにするには、溶液のpHは6未満が好ましく、3以下が特に好ましいことが示されている。   In p. 290 of Non-Patent Document 2 mentioned in [Background Art], the pH and potential at which manganese oxide and manganese hydroxide are produced in a solution containing Mn are described. In the aqueous solution, a substance within the range of line a to line b in the figure is stably present. The valence of Mn in the raw material is 2+. In order for the Mn ions to stably exist as ions in the metal salt solution, the conditions on the left side of the lines 12, 16, 18, and 20 need to be satisfied. The pH can be 8 or less, and the conditions on the left side of the line 12 can be set. Lines 16, 18, and 20 indicate regions where oxygen and Mn in the air can react. The line 20 may be exceeded under conditions of a high concentration oxygen gas atmosphere, but the line 20 is not exceeded in a normal air atmosphere. In order not to exceed the lines 16, 18, the pH of the solution is preferably less than 6, and 3 or less is particularly preferable.

同文献のp.325、p.333には、CoとNiについても同様の図が示されている。Mnと同様、金属塩溶液中にCoイオン及びNiイオンがイオンのまま安定に存在するには、pHは6未満が好ましく、3以下が特に好ましいことが示されている。   The same figure is shown also about Co and Ni in p.325 and p.333 of the literature. As with Mn, it has been shown that the pH is preferably less than 6 and particularly preferably 3 or less in order for Co ions and Ni ions to be stably present as ions in the metal salt solution.

pH調整に用いる酸は特に制限されず、硝酸、塩酸、硫酸、過塩素酸、及びこれらの組合わせ等が挙げられる。   The acid used for pH adjustment is not particularly limited, and examples thereof include nitric acid, hydrochloric acid, sulfuric acid, perchloric acid, and combinations thereof.

<工程(B)>
次に、上記工程で得られた酸性の金属塩溶液を次の工程(C)の焼成温度より低い温度で保持してゲル化させる。
ゲル化温度は特に制限なく、例えば45〜100℃が好ましい。
例えば、上記工程で得られた酸性の金属塩溶液を45〜100℃で約一晩保持して、ゲル化させることができる。
このゲル化工程を経ることで、金属イオンの均一な分散状態を維持しつつ、次の焼成工程を進めることができる。
<Process (B)>
Next, the acidic metal salt solution obtained in the above step is gelled by being held at a temperature lower than the firing temperature in the next step (C).
There is no restriction | limiting in particular in gelling temperature, For example, 45-100 degreeC is preferable.
For example, the acidic metal salt solution obtained in the above step can be kept at 45 to 100 ° C. for about one night for gelation.
By passing through this gelation step, the next firing step can be carried out while maintaining a uniform dispersion state of metal ions.

<工程(C)、工程(D)>
次に、上記工程後に得られたゲル化物を焼成する(工程(C))。
工程(A)で調製する金属塩溶液のpHを酸性とし、これをゲル化してから焼成することで、金属が均一に分散された焼成物を生成することができる。
<Process (C), process (D)>
Next, the gelled product obtained after the above step is baked (step (C)).
By making the pH of the metal salt solution prepared in the step (A) acidic and gelling it, a fired product in which the metal is uniformly dispersed can be generated.

焼成雰囲気は特に制限されず、大気雰囲気でもよいし、Ar雰囲気等の不活性雰囲気でもよい。   The firing atmosphere is not particularly limited, and may be an air atmosphere or an inert atmosphere such as an Ar atmosphere.

焼成工程(C)は1段階で実施してもよいし、複数段階で実施してもよい。
1段階の焼成工程後、複数段階の最終焼成工程後、あるいは複数段階の焼成工程の間に、粉砕工程(D)を実施することができる。
The firing step (C) may be performed in one stage or in a plurality of stages.
The pulverization step (D) can be performed after the one-step baking step, after the plurality of final baking steps, or between the plurality of steps of baking step.

例えば、焼成工程(C)は仮焼成工程(C1)と本焼成工程(C2)の2段階で行い、これらの間に粉砕工程(D)を実施することが好ましい。
仮焼成温度及び本焼成温度は特に制限されない。
良好な結晶化を進め、かつ所望でない結晶の生成を抑制するには、例えば、仮焼成温度は450〜750℃、特に550〜650℃が好ましく、本焼成温度は750〜1000℃、特に800〜950℃が好ましい。
For example, the firing step (C) is preferably performed in two stages, a temporary firing step (C1) and a main firing step (C2), and the pulverization step (D) is preferably performed between them.
The temporary firing temperature and the main firing temperature are not particularly limited.
In order to promote good crystallization and suppress the formation of undesired crystals, for example, the pre-baking temperature is preferably 450 to 750 ° C., particularly 550 to 650 ° C., and the main baking temperature is 750 to 1000 ° C., particularly 800 to 950 ° C is preferred.

焼成物(仮焼成物の場合もある)の粉砕方法は特に制限されず、ボールミルを用いた粉砕等が好ましい。
ボールミルによる粉砕時間は特に制限なく、1〜10時間が好ましく、1〜3時間が特に好ましい。
The method for pulverizing the fired product (which may be a pre-fired product) is not particularly limited, and pulverization using a ball mill or the like is preferable.
The grinding time by the ball mill is not particularly limited, and is preferably 1 to 10 hours, particularly preferably 1 to 3 hours.

