TW484259B - Compression method and device, compression and expansion system, and recording medium - Google Patents
Compression method and device, compression and expansion system, and recording medium Download PDFInfo
- Publication number
- TW484259B TW484259B TW90105613A TW90105613A TW484259B TW 484259 B TW484259 B TW 484259B TW 90105613 A TW90105613 A TW 90105613A TW 90105613 A TW90105613 A TW 90105613A TW 484259 B TW484259 B TW 484259B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- compressed
- compression
- amplitude
- specimen
- Prior art date
Links
Landscapes
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
484259 A7 B7 五、發明説明(1 ) 技術領域 (請先閱讀背面之注意事項再填寫本頁) 本發明係關於壓縮方法及裝置、展開方法及裝置、壓 縮展開系統、記錄媒體,特別是關於連續之類比信號或數 位信號之壓縮及展開方式。 背景技術 習知上,在傳送、儲存影像信號或聲音信號等資訊量 多之信號的情形,以傳送資訊量之削減或對儲存媒體之保 存可能時間之長時間化等爲目的,進行壓縮、展開信號。 一般,在壓縮類比信號之情形,首先依循指定之取樣頻率 ,取樣類比信號而數位化,對於獲得之數位資料進行壓縮 處理。 經濟部智慧財產局員工消費合作社印製 例如,於影像信號或聲音信號之壓縮上,利用D C T (Discrete-Cosine-Transform :分離餘弦轉換)等之時間軸 -頻率軸之轉換濾波器,加工原來之資料後,在頻率區域 進行壓縮之手法被使用著。作爲聲音信號之壓縮方式,在 電話線路經常被使用之D P CM ( Differential Pulse Code Μ o d u 1 a t i ο η :差分脈衝碼調制)也以此點爲其意圖而使用。 又,藉由此D P C Μ之壓縮方式係取樣波形時,編碼化相 鄰標本値之差分之方式。 又,作爲進行時間/頻率轉換之方式,也有使用副頻 道濾、波器或 M D C T ( Modified Discrete Cosine Transform :修正分離餘弦轉換)之方式,作爲使用此種方式之編碼 化方式可舉 MP EG (Moving Picture Image Experts Group 本紙張尺度適用中國國家標準(CNS ) A4規格(公釐) -4- 484259 A7 B7 五、發明説明(2 ) :動晝影像專家群)音頻。 又,最廣被使用之影像的壓縮系統一般也以此 Μ P E G規格爲所周知。 依循上述之壓縮方式被壓縮之資料之展開處理基本i ,係相同地藉由與壓縮方式之壓縮處理相反之操作而進行 〇 即,被壓縮之數位資料藉由頻率/時間轉換處理,由 頻率區域之信號被轉換爲時間區域之信號後,藉由被施以 指定之展開處理,原來之數位資料被再現。而且,如此被 求得之原來資料因應需要,被數位-類比轉換,以類比信 號被輸出。 但是,在上述習知壓縮、展開方式中,係將時間軸上 之信號轉換爲頻率軸上之信號以進行壓縮之故,壓縮之際 的時間/頻率轉換以及展開之際的頻率/時間轉換等之處 理成爲必要。因此,有處理變得繁雜化之同時,爲了實現 此用之構成變得非常複雜之問題。此不單壓縮、展開所花 之處理時間變長,也成爲使裝置之小型化變得困難之重要 原因。 又,一般在考慮資料的壓縮、展開之情形,提高壓縮 率而且再生資料之品質如何提升爲重要之課題。可是,在 上述習知的壓縮、展開方式中,存在如欲提高影像信號或 聲首丨目號之壓縮率,展開壓縮資料而被再生之影像或聲音 的品質劣化,反之,如重視再生影像或再生聲音之品質, 影像信號或聲音信號之壓縮率變低之問題。因此,要實現 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 〜 (請先閱讀背面之注意事項再填寫本頁) 1^^. 訂 經濟部智慧財產局員工消費合作社印製 -5- 484259 A7 B7 五、發明説明(3 ) 壓縮率之提升與再生資料之品質提升之兩方變得極爲困難 〇 (請先閲讀背面之注意事項再填寫本頁) 本發明係爲了解決此種問題而完成者,其目的爲:使 信號之壓縮、展開處理簡單化,能夠使處理時間變短之同 時,也可以使實現此用之構成也簡單化。 又,本發明目的在於提供:可以獲得更高壓縮率與更 高品質之再生資料之新的壓縮、展開方式。 又,本發明之目的在於:不使用表,可以更簡單進行 壓縮、展開處理。 發明之揭示. 爲了解決上述課題,於第1發明之壓縮側中,以微分 .絕對値成爲指定値以下之點的時間間隔取樣壓縮對象之信 號,將該各標本點之離散之振幅資料與表示各標本點間之 時間間隔之定時資料之組合當成壓縮資料而獲得。 經濟部智慧財產局員工消費合作社印製 此處,也可以過取樣壓縮對象之信號,在其之微分絕 對値成爲指定値以下之點的時間間隔取樣該被過取樣之資 料。進而,也可以對於上述被過取樣之資料,進行進行產 生連續標本値之平均値資料之處理。 又,於第1發明之展開側中,由壓縮對象之信號被抽 出之指定的標本點之振幅資料與顯示各標本點間之時間間 隔之定時資料之組合所構成之壓縮資料中,藉由利用連續 之標本點之振幅資料與其之間的定時資料,求得內插具有 由上述定時資料被顯示之時間間隔之振幅資料之間之內插 本紙張尺度適用中國國家標準(CNS ) A4規格(210><297公釐) -6 - 484259 A7 五、發明説明(4 ) 資料,以獲得展開資料。 此處,也可以利用由連續之2個的標本點之2個的振 幅資料與其之間的定時資料所獲得之取樣函數,求得內插 上述2個之振幅資料間之內插資料。 如依據如上述般地構成之第1發明,在壓縮時間軸上 之信號之際,不進行時間/頻率轉換,在頻率軸上進行處 理,而可以在時間軸上進行處理。又,在展開如此被壓縮 之資料之際,也可以在時間軸上進行處理。藉由此,可以 使壓縮以及展開之處理簡單化,使處理時間變短之同時, 也可以使爲此之構成簡單化。又,由壓縮側傳送壓縮資料 ,在展開側再生之情形中,藉由在時間軸上之簡單的內插 運算,可以依序處理被輸入展開側之壓縮資料而再生之故 ,可以實現即時動作。 又,於本實施形態中,各取樣點之中,可以只將標本 點之資料當成壓縮資料而獲得之故,能夠達成高壓縮率。 此標本點相當於在壓縮對象之信號中回折之部份,全部包 含藉由展開側之內插運算以再現原來資料所必要之最低限 度的點之故,對原來資料之再現性良好,可以獲得高品質 之再生資料。 又,於第2發明之壓縮側中,藉由過取樣與移動平均 運算或捲積運算合成因應被輸入之π個之離散資料値之基 本波形之數位資料,求得對於上述離散資料之數位的內插 値後,將上述求得之數位的內插値以該微分絕對値成爲極 小之點的時間間隔取樣,將各標本點之離散的振幅資料與 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐了 (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 484259 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(5 ) 表示各標本點間之時間間隔之定時資料之組合當成壓縮資 料而獲得。 又,於第2發明之展開側中,使用被包含在壓縮資料 之振幅資料與定時資料,依據連續之2個的標本點之2個 振幅資料與其間之定時資料,求得內插上述2個振幅資料 間之內插資料,以獲得展開資料。 依據如上述般地構成之第2發明,在壓縮時間軸上之 資料之際,不進行時間/頻率轉換,在頻率軸上進行處理 ,可以在時間軸上進行處理。又,在展開如此被壓縮之資 料之際,也可以在時間軸上進行處理。藉由此,可以簡單 化壓縮以及展開之處理以縮短處理時間之同時,也可以簡 單化爲此之構成。又,在由壓縮側傳送壓縮資料,在展開 .側再生之情形,也藉由在時間軸上之簡單的內插運算,可 以依序處理被輸入展開側之壓縮資料而再生之故,能夠實 現即時動作。 又,各取樣點之中,可以只將標本點之資料當成壓縮 資料而獲得之故,能夠達成高壓縮率。此標本點相當於在 壓縮對象之信號中回折之部份,全部包含藉由展開側之內 插運算以再現原來資料所必要之最低限度的點之故,對原 來資料之再現性良好,可以獲得高品質之再生資料。 而且,如依據第2發明,對於數位資料進行過取樣與 捲積運算以求得內插値之際,爲了求得某1個之內插値, 只考慮有限數目之離散資料之値即可,不產生捨位誤差之 故,可以獲得正確的內插値。因此,利用此內插値進行壓 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 一 -8- (請先閱讀背面之注意事項再填寫本貢) 484259 經濟部智慧財產局員工消費合作社印製 A7 B7五、發明説明(6 ) 縮處理之情形,關於在展開側被再生之資料,可以提升對 壓縮前之原來資料之再現性。 又,於第3發明之壓縮側中,微分被輸入之數位資料 ,將該微分値之極性變化之點當成標本點檢測出,作爲各 標本點之離散的壓縮振幅資料獲得以指定之値化整之數位 資料,將運算該壓縮振幅資料彼此之差分之結果的壓縮振 幅差分資料與表示各標本點間之時間間隔之定時資料之組 合當成壓縮資料而獲得之。 又,於第3發營之展開側中,多重積分偶數倍被過取 樣之上述壓縮振幅差分資料之同時,對於該積分値進行移 動平均運算,利用藉由此所獲得之移動平均運算値與定時 資料,求得內插具有由上述定時資料所被顯示之時間間隔 之各標本點之振幅資料之間之平方內插資料,將此當成展 開資料而獲得之。 在第3發明之其它的形態中,於壓縮側中,以第1値 將被輸入之數位資料進行化整運算,微分以該第1値被化 整之數位資料,將該微分値之極性變化之點當成標本點而 檢測出,作爲各標本點之離散的壓縮振幅資料獲得以比上 述第1値還大之第2値被化整之數位資料。 在第3發明之其它的形態中,於壓縮側中,將上述壓 縮振幅差分資料以及上述定時資料轉換爲可變長度區塊資 料。 在第3發明之其它的形態中,於展開側中,使上述偶 數倍被過取樣之壓縮振幅差分資料在藉由上述定時資料被 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 一 (請先閱讀背面之注意事項再填寫本頁) -9 - 484259 A7 經濟部智慧財產局員工消費合作社印製 B7五、發明説明(7 ) 顯示之各標本點之每一分隔之其中間位置符號反轉,多重 積分藉由此所獲得之資料列。 在第3發明之其它的形態中,於展開側中,於各標本 點之每一分隔進行對於上述偶數倍被過取樣之壓縮振幅差 分資料之多重積分以及移動平均運算。 依據如上述般地構成之第3發明,在壓縮時間軸上之 信號之際,可以不進行時間/頻率轉換,在頻率軸上進行 處理,在時間軸上進行處理。又,在展開如此被壓縮之資 料之際,在時間軸上可以進行處理。藉由此,使壓縮以及 展開之處理簡單化,能夠縮短處理時間之同時,也可以簡 單化爲此之構成。而且,在展開處理之際,藉由在時間軸 上之簡單的平方內插運算,不使用表資訊,可以依序處理 被輸入之壓縮資料而再生,能夠實現即時動作。 又,如依據第3發明,可以只由數位資料之微分値的 極性變化之標本點的振幅資料値與表示各標本點出現之時 間間隔之定時資料値之少的離散資料產生壓縮資料。又, 以指定之値化整各標本點之振幅資料之故,可以使振幅資 料之資料長每1字元削減數位元,此處,能夠大幅削減資 料量。進而,在第3發明中,並非將被化整之振幅資料原 樣地當成壓縮資料,進而求得其差分資料,當成壓縮資料 之故,可以使壓縮資料所必要之位元數更少,可以更削減 資料量。 又,如依據第3發明之其它特徵,將如上述般地獲得 之壓縮振幅差分資料與定時資料編碼爲可變長度之區塊資 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -10- 484259 A7 B7 五、發明説明(8 ) 料,當成最終之壓縮資料之故,可以更提高壓縮率。 (請先閲讀背面之注意事項再填寫本頁) 又,如依據第3發明,存在於壓縮對象之信號中的回 折點當成標本點被檢測出,藉由展開側之內插運算,再現 原來資料之最低限定所必要的點全部被包含在壓縮資料中 。因此,提高對原來資料之再現性,可以獲得高品質之再 生資料。 又,如依據第3發明之其它的特徵,微分以適當値化 整之數位資料以檢測出標本點之故,可以使雜訊成分或不 需要之信號成分的位置不會作爲標本點被檢測出,能夠只 使正確位置當成標本點確實檢測出。藉由此,關於在展開 側被再生之展開資料,能夠提升對壓縮前之原來的資料的 再現性。 經濟部智慧財產局員工消費合作社印製 又,如依據第3發明之其它的特徵,在各標本點之每 一分隔之其中間位置使偶數倍被過取樣之壓縮振幅差分資 料符號反轉之故,對此符號被反轉之資料列進行多重積分 以及移動平均運算之際,可以使壓縮側之捨入誤差相抵消 ,可以更平順地再生振幅値變化之數位波形。又,如依據 第3發明之其它的特徵,於展開側中,在各標本點之每一 分隔進行多重積分之處理之故,可以排除由於積分之累積 誤差,能夠再生更正確的數位波形。 圖面之簡單說明 圖1係說明依據第1實施形態之壓縮方法用之圖。 圖2係說明依據第1實施形態之展開方法用之圖。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -11 - 484259 Α7 Β7 經濟部智慧財產局員工消費合作社印製 五、發明説明(9 ) 圖3係取出圖2所示之時刻T 1 — T 2之區間,顯示 本實施形態之內插原理之圖。 圖4係顯示取樣函數之例圖。 圖5係顯示離散資料與這些之間的內插値之關係圖。 圖6係展開側之資料內插處理之具體例之內插運算式 之說明用圖。 圖7係顯示對於圖2所示之時刻T 1 一 T 2間,適用 過取樣與捲積運算之情形的處理結果圖。 圖8係顯示適用過取樣與捲積運算之情形的其它的處 理結果圖。 圖9係顯示依據第1實施型態之壓縮裝置之構成例之 方塊圖。 匱I 1 0係顯示圖9中的平均値內插資料產生部之構成 例之方塊圖。 _ 1 1係顯示圖9中之定時合成器之構成例之方塊圖 〇 _ 1 2係顯示依據第1實施型態之展開裝置之構成例 之方塊圖。 _ 1 3係顯示依據第2實施型態之壓縮裝置之構成例 之方塊圖。 ® 1 4係顯示依據第2實施型態之展開裝置之構成例 之方塊圖。 圖1 5係顯示在第2實施型態所使用之數位基板波形 圖。 本紙張尺度適用中國) A4規格(21〇χ297公釐) (請先閱讀背面之注意事項再填寫本頁) -12- 484259 A7 B7___ 五、發明説明(1〇 ) 圖1 6係說明第2實施型態之過取樣以及捲積運算之 動作例用之圖。 (請先閲讀背面之注意事項再填寫本頁) 圖1 7係顯示由圖1 5之數位基板波形被產生之函數 圖。 圖1 8係顯示在圖1 3中所示之過取樣電路之構成例 圖。 圖1 9係顯示被輸入第2實施型態之壓縮裝置之數位 資料之例圖。 圖2 0係顯示使圖1 9所示之數位資料通過圖1 3之 過取樣電路之結果被輸出之資料例圖。 圖2 1係顯示圖1 3所示之微分器之構成例圖。 圖2 2係顯示使圖2 0所示之過取樣資料通過圖1 3 之微分器之結果被輸出之資料例圖。 圖2 3係相同値之微分絕對値連續產生之情形的處理 之說明圖。 圖2 4係顯示藉由進行雙重微分以檢測標本點用之構 成例之方塊圖。 經濟部智慧財產局員工消費合作社印製 圖2 5係顯示將圖2 0所示之過取樣資料通過圖1 3 之壓縮資料產生部之結果被輸出之壓縮資料之例圖。 圖2 6係說明展開側之資料內插處理之其它例用之圖 〇 圖2 7係顯示在將圖2 5所示之壓縮資料當成對象進 行展開處理之情形,由圖1 4之展開處理部被輸出之展開 資料之例圖。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -13· 484259 A7 B7 五、發明説明(n) 圖2 8係顯示依據第3實施型態之壓縮裝置之構成例 之方塊圖。 (請先閲讀背面之注意事項再填寫本頁) 圖2 9係說明圖2 8中之定時產生器以及振幅產生器 之動作原理用之圖。 圖3 0係顯示圖2 8中之定時產生器之構成例之方塊 圖。 圖3 1係顯示產生定時脈衝之部份的詳細構成例圖。 圖3 2係說明藉由第3實施型態之壓縮裝置而被進行 之壓縮處理之實際的動作例用之圖。 圖3 3係顯示依據第3實施型態之串列壓縮區塊資料 之構成例圖。 圖3 4係顯示依據第3實施型態之展開裝置之構成例 之方塊圖。 圖3 5係顯示圖3 4中之平方內插資料產生部之詳細 構成例圖。 圖3 6係說明藉由第3實施型態之展開裝置而被進行 之展開處理之實際的動作利用之圖。 經濟部智慧財產局員工消費合作社印製 圖3 7係顯示壓縮前之原來資料與展開資料之例圖。 主要元件對照表 1 過取樣電路 2 P L L電路 3 微分器 4 壓縮資料產生部 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇Χ297公釐) -14 - 484259 A7 B7 五、發明説明(12) 5 錯 誤 訂 正 編 碼 部 6 資 料 記 憶 體 1 1 錯 誤 訂 正 電 路 1 2 時 脈 產 生 器 1 3 定 時 產 生 器 1 5 展 開 處 理 部 1 6 D / A 轉 換 器 2 1 正 規 化 資 料 記 2 2 相 位 移 位 部 4 1 第 1 微 分 部 4 2 化 整 運 算 部 4 3 第 2 微 分 部 4 4 極 性 變 化 點 檢 4 6 資 料 產 生 部 1 1 1 定 時 產 生 器 1 1 2 振 幅 產 生 器 (請先閱讀背面之注意事項再填寫本頁) 41. 訂 f 經濟部智慧財產局員工消費合作社印製 實施發明用之最好型態 以下,依據圖面說明本發明之一實施型態。 (第1實施型態) 圖1係說明依據第1實施形態之壓縮方法用之圖,顯 示成爲壓縮對象之輸入類比信號之一例。又,圖2係說明 依據本實施形態之展開方法用之圖。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -15- 484259 A7 經濟部智慧財產局員工消費合作社印製 B7五、發明説明(13 ) 首先,利用圖1說明壓縮處理。於本實施形態中,由 輸入類比信號1 0 1中,檢測出微分絕對値(信號之傾斜 )成爲包含A 0 〃之指定値以下之點(以下,稱此爲標本 點)1 0 2 a〜1 0 2 f。而且,求得將這些各標本點 1 0 2 a〜1 0 2 f之振幅類比一數位轉換之數位資料値 以及表示各標本點1 0 2 a〜1 〇 2 f出現之時間間隔之 定時資料値,將此振幅資料値與定時資料値之組合當成壓 縮資料傳送或記錄。 在圖1之例中,作爲各標本點1 0 2 a〜1 0 2 f之 數位的振幅資料値,求得'' 7、3、9、1、6、3 〃 , 作爲表示各標本點1 0 2 a〜1 0 2 f出現之時刻T 1 一 T 2 間、丁 2 — T 3 間、T 3 — T 4 間、T 4 — T 5 間、 .T 5 — T 6間之個別的時間間隔之定時資料,求得'' 5、 7、3、3、3 〃 。又,此處,作爲定時資料所被顯示之 數字係顯示依據某取樣頻率之時脈數。 在時刻T 1之時間點中,可以獲得標本點1 0 2 a之 振幅資料値“ 7 “以及表示由在其之前標本點(未圖示出 )被檢測出之時刻起之時間間隔之定時資料(未圖示出) 之故,將這些資料値之組合當成時刻T 1之壓縮資料加以 傳送或記錄。 接著,在標本點1 0 2 b被檢測出之時刻T 2之時間 點中,可以獲得在其之前標本點1 0 2 a被檢測之時刻 T 1起之時間間隔之定時資料値'' 5 〃以及標本點 1 0 2 b之振幅資料値'' 3 〃之故,將這些資料値之組合 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -16- 484259 A7 B7 五、發明説明(14) (5,3 )當成時刻T 2之壓縮資料加以傳送或記錄。 (請先閱讀背面之注意事項再填寫本頁) 進而,接著在標本點1 〇 2 c被檢測出之時刻T 3之 時間點中,可以獲得在其之前標本點1 0 2 b被檢測之時 刻T 2起之時間間隔之定時資料値'' 7 〃以及標本點 1 〇 2 c之振幅資料値'' 9 〃之故,將這些資料値之組合 (7,9 )當成時刻T 3之壓縮資料加以傳送或記錄。 以下同樣爲之,表示時刻T3 - T4間、T4 — T5 間、T 5 - T 6間之時間間隔之定時資料與在時刻T 4、 T 5、T 6被檢測出之各標本點1 〇 2 d、1 0 2 e、 1 〇 2 f之振幅資料値之組合(3, 1 ) 、( 3,6 )、 (3,3 )分別當成時刻T 4、T 5、T 6之壓縮資料加 以傳送或記錄。 接著,利用圖2說明如上述圖1般地壓縮之資料的展 開處理。藉由圖1之方式壓縮輸入類比信號1 0 1之情形 ,所獲得之壓縮資料成爲(*,7 ) ( 5,3 ) ( 7,9 )(3, 1 ) ( 3,6 ) ( 3,3 )之數列。又,* 係表 經濟部智慧財產局員工消費合作社印製 示在圖1中値未被圖示者。在展開側依循顯示於此之順序 ,輸入壓縮資料。 於展開側中,首先,由最初被輸入之振幅資料値a 7 〃與定時資料値'' 5 〃之2個之資料値,藉由內插運算產 生波形a 1之資料。接著,由上述之定時資料値' 5 〃與 接著被輸入之振幅資料値3 〃之2個資料値,藉由內插 運算產生波形a 2之資料。 接著,由上述之振幅資料値A 3 〃與接著被輸入之定 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐) " -17- 484259 經濟部智慧財產局員工消費合作社印製 A7 B7五、發明説明(15 ) 時資料値'' 7 〃之2個之資料値,藉由內插運算產生波形 b 2之資料。進而,由上述之定時資料値、、7 〃與進而接 著被輸入之振幅資料値'' 9 〃,藉由內插運算產生波形 b 1之資料。以下同樣爲之,由依序被輸入之振幅資料値 與定時資料値之組合,依序產生波形c 1、c 2、d 2、 d 1 、e 1 、e 2。 藉由以上之處理,波形a 1、b 1、c 1、d 1、 e 1被連續化之數位信號(圖2之上段)與波形a 2、 b 2、c 2、d 2、e 2被連續化之數位信號(圖2之下 段)被產生。而且,藉由將如此產生之2個的數位信號相 互相加,進行數位-類比轉換,再生圖1所示之原來的類 比信號。 圖3係取出圖2所示之時刻丁1-丁2之區間而顯不 者,圖3 ( a )係顯示相加前之2個的波形a 1、a 2, 圖3 ( b )係顯示藉由相加而再生之合成波形a 1 + a 2 ο 圖3 ( a )中,D 1係時刻T 1之振幅資料値(在圖 2之例中爲'、7 〃 )、D 2係時刻Τ 2之振幅資料値(在 圖2之例中爲、、3 〃)、Τ係表示時刻τ 1 一 τ 2間之時 間間隔之定時資料値(在圖2之例中爲'' 5 〃 )、t係顯 示時刻Τ 1 一 T 2間之任意的定時。 如圖3 ( a )所示般地,利用時刻Τ 1之振幅資料値 D 1與表示時間Τ 1 一 T 2間之時間間隔之定時資料値T ,以時刻T 1 一 T 2間之任意的定時t爲變數,即依循依 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 、訂 -13- 484259 A7 B7 ____ 五、發明説明(彳6) 據某取樣頻率之時脈,一面將定時t 一個一個增量,一面 藉由內插運算產生波形a 1之資料。 (請先閲讀背面之注意事項再填寫本頁) 又,利用時刻T 2之振幅資料値D 2與表示時刻T 1 - T 2間之時間間隔之定時資料値T,同樣地,以定時t 爲變數,藉由內插運算產生波形a 2之資料。 而且,藉由將如此產生之波形a 1、a 2之資料以上 述定時t爲變數而相加,合成如圖3 ( b )之波形。如此 ,可以再現被壓縮前之原來的類比信號。 以下,說明藉由利用如上述之內插之展開處理,可以 再生原來的類比信號之原理。 一般,爲了由離散的數位資料獲得連續之類比信號, 進行內插離散地被輸入之數位資料之間,虛擬地提升取樣 .頻率。通常,此種資料內插係利用指定之取樣函數而進行 〇 圖4係顯示取樣函數之例。在圖4之例中,只是t = 0之標本點其値成爲> 1 〃,在等間隔之其它全部的標本 點(t = 土 1, 土 2, ± 3,土 4,…),値全部成爲、' 經濟部智慧財產局員工消費合作社印製 〇"。 圖5係說明利用此種取樣函數之一般的資料內插的動 作用之圖。圖5中,考慮將等間隔之標本點t 1, t 2, t 3, t 4之個別的離散資料値設爲Y ( t 1 ),Y ( t 2 ),Y ( t 3 ),Y ( t 4 ),例如,求得對應標本 點t 2與丨3之間的指定位置丨〇(由12起之距離3) 之內插値v之情形。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ~ -19- 484259 A7 B7 五、發明説明(17 ) (請先閱讀背面之注意事項再填寫本頁) 一般在利用取樣函數求得內插値y時,關於被給予之 各離散資料之個個,求得內插位置t 0之取樣函數之値, 利用此進行捲積運算即可。具體爲:t 1〜t 4之每一各 標本點,使取樣函數之中心位置之峰値高一致,求得此時 之個別的內插位置t 〇之取樣函數之値(以X記號表示) ,將其全部相加。 藉由隨著時間經過(與取樣時脈之增加一齊地)一面 使內插位置t 0依序移動一面進行此種內插處理,依序求 得連續變化之內插値y ( t 0 )。藉由此,可以獲得平滑 接續各離散資料間之連續的類比信號。 本實施形態係應用此種資料內插處理者。即,如圖3 (a )所示般地,於時刻T 2中,由已經被輸入之振幅資 料値D 1 ( = 7 )與定時資料値T ( = 5 ),求得形成採 用第1標本點(時刻T 1 )中、、〇 〃以外之値之取樣函數 之一部份之波形a 1之同時,由振幅資料値D 2 ( = 3 ) 經濟部智慧財產局員工消費合作社印製 與定時資料値T ( = 5 ),求得形成採用第2標本點(時 刻T 2 )中'' 0 〃以外之値之取樣函數之一部份之波形 a 2。 而且,藉由於隨著時間經過依序移動之每一內插位置 t相加這些波形a 1、a 2之値,獲得平滑接續離散資料 D 1、D 2間之類比信號。 又,此處,在分別求得波形a 1、a 2之資料後,將 彼等相加地做說明,但是在時刻T 2之時間點,產生合成 波形a 1、a 2用之資料全部已經獲得之故,也可以藉由 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -20 - 484259 經濟部智慧財產局員工消費合作社印製 A7 _ B7 __五、發明説明(18) 指定之運算式等,一度獲得合成波形。 可是,在本實施形態中,如圖1所示般地,於壓縮側 中,藉由以其之微分絕對値成爲指定値以下之點的時間間 隔取樣平滑變化之輸入類比信號1 0 1,獲得作爲壓縮資 料之離散的資料。因此,可以獲得離散資料之個別的標本 點之間隔不限於成爲等間隔,在很多之情形,成爲不定之 間隔(在圖1之例中,各標本點之間隔成爲'' 5, 7, 3 ,3,3 〃之不定間隔)。 因此,在圖2所示之展開側中,例如在求得時刻T 1 一 T 2間之內插値之際,如圖3般地,在該時刻T 1、 T 2之標本點間之時間間隔只使用取樣函數a 1、a 2, 進行如上述之捲積運算,關於標本點間之時間間隔與此不 .同之其它的取樣函數bl、b2、cl、c2、dl、 d 2、e 1、e 2,在此捲積運算之際,不加以考慮。 又,例如在求得時刻T 2 - T 3間之內插値之際,在 該時刻T 2、T 3之標本點間之時間間隔(=7 )只使用 取樣函數b 1、b 2進行捲積運算,關於標本點間之時間 間隔與此不同之其它的取樣函數a 1、a 2、c 1 、c 2 、dl、d2、el、e2,在此捲積運算之際,不加以 考慮。求得其它標本點間之內插値之際也相同。 即,在本實施形態之壓縮展開系統中,於壓縮側中, 藉由以微分絕對値成爲指定値以下之不定的時間間隔取樣 平滑變化之輸入類比信號1 0 1,作爲壓縮資料獲得離散 的振幅資料値與表示這些之不定的時間間隔之定時値。而 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇><297公釐) (請先閱讀背面之注意事項再填寫本覓) -21 - 484259 A7 _ B7 五、發明説明(19 ) (請先閲讀背面之注意事項再填寫本頁) 且,於展開側中,依循被包含在壓縮資料中之振幅資料値 與定時資料値,與壓縮側相同地,產生藉由利用上述取樣 函數之內插處理接續不定的時間間隔之離散資料間之連續 的類比信號。 接著,在以下說明上述資料內插之具體的處理例。如 上述般地,例如,在求得時刻T 1 - T 2間之內插値之際 ,只使用由時刻T 1、T 2之各振幅資料値與表示時刻 T 1 - T 2間之時間間隔之定時資料値所求得之取樣函數 a 1 、a 2。即,爲了求得時刻T 1 一 T 2間之各內插位 置t之內插値所必要之資料全部在時刻T 2之時間點獲得 ,在此時間點可以再生如圖3 ( b )所示之原來的類比信 號。 因此,在本實施形態中,在每一 T 1〜T 6之各離散 時刻可以獲得2個之振幅資料値D 1、D 2與表示該時間 間隔之定時資料値T,利用這些之資料値,藉由依循以下 說明之內插運算式以算出內插値,依序再生原來之類比信 號。圖6係說明此內插運算式用之圖。 經濟部智慧財產局員工消費合作社印製 如圖6所示般地,具有振幅資料値D 1、D 2之2個 標本點間之內插値可以藉由關於內插位置t之2個2次元 數X 1、X 2剛好在中間時間點連續化之函數表示。即, 在本實施形態中,將2個之標本點間分成前半部與後半部 ,分別使用2次函數X 1、X 2計算內插値。 此處,標本點間之時間間隔之定時資料T有奇數之情 形,也有偶數之情形,在奇數之情形,產生剛好在中間時 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -22 - 484259 A7 B7 _ ___ 五、發明説明(20) (請先閱讀背面之注意事項再填寫本頁) 間點沒有內插位置t之狀態。因此,在本實施形態中,藉 由壓縮時實行2倍之過取樣,使得獲得之定時貧料値經吊 成爲偶數。即,圖1所示之5個之定時値'' 5, 7 , 3, 3, 3,/r實際藉由2倍之過取樣,以、、1〇,1 4, 6 ,6,6 〃之値被傳送或儲存。在圖6中,藉由被過取樣 後之2 T表示標本點間之時間間隔。 圖6中,2個之2次函數X 1、X 2分別以: X 1 = D 1 + a t 2 …(1 ) X 2 = D 2 - a ( t - 2 T ) 2 …(2 ) 表示之。又,這些之函數X 1、X 2在連續之標本點 之剛好中間時間點T爲連續之故, X 1 = X 2 ( t = T ) ".(3) 此處,於式(3 )代入式(1 ) ( 2 ),成爲··484259 A7 B7 V. Description of the invention (1) Technical field (please read the precautions on the back before filling out this page) The present invention relates to compression methods and devices, expansion methods and devices, compression expansion systems, recording media, and particularly to continuous Compression and expansion of analog or digital signals. 2. Description of the Related Art Conventionally, in the case of transmitting or storing a signal with a large amount of information such as an image signal or an audio signal, compression and expansion are performed for the purpose of reducing the amount of information transmitted or prolonging the storage time of a storage medium. signal. Generally, in the case of compressing an analog signal, the analog signal is first sampled and digitized in accordance with a specified sampling frequency, and the obtained digital data is compressed. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, for example, on the compression of video signals or audio signals, using the DCT (Discrete-Cosine-Transform: time-frequency transform filter), etc. After the data, the compression method in the frequency region is used. As a compression method for sound signals, D P CM (Different Pulse Code M o d u 1 a t i ο η: Differential Pulse Code Modulation), which is often used on telephone lines, is also used for this purpose. In addition, the compression method of D P C M is a method of encoding the difference between adjacent samples when the waveform is sampled. In addition, as a method for performing time / frequency conversion, there are also methods using a sub-channel filter, a wave filter, or an MDCT (Modified Discrete Cosine Transform). As an encoding method using this method, MP EG (Moving Picture Image Experts Group This paper size applies Chinese National Standard (CNS) A4 specification (mm) -4- 259 259 A7 B7 V. Description of invention (2): Moving day image expert group audio. In addition, the most widely used image compression system is generally known by this MP E G standard. The expansion processing of the data compressed in accordance with the compression method described above is basically performed by the opposite operation of the compression processing of the compression method. That is, the compressed digital data is processed by the frequency / time conversion and the frequency region. After the signal is converted into a signal in the time zone, the original digital data is reproduced by applying a specified expansion process. Moreover, the original data thus obtained is digitally-analog-converted as required, and is output as an analog signal. However, in the above-mentioned conventional compression and expansion methods, the signals on the time axis are converted into the signals on the frequency axis for compression, time / frequency conversion during compression, and frequency / time conversion during expansion, etc. Processing becomes necessary. Therefore, there is a problem that the processing becomes complicated, and the structure for realizing this purpose becomes very complicated. This not only shortens the processing time required for compression and expansion, but also becomes an important reason for making the device compact. In general, considering the situation of data compression and expansion, how to improve the compression rate and how to improve the quality of reproduced data is an important issue. However, in the above-mentioned conventional compression and expansion methods, there is a desire to increase the compression ratio of video signals or sound heads, and the quality of the images or sounds to be reproduced when the compressed data is expanded, and vice versa. There is a problem that the quality of the reproduced sound and the compression ratio of the video signal or the sound signal become low. Therefore, in order to achieve this paper size, the Chinese National Standard (CNS) A4 specification (210X297 mm) is applicable ~ (Please read the precautions on the back before filling this page) 1 ^^. Order printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives -5- 484259 A7 B7 V. Description of the invention (3) It is extremely difficult for both parties to improve the compression ratio and the quality of the reproduced data. (Please read the precautions on the back before filling out this page.) This invention is to solve this problem. Those who have completed this kind of problem aim to simplify the compression and expansion processing of the signal, while shortening the processing time, and also simplifying the structure for realizing this use. Another object of the present invention is to provide a new compression and expansion method that can obtain higher compression rate and higher quality reproduction data. Another object of the present invention is to make it easier to perform compression and expansion processing without using a table. DISCLOSURE OF THE INVENTION In order to solve the above-mentioned problem, on the compression side of the first invention, the signal of the compression target is sampled at a time interval of differential. Absolute 値 being a point below the specified ,, and the discrete amplitude data and display of each sample point The combination of timing data at time intervals between specimen points is obtained as compressed data. Printed by the Employees' Cooperative of the Intellectual Property Bureau of the Ministry of Economics Here, you can also oversample the signal of the compression target, and sample the oversampled data at the interval between which the differential absolutely does not reach the designated point. Furthermore, the above-sampled data may be processed to generate average sample data of continuous specimens. Furthermore, in the development side of the first invention, the compressed data composed of a combination of amplitude data of a specified specimen point from which a signal of a compression target is extracted and timing data showing a time interval between each specimen point is used by Interpolate between the amplitude data of consecutive specimen points and the timing data between them. Interpolate between the amplitude data with the time interval displayed by the above timing data. The paper size applies the Chinese National Standard (CNS) A4 specification (210 >); < 297 mm) -6-484259 A7 V. Description of the Invention (4) Information to obtain expanded information. Here, a sampling function obtained from the amplitude data of two consecutive sample points and the timing data between them can also be used to obtain the interpolation data between the two amplitude data. According to the first invention configured as described above, when the signal on the time axis is compressed, time / frequency conversion is not performed, and processing is performed on the frequency axis, but processing can be performed on the time axis. It is also possible to process the compressed data in the time axis. This makes it possible to simplify the processing of compression and expansion, shorten the processing time, and simplify the configuration for this. In addition, compressed data is transmitted from the compression side, and in the case of reproduction on the expansion side, through simple interpolation operations on the time axis, the compressed data that is input to the expansion side can be sequentially processed and reproduced, so that real-time action can be realized. . Further, in this embodiment, among the sampling points, only the data of the specimen point can be obtained as compressed data, and a high compression rate can be achieved. This specimen point is equivalent to the part of the fold back in the signal of the compression target, and all include the minimum points necessary to reproduce the original data by interpolation on the expansion side. The original data has good reproducibility and can be obtained. High-quality recycled materials. In the compression side of the second invention, the digital data of the basic waveform corresponding to the input π discrete data 値 is synthesized by oversampling and moving average operation or convolution operation, and the digital After interpolation, the above-obtained digital interpolation is sampled at the time interval when the differential absolute value becomes a minimum point, and the discrete amplitude data of each specimen point and this paper scale are applied to the Chinese National Standard (CNS) A4 Specifications (210X297 mm (please read the precautions on the back before filling out this page) Order printed by the Intellectual Property Bureau Employee Consumer Cooperatives of the Ministry of Economic Affairs 484259 Printed by the Intellectual Property Bureau Employee Consumer Cooperatives of the Ministry of Economic Affairs A7 B7 V. Invention Description (5) A combination of timing data indicating the time interval between each specimen point is obtained as compressed data. In the development side of the second invention, the amplitude data and timing data included in the compressed data are used, based on two consecutive specimens. The two amplitude data of the points and the timing data between them are obtained by interpolating the interpolation data between the above two amplitude data to obtain the expanded data. According to the second invention configured as described above, when the data on the time axis is compressed, time / frequency conversion is not performed, and processing on the frequency axis can be performed on the time axis. Furthermore, when the data compressed on the time axis is expanded, Data can also be processed on the time axis. With this, it is possible to simplify the processing of compression and expansion to shorten the processing time, and also to simplify the structure. Furthermore, the compressed data is transmitted from the compression side. In the case of expansion on the expansion side, it is also possible to process the compressed data inputted to the expansion side in order to reproduce it in a simple interpolation operation on the time axis, so that real-time action can be achieved. In this way, high compression ratio can be achieved by only using the data of the specimen point as compressed data. This specimen point is equivalent to the part of the signal that is folded back in the compression target signal. Because of the minimum points necessary to reproduce the original data, the reproducibility of the original data is good, and high-quality reproduced data can be obtained. In the second invention, when oversampling and convolution operations are performed on digital data to obtain an interpolation 値, in order to obtain a certain interpolation 只, only a limited number of discrete data may be considered, and no rounding is generated. Because of the error, the correct interpolation can be obtained. Therefore, the paper size used for this compression is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -8- (Please read the precautions on the back first (Fill in this tribute again) 484259 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Invention description (6) In the case of shrinking processing, the materials reproduced on the unfolding side can improve the reproducibility of the original materials before compression In the compression side of the third invention, the inputted digital data is differentiated, and the point where the polarity of the differential chirp changes is detected as the specimen point, and the discrete compression amplitude data of each specimen point is obtained with the specified binarization. Integer digital data, the combination of the compressed amplitude difference data which is the result of calculating the difference between the compressed amplitude data and the timing data indicating the time interval between each specimen point is used as a pressure. Obtained information. In the development side of the third battalion, the multiple integrals are evenly sampled with the above-mentioned compressed amplitude difference data, and a moving average operation is performed on the integral 値, and the moving average operation 値 and timing obtained by using The data is obtained by interpolating the squared interpolated data between the amplitude data of each specimen point with the time interval displayed by the above-mentioned timing data, and taking this as expanded data. In another form of the third invention, on the compression side, the input digital data is rounded by the first frame, and the differential is changed by the first rounded digital data to change the polarity of the differential frame. The point is detected as a specimen point, and as the discrete compressed amplitude data of each specimen point, digital data obtained by rounding the second frame larger than the first frame is obtained. In another aspect of the third invention, on the compression side, the compression amplitude difference data and the timing data are converted into variable-length block data. In another form of the third invention, in the unfolding side, the compressed amplitude difference data that is oversampled by an even number of times is applied to the Chinese paper standard (CNS) A4 specification (210X297 mm) by the above paper with the timing data ) I (Please read the precautions on the back before filling this page) -9-484259 A7 Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs B7 V. Description of the invention (7) Each of the separated points shown in the specimen The position sign is reversed, and multiple integrals are obtained from the data rows thus obtained. In another aspect of the third invention, in the development side, multiple integrations and moving average calculations of the above-mentioned even-amplified compressed amplitude difference data are performed at each division of each specimen point. According to the third invention configured as described above, when the signal on the time axis is compressed, it is possible to perform processing on the frequency axis without performing time / frequency conversion, and to perform processing on the time axis. When the compressed data is unfolded, it can be processed on the time axis. This simplifies the processing of compression and expansion, can shorten the processing time, and can simplify the configuration to this. In addition, during the unfolding process, by using a simple square interpolation operation on the time axis, the input compressed data can be sequentially processed and reproduced without using table information, and real-time operations can be realized. According to the third invention, compressed data can be generated only from discrete data with little difference between the amplitude data of the sample point of the digital data, the polarity change, and the timing data indicating the time interval between the occurrence of each sample point. In addition, since the amplitude data of each specimen point is rounded up by a predetermined scale, the data length of the amplitude data can be reduced by one digit per character, and the amount of data can be greatly reduced here. Furthermore, in the third invention, instead of using the rounded amplitude data as the compressed data as it is, the differential data is obtained. As the compressed data, the number of bits necessary for the compressed data can be made smaller and more Reduce the amount of data. In addition, according to the other features of the third invention, the compressed amplitude difference data and timing data obtained as described above are coded into a variable-length block capital paper size that applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling in this page) -10- 484259 A7 B7 V. Description of the invention (8) Material, as the final compressed data, can further increase the compression rate. (Please read the precautions on the back before filling in this page.) Also, according to the third invention, the turning point in the signal of the compression target is detected as the specimen point, and the original data is reproduced by interpolation on the expansion side. The minimum necessary points are all included in the compressed data. Therefore, by improving the reproducibility of the original data, high-quality reproduced data can be obtained. In addition, according to the other features of the third invention, the differential point is appropriately rounded digital data to detect the specimen point, so that the position of noise components or unwanted signal components can not be detected as the specimen point. It is possible to detect only the correct position as the specimen point. This makes it possible to improve the reproducibility of the original data before compression with respect to the expanded data reproduced on the unfolding side. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. According to the other features of the third invention, the compression amplitude difference data symbol that is evenly oversampled at the middle position of each division of each specimen point is reversed. When multi-integration and moving average calculations are performed on the data column whose symbols are reversed, the rounding error on the compression side can be canceled, and the digital waveform with a change in amplitude 更 can be reproduced more smoothly. In addition, according to another feature of the third invention, in the development side, the multiple integration is performed at each division of each specimen point, which can eliminate a cumulative error due to integration and can reproduce a more accurate digital waveform. Brief Description of Drawings Fig. 1 is a diagram for explaining a compression method according to the first embodiment. Fig. 2 is a diagram for explaining a developing method according to the first embodiment. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -11-484259 Α7 Β7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (9) Figure 3 shows the moment shown in Figure 2 The interval from T 1 to T 2 is a diagram showing the interpolation principle of this embodiment. Fig. 4 is a diagram showing an example of a sampling function. Fig. 5 is a graph showing the relationship between discrete data and the interpolation between these. Fig. 6 is a diagram for explaining an interpolation operation expression of a specific example of data interpolation processing on the development side. FIG. 7 is a diagram showing the processing results for the case where oversampling and convolution operations are applied between the times T 1 and T 2 shown in FIG. 2. Fig. 8 is a diagram showing other processing results in a case where oversampling and convolution operations are applied. Fig. 9 is a block diagram showing a configuration example of a compression device according to the first embodiment. I 1 0 is a block diagram showing an example of the configuration of the average unitary interpolation data generating section in FIG. 9. _ 1 1 is a block diagram showing a configuration example of the timing synthesizer in FIG. 9 _ 1 2 is a block diagram showing a configuration example of a deployment device according to the first embodiment. _ 1 3 is a block diagram showing a configuration example of a compression device according to the second embodiment. ® 1 4 is a block diagram showing a configuration example of a deployment device according to the second embodiment. Fig. 15 is a waveform diagram showing a digital substrate used in the second embodiment. The size of this paper applies to China) A4 size (21 × 297 mm) (Please read the notes on the back before filling out this page) -12- 484259 A7 B7___ V. Description of the invention (1〇) Figure 16 illustrates the second implementation This figure shows the operation examples of type oversampling and convolution operation. (Please read the precautions on the back before filling out this page.) Figure 17 shows the function generated by the digital substrate waveform shown in Figure 15. Fig. 18 is a diagram showing a configuration example of the oversampling circuit shown in Fig. 13. Fig. 19 is a diagram showing an example of digital data input into the compression device of the second embodiment. Fig. 20 is a diagram showing an example of data obtained by outputting the digital data shown in Fig. 19 through the oversampling circuit of Fig. 13. FIG. 21 is a diagram showing a configuration example of the differentiator shown in FIG. 13. FIG. 22 is a diagram showing an example of data obtained by passing the oversampled data shown in FIG. 20 through the differentiator of FIG. 13. Fig. 23 is a diagram for explaining the processing in the case where the same absolute differential is continuously generated. Fig. 24 is a block diagram showing an example of a configuration for detecting a specimen point by performing double differentiation. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 25 shows an example of compressed data that is output from the oversampled data shown in Figure 20 through the results of the compressed data generation unit shown in Figure 13. Fig. 26 is a diagram for explaining other examples of data interpolation processing on the expansion side. Fig. 27 is a view showing a case where the compressed data shown in Fig. 25 is used as an object for expansion processing. The expansion processing section of Fig. 14 An example of the expanded data being output. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -13 · 484259 A7 B7 V. Description of the invention (n) Figure 2 8 is a block diagram showing a configuration example of a compression device according to the third embodiment . (Please read the precautions on the back before filling this page) Figure 2 9 is a diagram explaining the operation principle of the timing generator and amplitude generator in Figure 28. Fig. 30 is a block diagram showing a configuration example of the timing generator in Fig. 28. FIG. 31 is a diagram showing a detailed configuration example of a part that generates a timing pulse. Fig. 32 is a diagram for explaining an actual operation example of the compression process performed by the compression device of the third embodiment. FIG. 33 is a diagram showing an example of the structure of the serial compressed block data according to the third embodiment. Fig. 34 is a block diagram showing a configuration example of a deployment device according to the third embodiment. Fig. 35 is a diagram showing a detailed configuration example of the square interpolation data generating section in Fig. 34. Fig. 36 is a diagram for explaining the actual operation utilization of the unfolding processing performed by the unfolding device of the third embodiment. Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 37 shows an example of the original data and the expanded data before compression. Comparison table of main components 1 Oversampling circuit 2 PLL circuit 3 Differentiator 4 Compressed data generation department The paper size applies Chinese National Standard (CNS) A4 specification (21 × 297 mm) -14-484259 A7 B7 V. Description of the invention (12 ) 5 Error correction coding section 6 Data memory 1 1 Error correction circuit 1 2 Clock generator 1 3 Timing generator 1 5 Unrolled processing section 1 6 D / A converter 2 1 Normalized data record 2 2 Phase shift section 4 1 1st differential section 4 2 Rounding calculation section 4 3 2nd differential section 4 4 Polarity change check 4 6 Data generating section 1 1 1 Timing generator 1 1 2 Amplitude generator (please read the precautions on the back first) (Fill in this page) 41. Order the best form for printing and implementing the invention by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Below, one implementation form of the present invention will be described with reference to the drawings. (First embodiment type) Fig. 1 is a diagram for explaining a compression method according to the first embodiment, and shows an example of an input analog signal to be compressed. Fig. 2 is a diagram for explaining a developing method according to this embodiment. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297mm) -15- 484259 A7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs B7 V. Description of the invention (13) First, the compression processing will be described using FIG. In this embodiment, from the input analog signal 1 0 1, the differential absolute value 値 (the tilt of the signal) is detected to be a point below the specified value including A 0 〃 (hereinafter, referred to as the specimen point) 1 0 2 a ~ 1 0 2 f. Further, obtain digital data that converts the amplitude of each of the specimen points 1 0 2 a to 1 0 2 f by analogy to digital digits 値 and timing data indicating the time interval at which each specimen point 1 0 2 a to 1 〇 2 f appears. , The combination of this amplitude data 値 and timing data 传送 is transmitted or recorded as compressed data. In the example of FIG. 1, as the amplitude data 値 of the digits 1 0 2 a to 1 2 2 f for each specimen point, '' 7, 3, 9, 1, 6, 3 〃 is obtained as the specimen point 1 0 2 a ~ 1 0 2 f at the time of occurrence T 1-T 2, D 2-T 3, T 3-T 4, T 4-T 5, .T 5-T 6 Time interval data, find '' 5, 7, 3, 3, 3 〃. The numbers displayed as timing data here indicate the number of clocks based on a certain sampling frequency. At the time point of time T 1, the amplitude data of the specimen point 1 0 2 a 値 “7” and the timing data indicating the time interval from the time when the previous specimen point (not shown) is detected (Not shown), the combination of these data frames is transmitted or recorded as compressed data at time T 1. Then, at the time point T 2 when the specimen point 1 0 2 b is detected, timing data of the time interval from the time T 1 when the specimen point 1 0 2 a is detected before can be obtained 可以获得 '' 5 〃 And the amplitude data of the specimen point 1 0 2 b 値 3 3 故, the combination of these data 本 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before (Fill in this page) -16- 484259 A7 B7 V. Description of the invention (14) (5, 3) is transmitted or recorded as compressed data at time T2. (Please read the precautions on the back before filling in this page.) Then, at the time point T 3 when the specimen point 1 〇 2 c is detected, you can get the time before the specimen point 1 0 2 b is detected. The timing data of the time interval from T 2 値 '' 7 〃 and the amplitude data of the specimen point 1 〇 2 c 値 '' 9 〃 For this reason, the combination (7, 9) of these data is used as the compressed data at time T 3 Transmit or record. The same applies below, showing the timing data of the time interval between time T3-T4, time T4-T5, time T 5-T 6 and the specimen points detected at time T 4, T 5, T 6 1 〇 2 The combination of amplitude data 値 of d, 10 2 e, 1 〇 2 f (3, 1), (3, 6), (3, 3) are transmitted as compressed data at time T 4, T 5, T 6 respectively. Or record. Next, the expansion processing of the data compressed as shown in FIG. 1 will be described with reference to FIG. 2. In the case of compressing the input analog signal 1 0 1 in the manner shown in FIG. 1, the obtained compressed data becomes (*, 7) (5, 3) (7, 9) (3, 1) (3, 6) (3, 3). Also, * is printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Enter the compressed data in the order shown here on the expansion side. On the unfolding side, first, the data of the amplitude data 値 a 7 〃 and the timing data 値 '' 5 输入 which are inputted first are used to generate the data of the waveform a 1 by interpolation. Next, from the above timing data 値 '5 上述 and the next input amplitude data 値 3 输入 2 data 値, the data of waveform a 2 is generated by interpolation. Then, from the above-mentioned amplitude data (A 3) and the entered standard paper size, the Chinese National Standard (CNS) A4 specification (210X297 mm) is applied. &Quot; -17- 484259 Printed by the Employee Consumption Cooperative of Intellectual Property Bureau, Ministry of Economic Affairs A7 B7 V. Description of the invention (15) The data 値 '' 7 〃 2 data 値, the data of waveform b 2 is generated by interpolation. Further, from the above-mentioned timing data 値, 7 〃, and then the input amplitude data 値 '' 9 〃, data of waveform b 1 is generated by interpolation. The following is the same. The waveforms c 1, c 2, d 2, d 1, e 1, e 2 are sequentially generated from the combination of the amplitude data 値 and the timing data 输入 which are sequentially input. With the above processing, the digital signals of waveform a1, b1, c1, d1, and e1 (the upper part of Fig. 2) and waveforms a2, b2, c2, d2, and e2 are continuous. A continuous digital signal (lower part of Figure 2) is generated. Then, the two digital signals thus generated are added to each other to perform digital-to-analog conversion, and the original analog signal shown in Fig. 1 is reproduced. Fig. 3 shows the interval between Ding 1 and Ding 2 at the time shown in Fig. 2 and is not displayed. Fig. 3 (a) shows the two waveforms a1, a2 before addition, and Fig. 3 (b) shows The synthesized waveform a 1 + a 2 reproduced by the addition. In FIG. 3 (a), D 1 is the amplitude data of time T 1 (in the example of FIG. 2, ', 7 〃), and D 2 is the time Amplitude data of T 2 (in the example in FIG. 2, 3, 3), T is timing data indicating the time interval between time τ 1 and τ 2 (in the example in FIG. 2, it is '' 5 〃) And t are arbitrary timings between time T1 and time T2. As shown in FIG. 3 (a), the amplitude data 値 D 1 at time T 1 and the timing data 値 T representing the time interval between time T 1 and T 2 are used, and any time between time T 1 and T 2 is used. Timing t is a variable, which means that according to the paper size, the Chinese National Standard (CNS) A4 specification (210X297 mm) is applied (please read the precautions on the back before filling this page), order-13- 484259 A7 B7 ____ V. Invention Explanation (彳 6) According to the clock of a certain sampling frequency, the data of waveform a 1 is generated by interpolation while increasing the timing t one by one. (Please read the precautions on the back before filling this page.) Also, use the amplitude data 値 D 2 at time T 2 and the timing data 値 T indicating the time interval between time T 1-T 2. Similarly, use time t as Data of the waveform a 2 by interpolation. Further, by adding the data of the waveforms a 1 and a 2 thus generated at the above-mentioned timing t as a variable, the waveform shown in FIG. 3 (b) is synthesized. In this way, the original analog signal before being compressed can be reproduced. In the following, the principle that the original analog signal can be reproduced by using the expansion processing by interpolation as described above will be described. In general, in order to obtain continuous analog signals from discrete digital data, interpolation is performed between the discretely input digital data to virtually increase the sampling frequency. Generally, such data interpolation is performed using a specified sampling function. Figure 4 shows an example of the sampling function. In the example in Figure 4, only the specimen point at t = 0 becomes 1 1 gt, all other specimen points at equal intervals (t = soil 1, soil 2, ± 3, soil 4, ...), 値All of them have been printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Fig. 5 is a diagram illustrating a general data interpolation operation using such a sampling function. In FIG. 5, it is considered that the discrete data 値 of equally spaced specimen points t 1, t 2, t 3, and t 4 are set to Y (t 1), Y (t 2), Y (t 3), and Y ( t 4), for example, to find the case where the specified position 丨 0 (distance 3 from 12) is interpolated 値 v corresponding to the specimen points t 2 and 丨 3. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) ~ -19- 484259 A7 B7 V. Description of the invention (17) (Please read the precautions on the back before filling this page) Generally use the sampling function to find When the interpolation 値 y is obtained, about each of the discrete data given, find 値 of the sampling function at the interpolation position t 0, and use this to perform the convolution operation. Specifically: each sample point of t 1 to t 4 makes the peak height of the center position of the sampling function consistent, and obtains the 値 of the sampling function of the individual interpolation position t 〇 at this time (indicated by X mark) And add them all up. This interpolation process is performed by sequentially shifting the interpolation position t 0 with the passage of time (in parallel with the increase in the sampling clock), and sequentially obtain the interpolation 値 y (t 0) that changes continuously. By this, a continuous analog signal can be obtained which is smoothly connected between discrete data. This embodiment uses such a data interpolation processor. That is, as shown in FIG. 3 (a), at time T2, the first specimen is obtained from the amplitude data 値 D1 (= 7) and the timing data 値 T (= 5) that have been input. At the point (time T 1), at the same time as the waveform a 1 of the sampling function of 値 other than 〃, the amplitude data 値 D 2 (= 3) is printed and timed by the consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Data 値 T (= 5), find the waveform a 2 that forms part of the sampling function using 値 other than '' 0 中 in the second specimen point (time T 2). Moreover, by adding each of these waveforms a 1 and a 2 sequentially with each interpolation position t that moves sequentially over time, an analog signal between the continuous discrete data D 1 and D 2 is obtained. Here, after obtaining the data of the waveforms a 1 and a 2 respectively, they will be added together to explain, but at the time point of time T 2, all the data for generating the synthesized waveforms a 1 and a 2 have been For this reason, you can also apply the Chinese National Standard (CNS) A4 specification (210X297 mm) to this paper size. -20-484259 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 _ B7 __ V. Description of the invention (18) The specified calculation formula, etc., once obtained the synthesized waveform. However, in this embodiment, as shown in FIG. 1, on the compression side, the input analog signal 1 0 1 which is smoothly changed is sampled at a time interval whose differential absolute 値 becomes a point below the specified 値 to obtain Discrete data as compressed data. Therefore, the interval between individual specimen points for which discrete data can be obtained is not limited to equal intervals. In many cases, it is an indefinite interval. (In the example of FIG. 1, the interval between each specimen point becomes `` 5, 7, 3, 3, 3 indefinite intervals). Therefore, in the unfolding side shown in FIG. 2, for example, when the interpolation 値 between the times T 1 and T 2 is obtained, as shown in FIG. 3, the time between the specimen points at the times T 1 and T 2 The interval uses only the sampling functions a 1 and a 2 and performs the convolution operation as described above. The time interval between the specimen points is different. The other sampling functions bl, b2, cl, c2, dl, d 2, e 1, e 2 are not taken into account in this convolution operation. For example, when interpolating between time T 2-T 3 is obtained, the time interval (= 7) between the specimen points at time T 2 and T 3 is rolled using only the sampling functions b 1 and b 2 For product operations, other sampling functions a 1, a 2, c 1, c 2, dl, d2, el, and e2 with different time intervals between specimen points are not considered during the convolution operation. The same applies to the interpolation between other specimen points. That is, in the compression-expansion system of this embodiment, on the compression side, the input analog signal 1 0 1 which is smoothly changed is sampled at an indefinite time interval below which the absolute value 値 becomes the specified value, and discrete amplitudes are obtained as compressed data The timing of the data frame and the variable time intervals that represent these. And this paper size applies Chinese National Standard (CNS) A4 specification (21〇 > < 297 mm) (Please read the notes on the back before filling in this search) -21-484259 A7 _ B7 V. Invention Description (19) (Please read the notes on the back before filling out this page) In the side, following the amplitude data 定时 and the timing data 被 included in the compressed data, as in the compressed side, a continuous analog signal is generated between discrete data that is connected to indefinite time intervals by using the interpolation function of the sampling function described above. . Next, a specific processing example of the above-mentioned data interpolation will be described below. As described above, for example, when the interpolation 値 between the times T 1-T 2 is obtained, only the time interval between the amplitude data 値 of the times T 1 and T 2 and the time between the times T 1-T 2 is used. Timing data: the obtained sampling functions a 1 and a 2. That is, all the data necessary to obtain the interpolation position t at each of the interpolation positions t between time T 1 and T 2 are obtained at the time point T 2. At this time point, it can be reproduced as shown in FIG. 3 (b). The original analog signal. Therefore, in this embodiment, two amplitude data 値 D1, D2 and timing data 値 T indicating the time interval can be obtained at each discrete time of T1 ~ T6, using these data 値, By following the interpolation expressions described below to calculate the interpolation 値, the original analog signals are sequentially reproduced. FIG. 6 is a diagram for explaining the interpolation expression. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs as shown in Fig. 6, it has amplitude data (D 1 and D 2 interpolation between the two specimen points). The numbers X 1 and X 2 are expressed as a function that is continuous at intermediate time points. That is, in this embodiment, the two specimen points are divided into the first half and the second half, and the interpolation 値 is calculated using the quadratic functions X 1 and X 2 respectively. Here, the timing data T of the time interval between the specimen points may be odd or even. In the case of odd numbers, the paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) just in the middle. ) -22-484259 A7 B7 _ ___ V. Description of the invention (20) (Please read the notes on the back before filling this page) There is no state where the position t is interpolated. Therefore, in the present embodiment, by performing twice the oversampling at the time of compression, the timing of the obtained lean material is suspended to become an even number. That is, the five timings shown in FIG. 1 値 5, 7, 3, 3, 3, / r are actually oversampled by 2 times, and 、, 10, 1, 4, 6, 6, 6 〃値 is transmitted or stored. In Fig. 6, the time interval between specimen points is represented by 2T after being oversampled. In Figure 6, the two second-order functions X 1 and X 2 are respectively represented by: X 1 = D 1 + at 2… (1) X 2 = D 2-a (t-2 T) 2… (2) . In addition, these functions X 1 and X 2 are continuous at exactly the intermediate time point T of the continuous specimen point, so X 1 = X 2 (t = T) ". (3) Here, in formula (3) Substituting into the formula (1) (2), becomes ...
Dl + aT2 = D2-aT2 ".(4) ,就a求解其,成爲· a= - (D1-D2)/2T2 -(5) 。因此,藉由將此式(5 )代入式(1 ) ( 2 ),獲 經濟部智慧財產局員工消費合作社印製 得: xl=Dl— {(Dl-D2)/2T2}t2 ...(6) x2 = D2 + { (D1-D2)/2T2} ( 2 T- t ) 2 …⑺ 即,以依循原來的2倍取樣頻率之時脈依序被增量之 內插位置t爲變數進行上述式(6) (7)之運算,可以 再生原來的類比信號。在本實施形態中,由振幅資料値與 定時資料値所形成之信號列於各離散時刻T 1〜T 6被輸 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -23- 484259 A7 _ B7 ___ 五、發明説明(21) 入而依序進行此種內插運算處理。 (請先閱讀背面之注意事項再填寫本頁) 即於圖2之例中,在時刻T 1、T 2之標本點的振幅 資料値與其之間的定時資料値被輸入之時間點,進行該標 本點間之內插運算,即刻再生原來之類比信號。進而,在 時刻T 3之標本點之振幅資料値與標本點T 2 - T 3間之 定時資料値被輸入之時間點,進行其之間的內插運算,即 刻再生原來的類比信號。以下同樣依序進行處理。 如此,於本實施形態中,可以不將成爲壓縮對象之類 比信號做時間/頻率轉換,在時間軸上進行壓縮、展開之 故,處理不會變複雜,也可以使構成簡單化。又,由壓縮 側傳送壓縮資料,在展開側進行再生之情形,藉由在時間 軸上之簡單的內插運算,可以依序處理被輸入之壓縮資料 .而再生之故,能夠實現即時動作。 又,顯示於上述式(6) (7)之內插運算處理也可 以藉由邏輯點路等之硬體構成而實現,也可以藉由D S P (Digital Signal Processor :數位信號處理器)或軟體(被 儲存在ROM或RAM等之程式)而實現。 經濟部智慧財產局員工消費合作社印製 接著,在以下說明上述資料內插之其它的處理例。此 處說明利用連續之標本點之各振幅資料値D 1、D 2與其 之間的定時資料値T,藉由進行2倍之過取樣與捲積運算 ,以求得內插値之方法。圖7係顯示對於圖2所示之時刻 T 1 一 T 2間,適用此過取樣與捲積運算之情形(d 1 = 7、D2 = 3、T=5)之處理結果之圖。 圖7中,最左之列r 1之4 〃之數字係2個振幅資 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) ~ -24- 484259 A 7 B7 __ 五、發明説明(22) 料値D 1、D 2之差分値(=D 1 - D 2 )。此'、4 〃之 數字在縱方向排列1 0個係顯示上述振幅資料値D 1、 (請先閱讀背面之注意事項再填寫本頁) D 2之差分値1個時脈1個時脈一面依序被延遲一面被保 持在只有定時資料値T = 5之2倍的數被從屬接續之未圖 示出的D型正反器等之狀態。 又,由左起第2列r 2之數値列係顯示使第1列r 1 之各標本値錯開1時脈之結果。進而,第3〜第5列r 3 、r 4、r 5之各數値列係顯示使第2列r 2之各標本質 進而依序各錯開1時脈之結果。 .又,第6列r 6之數値列係顯示在對應之行間相加第 1〜第5列r 1〜r 5之數値列之結果,即,對於第1〜 第5列r 1〜r 5之數値列,進行5段之捲積運算之結果 。又,第7〜第1 0列r 7、r 8、r 9、r 1 〇之各數 値列係顯示將在第6列r 6進行捲積運算之結果之各標本 値進而1時脈1時脈依序錯開之結果。 經濟部智慧財產局員工消費合作社印製 又,第1 1列r 1 1之數値列係顯示在對應之行間相 加第6〜第1 0列r 6〜r 1 0之數値列之結果,即,對 於第6〜第1 0列r 6〜r 1 0之數値列,進行5段之捲 積運算之結果。又,第1 2列r 1 2之數値列係顯示將在 第1 1列r 1 1進行捲積運算之結果之各標本値進而錯開 1時脈之結果。 進而,第1 3列r 1 3之數値列係顯示在對應之行間 相加第1 1歹fj r 1 1與第1 2列r 1 2之數値列之結果。 如以M t表示此第1 3列r 1 2之藉由加法而獲得之數値 本紙張尺度適用中.國國家標準(CNS ) A4規格(210Χ297公釐) -25- 484259 A7 _ B7 ____ 五、發明説明(23 ) 列,內插2個之振幅資料値D 1、D 2之間的內插値 Sout由下式表示:Dl + aT2 = D2-aT2 ". (4), solve a for it, and become a =-(D1-D2) / 2T2-(5). Therefore, by substituting this formula (5) into formula (1) (2), it is printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs: xl = Dl— {(Dl-D2) / 2T2} t2 ... ( 6) x2 = D2 + {(D1-D2) / 2T2} (2 T- t) 2… ⑺ That is, the interpolation is performed by using the variable t at the interpolation position t in the order of the original 2 times the sampling frequency. The operation of the above equations (6) and (7) can reproduce the original analog signal. In this embodiment, the signals formed by the amplitude data 値 and the timing data 列 are listed at each discrete time T 1 ~ T 6. The paper size is applied to the Chinese National Standard (CNS) A4 (210X297 mm) -23- 484259 A7 _ B7 ___ V. Description of the Invention (21) Enter and perform such interpolation operation processing in order. (Please read the precautions on the back before filling this page.) In the example in Figure 2, at the time point T 1 and T 2 the amplitude data of the specimen point 値 and the timing data between them are input. Interpolation between specimen points instantly reproduces the original analog signal. Furthermore, at the time point T 3, the amplitude data of the specimen point and the timing data between the specimen points T 2-T 3 are inputted, and an interpolation operation is performed therebetween to instantly reproduce the original analog signal. The following processes are also performed in the same order. As described above, in this embodiment, instead of performing time / frequency conversion on an analog signal to be compressed, compression and expansion are performed on the time axis, processing is not complicated, and the configuration can be simplified. In addition, in the case where compressed data is transmitted from the compression side and reproduced on the expansion side, the input compressed data can be sequentially processed by simple interpolation operations on the time axis, and real-time actions can be realized for reproduction. In addition, the interpolation calculation processing shown in the above formulas (6) and (7) may be implemented by hardware such as a logic point circuit, or may be implemented by a DSP (Digital Signal Processor) or software ( Programs stored in ROM or RAM). Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Next, other processing examples of the above-mentioned data interpolation will be described below. Here, it is explained that the amplitude data 値 D1, D2 and the timing data 値 T between the continuous sample points are used to obtain the interpolation 値 by performing oversampling and convolution operations twice. FIG. 7 is a diagram showing the processing results for the cases (d 1 = 7, D2 = 3, and T = 5) where the oversampling and convolution operation is applied between the times T 1 and T 2 shown in FIG. 2. In Figure 7, the leftmost column r 1 to 4 is a figure of 2 amplitudes. The capital paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) ~ -24- 484259 A 7 B7 __ V. Description of the invention (22) The difference between materials D1 and D2 (= D1-D2). The numbers of ', 4' are arranged in the vertical direction. 10 shows the amplitude data. D1, (please read the precautions on the back before filling this page) D2 difference 値 1 clock 1 clock Sequentially delayed, it is maintained in a state where only the timing data 値 T = 5 is twice the number of D-type flip-flops (not shown). The number 値 of the second row r 2 from the left shows the result of shifting each specimen 第 of the first row r 1 by 1 clock. Furthermore, each of the third to fifth columns r 3, r 4, and r 5 shows the result of shifting the nature of each of the targets in the second column r 2 and shifting each clock in order. In addition, the 6th row r 6 number row is the result of adding the 1st to 5th row r 1 to r 5 number row between the corresponding rows, that is, for the 1st to 5th column r 1 to The sequence of numbers of r 5 is the result of a 5-stage convolution operation. The 7th to 10th columns r 7, r 8, r 9, and r 1 0 are each a series of samples showing the results of the convolution operation in the 6th column r 6 and further 1 clock 1 The results are sequentially shifted. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. The first 11th column r 1 1 is the result of adding the 6th to 10th columns r 6 to r 1 0 That is, for the 6th to 10th columns r 6 to r 10, the result of the convolution operation of 5 stages is performed. In addition, the number 12 of the 12th column r 1 2 shows the results of convolution operations performed on the 11th column r 1 1 and the results are shifted by 1 clock. Further, the number row of the 13th row r 1 3 is the result of adding the number row of the 11th? Fj r 1 1 and the 12th row r 1 2 between the corresponding rows. For example, M t represents the number of rows 13 and r 1 2 obtained by addition. The paper size is applicable. National Standard (CNS) A4 (210 × 297 mm) -25- 484259 A7 _ B7 ____ 5 The invention description (23) column, the interpolation of the two amplitude data 値 D1, D2 interpolation Sout is expressed by the following formula:
Sout=Dl—Mt (Dl— D2)/(8TxT) =7 - M t / 5 0 如描繪此內插値S ο u t,成爲如圖7之曲線,可以 再生與圖1之時刻T 1 一 T 2間同樣之類比信號。 即,2個之振幅資料値D 1、D 2之大小關係相反之 情形,例如,D 1 = 3、D 2 = 7之情形,2倍之過取樣 與捲積運算之結果,成爲如圖8所示。 藉由在全部的標本點間依序進行此種資料內插處理, 可以再生圖1所示之原來的類比信號。又,上述圖7以及 圖8所示之運算可以藉由適當組合使資料値1時脈1時脈 一面延遲一面保持用之複數的D型正反器、加法器以及乘 法器之硬體構成而實現。 接著,說明實現以上說明之壓縮處理以及展開處理用 之構成。圖9係顯示依據本實施形態之壓縮裝置之構成例 之方塊圖。 圖9中,輸入類比信號1 〇 1爲了容易進行標本點之 檢測,藉由L P F 1 〇 3去除雜訊後,藉由A / D轉換器 1〇4被轉換爲數位資料。此時,A / D轉換器1 〇 4依 循由指定頻率(例如,聲音信號之情形,4 4 . 1 Κ Η z )之輸入時脈CK〇藉由PLL ( Phase Locked Loop :鎖 相迴路)電路1 0 5被產生之2倍頻率(8 8 . 2 Κ Η z )之時脈C Κ 1實行a / D轉換處理。 本紙張尺度適用中國國家標隼(CNS ) A4規格(210 X297公釐) " " -26- (請先閲讀背面之注意事項再填寫本頁) 訂 f 經濟部智慧財產局員工消費合作社印製 484259 A7 B7 五、發明説明(24) (請先閱讀背面之注意事項再填寫本頁) 平均値內插資料產生部1 0 6以2倍之頻率過取樣由 A / D轉換器1 0 .4被輸出之數位資料。而且,對於藉由 此所獲得之複數之標本値,在連續之標本値間分別運算其 之平均値,產生內插資料。即,如過取樣被輸入之數位資 料,可以獲得相同値2個2個連續之數列。對於此種數歹 ,如利用連續之相同値,計算平均値,値維持原樣,如利 用連續之不同的値計算平均値,可以獲得該不同値彼此之 中間値。 圖1 0係顯示此平均値內插資料產生部1 0 6之構成 例之方塊圖。圖1 0中,D型正反器2 0 1依循成爲基準 之輸入時脈C K 〇保持由圖9之A / D轉換器1 〇 4被輸 出之數位資料。又,被接續於其後段之D型正反器2 0 2 依循上述輸入時脈C K 〇之2倍頻率之時脈C K 1保持由 D型正反器2 0 1被輸出之數位資料。 經濟部智慧財產局員工消費合作社印製 而且,加法器2 0 3相加被保持於上述2個之D型正 反器2 0 1、2 0 2之數位資料,將其結果輸出於1 / 2 乘法器2 0 4。1 / 2乘法器2 0 4使加法器2 0 3之相 加結果成爲1 / 2倍,將其結果依循2倍頻率之時脈 C K 1保持於D型正反器2 0 5。而且,將保持於此D型 正反器2 0 5之數位資料當成伴隨2倍過取樣之內插資料 輸出。 藉由設置此種平均値內插資料產生部1 〇 6,可以使 表示微分絕對値成爲指定値以下之標本點間的時間間隔之 定時資料値經常成爲偶數,此即使不進行因是否爲偶數或 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 27- 484259 A7 B7 __ 五、發明説明(25 ) (請先閱讀背面之注意事項再填寫本頁) 奇數而分開處理之複雜的處理也行。又,不單進行過取樣 ,計算連續之標本値之平均値而輸出之故,可以使階段狀 之資料波形成爲更接近原來之類比波形之平滑的波形。因 此,可以提升藉由後述之展開裝置以進行展開處理時之原 來的類比信號之再現性。 藉由此平均値內插資料產生部1 0 6被過取樣之數位 資料被輸入定時合成器1 0 7以及壓縮處理部1 0 8。定 時合成器1 0 7微分由平均値內插資料產生部1 0 6所被 供給之數位資料,檢測標本點。而且,求得表示此檢測點 之定時之取樣時脈與表示各標本點間之時間間隔之定時資 料(2倍頻率時脈C K 1之數目)而輸出之。 圖1 1係顯示此定時合成器1 0 7之構成例之方塊圖 。圖1 1中,微分器3 0 1微分由平均値內插資料產生部 1 0 6被輸入之數位資料。又,標本點檢測部3 0 2依據 藉由上述微分器3 0 1被微分之結果,檢測數位資料之微 分絕對値成爲指定値以下之標本點。 經濟部智慧財產局員工消費合作社印製 定時產生部3 0 3計數由1個之標本點被檢測之後, 下一標本點被檢測爲止所被供給之2倍頻率時脈C K 1之 數目,將此當成定時資料輸出之同時,輸出表示各標本點 之檢測點的定時之取樣時脈。又,此定時產生部3 0 3也 產生輸出後述之讀出時脈。 又,上述壓縮處理部1 0 8依循由此定時合成器 1 0 7被輸出之取樣時脈,只取出該相符之標本點位置之 數位資料,當成振幅資料輸出。F I F 0記憶體1 〇 9依 本紙張尺度適用中國國家標準(CNS ) A4規格(210父297公釐丁 ' ' ' -23- 484259 A7 B7 __ 五、發明説明(26) (請先閲讀背面之注意事項再填寫本頁) 循取樣時脈取入由壓縮處理部1 0 8被輸出之各標本點之 振幅資料與表示由定時合成器1 0 7被輸出之各標本點間 之時間間隔之定時資料之組合,依循讀出時脈,依序讀出 。由此被讀出之振幅資料與定時資料之組合當成壓縮資料 被傳送或記錄。 圖1 2係顯示依據本實施形態之展開裝置之構成例之 方塊圖。圖1 2中,時脈產生器4 0 1由成爲基準之輸入 時脈C K 〇產生2倍之頻率的時脈C K 1。又,定時產生 器4 0 2接受被包含在壓縮資料中之定時資料,由上述2 倍頻率時脈C K 1產生與在壓縮側被檢測之標本點間相同 表示不定的時間間隔之讀出時脈。 經濟部智慧財產局員工消費合作社印製 D型正反器4 0 3將被包含在壓縮資料中之振幅資料 以依循由上述定時產生器4 0 2被產生之讀出時脈依序取 入而保持,輸出於展開處理部4 0 4。上述D型正反器 4 0 3之輸入輸出段之振幅資料,即在某讀出時脈之定時 被保持在D型正反器4 0 3之振幅資料,以及在下一讀出 時脈應被保持在D型正反器4 0 3之振幅資料(連續之2 個的標本點之2個的振幅資料)被輸入此展開處理部 4 0 4 〇 展開處理部4 0 4利用如此被輸入之2個之振幅資料 與由定時產生器4 0 2被輸入之定時資料,藉由依據上述 之式(6) (7)之內插運算,或以圖7以及圖8所示之 捲積運算,產生各標本點間之數位內插資料。而且,將如 此產生之數位內插資料藉由D / a轉換器4 0 5轉換爲類 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇X 297公釐) -29- 484259 A7 B7 五、發明説明(27 ) 比信號後,透過L P F 4 0 6當成再生類比信號輸出。 (請先閲讀背面之注意事項再填寫本頁) 如以上詳細說朋般地,於本實施形態中,在壓縮側, 藉由以微分絕對値成爲指定値以下之不定的時間間隔取樣 平滑變化之輸入類比信號,作爲壓縮資料可以獲得離散的 振幅資料値與表示彼等之不定的時間間隔之定時資料値。 而且,在展開側中,依循被包含在壓縮資料中之振幅資料 値與定時資料値,以與壓縮側相同之不定的時間間隔讀出 離散資料,輸出藉由內插處理連續其間之連續的類比信號 〇 因此,在壓縮、展開時間軸上之類比信號之際,可以 不進行頻率轉換在時間軸上進行處理。因此,壓縮以及展 開之處理不會變複雜,也可以使爲此之構成簡單化。又, 由壓縮側傳送壓縮資料,在展開側再生之情形,藉由在時 間軸上之簡單的內插運算,可以依序處理被輸入展開側之 壓縮資料而再生之故,能夠實現即時動作。 經濟部智慧財產局員工消費合作社印製 又,在本實施形態中,將數位資料之微分絕對値成爲 指定値以下之點當成標本點而檢測出,由檢測之各標本點 之振幅資料値與表示各標本點出現之時間間隔之定時資料 値產生壓縮資料進行傳送或記錄之故,可以只將標本點之 資料當成壓縮資料而獲得,能夠達成高壓縮率。 又,如依據本實施形態,存在於壓縮對象之信號中的 回折點被當成標本點而檢測出,藉由展開側之內插運算, 再現原來資料之最低限度所必要之點全部被包含在壓縮資 料中。因此,可以提高對原來資料之再現性,能夠獲得高 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) " -30- 484259 經濟部智慧財產局員工消費合作社印製 A7 B7五、發明説明(28 ) 品質之再生資料。 又,在上述第1實施形態中,雖就壓縮對象之輸入信 號爲類比信號之情形而做說明,但是輸入信號也可以爲數 位信號。在此情形,圖9所示之L P F 1 〇 3與A / D轉 換器1 0 4、以及圖1 2所示之D / a轉換器4 0 5與 LPF406成爲不需要。 又,在上述第1實施形態中,雖於平均値內插資料產 生部1 0 6中,進行2倍之過取樣,但是只要爲偶數倍, 並不限定爲2倍。 (第2實施形態) 以下,依據圖面說明本發明之第2實施形態。第2實 施形態係輸入數位資料而加以壓縮者。在本實施形態之壓 縮裝置中,首先,藉由對於作爲壓縮對象被輸入之數位資 料進行η倍過取樣與移動平均運算或捲積運算(在以下, 稱爲捲積運算),獲得藉由內插接續離散的資料之間之更 平滑的資料。 接著,由如此獲得之一連串的資料中,與前後的位置 相比,將微分絕對値變小之位置,即微分絕對値成爲最小 之點當成標本點檢測出。而且,求得檢測出之各標本點的 振幅資料値與表示各標本點出現之時間間隔之定時資料値 ,將此振幅資料値與定時資料値之組合當成壓縮資料加以 傳送或記錄。 圖1 3係顯示依據實現上述之壓縮方式之本實施形態 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 一 -31 - (請先閲讀背面之注意事項再填寫本頁) 484259 A7 B7 __ 五、發明説明(29) 之壓縮裝置之全體構成例之方塊圖。 (請先閱讀背面之注意事項再填寫本頁) 如圖1 3所示般地,本實施形態之壓縮裝置爲具備: 過取樣電路1,以及P L L ( Phase Locked Loop )電路2 ,以及微分器3,以及壓縮資料產生部4,以及錯誤訂正 編碼部5,以及資料記憶體6而構成。 上述過取樣電路1係藉由對於作爲壓縮對象被輸入之 數位資料,進行η倍之過取樣與捲積運算,求得塡補離散 資料之間之數位的內插値者。在此圖1 3所示例中,作爲 壓縮對象之資料,輸入以4 4 . 1 Κ Η ζ之頻率被取樣之 聲音資料,將此以8倍之頻率(3 5 2 · 8 Κ Η ζ )過取 樣之同時,實行捲積運算。而且,將藉由此獲得之一連串 的過取樣資料輸出於微分器3以及壓縮資料產生部4。 PLL電路2係由基準頻率(44. ΙΚΗζ)之輸 入時脈CLK產生8倍頻率(352 · 8KHz)之時脈 8 C L K,在上述之過取樣電路1之外,供給於壓縮資料 產生部4、錯誤訂正編碼部5以及資料記憶體6者。在過 取樣電路1、壓縮資料產生部4、錯誤訂正編碼部5以及 經濟部智慧財產局員工消費合作社印製 資料記憶體6中,與此8倍頻率之時脈8 C L K同步動作 0 微分器3係將在上述過取樣電路1被產生之一連串的 過取樣資料於每一標本點微分,取得該絕對値輸出於壓縮 資料產生部4。 壓縮資料產生部4由上述過取樣電路1被供給之一連 串得過取樣資料中,將與前後的位置比較,微分絕對値變 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐) -32- 484259 Α7 Β7 五、發明説明(30 ) (請先閱讀背面之注意事項再填寫本頁) 小之位置當成標本點檢測出。而且,將檢測之各標本點之 振幅資料値與表示各標本點出現之時間間隔之定時資料値 之組合輸出於錯誤訂正編碼部5。此壓縮資料產生部4又 求得表示各標本點之檢測點的定時的定時時脈,輸出於資 料記憶體6。 錯誤訂正編碼部5爲了在傳送路徑上或記憶體上之數 位資料即使由於雜訊等變化而產生錯誤,也能檢測變化之 位元而正確訂正,於藉由上述壓縮資料產生部4被供給之 資料附加錯誤訂正符號。而且,將藉由此所獲得之資料當 成壓縮資料輸出於傳送路徑上或資料記憶體6。 資料記憶體6係儲存壓縮資料之記錄媒體,將藉由錯 誤訂正編碼部5被產生之壓縮資料依循由壓縮資料產生部 4來之定時時脈記錄。又,因應由外部所被給予之讀出要 求信號R E Q,讀出被儲存之壓縮資料而輸出。 又,圖1 4係顯示依據實現對應上述之壓縮方式之展 開方式之本實施形態之展開裝置之全體構成例之方塊圖。 經濟部智慧財產局員工消費合作社印製 如圖1 4所示般地,本實施形態之展開裝置係具有: 錯誤訂正電路1 1,以及時脈產生器1 2,以及定時產生 器1 3,以及D型正反器1 4,以及展開處理部1 5,以 及D / A轉換器1 6,以及低通濾波器(L P F ) 1 7而 構成。 上述錯誤訂正電路1 1輸入在圖1 3之壓縮裝置被產 生之壓縮資料,使用被附加於此之錯誤訂正符號,檢測在 傳送路徑上或記憶體上變化之位元,進行訂正錯誤之處理 本紙張尺度適用中國國家標隼(CNS ) A4規格(210Χ297公釐) -33 - 484259 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(31 ) 〇 時脈產生器1 2由基準頻率之輸入時脈0 L κ產生8 倍頻率之時脈8 C L Κ,將其供給於定時產生器1 3、展 開處理部1 5以及D / Α轉換器1 6。又,定時產生器 1 3由錯誤訂正電路1 1接受被包含在壓縮資料中之定時 資料,由上述8倍頻率之時脈8CLK產生表示與在壓縮 側被檢測之標本點間相同之不定的時間間隔之讀出時脈, 將其供給於錯誤訂正電路1 1以及D型正反器1 4。 D型正反器1 4將被包含在壓縮資料中之振幅資料以 依循藉由上述定時產生器1 3被產生之讀出時脈之定時由 錯誤訂正電路1 1依序讀入加以保持,輸出於展開處理部 1 5。上述D型正反器1 4之輸入輸出段之振幅資料,即 在某讀出時脈之定時被保持在D型正反器1 4之振幅資料 ,以及在接著之讀出時脈之定時應被保持在D型正反器 1 4之振幅資料(連續之2個的標本點之2個的振幅資料 )被輸入於此展開處理部1 5。 展開處理部1 5利用如此被輸入之2個振幅資料,以 及由定時產生器1 3被輸入之定時資料,藉由後述之內插 運算等,產生各標本點間之數位內插資料。D / A轉換器 1 6將如此被產生之數位內插資料轉換爲類比信號。又, 丄P F 1 7藉由對由上述D / A轉換器1 6被輸出之類比 信號進行低通濾波器之處理,去除雜訊,當成再生類比信 號而輸出。 接著,以下詳細說明顯示於上述圖1 3之壓縮裝置內 本紙張尺度適用中國國家標準( CNS ) A4規格(210X297公釐) " " " -34-Sout = Dl—Mt (Dl— D2) / (8TxT) = 7-M t / 5 0 If this interpolation 値 S ο ut is depicted, it becomes a curve as shown in Fig. 7, which can be reproduced at the time T 1 -T as shown in Fig. 1. The two analog signals are the same. That is, in the case where the two amplitude data 値 D 1 and D 2 have opposite magnitude relationships, for example, in the case of D 1 = 3 and D 2 = 7, the result of the oversampling and convolution operation at 2 times becomes as shown in FIG. 8 As shown. By sequentially performing such data interpolation processing among all the specimen points, the original analog signal shown in FIG. 1 can be reproduced. In addition, the operations shown in FIG. 7 and FIG. 8 described above can be implemented by appropriately combining the hardware configuration of a D-type flip-flop, an adder, and a multiplier for holding the data 値 1 clock 1 clock while delaying and holding the data achieve. Next, a configuration for implementing the compression processing and expansion processing described above will be described. Fig. 9 is a block diagram showing a configuration example of a compression device according to this embodiment. In FIG. 9, the input analog signal 1 〇 1 is easy to detect the specimen point. After removing noise by LP F 〇 3, it is converted into digital data by an A / D converter 104. At this time, the A / D converter 1 〇4 follows the input clock CK of a specified frequency (for example, in the case of a sound signal, 4 4. 1 Κ Η z) through a PLL (Phase Locked Loop) circuit. The clock C κ 1 of the twice frequency (8 8 2 8 Η z) generated by 1 0 is subjected to a / D conversion processing. This paper size applies to China National Standard (CNS) A4 (210 X297 mm) " " -26- (Please read the precautions on the back before filling this page) Order f System 484259 A7 B7 V. Description of the invention (24) (Please read the notes on the back before filling in this page) Average 値 Interpolation data generating section 10 6 Oversampling by 2 times the frequency by A / D converter 1 0. 4 Digital data to be output. Furthermore, for the plurality of specimens 藉 obtained by this, an average 値 is calculated between successive specimens 値 to generate interpolated data. That is, if over-sampling of the digital data is input, it is possible to obtain the same 値 2 2 consecutive series. For such a number 如, if the continuous 连续 is used to calculate the average 値, and 値 is maintained as it is, if the continuous 値 is used to calculate the average 値, the intermediate 値 between the different 値 s can be obtained. Fig. 10 is a block diagram showing an example of the structure of the average 値 interpolation data generating section 106. In Fig. 10, the D-type flip-flop 201 follows the input clock C K which becomes the reference, and holds the digital data outputted by the A / D converter 104 of Fig. 9. In addition, the D-type flip-flop 2 0 2 connected to the subsequent stage keeps the digital data output from the D-type flip-flop 2 01 according to the clock C K 1 which is twice the frequency of the input clock C K 0. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. The adder 2 0 3 is added to the digital data of the 2 D-type flip-flops 2 0 1 and 2 2 and the result is output to 1/2. The multiplier 2 0 4. The 1/2 multiplier 2 0 4 makes the addition result of the adder 2 0 3 1/2 times, and the result is kept at the D-type flip-flop 2 according to the clock CK 1 of the double frequency. 0 5. Furthermore, the digital data held in this D-type flip-flop 205 is output as interpolation data accompanied by double oversampling. By setting such an average 値 interpolation data generation unit 1 06, it is possible to make the absolute data of the differential 値 become the timing data of the time interval between the specimen points below the specified 値, which often becomes even, even if it is not performed because it is even or This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) 27- 484259 A7 B7 __ V. Description of the invention (25) (Please read the precautions on the back before filling this page) Odd numbers and complicated processing separately The processing is also OK. In addition, instead of oversampling, calculating the average value of consecutive specimens and outputting them, the phased data waveform can become a smoother waveform closer to the original analog waveform. Therefore, it is possible to improve the reproducibility of the original analog signal when performing the expansion processing by the expansion device described later. By this means, the digital data which is oversampled by the interpolation data generation unit 106 is input to the timing synthesizer 107 and the compression processing unit 108. The timing synthesizer 107 differentiates the digital data supplied by the average 値 interpolation data generation unit 106 to detect the specimen point. In addition, the sampling clock indicating the timing of this detection point and the timing data (the number of double frequency clocks C K 1) indicating the time interval between each specimen point are obtained and output. Fig. 11 is a block diagram showing a configuration example of the timing synthesizer 107. In FIG. 11, the differentiator 3 0 1 differentiates the digital data inputted by the average 値 interpolation data generating unit 1 0 6. In addition, the specimen point detection unit 3 02 detects that the differential of the digital data is absolutely not more than the designated specimen point based on the result of differentiation by the differentiator 3 01. The Ministry of Economic Affairs, Intellectual Property Bureau, Employees' Cooperatives, and the Producer's Department produced 3 3 counts the number of clocks CK 1 at twice the frequency that were supplied until the next specimen point was detected. When outputting timing data, the sampling clock indicating the timing of the detection points of each specimen point is output. In addition, this timing generating section 3 03 also generates a read clock which will be described later. In addition, the compression processing unit 108 follows the sampling clock output by the timing synthesizer 107 and extracts only the digital data of the corresponding specimen point position and outputs it as amplitude data. FIF 0 memory 1 〇9 according to this paper size applies Chinese National Standards (CNS) A4 specifications (210 father 297 mm Ding '' '-23- 484259 A7 B7 __ 5. Description of the invention (26) (Please read the back (Please fill in this page again for the matters needing attention.) The sampling timing is used to take in the amplitude data of each specimen point output by the compression processing unit 108 and the timing indicating the time interval between each specimen point output by the timing synthesizer 107. The combination of data is sequentially read out in accordance with the readout clock. The readout of the combination of amplitude data and timing data is transmitted or recorded as compressed data. Figure 12 shows the structure of the expansion device according to this embodiment. The block diagram of the example. In Figure 12, the clock generator 4 0 1 generates a clock CK 1 with a frequency twice as high as the reference input clock CK 〇. Moreover, the timing generator 4 0 2 accepts to be included in the compression The timing data in the data is generated by the above-mentioned 2 times frequency clock CK 1 and the readout clock representing an indefinite time interval is the same as that between the specimen points detected on the compression side. The type D type is printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Flip-flop 4 0 3 will be included The amplitude data in the compressed data is sequentially taken in and held in accordance with the readout clock generated by the timing generator 4 02, and output to the unrolling processing section 4 0. The D-type flip-flop 4 0 3 The amplitude data of the input and output sections, that is, the amplitude data of the D-type flip-flop 4 0 3 at the timing of a readout clock, and the D-type flip-flop 4 0 3 should be held at the next read-out clock. The amplitude data (amplitude data of two consecutive sample points) is input to the expansion processing unit 4 0 4 〇 The expansion processing unit 4 0 4 uses the two amplitude data thus input and the timing generator 4 0 2 The input timing data is generated by the interpolation operation according to the above formula (6) (7), or the convolution operation shown in FIG. 7 and FIG. 8 to generate digital interpolation data between each specimen point. In addition, the digitally interpolated data thus generated is converted into a paper-like standard by a D / a converter 4 0 5 and the paper standard is applicable to the Chinese National Standard (CNS) A4 (21〇X 297 mm) -29- 484259 A7 B7 5 Explanation of the invention (27) After the comparison signal, it is output as a reproduction analog signal through LPF 4 06. (Please first Read the notes on the reverse side and fill in this page) As mentioned above in detail, in this embodiment, on the compression side, the input analog signal is smoothly changed by sampling at variable time intervals that are different from absolute 値 to specified 値. As the compressed data, discrete amplitude data 値 and timing data indicating their indefinite time intervals can be obtained. Furthermore, in the expansion side, the amplitude data 値 and timing data 包含 included in the compressed data are followed in order to Read out discrete data at the same indefinite time interval on the compression side and output continuous analog signals between them by interpolation. Therefore, when compressing and expanding analog signals on the time axis, frequency conversion can be performed on the time axis. For processing. Therefore, the processing of compression and expansion is not complicated, and the structure for this can be simplified. In addition, in the case where compressed data is transmitted from the compression side and reproduced on the expansion side, the compressed data inputted on the expansion side can be sequentially processed and reproduced by simple interpolation operations on the time axis, and real-time operation can be realized. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. In this embodiment, the differential of the digital data is absolutely designated as the designated point and detected as the specimen point. The amplitude data of each detected specimen point is displayed and displayed. Because the timing data of the time interval at which each specimen point appears does not generate compressed data for transmission or recording, it is possible to obtain only the specimen point data as compressed data, which can achieve a high compression rate. In addition, according to this embodiment, the turning points existing in the signal of the compression target are detected as the specimen points, and the minimum necessary points for reproducing the original data are included in the compression by the interpolation operation on the expansion side. Information. Therefore, the reproducibility of the original materials can be improved, and the high paper size can be obtained. The Chinese National Standard (CNS) A4 specification (210X297 mm) can be obtained. 2. Description of invention (28) Reproducible data of quality. In the first embodiment described above, the case where the input signal to be compressed is an analog signal is described, but the input signal may be a digital signal. In this case, the L P F 103 and A / D converter 104 shown in Fig. 9 and the D / a converter 400 and LPF 406 shown in Fig. 12 are unnecessary. Further, in the first embodiment described above, although the oversampling is performed twice in the average 値 interpolation data generating section 106, it is not limited to two times as long as it is an even number. (Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings. In the second embodiment, digital data is input and compressed. In the compression device of this embodiment, first, η-fold oversampling and moving average operation or convolution operation (hereinafter, referred to as convolution operation) are performed on the digital data input as a compression target to obtain the internal data. Interpolate smoother data between successive data. Then, from a series of data obtained in this way, the position where the absolute differential 値 becomes smaller than the position before and after, that is, the point where the absolute absolute 値 becomes the smallest is detected as the specimen point. Furthermore, the amplitude data 値 of each detected sample point and the timing data 表示 indicating the time interval at which each sample point appears are obtained, and the combination of this amplitude data 値 and the timing data 压缩 is transmitted or recorded as compressed data. Figure 1 3 shows this embodiment according to the above-mentioned compression method. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm). -31-(Please read the precautions on the back before filling this page) 484259 A7 B7 __ V. Block diagram of an overall configuration example of the compression device of the invention description (29). (Please read the precautions on the back before filling this page) As shown in Figure 1 3, the compression device of this embodiment includes: oversampling circuit 1, PLL (Phase Locked Loop) circuit 2, and differentiator 3 , And a compressed data generating section 4, an error correction coding section 5, and a data memory 6. The above-mentioned oversampling circuit 1 performs an oversampling and convolution operation of n times the digital data that is input as a compression target, to obtain an interpolator of the digits between the complemented discrete data. In the example shown in Figure 13 below, as the data of the compression target, the sound data sampled at a frequency of 4 4. 1 κ Η ζ is input, and this is passed at a frequency of 8 times (3 5 2 · 8 Κ Η ζ). At the same time as sampling, a convolution operation is performed. Then, a series of oversampling data obtained thereby is output to the differentiator 3 and the compressed data generating section 4. The PLL circuit 2 generates a clock 8 CLK which is 8 times the frequency (352 · 8KHz) from the input clock CLK of the reference frequency (44. ΙΚΗζ). It is supplied to the compressed data generating unit 4 in addition to the oversampling circuit 1 described above. Error correction coding unit 5 and data memory 6. In the oversampling circuit 1, the compressed data generation unit 4, the error correction coding unit 5, and the printed data memory 6 of the employee property cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, this clock 8 clocks 8 clocks in synchronization with 0 differentiator 3 A series of oversampling data generated in the oversampling circuit 1 is differentiated at each specimen point, and the absolute chirp is obtained and output to the compressed data generating section 4. The compressed data generating unit 4 is provided by one of the oversampling data provided by the above-mentioned oversampling circuit 1, and will be compared with the position before and after. -32- 484259 Α7 Β7 V. Description of the invention (30) (Please read the precautions on the back before filling this page) The small position is detected as the specimen point. Furthermore, a combination of the amplitude data 値 of each detected sample point and the timing data 表示 indicating the time interval at which each sample point appears is output to the error correction coding section 5. The compressed data generating unit 4 obtains a timing clock indicating the timing of the detection point of each specimen point, and outputs it to the data memory 6. The error correction coding unit 5 detects the changed bit and corrects the digital data on the transmission path or the memory even if an error occurs due to a change in noise or the like. The data is supplied by the compressed data generation unit 4 described above. Information is incorrectly corrected. The data thus obtained is output as compressed data on the transmission path or the data memory 6. The data memory 6 is a recording medium storing compressed data, and the compressed data generated by the error correction encoding section 5 is recorded in accordance with the timing clock from the compressed data generating section 4. In addition, in response to a read request signal R E Q given from the outside, the stored compressed data is read and output. Fig. 14 is a block diagram showing an example of the overall configuration of a spreading device according to the present embodiment that realizes the expansion method corresponding to the compression method described above. The consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs printed as shown in FIG. 14. The deployment device of this embodiment includes: an error correction circuit 11, a clock generator 12, and a timing generator 13, and A D-type flip-flop 14, a development processing unit 15, a D / A converter 16, and a low-pass filter (LPF) 17 are configured. The above error correction circuit 11 inputs the compressed data generated in the compression device of FIG. 13 and uses the error correction symbol attached thereto to detect the bits that have changed on the transmission path or in the memory to correct the error. Paper size applies to China National Standard (CNS) A4 (210 × 297 mm) -33-484259 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (31) 〇The clock generator 1 2 by the reference frequency The input clock 0 L κ generates an 8-times clock 8 CL κ, which is supplied to the timing generator 1 3, the expansion processing unit 15, and the D / Α converter 16. In addition, the timing generator 13 receives the timing data included in the compressed data by the error correction circuit 11, and generates the same indefinite time as that between the specimen point detected on the compression side by the clock 8CLK of the above-mentioned 8-frequency. The interval readout clock is supplied to the error correction circuit 11 and the D-type flip-flop 14. The D-type flip-flop 14 will read the amplitude data contained in the compressed data in accordance with the timing of the readout clock generated by the above-mentioned timing generator 13 by the error correction circuit 11 1 and sequentially read in to hold and output.于 展 处理 部 15. The amplitude data of the input and output sections of the D-type flip-flop 14 described above, that is, the timing of the read-out clock is kept at the amplitude data of the D-type flip-flop 14 and the timing of the read-out clock should be The amplitude data (amplitude data of two consecutive sample points of two consecutive sample points) held in the D-type flip-flop 14 is input to the expansion processing unit 15. The expansion processing unit 15 uses the two amplitude data inputted in this way and the timing data inputted from the timing generator 13 to generate digitally interpolated data between each specimen point by interpolation operations described later. The D / A converter 16 converts the digitally interpolated data thus generated into an analog signal. In addition, 丄 P F 1 7 processes the analog signal output from the D / A converter 16 described above with a low-pass filter, removes noise, and outputs it as a reproduced analog signal. Next, the following detailed description is shown in the compression device of Fig. 13 above. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) " " " -34-
f請先閱讀背面之注意事項再填寫本頁J 484259 A7 B7 五、發明説明(32) 之過取樣電路1之構成以及動作。 (請先閲讀背面之注意事項再填寫本頁) 又,在說明求得離散的數位資料間之內插値之本實施 形態的過取樣手法之前,先說明習知上所被進行之一般的 內插方法。 內插離散的數位資料之間以獲得更連續之資料用的資 料內插處理例如係使用圖4所示之被稱爲s i n C函數之 取樣函數,以圖5所說明般地進行。此s i n c函數在設 取樣頻率爲f時,以S 1 Π ( 7Γ f t ) / ( 7Γ f t )而被 定義,只在t = 0之標本點,其値成爲1,在等間隔之其 它的全部之標本點(t = ± 1 、± 2 、± 3 、± 4、…) ,其値全部成爲0。 在本實施形態之過取樣電路1中,與利用此種 s i n c函數之一般的資料內插手法不同,在求得2個之 離散資料間之內插値之際,分別過取樣具有因應包含此2 個之離散資料之η個離散資料之値之振幅的基本波形的數 位資料之同時,藉由以捲積運算合成所獲得之η個的資料 彼此,數位地求得塡補上述2個之離散資料間之內插値。 經濟部智慧財產局員工消費合作社印製 圖1 5係在本實施形態所使用之數位基本波形的說明 圖。圖1 5所示之數位基本波形係成爲使用在進行藉由過 取樣之資料內插之際的取樣函數之基本者。此數位基本波 形係在基準頻率之每1時脈(C L Κ )使資料値變化爲-1、1、8、8、1、一 1 而製成者。 以下,利用圖1 6,以由因應如圖1 5被正規化之數 位基本波形之離散資料値(—1、1、8、8、1 、— 1 本紙張尺度適用中周國家標準(CNS ) Α4規格(210Χ297公釐) -35- 484259 Α7 Β7 五、發明説明(33 ) (請先閱讀背面之注意事項再填寫本頁} )/ 8,藉由η倍之過取樣與捲積運算以產生內插値之情 形爲例,說明依據本實施形態之資料內插的原理。又,在 圖1 6中,爲了圖面之方便,雖顯示以進行4倍之過取樣 之例,但在圖1 3之過取樣電路1中,實際上進行8倍之 過取樣。 於圖1 6中,被顯示於最左之列之一連串的數値列係 對於原來的離散資料値(一 1、1、8、8、1、一 1 ) / 8進行4倍的過取樣之値。又,由最左向右,第4列份 之數値列係將被顯示於最左列之數値列1個1個往下方移 位者。圖1 6之列方向顯示時間軸,將數値列移位於下方 係對應使被顯示於最左列之數値列逐漸延遲。 經濟部智慧財產局員工消費合作社印製 即,由左起第2列之數値列係顯示使被顯示於最左列 之數値列只錯開4倍頻率之時脈4 C L Κ之1 / 4相位份 之數値列。又,由左起第3列之數値列係顯示使被顯示於 由左起第2列之數値列只錯開4倍頻率之時脈4 C L Κ之 1 / 4相位份之數値列,由左起第4列之數値列係顯示使 被顯示於由左起第3列之數値列進而錯開4倍頻率之時脈 4 C L Κ之1 / 4相位份之數値列。 又,由左起第5列之數値列係在對應行彼此將第1〜 4列之個數値列相加以4除之値。藉由此之由左至第5列 爲止之處理,伴隨4相之捲積運算之4倍的過取樣被數位 地實行。 由上述第5列向右4列份之數値列(由左5〜8列之 數値列)係使被顯示於第5列之數値列1個1個移位於下 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) -36- 484259 A7 B7 五、發明説明(34 ) (請先閱讀背面之注意事項再填寫本頁) 方者。又,由左起第9列之數値列係在對應之行彼此使第 5〜8列之各數値列相加以4除之値。藉由此由左至第9 列爲止之處理,伴隨4相之捲積運算之4倍的過取樣數位 地被實行2次。 又,由左起第1 0列之數値列係使被顯示於第9列之 數値列1個往下移位者。又,由左起第1 1列(最右之列 )之數値列係在對應之行彼此將第9列之數値列與第1 0 列之數値列相加以2除之値。此最右之數値列成爲目的之 內插値。 圖1 7爲曲線化被顯示於此圖1 6之最右之列之最終 獲得之數値列者。具有如圖1 7所示之波形的函數係在全 區域中,只可1次微分,沿著橫軸之標本位置t在由1至 3 3之間時,具有0以外之有限値,在其以外之區域中, 値全部成爲0之函數。 又,將函數値在局部區域具有0以外之有限値,在其 以外之區域,成爲0之情形稱爲「有限」。 經濟部智慧財產局員工消費合作社印製 又,圖1 7之函數係具有只在t = 1 7之標本點取得 極大値,於t = 1、9、2 5、3 3之4個標本點,値成 爲0之特徵之取樣函數,獲得平滑之波形的資料用所必要 之標本點全部通過。 如此,圖1 7所示之函數爲取樣函數,在全區域中以 可微分1次,而且,在標本位置t = 1、3 3,爲收斂之 有限之函數。因此,藉由利用圖1 7之取樣函數,進行依 據各離散資料之疊合,可以利用可1次微分之函數內插離 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐) -37- 484259 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(35) 散資料間之値。 習知被使用之s i n c函數在t = ± 〇〇之標本點係收 斂爲0之函數之故,如欲正確求得內插値,需要對應t = 土 00爲止之各離散資料計算在內插位置之s i n c函數之 値,利用此進行捲積運算。相對於此,在本實施形態所使 用之圖1 7的取樣函數在t二1、3 3之標本點收斂爲〇 之故,只考慮在t = 1〜3 3之範圍內之離散資料即可。 因此,在求得某1個之內插値之情形,變成只考慮有 限之η個離散資料之値即可,可以大幅削減處理量。而且 ,關於t = 1〜3 3之範圍外的各離散資料,雖然本來應 加以考慮,考慮處理量或精度等並非加以忽視,而係無理 論上考慮之必要之故,不產生切除誤差。因此,如使用本 實施形態之資料內插手法,可以獲得正確之內插値,利用 此正確之內插値進行壓縮處理之情形,關於在展開側被再 生之資料,能夠提升對壓縮前之原來的資料之再現性。 圖1 8係顯示上述圖1 3所示之過取樣電路1之構成 例之方塊圖。如圖1 8所示般地,本實施形態之過取樣電 路1由具備:正規化資料記憶部2 1,以及相位移位部 2 2,以及複數之數位乘法器2 3 a〜2 3 d,以及複數 之數位加法器2 4 a〜2 4 c而構成。又,被顯示於圖 1 8之P L L電路2係與顯示於圖1 3者相同。 上述正規化資料記憶部2 1係如圖1 6之最右列所示 般地,使被正規化之資料列4相錯開加以記憶。右,在圖 1 6中雖係顯示對於圖1 5所示之數位基本波形,進行4 (請先閱讀背面之注意事項再填寫本頁) 衣· 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公慶) -38- 484259 A7 B7 __ 五、發明説明(36 ) (請先閲讀背面之注意事項再填寫本頁) 倍之過取樣之例,但是在圖1 3之過取樣電路1中,爲貫 施8倍之過取樣之故,數位基本波形被8倍過取樣,藉由 捲稹運算被正規化之資料列被記憶在此正規化資料記憶部 2 1。被記憶在此正規化資料記憶部2 1之4相正規化資 料依循由P L L電路2被供給之時脈C L K、8 C L K被 讀出,分別被供給於4個之數位乘法器2 3 a〜2 3 d之 ~方的輸入端子。 又,相位移位部2 2進行將作爲壓縮對象被輸入之離 散資料的相位錯開爲4相之相位移位處理。藉由此相位移 位部2 2被產生之4相的離散資料依循藉由P L L電路2 被供給之時脈C L K、8 C L K被輸出,分別被供給於4 個之數位乘法器2 3 a〜2 3 d之另一方之輸入端子。 經濟部智慧財產局員工消費合作社印製 上述4個之數位乘法器2 3 a〜2 3 d分別將由上述 正規化資料記憶部2 1被輸出之4相的正規化資料以及藉 由上述相位移位部2 2被輸出之4相的離散資料相乘。被 接續於這些之後段的3個的數位加法器2 4 a〜2 4 c將 上述4個之數位乘法器2 3 a〜2 3 d之相乘結果全部相 加,將該相加結果輸出於圖1 3之微分器3以及壓縮資料 產生部4。 於上述圖1 8所示之過取樣電路1之構成中,藉由正 規化資料記憶部2 1構成本發明之記憶手段。又,藉由相 位移位部2 2、數位乘法器2 3 a〜2 3 d以及數位加法 器2 4 a〜2 4 c構成本發明之合成手段。 由顯示於此圖1 8之構成可以明白地,在本實施形態 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 39 - 484259 A7 _ B7 五、發明説明(37) (請先閲讀背面之注意事項再填寫本頁) 中,將藉由如圖1 6所示之捲積運算所獲得之最右列的正 規化資料預先記憶於R〇Μ等之正規化資料記憶部2 1。 而且,將此正規化資料調制爲因應作爲壓縮對象被輸入之 離散資料之値,將藉由此所獲得之資料藉由4相之捲積運 算合成輸出之。 雖然也可以將作爲壓縮對象被輸入之離散資料之振幅 値對於圖1 5所示之數位基本波形相乘之,對於藉由此所 獲得之資料値,在壓縮時進行圖1 6所示之捲積運算,但 是在如圖1 8般地構成過取樣電路1之情形,於實際的壓 縮時不須進行圖1 6之捲積運算本身,具有可以高速化壓 縮處理之優點。 圖1 9係顯示被輸入上述過取樣電路1之數位資料之 一例圖,圖2 0係顯示對於此數位資料,以過取樣電路1 進行資料內插處理後之輸出資料圖。由此可以明白地,藉 由使用本實施形態之過取樣電路1,可以由原來的離散之 數位資料獲得値平滑地變化之連續的過取樣資料。 經濟部智慧財產局員工消費合作社印製f Please read the precautions on the back before filling in this page J 484259 A7 B7 V. The structure and operation of the oversampling circuit 1 of the invention description (32). (Please read the precautions on the back before filling in this page.) Before explaining the oversampling method of this embodiment to obtain the interpolation between discrete digital data, first explain the general content of the conventional practice. Insert method. The data interpolation processing for interpolating between discrete digital data to obtain more continuous data is performed as illustrated in FIG. 5 using a sampling function called a s i n C function shown in FIG. 4, for example. This sinc function is defined by S 1 Π (7Γ ft) / (7Γ ft) when the sampling frequency is set to f. Only at the specimen point at t = 0, 1 becomes 1, which is equal to all others at equal intervals. Specimen points (t = ± 1, ± 2, ± 3, ± 4, ...), all of them are zero. In the oversampling circuit 1 of this embodiment, different from the general data interpolation method using such a sinc function, when obtaining the interpolation between two discrete data, each of the oversampling methods should include this 2 The discrete data, the basic waveform of the amplitude of the n discrete data, and the digital data of the basic waveforms are obtained by synthesizing the n data obtained by the convolution operation to digitally complement the two discrete data. Interpolate between. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 15 is an explanatory diagram of the basic digital waveforms used in this embodiment. The digital basic waveform shown in Fig. 15 becomes a basic function of a sampling function used when performing data interpolation by oversampling. This digital basic waveform is created by changing the data frame to -1, 1, 8, 8, 1, 1, 1 every 1 clock (CLK) of the reference frequency. In the following, using FIG. 16 to discrete data corresponding to the digital basic waveform normalized as shown in FIG. 15 (—1, 1, 8, 8, 1, -1) This paper standard is applicable to the China National Standard (CNS) Α4 specifications (210 × 297 mm) -35- 484259 Α7 Β7 V. Description of the invention (33) (Please read the precautions on the back before filling in this page}) / 8, generated by oversampling and convolution operation of η times The case of interpolation is used as an example to explain the principle of data interpolation according to this embodiment. Also, in FIG. 16, for convenience of illustration, although an example of 4 times oversampling is shown, in FIG. 1 In the oversampling circuit 1 of 3, an oversampling of 8 times is actually performed. In FIG. 16, one of the series of numbers shown in the leftmost column is for the original discrete data (1, 1, 8, 8). , 8, 1, 1, 1) / 8 for 4 times oversampling. Also, from left to right, the number in the fourth column will be displayed in the leftmost column. Figure 16 shows the time axis in the direction of the column. Moving the number column to the bottom corresponds to the number of columns displayed in the leftmost column. Delayed. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. That is, the second column from the left is displayed so that the number displayed on the leftmost column is shifted by only 4 times the frequency of the clock. 4 CL 1 / 4 The number of columns of the phase. The number of columns in the third column from the left is displayed so that the number of columns displayed in the second column from the left is shifted by only 4 times the frequency of the clock 4 CL Κ 1 / 4 The number of columns of the phase, the fourth column from the left is displayed so that the number of columns displayed in the third column from the left is shifted by 4 times the frequency of 4 CL κ. The number of phases is the number of columns. In addition, the number of columns in the fifth column from the left is a division of the number of columns in the first to fourth columns by 4 in the corresponding row. The processing up to 5 columns is performed digitally with 4 times oversampling with the 4-phase convolution operation. From the 5th column to the right, the number of columns is 4 (from the left 5 to 8 columns) The number displayed in the fifth column is one, one is shifted to the lower paper scale. The Chinese National Standard (CNS) A4 specification (210 × 297 mm) -36- 484259 A7 B7 V. Description of the invention (34) ( First read the notes on the back before filling out this page). Also, the 9th column from the left is the division of the 5th to 8th columns by 4 in the corresponding row. By this processing from the left to the ninth column, four times of oversampling digits with four-phase convolution operation are performed twice. Furthermore, the tenth column from the left is displayed. The number 9 in the 9th column is shifted downward. In addition, the number 11 in the 11th column (the rightmost column) from the left is the row corresponding to the number 9 in the 9th column and The number in column 10 is the sum of 2 divided by 2. This rightmost sequence becomes the interpolation of the destination. FIG. 17 is a graph showing the finally obtained number of curves shown in the rightmost column of FIG. 16. The function with the waveform shown in Fig. 17 can be differentiated only once in the whole area. When the specimen position t along the horizontal axis is from 1 to 3 3, it has a finite 値 other than 0. In other regions, 値 becomes a function of 0. In addition, a case where the function 具有 has a finite value other than 0 in a local area, and a value other than 0 is called "finite". Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, the function in Figure 17 has a maximum value obtained only at the specimen point at t = 17, and at four specimen points at t = 1, 9, 2, 5, 3,値 becomes a sampling function with the characteristics of 0, and all the necessary sample points are passed to obtain the data of the smooth waveform. In this way, the function shown in Fig. 17 is a sampling function, differentiable once in the whole area, and at the specimen position t = 1, 3 3, it is a function with limited convergence. Therefore, by using the sampling function of Fig. 17 to superimpose the discrete data, the function can be interpolated from the paper size using the 1-time differential function. The Chinese National Standard (CNS) A4 specification (210X297 mm) is applicable. -37- 484259 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. It is known that the sinc function used is a function that converges to 0 at the sample point of t = ± 〇〇. To correctly obtain the interpolation 値, it is necessary to calculate the interpolation position corresponding to each discrete data up to t = 00. One of the sinc functions, use this to perform convolution operations. In contrast, the sampling function of FIG. 17 used in this embodiment converges to 0 at the sample points of t 2 1 and 3 3, so only the discrete data within the range of t = 1 to 3 3 can be considered. . Therefore, in the case of obtaining a certain interpolation, it is only necessary to consider only a limited number of n discrete data, and the processing amount can be greatly reduced. Moreover, the discrete data outside the range of t = 1 to 3 3 should be considered. The consideration of processing volume or accuracy is not ignored, but it is necessary for theoretical considerations, and no resection error occurs. Therefore, if the data interpolation method of this embodiment is used, the correct interpolation can be obtained. When the compression processing is performed using this correct interpolation, the original data before compression can be improved on the data that is reproduced on the unfolding side. Reproducibility of the data. Fig. 18 is a block diagram showing a configuration example of the oversampling circuit 1 shown in Fig. 13 above. As shown in FIG. 18, the oversampling circuit 1 of this embodiment includes a normalized data storage unit 21, a phase shift unit 22, and a complex digital multiplier 2 3a to 2 3d. And a complex digital adder 2 4 a to 2 4 c. The P L L circuit 2 shown in FIG. 18 is the same as that shown in FIG. 13. The normalized data storage unit 21 described above stores the normalized data rows 4 in a staggered manner as shown in the rightmost column of FIG. 16. Right, although Figure 16 shows the basic digital waveforms shown in Figure 15 and performs 4 (Please read the precautions on the back before filling this page). The size of the paper is applicable to the Chinese National Standard (CNS) A4. Specifications (210X297 public holidays) -38- 484259 A7 B7 __ V. Description of the invention (36) (Please read the precautions on the back before filling this page) Example of oversampling, but the oversampling circuit in Figure 1 3 In order to perform oversampling by 8 times, the digital basic waveform is oversampled by 8 times, and the data row normalized by volume calculation is stored in this normalized data storage unit 21. The four-phase normalized data stored in this normalized data storage unit 2 is read out in accordance with the clocks CLK and 8 CLK supplied from the PLL circuit 2 and supplied to four digital multipliers 2 3 a ~ 2, respectively. 3 d to ~ square input terminals. Further, the phase shifting unit 22 performs a phase shifting process of shifting the phase of the scattered data input as a compression target to four phases. The four-phase discrete data generated by the phase shifting section 22 is outputted in accordance with the clocks CLK and 8 CLK supplied through the PLL circuit 2 and supplied to four digital multipliers 2 3 a ~ 2, respectively. 3 d The other input terminal. The Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs printed the above-mentioned four digital multipliers 2 3 a to 2 3 d. The four-phase normalized data output from the above-mentioned normalized data storage section 21 and the phase shifting by the above-mentioned The part 22 is multiplied by the discrete data of 4 phases. The three digital adders 2 4 a to 2 4 c connected to the subsequent stages add all the multiplication results of the four digital multipliers 2 3 a to 2 3 d, and output the addition result in The differentiator 3 and the compressed data generating section 4 in FIG. 13. In the configuration of the oversampling circuit 1 shown in Fig. 18 described above, the memory means of the present invention is constituted by the normalized data storage section 21. The phase shifting unit 2 2, the digital multipliers 2 3 a to 2 3 d, and the digital adders 2 4 a to 2 4 c constitute the synthesis means of the present invention. It can be clearly understood from the structure shown in FIG. 18 that the paper size in this embodiment applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 39-484259 A7 _ B7 V. Description of the invention (37) (please first Read the notes on the back and fill in this page), and store the normalized data in the rightmost column obtained by the convolution operation shown in Figure 16 in the normalized data storage unit such as ROM in advance 2 1 . In addition, this normalized data is modulated into discrete data that is input as a compression target, and the data obtained from this is synthesized and output by a 4-phase convolution operation. Although it is also possible to multiply the amplitude of the discrete data input as the object of compression by the basic digital waveforms shown in Figure 15 and the data obtained by this, the volume shown in Figure 16 is compressed during compression. Product operation, but in the case where the oversampling circuit 1 is configured as shown in FIG. 18, the convolution operation of FIG. 16 does not need to be performed during actual compression, and it has the advantage that the compression processing can be speeded up. Fig. 19 is a diagram showing an example of digital data inputted into the above-mentioned oversampling circuit 1, and Fig. 20 is a diagram showing the output data after the data is processed by the oversampling circuit 1 for this digital data. From this, it is clear that by using the oversampling circuit 1 of this embodiment, it is possible to obtain continuous oversampling data that smoothly changes from the original discrete digital data. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs
接著,在以下詳細說明對於如此被過取樣之數位資料 ,藉由圖1 3之微分器1 3以及壓縮資料產生部4以產生 壓縮資料之處理,以及藉由圖1 4之定時產生器1 3、D 型正反器1 4以及展開處理部1 5以展開壓縮資料之處理 .〇 首先,由壓縮處理說明起。如上述般地,圖1 3之微 分器1 3在每一標本點微分在過取樣電路1被產生之一連 串之過取樣資料,取得其絕對値,輸出於壓縮資料產生部 本紙張尺度適用中國國家標準(CNS ) Α4規格(210 X 297公釐) -40- 484259 A7 B7 ___ 五、發明説明(38 ) 4。 (請先閲讀背面之注意事項再填寫本頁) 圖2 1係顯示微分器3之一構成例。如圖2 1所示般 地,本實施型態之微分器3係藉由運算連續之2個的標本 點之資料間之差分絕對値之差分絕對値電路所構成。 於圖2 1中,差分器3 1、3 2分別運算由節點a、 b被輸入之連續2個的標本點之資料的差分。即,微分器 3 1分別運算差分a — b、差分器3 2運算差分b - a, 將其結果分別輸出於〇R電路3 3、3 4。這些之差分器 3 1、3 2在被運算之差分値成爲負時,在差分値之外, 作爲借位輸出〜1 〃之値。 經濟部智慧財產局員工消費合作社印製 上述OR電路3 3取得在上述差分器3 1被運算之差 分値與借位輸出之邏輯和,將該結果輸出於A N D電路 .35。又,另一個之OR電路34取得在上述差分器32 被運算之差分値與借位輸出之邏輯和,將該結果輸出於 AND電路3 5。AND電路3 5取得由上述2個之〇R 電路3 3、3 4來之輸出的邏輯積,將該結果輸出於節點 c。又,將上述差分器3 1之借位輸出輸出於節點d,將 在上述差分器3 2被運算之差分値輸出於節點e。 藉由此,連續2個之標本點之資料的差分絕對値 I a - b |被輸出於節點c,節點b之資料値比節點a之 資料値大時,'' 1 〃之値被輸出於節點d,節點a 、b之 資料間的差分値b - a被輸出於節點e。 又,在圖2 1爲了說明之方便,雖只以1位元份顯示 節點a、b、c、e之資料線,實際上只具備資料之位元 I紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -41 - 484259 A7 B7 __ 五、發明説明(39) 數。 (請先閲讀背面之注意事項再填寫本頁) 又,圖1 3之壓縮資料產生部4由藉由過取樣電路1 被供給之一連串的過取樣資料之中,與前後的位置相比, 將微分絕對値變小之位置當成標本點檢測出。而且,將檢 測出之各標本點之振幅資料値與表示各標本點出現之時間 間隔之定時資料値之組合輸出於錯誤訂正編碼部5。 在本實施型態中,依據在上述微分器3被算出之微分 絕對値,在檢測標本點之際,爲了使是否爲標本點之判定 具有裕度之故,去掉在微分器3被運算之差分絕對値之下 位數位元而判定。例如,如去掉下位1位元,實際被算出 之差分絕對値在0〜1之範圍,可以將全部之差分絕對値 視爲0而進行判定。又,如去掉下位2位元,實際被算出 之差分絕對値在0〜3之範圍可以將全部之差分絕對値視 爲0而進行判定。藉由如此爲之,可以避免由於雜訊等之 微小變動之影響,不將不需要之點當成標本點檢測出,能 夠提高壓縮率。 經濟部智慧財產局員工消費合作社印製 圖2 2係顯示對於上述圖2 0所示之過取樣電路1之 輸出貧料,以微分器3運算微分絕對値之結果圖。如上述 般地,在壓縮資料產生部4中,依據顯示於此圖2 2之微 分絕對値之輸出資料,將與前後的位置相比,微分絕對値 變小之位置,即微分絕對値之極小値出現之位置(在圖 2 2中以箭頭顯示之位置)當成標本點檢測出。又,最初 與最後出現之極小値也可以考慮爲資料値不正確之故,此 不採用爲標本點。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -42- 484259 A7 B7 ---—--- 五、發明説明(40 ) (請先閱讀背面之注意事項再填寫本頁) 可是,爲了於標本點之檢測使具有裕度之故,去掉微 分絕對値之下位數位元之情形,也可能相同値之極小値_ 續產生2個。此時,依據被輸出於圖2 1所示之微分器3 之節點d之差分器3 1之借位値,判斷微分値之正負的極 性,將微分値之極性變化側當成標本點檢測。 又,在微分値之極性不變化之情形,如圖2 3般地, 觀看位於相同値連續2個之標本點B、C之前後之標本點 A、D之微分絕對値之大小關係,將該値接近小側之點當 成標本點檢測。在圖2 3之例中,標本點D之微分絕對値 比標本點A之微分絕對値還小之故,將接近此標本點D之 標本點C當成標本點檢測。 又,作爲檢測標本點用之處理,在1次微分由過取樣 電路1被供給之資料後,進而微分所獲得之微分絕對値, 實行雙重微分,將該雙重微分値之極性由負或零變化爲正 之前之點當成標本點抽出亦可。進而,也可以進行如此地 依據雙重微分値之極性抽出之各點之中,只將1次微分絕 對値比一定値還小之點當成正規的標本點檢測出之處理。 經濟部智慧財產局員工消費合作社印製 即,關於藉由1次微分所獲得之微分絕對値之極小點 ,進而微分其之1次微分絕對値之雙重微分値之極性一定 由負變化爲正。因此,求得過取樣資料之雙重微分値,檢 測其之極性由負變化爲正之點(包含雙重微分値爲零之點 ),可以正確檢測1次微分絕對値之極小點之同時,在相 同値之極小點連續2個產生之情形,可以將其之一方當成 標本點確實檢測出。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -43- 484259 A7 B7 五、發明説明(41 ) (請先閲讀背面之注意事項再填寫本頁) 又,如只將1次微分絕對値比一定値還小之點當成正 規的標本點檢測,可以不將不需要之點當成標本點檢測出 ,能夠提高壓縮率。 圖2 4係顯示如上述般地藉由進行雙重微分檢測標本 點用之構成例之方塊圖,顯示圖1 3中之微分器3以及壓 縮資料產生部4之構成例。 如圖2 4般地,微分器3具備:第1微分部4 1,以 及化整運算部4 2,以及第2微分部4 3。又,壓縮資料 產生部4具備··極性變化點檢測部4 4,以及臨界値處理 J4 5,以及資料產生部4 6。 經濟部智慧財產局員工消費合作社印製 上述第1微分部4 1在各標本點微分藉由圖1 3之過 取樣電路1被供給之過取樣資料,取得其絕對値輸出。化 整運算部4 2進行去掉在第1微分部4 1被運算之1次微 分絕對値之下位數位元之處理。例如,藉由以8除上述1 次微分絕對値,去掉下位3位元,可以去除由於雜訊等之 微小變動之影像。藉由此化整運算部4 2被輸出之資料被 供給於第2微分部4 3以及壓縮資料產生部4內之臨界値 處理部4 5。 第2微分部4 3進而在各標本點微分藉由上述化整運 算部4 2進行化整運算之1次微分絕對値。藉由此第2微 分部4 3被求得之雙重微分値以及表示其之極性之借位値 被供給於壓縮資料產生部4內之極性變化點檢測部4 4。 上述極性變化點檢測部4 4將藉由微分器3內之第2 微分部4 3被供給之雙重微分値之極性由負變化爲正之前 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -44 - 484259 A7 B7 __ 五、發明説明(42 ) (請先閱讀背面之注意事項再填寫本頁) 的點,例如,極性爲負之雙重微分値連續獲得之情形中最 後成爲負之點,或雙重微分値成爲零之點當成標本點之候 補而抽出。也可以將極性爲負之雙重微分値並非連續獲得 之情形之該負的點當成標本點之候補進而抽出。 臨界値處理部4 5於藉由上述極性變化點檢測部4 4 被抽出之標本點的候補中,比較藉由化整運算部4 2被供 給之1次微分絕對.値與預先被設定之臨界値,只將1次微 分絕對値比臨界値小之點當成正規的標本點檢測,傳達於 資料產生部4 6。 資料產生部4 6由藉由過取樣電路1被供給之過取樣 資料獲得如此檢測之各標本點之振幅資料値之同時,利用 藉由P L L電路2被供給之8倍頻率之時脈8 C L K產生 .表示各標本點出現之時間間隔之定時資料。而且,將這些 振幅資料値與定時資料値之組合當成壓縮資料輸出。 經濟部智慧財產局員工消費合作社印製 又,在上述圖2 4之例中,雖利用以化整運算部4 2 被施行化整運算之1次微分絕對値而進行臨界値處理,但 是也可以利用在第1微分部4 1被求得之被施以化整運算 之前的1次微分絕對値進行臨界値處理。又,在上述圖 2 4中,雖將雙重微分値之極性由負變化爲正之前的點當 成標本點抽出,但是也可以將由負變化爲正之後的點當成 標本點抽出。又,圖2 4所示之臨界値處理並不限定於藉 由進行雙重微分以檢測標本點之情形,也可以適用在只以 1次微分檢測標本點之情形。 