<工程(E)>
以上のようにして、リチウム複合酸化物が合成される。
合成したリチウム複合酸化物は、表面酸化処理を行うことが好ましい。表面酸化処理によって、格子歪を小さくし、結晶子サイズを小さくすることができる。
<Process (E)>
As described above, a lithium composite oxide is synthesized.
The synthesized lithium composite oxide is preferably subjected to surface oxidation treatment. By the surface oxidation treatment, the lattice strain can be reduced and the crystallite size can be reduced.

表面酸化処理は、実際にリチウムイオン二次電池を組み立てた後でもよいし、リチウムイオン二次電池を組み立てる前でもよい。
表面酸化処理方法については前述したので、ここでは説明を省略する。
The surface oxidation treatment may be performed after the lithium ion secondary battery is actually assembled or before the lithium ion secondary battery is assembled.
Since the surface oxidation treatment method has been described above, the description thereof is omitted here.

以上説明したように、本発明によれば、4.5V以上の高電位で充放電を繰り返した際の容量維持率を向上することが可能な層状岩塩型構造を有するリチウム過剰系のリチウム複合酸化物とその製造方法を提供することができる。   As described above, according to the present invention, a lithium-rich lithium composite oxide having a layered rock-salt structure capable of improving the capacity retention rate when charging and discharging are repeated at a high potential of 4.5 V or higher. And a manufacturing method thereof.

充放電の繰り返しにおける充電電位は例えば、4.5〜5.0Vが好ましい。本発明では、かかる高電位の充電とその放電を繰り返しても、良好な電池性能が得られる。   For example, 4.5 to 5.0 V is preferable as the charging potential in repeated charging and discharging. In the present invention, even when such high potential charging and discharging are repeated, good battery performance can be obtained.

[リチウムイオン二次電池]
本発明のリチウムイオン二次電池は、上記の本発明のリチウム複合酸化物を正極活物質として用いたものである。
正極と負極とセパレータと非水電解質と外装体を用い、公知方法により、リチウムイオン二次電池を製造することができる。
[Lithium ion secondary battery]
The lithium ion secondary battery of the present invention uses the above-described lithium composite oxide of the present invention as a positive electrode active material.
A lithium ion secondary battery can be produced by a known method using a positive electrode, a negative electrode, a separator, a nonaqueous electrolyte, and an outer package.

<正極>
正極は、公知の方法により、アルミニウム箔などの正極集電体に正極活物質を塗布して、製造することができる。
本発明では、上記の本発明のリチウム複合酸化物を正極活物質として用いる。
<Positive electrode>
The positive electrode can be manufactured by applying a positive electrode active material to a positive electrode current collector such as an aluminum foil by a known method.
In the present invention, the lithium composite oxide of the present invention is used as a positive electrode active material.

正極活物質として、上記の本発明のリチウム複合酸化物以外の公知の正極活物質を併用しても構わない。ただし、本発明のリチウム複合酸化物の使用量が多い程、より高い効果が得られる。   As the positive electrode active material, a known positive electrode active material other than the lithium composite oxide of the present invention may be used in combination. However, the higher the amount of the lithium composite oxide of the present invention, the higher the effect.

例えば、N−メチル−2−ピロリドン等の分散剤を用い、正極活物質と、炭素粉末等の導電剤と、ポリフッ化ビニリデン(PVDF)等の結着剤とを混合して、スラリーを得、このスラリーをアルミニウム箔等の集電体上に塗布し、乾燥し、プレス加工して、正極を得ることができる。
正極の目付は特に制限なく、1.5〜15mg/cmが好ましい。正極の目付が過小では均一な塗布が難しく、過大では集電体から剥離する恐れがある。
For example, using a dispersant such as N-methyl-2-pyrrolidone, mixing a positive electrode active material, a conductive agent such as carbon powder, and a binder such as polyvinylidene fluoride (PVDF) to obtain a slurry, This slurry can be applied onto a current collector such as an aluminum foil, dried, and pressed to obtain a positive electrode.
The basis weight of the positive electrode is not particularly limited and is preferably 1.5 to 15 mg / cm 2 . If the basis weight of the positive electrode is too small, uniform application is difficult, and if it is too large, there is a risk of peeling from the current collector.

<負極>
負極活物質としては特に制限なく、Li/Li+基準で2.0V以下にリチウム吸蔵能力を持つものが好ましく用いられる。負極活物質としては、黒鉛等の炭素、金属リチウム、リチウム合金、リチウムイオンのド−プ・脱ド−プが可能な遷移金属酸化物/遷移金属窒化物/遷移金属硫化物、及び、これらの組合わせ等が挙げられる。
<Negative electrode>
The negative electrode active material is not particularly limited, and a material having a lithium storage capacity of 2.0 V or less on the basis of Li / Li + is preferably used. As the negative electrode active material, carbon such as graphite, metallic lithium, lithium alloy, transition metal oxide / transition metal nitride / transition metal sulfide capable of doping / dedoping lithium ions, and these A combination etc. are mentioned.

負極は例えば、公知の方法により、銅箔などの負極集電体に負極活物質を塗布して、製造することができる。
例えば、水等の分散剤を用い、負極活物質と、変性スチレン−ブタジエン共重合体ラテックス等の結着剤と、必要に応じてカルボキシメチルセルロースNa塩(CMC)等の増粘剤とを混合して、スラリーを得、このスラリーを銅箔等の集電体上に塗布し、乾燥し、プレス加工して、負極を得ることができる。
負極の目付は特に制限なく、1.5〜15mg/cmが好ましい。負極の目付が過小では均一な塗布が難しく、過大では集電体から剥離する恐れがある。
The negative electrode can be produced, for example, by applying a negative electrode active material to a negative electrode current collector such as a copper foil by a known method.
For example, using a dispersant such as water, a negative electrode active material, a binder such as a modified styrene-butadiene copolymer latex, and a thickener such as carboxymethyl cellulose Na salt (CMC) are mixed as necessary. Thus, a slurry can be obtained, and this slurry can be applied onto a current collector such as a copper foil, dried, and pressed to obtain a negative electrode.
The basis weight of the negative electrode is not particularly limited and is preferably 1.5 to 15 mg / cm 2 . If the basis weight of the negative electrode is too small, uniform application is difficult, and if it is too large, there is a risk of peeling from the current collector.

負極活物質として金属リチウム等を用いる場合、金属リチウム等をそのまま負極として用いることができる。   When metallic lithium or the like is used as the negative electrode active material, metallic lithium or the like can be used as it is as the negative electrode.

<非水電解質>
非水電解質としては公知のものが使用でき、液状、ゲル状もしくは固体状の非水電解質が使用できる。
例えば、プロピレンカーボネ−トあるいはエチレンカーボネ−ト等の高誘電率カーボネート溶媒と、ジエチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート等の低粘度カーボネート溶媒との混合溶媒に、リチウム含有電解質を溶解した非水電界液が好ましく用いられる。
混合溶媒としては例えば、エチレンカーボネート(EC)/ジメチルカーボネート(DMC)/エチルメチルカーボネート(EMC)の混合溶媒が好ましく用いられる。
リチウム含有電解質としては例えば、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1〜8の整数)、LiPF{C(2k+1)(6−n)(n=1〜5の整数、k=1〜8の整数)等のリチウム塩、及びこれらの組合わせが挙げられる。
<Nonaqueous electrolyte>
As the non-aqueous electrolyte, known ones can be used, and liquid, gel-like or solid non-aqueous electrolytes can be used.
For example, a lithium-containing electrolyte is dissolved in a mixed solvent of a high dielectric constant carbonate solvent such as propylene carbonate or ethylene carbonate and a low viscosity carbonate solvent such as diethyl carbonate, methyl ethyl carbonate, or dimethyl carbonate. A water electrolysis solution is preferably used.
As the mixed solvent, for example, a mixed solvent of ethylene carbonate (EC) / dimethyl carbonate (DMC) / ethyl methyl carbonate (EMC) is preferably used.
Examples of the lithium-containing electrolyte include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiPF n {C k F (2k + 1) )} (6-n) ( n = 1~5 integer, k = 1 to 8 integer) lithium salts such as, and combinations thereof.

<セパレータ>
セパレータは、正極と負極とを電気的に絶縁し、かつリチウムイオンが透過可能な膜であればよく、多孔質高分子フィルムが好ましく使用される。
セパレータとしては例えば、PP(ポリプロピレン)製多孔質フィルム、PE(ポリエチレン)製多孔質フィルム、あるいは、PP(ポリプロピレン)−PE(ポリエチレン)の積層型多孔質フィルム等のポリオレフィン製多孔質フィルムが好ましく用いられる。
<Separator>
The separator may be a film that electrically insulates the positive electrode and the negative electrode and is permeable to lithium ions, and a porous polymer film is preferably used.
As the separator, for example, a porous film made of polyolefin such as a porous film made of PP (polypropylene), a porous film made of PE (polyethylene), or a laminated porous film of PP (polypropylene) -PE (polyethylene) is preferably used. It is done.

<外装体>
外装体としては公知のものが使用できる。
二次電池の型としては、円筒型、コイン型、角型、あるいはフィルム型等があり、所望の型に合わせて外装体を選定することができる。
<Exterior body>
A well-known thing can be used as an exterior body.
As a type of the secondary battery, there are a cylindrical type, a coin type, a square type, a film type, and the like, and an exterior body can be selected according to a desired type.

本発明のリチウムイオン二次電池は、正極活物質として上記の本発明のリチウム複合酸化物を用いたものである。
本発明によれば、4.5V以上の高電位で充放電を繰り返した際の容量維持率を向上することが可能なリチウムイオン二次電池を提供することができる。
The lithium ion secondary battery of the present invention uses the above-described lithium composite oxide of the present invention as a positive electrode active material.
ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery which can improve the capacity | capacitance maintenance factor at the time of repeating charging / discharging with the high electric potential of 4.5 V or more can be provided.

本発明によれば、25℃、充電電圧4.6V、放電電圧2.5V、及び、電流密度300mA/gの条件で100サイクルの充放電を行った後の放電容量と、同条件で10サイクルの充放電を行った後の放電容量との比から求められる容量維持率が、70.0%以上であるリチウムイオン二次電池を提供することができる([実施例]の項の表1を参照)。   According to the present invention, the discharge capacity after 100 cycles of charge / discharge under the conditions of 25 ° C., charge voltage 4.6 V, discharge voltage 2.5 V, and current density 300 mA / g, and 10 cycles under the same conditions. A lithium ion secondary battery having a capacity retention rate of 70.0% or more obtained from the ratio to the discharge capacity after charging / discharging can be provided (see Table 1 in the [Examples] section). reference).

本発明に係る実施例及び比較例について説明する。   Examples and comparative examples according to the present invention will be described.

(実施例1)
<正極活物質の合成>
Li源として酢酸リチウム・2水和物、Mn源として酢酸マンガン・4水和物、Co源として酢酸コバルト・4水和物、Ni源として酢酸ニッケル・4水和物(いずれもナカライテスク(株)社製)を用いた。
これらの原料を、Li/Mn/Co/Ni=60/27/6.5/6.5(モル比)となるようにそれぞれ秤量して純水で溶解した。
溶液は、硝酸を用いて、pHを3に調整した。
得られた溶液を撹拌しながら、80℃で一晩保持し、ゲルを得た。
Example 1
<Synthesis of positive electrode active material>
Lithium acetate dihydrate as the Li source, manganese acetate tetrahydrate as the Mn source, cobalt acetate tetrahydrate as the Co source, nickel acetate tetrahydrate as the Ni source (both Nacalai Tesque ).
These raw materials were weighed so as to be Li / Mn / Co / Ni = 60/27 / 6.5 / 6.5 (molar ratio) and dissolved in pure water.
The solution was adjusted to pH 3 with nitric acid.
The resulting solution was kept overnight at 80 ° C. with stirring to obtain a gel.

<焼成>
上記で得られたゲルを大気雰囲気下で2段階焼成した。
まず600℃で5時間仮焼成した。その後、常温まで冷却後にボールミルを用いて粒子状に粉砕し、その後、再度900℃で本焼成した。
以上のようにして、粒子状のリチウム複合酸化物を得た。
<Baking>
The gel obtained above was baked in two steps in an air atmosphere.
First, it was calcined at 600 ° C. for 5 hours. Then, after cooling to room temperature, it was pulverized into particles using a ball mill and then fired again at 900 ° C.
As described above, a particulate lithium composite oxide was obtained.

<正極の製造>
分散剤としてN−メチル−2−ピロリドン((株)和光純薬工業社製)を用い、上記のリチウム複合酸化物からなる正極活物質と、導電剤であるアセチレンブラック(電気化学工業(株)社製HS−100)と、結着剤であるPVDF((株)クレハ社製KFポリマー♯1120)とを、85/10/5(質量比)で混合して、スラリーを得た。
上記スラリーを集電体であるアルミニウム箔上にドクターブレード法で塗布し、80℃で30分間乾燥し、プレス機械を用いてプレス加工して、正極を得た。正極は、目付5.5mg/cm、厚み18μmとした。
<Manufacture of positive electrode>
Using N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) as a dispersant, a positive electrode active material composed of the above lithium composite oxide, and acetylene black (electrochemical industry) as a conductive agent HS-100) and PVDF (Kureha KF Polymer # 1120) as a binder were mixed at 85/10/5 (mass ratio) to obtain a slurry.
The slurry was applied onto an aluminum foil as a current collector by a doctor blade method, dried at 80 ° C. for 30 minutes, and pressed using a press machine to obtain a positive electrode. The positive electrode had a basis weight of 5.5 mg / cm 2 and a thickness of 18 μm.

<負極>
負極活物質として、金属リチウムを用いた。
これをそのまま負極として用いた。
<Negative electrode>
Metal lithium was used as the negative electrode active material.
This was used as a negative electrode as it was.

<セパレータ>
PP(ポリプロピレン)製多孔質フィルムからなる市販のセパレータを用意した。
<Separator>
A commercially available separator made of a PP (polypropylene) porous film was prepared.

<非水電解質>
エチレンカーボネート(EC)/ジメチルカーボネート(DMC)/エチルメチルカーボネート=3/3/4(体積比)の混合溶液を溶媒とし、電解質としてリチウム塩であるLiPFを1mol/Lの濃度で溶解して、非水電界液を調製した。
<Nonaqueous electrolyte>
Using a mixed solution of ethylene carbonate (EC) / dimethyl carbonate (DMC) / ethyl methyl carbonate = 3/3/4 (volume ratio) as a solvent, LiPF 6 as a lithium salt as an electrolyte was dissolved at a concentration of 1 mol / L. A non-aqueous electrolysis solution was prepared.

<外装体>
外装体として、SUS製2032型コインセルを用意した。
<Exterior body>
As an exterior body, a SUS 2032 type coin cell was prepared.

<リチウムイオン二次電池の組立>
上記の正極と負極とセパレータと非水電解液と外装体を用い、公知方法により、リチウムイオン二次電池を組み立てた。
<Assembly of lithium ion secondary battery>
A lithium ion secondary battery was assembled by a known method using the positive electrode, the negative electrode, the separator, the non-aqueous electrolyte, and the outer package.

<表面酸化処理>
リチウムイオン二次電池の組立て後に、これを4.8V(リチウム金属基準)まで充電後、これを20時間保持し、2.5Vまで放電させて、正極活物質を酸化処理した。
<Surface oxidation treatment>
After assembling the lithium ion secondary battery, this was charged to 4.8 V (lithium metal standard), then held for 20 hours, discharged to 2.5 V, and the positive electrode active material was oxidized.

(実施例2)
正極活物質の表面酸化処理を下記条件とした以外は実施例1と同様にして、リチウムイオン二次電池を製造した。
酸化処理:リチウムイオン二次電池の組立て後に4.8V(リチウム金属基準)まで充電後、これを20時間保持して、正極活物質を酸化処理した。
(Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the surface oxidation treatment of the positive electrode active material was performed under the following conditions.
Oxidation treatment: After assembling the lithium ion secondary battery, after charging to 4.8 V (lithium metal standard), this was held for 20 hours to oxidize the positive electrode active material.

(実施例3)
正極活物質の表面酸化処理を下記条件とした以外は実施例1と同様にして、リチウムイオン二次電池を製造した。
酸化処理:リチウムイオン二次電池の組立て後に、これを4.8V(リチウム金属基準)まで充電後、これを5分間保持し、2.5Vまで放電させて、正極活物質を酸化処理した。
(Example 3)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the surface oxidation treatment of the positive electrode active material was performed under the following conditions.
Oxidation treatment: After assembling the lithium ion secondary battery, this was charged to 4.8 V (lithium metal standard), then held for 5 minutes and discharged to 2.5 V to oxidize the positive electrode active material.

(比較例1)
正極活物質の表面酸化処理を下記条件とした以外は実施例1と同様にして、リチウムイオン二次電池を製造した。
酸化処理:リチウムイオン二次電池の組立て後に、これを4.4V(リチウム金属基準)まで充電後、これを5分間保持し、2.5Vまで放電させて、正極活物質を酸化処理した。
(Comparative Example 1)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the surface oxidation treatment of the positive electrode active material was performed under the following conditions.
Oxidation treatment: After the lithium ion secondary battery was assembled, it was charged to 4.4 V (lithium metal standard), then held for 5 minutes, and discharged to 2.5 V to oxidize the positive electrode active material.

(比較例2)
リチウムイオン二次電池の組立て後に、充(放)電による正極活物質の表面酸化処理を実施しなかった以外は実施例1と同様にして、リチウムイオン二次電池を製造した。
(Comparative Example 2)
A lithium ion secondary battery was manufactured in the same manner as in Example 1 except that after the lithium ion secondary battery was assembled, the surface oxidation treatment of the positive electrode active material by charging (discharging) was not performed.

(評価)
<XRD分析>
実施例1〜4、比較例1において、正極活物質の表面酸化処理後・後記サイクル充放電前のリチウムイオン二次電池をグローブボックス内で解体し、ジメチルカーボネート(DMC)で洗浄後、乾燥した。その後、正極活物質を集電体から剥離し、この正極活物質について、X線回折(XRD)装置を用いて、粉末XRD分析を実施した。
比較例2においては、合成した正極活物質をそのまま測定した。
測定装置としてリガクUltima4を用い、CuKα線を用い、一次検出器を用いて測定を行った。測定条件は、2θ=10〜80°、10°/min、3回積算とした。
リガク社製の解析ソフトPDXLを用いて、格子歪及び結晶子サイズを測定した。
(Evaluation)
<XRD analysis>
In Examples 1 to 4 and Comparative Example 1, the lithium ion secondary battery after surface oxidation treatment of the positive electrode active material and before cycle charge / discharge was disassembled in a glove box, washed with dimethyl carbonate (DMC), and then dried. . Thereafter, the positive electrode active material was peeled from the current collector, and powder XRD analysis was performed on the positive electrode active material using an X-ray diffraction (XRD) apparatus.
In Comparative Example 2, the synthesized positive electrode active material was measured as it was.
The measurement was performed using Rigaku Ultima 4 as a measuring device, using CuKα rays, and using a primary detector. Measurement conditions were set to 2θ = 10 to 80 °, 10 ° / min, and 3 times integration.
Lattice strain and crystallite size were measured using analysis software PDXL manufactured by Rigaku Corporation.

<XAFS分析>
正極活物質の表面酸化状態をX線吸収微細構造(XAFS)分析により評価した。
実施例1〜2、比較例1において、正極活物質の表面酸化処理後・後記サイクル充放電前のリチウムイオン二次電池をグローブボックス内で解体し、DMCで洗浄後、乾燥した。その後、正極活物質を集電体から剥離し、この正極活物質について、Mn K端のXAFS分析を実施した。比較例2においては、合成した正極活物質をそのまま測定した。
吸収端位置は、ピークの立ち上がり位置とピーク頂点との中点により定義した。
<XAFS analysis>
The surface oxidation state of the positive electrode active material was evaluated by X-ray absorption fine structure (XAFS) analysis.
In Examples 1 and 2 and Comparative Example 1, the lithium ion secondary battery after the surface oxidation treatment of the positive electrode active material and before cycle charge / discharge was disassembled in a glove box, washed with DMC, and dried. Thereafter, the positive electrode active material was peeled from the current collector, and XAFS analysis of the Mn K edge was performed on this positive electrode active material. In Comparative Example 2, the synthesized positive electrode active material was measured as it was.
The absorption edge position was defined by the midpoint between the peak rising position and the peak apex.

<サイクル充放電>
各例において得られたリチウムイオン二次電池に対して、下記のサイクル充放電を実施した。
25℃の恒温槽内で、充電電圧4.6V(リチウム金属基準)、放電電圧2.5V(リチウム金属基準)、及び、電流密度300mA/gの条件で100サイクルの充放電を行った。
<Cycle charge / discharge>
The following cycle charging / discharging was implemented with respect to the lithium ion secondary battery obtained in each case.
In a constant temperature bath at 25 ° C., 100 cycles of charge and discharge were performed under the conditions of a charge voltage of 4.6 V (lithium metal standard), a discharge voltage of 2.5 V (lithium metal standard), and a current density of 300 mA / g.

<容量維持率の測定>
上記のサイクル充放電において、10サイクル目の放電容量と100サイクル目の放電容量とを求め、下記式で定義される容量維持率を求めた。
容量維持率(%)=(100サイクル目の放電容量)/(10サイクル目の放電容量)
<Measurement of capacity retention>
In the above cycle charge / discharge, the discharge capacity at the 10th cycle and the discharge capacity at the 100th cycle were determined, and the capacity retention rate defined by the following formula was determined.
Capacity retention rate (%) = (discharge capacity at 100th cycle) / (discharge capacity at 10th cycle)

<TEM(透過型電子顕微鏡)観察>
実施例1及び比較例2において、上記のサイクル充放電後のリチウムイオン二次電池をグローブボックス内で解体し、DMCで洗浄後、乾燥した。その後、正極活物質を集電体から剥離し、TEM観察用のCuメッシュに付着させた。このTEM像を観察した。
<TEM (transmission electron microscope) observation>
In Example 1 and Comparative Example 2, the lithium ion secondary battery after the cycle charge / discharge was disassembled in a glove box, washed with DMC, and dried. Thereafter, the positive electrode active material was peeled from the current collector and attached to a Cu mesh for TEM observation. This TEM image was observed.

(結果)
表1に、各例について、正極活物質の表面酸化処理の有無と方法、正極活物質の格子歪と結晶子サイズの測定結果、及び容量維持率の測定結果を示す。
(result)
Table 1 shows the presence / absence and method of surface oxidation treatment of the positive electrode active material, the measurement results of the lattice strain and crystallite size of the positive electrode active material, and the measurement result of the capacity retention ratio for each example.

表1に示すように、Halder Wafner法により求められた格子歪が0.4%以下、好ましくは0.3%以下であり、結晶子サイズが30nm以下であるリチウム複合酸化物を用いた実施例1〜3では、本発明で規定する範囲外のリチウム複合酸化物を用いた比較例1、2よりも高い70%以上の容量維持率が得られた。   As shown in Table 1, an example using a lithium composite oxide having a lattice strain obtained by the Halder Wafner method of 0.4% or less, preferably 0.3% or less, and a crystallite size of 30 nm or less. In 1-3, the capacity maintenance rate of 70% or more higher than the comparative examples 1 and 2 using the lithium complex oxide outside the range prescribed | regulated by this invention was obtained.

実施例1〜2、及び比較例1〜2において得られたXAFSパターンを図1に示す。
各例における吸収端位置を、表1に示す。
実施例1、2の吸収端位置は6555.0eV以下であり、比較例1、2の吸収端位置は6555.0eV超であった。
The XAFS patterns obtained in Examples 1-2 and Comparative Examples 1-2 are shown in FIG.
The absorption edge position in each example is shown in Table 1.
The absorption edge positions of Examples 1 and 2 were 6555.0 eV or less, and the absorption edge positions of Comparative Examples 1 and 2 were more than 6555.0 eV.

リチウムイオン二次電池の組立て後に、4.5V以上の電位まで充電し、この電位を5分間以上保持して、正極活物質の表面酸化を実施した実施例1、2では、正極活物質の表面酸化処理において4.4Vしか充電しなかった比較例1、及び、正極活物質の表面酸化処理を実施しなかった比較例2よりも、正極活物質の表面が高レベルに良好に酸化されることが確認された。   In Examples 1 and 2 in which the surface of the positive electrode active material was oxidized by charging the lithium ion secondary battery to a potential of 4.5 V or higher after maintaining the potential for 5 minutes or more. The surface of the positive electrode active material is better oxidized to a higher level than Comparative Example 1 in which only 4.4 V was charged in the oxidation treatment and Comparative Example 2 in which the surface oxidation treatment of the positive electrode active material was not performed. Was confirmed.

100サイクルの充放電試験を実施した後の実施例1と比較例2の正極活物質のTEM像を図2A、図2Bに示す。
実施例2の正極活物質にはクラックが見られなかったが、比較例2の正極活物質にはクラックが見られた。
2A and 2B show TEM images of the positive electrode active materials of Example 1 and Comparative Example 2 after the 100-cycle charge / discharge test.
Although no crack was found in the positive electrode active material of Example 2, cracks were seen in the positive electrode active material of Comparative Example 2.

本発明のリチウム複合酸化物の製造方法は、プラグインハイブリッド車(PHV)あるいは電気自動車(EV)に搭載されるリチウムイオン二次電池等に好ましく適用できる。   The method for producing a lithium composite oxide of the present invention can be preferably applied to a lithium ion secondary battery or the like mounted on a plug-in hybrid vehicle (PHV) or an electric vehicle (EV).

Claims (10)

下記式で表される層状岩塩型構造を有するリチウム複合酸化物であって、
Halder Wafner法により求められた格子歪が0.4%以下であり、結晶子サイズが30nm以下であるリチウム複合酸化物。
一般式:Li2
(式中、Mは平均価数が4+である少なくとも1種の遷移金属であり、Ti、V、Cr、Mn、Fe、Co、Ni、及びCuからなる群より選ばれた少なくとも1種を含む。
1.2≦x/y<2.0)
A lithium composite oxide having a layered rock salt structure represented by the following formula,
A lithium composite oxide having a lattice strain of 0.4% or less and a crystallite size of 30 nm or less determined by a Halder Wafner method.
General formula: Li x M y O 2
(In the formula, M is at least one transition metal having an average valence of 4+, and includes at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. .
1.2 ≦ x / y <2.0)
前記格子歪が0.3%以下である請求項1に記載のリチウム複合酸化物。   The lithium composite oxide according to claim 1, wherein the lattice strain is 0.3% or less. 表面酸化処理が施されたものである請求項1又は2に記載のリチウム複合酸化物。   The lithium composite oxide according to claim 1 or 2, which has been subjected to surface oxidation treatment. Mn K端のXAFS測定において、吸収端位置をピークの立ち上がり位置とピーク頂点との中点により定義したとき、6555.0eV以下に吸収端を持つ請求項3に記載のリチウム複合酸化物。   The lithium composite oxide according to claim 3, wherein the XAFS measurement at the Mn K edge has an absorption edge at 6555.0 eV or less when the absorption edge position is defined by the midpoint between the peak rising position and the peak apex. 少なくとも1種の遷移金属MがMn、Co、及びNiから選ばれた少なくとも1種を含む請求項1〜4のいずれかに記載のリチウム複合酸化物。   The lithium composite oxide according to any one of claims 1 to 4, wherein the at least one transition metal M includes at least one selected from Mn, Co, and Ni. リチウムイオン二次電池に用いられる正極活物質用である請求項1〜5のいずれかに記載のリチウム複合酸化物。   The lithium composite oxide according to any one of claims 1 to 5, which is used for a positive electrode active material used in a lithium ion secondary battery. 4.5V以上の充電条件で使用されるものである請求項6に記載のリチウム複合酸化物。   The lithium composite oxide according to claim 6, which is used under a charging condition of 4.5 V or more. 請求項1〜7のいずれかに記載のリチウム複合酸化物を正極活物質として用いたリチウムイオン二次電池。   A lithium ion secondary battery using the lithium composite oxide according to claim 1 as a positive electrode active material. 25℃、充電電圧4.6V、放電電圧2.5V、及び、電流密度300mA/gの条件で100サイクルの充放電を行った後の放電容量と、同条件で10サイクルの充放電を行った後の放電容量との比から求められる容量維持率が、70.0%以上である請求項8に記載のリチウムイオン二次電池。   The discharge capacity after 100 cycles of charge / discharge under the conditions of 25 ° C., charge voltage 4.6V, discharge voltage 2.5V, and current density 300 mA / g, and 10 cycles of charge / discharge were performed under the same conditions. The lithium ion secondary battery according to claim 8, wherein a capacity maintenance ratio obtained from a ratio with a subsequent discharge capacity is 70.0% or more. 請求項8又は9に記載のリチウムイオン二次電池の製造方法であって、
リチウムイオン二次電池の組立て後に、4.5V以上の電位まで充電し、当該電位を5分間以上保持することによって、前記正極活物質を表面酸化処理するリチウムイオン二次電池の製造方法。
A method for producing a lithium ion secondary battery according to claim 8 or 9,
A method of manufacturing a lithium ion secondary battery in which the positive electrode active material is subjected to surface oxidation treatment by charging to a potential of 4.5 V or more after assembly of the lithium ion secondary battery and maintaining the potential for 5 minutes or more.
JP2011234118A 2011-10-25 2011-10-25 Lithium composite oxide, method for producing the same, and lithium ion secondary battery Active JP5741371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011234118A JP5741371B2 (en) 2011-10-25 2011-10-25 Lithium composite oxide, method for producing the same, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011234118A JP5741371B2 (en) 2011-10-25 2011-10-25 Lithium composite oxide, method for producing the same, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2013091581A true JP2013091581A (en) 2013-05-16
JP5741371B2 JP5741371B2 (en) 2015-07-01

Family

ID=48615019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234118A Active JP5741371B2 (en) 2011-10-25 2011-10-25 Lithium composite oxide, method for producing the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5741371B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067142A1 (en) * 2014-10-27 2016-05-06 Semiconductor Energy Laboratory Co., Ltd. Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
JP2017073331A (en) * 2015-10-09 2017-04-13 株式会社デンソー Secondary battery device
CN107845830A (en) * 2016-09-20 2018-03-27 株式会社东芝 Solid electrolyte, lithium battery, battery bag and vehicle
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
WO2023013541A1 (en) * 2021-08-03 2023-02-09 株式会社スーパーナノデザイン Positive electrode active material microparticle, positive electrode, secondary battery, and production method for positive electrode active material microparticle
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079251A (en) * 1996-07-10 1998-03-24 Toray Ind Inc Lithium-transition metal compound oxide, manufacture of it, and nonaqueous solvent second battery using it
JP2004253169A (en) * 2003-02-18 2004-09-09 Ngk Insulators Ltd Lithium secondary battery and manufacturing method of positive electrode active material used therefor
JP2010086690A (en) * 2008-09-30 2010-04-15 Gs Yuasa Corporation Active material for lithium secondary battery, lithium secondary battery, and manufacturing method of thereof
JP2013073826A (en) * 2011-09-28 2013-04-22 Kri Inc Cathode active material for nonaqueous secondary battery, and nonaqueous secondary battery using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079251A (en) * 1996-07-10 1998-03-24 Toray Ind Inc Lithium-transition metal compound oxide, manufacture of it, and nonaqueous solvent second battery using it
JP2004253169A (en) * 2003-02-18 2004-09-09 Ngk Insulators Ltd Lithium secondary battery and manufacturing method of positive electrode active material used therefor
JP2010086690A (en) * 2008-09-30 2010-04-15 Gs Yuasa Corporation Active material for lithium secondary battery, lithium secondary battery, and manufacturing method of thereof
JP2013073826A (en) * 2011-09-28 2013-04-22 Kri Inc Cathode active material for nonaqueous secondary battery, and nonaqueous secondary battery using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11710823B2 (en) 2014-10-27 2023-07-25 Semiconductor Energy Laboratory Co., Ltd. Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
JP2016094332A (en) * 2014-10-27 2016-05-26 株式会社半導体エネルギー研究所 Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
US10084186B2 (en) 2014-10-27 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
US10749174B2 (en) 2014-10-27 2020-08-18 Semiconductor Energy Laboratory Co., Ltd. Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
WO2016067142A1 (en) * 2014-10-27 2016-05-06 Semiconductor Energy Laboratory Co., Ltd. Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
US11394025B2 (en) 2014-10-27 2022-07-19 Semiconductor Energy Laboratory Co., Ltd. Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
JP2017073331A (en) * 2015-10-09 2017-04-13 株式会社デンソー Secondary battery device
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11043660B2 (en) 2016-07-05 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
CN107845830A (en) * 2016-09-20 2018-03-27 株式会社东芝 Solid electrolyte, lithium battery, battery bag and vehicle
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
WO2023013541A1 (en) * 2021-08-03 2023-02-09 株式会社スーパーナノデザイン Positive electrode active material microparticle, positive electrode, secondary battery, and production method for positive electrode active material microparticle

Also Published As

Publication number Publication date
JP5741371B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP7171918B2 (en) Positive electrode active material for lithium secondary battery and manufacturing method thereof
JP5741371B2 (en) Lithium composite oxide, method for producing the same, and lithium ion secondary battery
CN110050366B (en) Nickel active material precursor, method for producing same, nickel active material, and lithium secondary battery
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
JP4859487B2 (en) Nonaqueous electrolyte secondary battery
JP5684915B2 (en) Anode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP7131056B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
WO2018052038A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same and nonaqueous electrolyte secondary battery using said positive electrode active material
JP2013191540A (en) Positive active material, method of preparing the same, and secondary battery using the same
JP5776996B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
WO2018021554A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP5103923B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
WO2015001957A1 (en) Lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode, lithium ion secondary battery, and method for manufacturing said active material, said positive electrode, and said battery
JP2013095613A (en) CARBON-COATED LiVP2O7 PARTICLE, METHOD FOR PRODUCING THE SAME, AND LITHIUM ION SECONDARY BATTERY
JP7159639B2 (en) Method for producing particles of transition metal composite hydroxide, and method for producing positive electrode active material for lithium ion secondary battery
JP2013087040A (en) Lithium compound oxide and production method of the same, and lithium ion secondary battery
JP5997087B2 (en) Method for producing positive electrode material for lithium secondary battery
JP5109447B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2005332713A (en) Lithium secondary battery and positive electrode active material for secondary battery
JP2014146565A (en) Positive electrode active material for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery having positive electrode for nonaqueous secondary battery using the positive electrode active material
JP2016081716A (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery
JPWO2020012586A1 (en) Method for manufacturing lithium ion secondary battery and lithium ion secondary battery
JP2016046011A (en) Positive electrode active material for lithium battery
JP5045135B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R151 Written notification of patent or utility model registration

Ref document number: 5741371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151