圖2 5係顯示依據上述圖2 2所示之例被輸出之壓縮 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) '"" -45 - 484259 A7 B7 五、發明説明(43 ) (請先閲讀背面之注意事項再填寫本頁) 資料(各標本點之振幅資料値與定時資料値之組合)圖。 如此被輸出之壓縮資料例如判定信號種類用之判定資料( 2位元)被附加之同時,錯誤訂正符號也被附加。之後, 進而進行可變長度編碼化等之壓縮處理亦可。 依據第2實施形態之壓縮的原理以及展開之原理也藉 由圖1以及圖2顯示之。但是,在本實施形態之情形,被 顯示於圖1之波形資料相當於藉由在上述過取樣電路1之 資料內插處理而被連續化之過取樣資料。又,被顯示於圖 2之波形的資料相當於在藉由展開處理再生原來的過取樣 資料之過程所獲得之資料。 首先,利用圖1說明壓縮處理。在本實施形態中,由 被輸入之過取樣資料1 0 1中,檢測微分絕對値成爲極小 之標本點1 0 2 a〜1 〇 2 f 。而且,求得這些各標本點 1 0 2 a〜1 〇 2 f之振幅的數位資料値與表示各標本點 1 0 2 a〜1 〇 2 f出現之時間間隔之定時資料値,將此 振幅値與定時資料値之組合當成壓縮資料輸出於圖1 3之 錯誤訂正編碼部5。 經濟部智慧財產局員工消費合作社印製 接著,利用圖2說明如上述圖1般地爲之而壓縮之資 料的展開處理。藉由圖1之壓縮方式壓縮輸入資料1 〇 1 之情形,獲得之壓縮資料成爲(*,7 ) ( 5, 3 ) ( 7 ,9 ) ( 3, 1 ) ( 3,6 ) ( 3 , 3 )之數値列。又, *在圖1中係表示値未被圖示者。又,依循此處顯示之順 序,壓縮資料被輸入展開側之定時產生器1 3以及D型正 反器1 4。 玉紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -46- 484259 A7 B7 五、發明説明(44 ) (請先閲讀背面之注意事項再填寫本頁) 於圖1 4之展開處理部1 5中,首先,由藉由錯誤訂 正電路1 1最初被輸出之振幅資料値、、7 〃與定時資料値 '' 5 〃之2個之資料値,藉由內插運算產生波形a 1之資 料。接著,由上述之定時資料値、、5 〃與接著被輸入之振 幅資料値'' 3 〃之2個之資料値,藉由內插運算產生波形 a 2之資料。 接著,由上述振幅資料値、、3 〃與接著被輸入之定時 資料値7 〃之2個之資料値,藉由內插運算產生波形 b 2之資料。進而,由上述之定時資料値、' 7 〃與進而被 接著輸入之振幅資料値9 〃,藉由內插運算產生波形 b 1之資料。以下同樣爲之,由依序被輸入之振幅資料値 與定時資料値之組合,依序產生波形c 1、c 2、d 2、 d 1、d 1、e 2。 經濟部智慧財產局員工消費合作社印製 藉由以上之處理,產生波形a 1、b 1、c 1、d 1 、e 1被連續化之數位資料(圖2之上段)以及波形a 2 、b 2、c 2、d 2、e 2被連續化之數位資料(圖2之 下段)。而且,展開處理部1 5將如此產生之2個的數位 資料相互相加,輸出於D / A轉換器1 6,藉由數位一類 比轉換,再生對應於圖1所示之過取樣資料1 〇 1之類比 信號。 作爲合成被顯示於圖2之上段之數位資料與被顯示於 下段之數位資料進行資料內插之處理,例如,也可以適用 以上述圖6說明之處理。 又,在第2實施形態中,壓縮時係實行8倍之過取樣 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 47- 484259 A7 B7 五、發明説明(45 ) (請先閲讀背面之注意事項再填寫本頁) 之故,標本點間之時間間隔之定時資料値並非奇數而彳系經 常成爲偶數(對應圖6之橫軸爲2 T )。即,圖1所示之 5個之定時資料値'' 5,7, 3, 3,3 〃實際藉由8倍 之過取樣,以4 0, 5 6, 2 4, 2 4,2 4 6之値 被傳送或儲存。 在定時資料値T爲奇數之情形,產生在標本點間之剛 好中間時間點沒有內插位置t之狀態之故,依據定時資料 値爲偶數或奇數需要依據情形分開做處理。但是,在本胃 施形態之情形,表不標本點間之時間間隔之定時資料値,經 常成爲偶數之故,此可以不進行由於偶數或奇數而需要分 開做處理之複雜的處理。 接著,在以下說明上述資料內插之其它的處理例。此 .處,說明利用連續之標本點之各振幅資料値D 1、D 2與 其之間的定時資料値T,藉由進行2倍的過取樣與捲積運 算以求得內插値之方法。圖2 6係顯示對於圖2 5所示之 壓縮資料之最初的2個之標本點間,適用此過取樣與捲積 運算之情形(Dl = 29 · 5、D2 = 24 · 4、T=6 經濟部智慧財產局員工消費合作社印製 )之處理結果。 於圖2 6 ( a )中,最左列之2 9 · 5 〃之數字係 第1列之振幅資料D 1之値。此'' 2 9 · 5 〃之數字與、、 〇〃之數字在縱方向一倂排列1 2個係顯示上述振幅資料 値D 1 —面1時脈1時脈依序被延遲,一面被保持在定時 資料値T = 6之2倍之數量份被縱續接續之未圖示出之d 型正反器等之狀態。又,由左起第2〜第6列之各數値列 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -48- 484259 經濟部智慧財產局員工消費合作社印製 A7 B7五、發明説明(46) 係顯示使被顯示於第1列之數値列1時脈1時脈依序錯開 之結果。 又,第7列之數値列係顯示在對應行彼此將第1〜第 6列之數値列相加以6除之結果,即,對於第1〜第6列 之數値列,進行6相之捲積運算之結果。又,第8〜第 1 2列之各數値列係將在第7列進行捲積運算之結果的數 値列進而1時脈1時脈錯開之結果。 又,第1 3列之數値列係顯示在對應行彼此將第7〜 第1 2列之數値列相加以6除之結果,即,對於第7〜第 1 2列之數値列進行6相之捲積運算之結果。此最右邊之 之第1 3列之數値列係成爲求取之內插曲線(在圖2之例 而言爲取樣函數a 1 )。 與顯示於此圖2 6 ( a )之順序相同,利用相同之定 時資料値T (二6 )與另外1個之振幅資料値D 2 (= 2 4 · 4 )算出與上述取樣函數a 1相同區間之取樣函數 a 2。而且,藉由求得分別之計算結果之和,獲得如圖 2 6 ( b )所示之在該區間最終求得之內插曲線。藉由橫 跨全邰之標本點間依序進行此種資料內插處理,再現原來 之過取樣資料。又,圖2 6 ( a )所示之運算可以藉由適 當組合一面使資料値1時脈1時脈延遲一面加以保持之複 數的D型正反器、加法器以及乘法器之硬體構成而實現。 又,作爲資料內插運算之其它的處理例,也可以使用 在圖7說明之方法。 圖2 7係顯示由圖2 5所示之壓縮資料再現過取樣資 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ~'-49 - (請先閱讀背面之注意事項再填寫本頁) 1^^.Next, the following describes in detail the processing of generating the compressed data by the differentiator 13 and the compressed data generating section 4 of FIG. 13 for the digital data thus oversampled, and by the timing generator 1 of FIG. 14 , D-type flip-flop 14 and expansion processing unit 15 to expand the compressed data processing. First, the compression processing will be explained. As described above, the differentiator 13 in FIG. 13 differentiates at each specimen point a series of oversampling data generated in the oversampling circuit 1 to obtain its absolute value, and outputs it to the compressed data generation department. The paper size is applicable to China. Standard (CNS) A4 specification (210 X 297 mm) -40- 484259 A7 B7 ___ 5. Description of the invention (38) 4. (Please read the precautions on the back before filling out this page.) Figure 2 shows a configuration example of the differentiator 3. As shown in FIG. 21, the differentiator 3 of this embodiment type is constituted by calculating a differential absolute 値 difference absolute 差分 circuit between data of two consecutive sample points. In FIG. 21, the differentiators 3 1 and 3 2 respectively calculate the difference of the data of two consecutive sample points inputted by the nodes a and b. That is, the differentiator 31 calculates the difference a-b, and the differentiator 3 2 calculates the difference b-a, and outputs the results to the OR circuits 3 3 and 34, respectively. When these differential units 3 1 and 3 2 become negative, the difference 値 is output as a borrowed value of ~ 1 値 out of the difference 値. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the OR circuit 3 3 obtains the logical sum of the difference between the difference calculated by the differentiator 31 and the borrow output, and outputs the result to the A N D circuit .35. The other OR circuit 34 obtains a logical sum of the difference 运算 calculated by the differentiator 32 and the borrow output, and outputs the result to the AND circuit 35. The AND circuit 35 obtains a logical product of the outputs from the two OR circuits 3 3 and 34 and outputs the result to the node c. The borrow output of the differentiator 31 is output to a node d, and the difference 値 calculated by the differentiator 32 is output to a node e. As a result, the absolute difference aI a-b | of the data of two consecutive specimen points is output at node c, and when the data at node b is larger than the data at node a, '' 1 〃 之 値 is output at The difference 値 b-a between the data of node d and nodes a and b is output to node e. In addition, in FIG. 21, for the convenience of explanation, although only the data lines of nodes a, b, c, and e are displayed in one bit, in fact, only the data bits I of the data are applicable to the Chinese National Standard (CNS) A4. Specifications (210X297 mm) -41-484259 A7 B7 __ 5. Description of the invention (39) Number. (Please read the precautions on the back before filling in this page.) In addition, the compressed data generating unit 4 in FIG. 13 uses a series of oversampling data supplied through the oversampling circuit 1 to The position where the differential absolute value becomes smaller is detected as the specimen point. Then, a combination of the amplitude data 各 of each detected sample point and the timing data 表示 indicating the time interval at which each sample point appears is output to the error correction coding section 5. In the present embodiment, the differential absolute value 在 calculated by the differentiator 3 is used to remove the difference calculated in the differentiator 3 in order to provide a margin for the determination of whether or not the sample point is detected when detecting the sample point. Determined by the absolute lower order bit. For example, if the lower 1 bit is removed, the absolute difference 实际 actually calculated is in the range of 0 to 1, and all the absolute differences 全部 can be judged as 0. In addition, if the lower 2 bits are removed, the absolute difference actually calculated is in the range of 0 to 3, and all the absolute differences can be judged as 0. By doing so, it is possible to avoid the influence of small changes such as noise, and not to detect unnecessary points as specimen points, thereby improving the compression ratio. Printed by the Employees' Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 22 shows the result of calculating the absolute value of the differential value using the differentiator 3 for the output of the oversampling circuit 1 shown in Figure 20 above. As described above, in the compressed data generating unit 4, according to the output data of the differential absolute value shown in FIG. 22, the position where the differential absolute value becomes smaller than the position before and after, that is, the absolute absolute value of the differential absolute value is extremely small. The position where 値 appears (the position shown by the arrow in Figure 2 2) is detected as the specimen point. In addition, the first and last occurrences of the minima can also be considered as data, which is not used as the specimen point. This paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) -42- 484259 A7 B7 -------- 5. Description of invention (40) (Please read the precautions on the back before filling this page) However, in order to provide a margin for the detection of the specimen point, the case of removing the lower digits of the absolute absolute value may be the same as the minimum value. At this time, according to the borrowed 値 of the differentiator 31 which is output to the node d of the differentiator 3 shown in FIG. 21, the polarity of the positive and negative of the differential 値 is judged, and the polarity change side of the differential 値 is detected as the specimen point. In addition, when the polarity of the differential 値 does not change, as shown in FIG. 23, the relationship between the differential absolute 値 of the sample points A and D before and after the two consecutive sample points B and C of the same 値 is shown.点 The point near the small side is detected as the specimen point. In the example in Fig. 23, the differential absolute value 标 of specimen point D is smaller than the absolute absolute difference 点 of specimen point A, so the specimen point C close to the specimen point D is detected as the specimen point. In addition, as a process for detecting the specimen point, once the data supplied by the oversampling circuit 1 is differentiated, the differential absolute value obtained by the differentiation is further double-differentiated, and the polarity of the double-differential value is changed from negative or zero. It is also possible to extract the point just before as the specimen point. Furthermore, among the points extracted based on the polarity of the double differential ridge in this way, only the point where the absolute differential 値 is smaller than a constant 1 once is regarded as a regular specimen point detection process. Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, that is, the polarity of the absolute absolute value of the differential absolute value obtained by the first differential, and the differential of the double differential absolute value of the differential absolute value of the first differential absolute value must change from negative to positive. Therefore, the double differential 値 of the oversampled data is obtained, and the point where the polarity changes from negative to positive (including the point where the double differential 値 is zero) can be detected correctly. At the same time, the minimum point of the absolute 値 of the differential can be detected at the same time. In the case of two consecutive minimal points, one of them can be detected as a specimen point. This paper size applies to China National Standard (CNS) A4 (210X297 mm) -43- 484259 A7 B7 V. Description of the invention (41) (Please read the precautions on the back before filling this page) Also, if only The point where the differential absolute value is smaller than a certain value is regarded as a regular specimen point detection, and unnecessary points are not detected as specimen points, which can improve the compression rate. Fig. 24 is a block diagram showing an example of the configuration for detecting the specimen point by double differential detection as described above, and shows an example of the configuration of the differentiator 3 and the compressed data generating section 4 in Fig. 13. As shown in Fig. 24, the differentiator 3 includes a first differentiator 41, a rounding arithmetic unit 42, and a second differentiator 43. The compressed data generating unit 4 includes a polarity change point detecting unit 44, a critical threshold processing J4 5, and a data generating unit 46. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs The above-mentioned first differential section 41 differentiates the oversampling data supplied by the oversampling circuit 1 of FIG. 13 at each specimen point to obtain its absolute chirp output. The rounding operation unit 42 performs a process of removing the number of digits below the absolute differential value of the first differentiation performed by the first differentiation unit 41. For example, by dividing the above-mentioned first differential absolute value by 8 and removing the lower 3 bits, it is possible to remove the image due to small changes such as noise. The data outputted by the rounding calculation unit 42 is supplied to the second differentiation unit 43 and the critical unit processing unit 45 in the compressed data generation unit 4. The second differentiation section 4 3 further differentiates the absolute absolute value of the first differentiation of the rounding operation by the rounding operation section 4 2 at each sample point. The double differential 値 obtained by the second differential section 43 and the borrowing 表示 indicating its polarity are supplied to the polarity change point detecting section 44 in the compressed data generating section 4. The above-mentioned polarity change point detection section 44 will change the polarity of the double differential supplied by the second derivative section 4 3 in the differentiator 3 from negative to positive. Before the paper size, the Chinese national standard (CNS) A4 specification (210X297) was applied. Mm) -44-484259 A7 B7 __ V. The point of the invention description (42) (please read the precautions on the back before filling this page), for example, the double differential with negative polarity and the value obtained continuously becomes negative The point, or the point where the double differentiation becomes zero, is extracted as a candidate for the specimen point. It is also possible to use the negative differential double differential 値 as a candidate for the sample point and extract it if it is not continuously obtained. The threshold value processing unit 45 compares the first differential absolute value supplied by the rounding calculation unit 4 2 among the candidates of the sample points extracted by the above-mentioned polarity change point detection unit 4 4 and the threshold value set in advance. Alas, only the points where the differential absolute value 値 is smaller than the critical value once are regarded as regular specimen point detections and transmitted to the data generation unit 46. The data generating unit 46 obtains the amplitude data of each sample point thus detected from the oversampled data supplied by the oversampling circuit 1, and generates it using the clock 8 CLK which is 8 times the frequency supplied by the PLL circuit 2. . Shows the timing information of the time interval at which each specimen point appears. The combination of these amplitude data and timing data is output as compressed data. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. In the example shown in FIG. 24, although critical differentiation processing is performed using the absolute differentiation of the 1st rounding operation performed by the rounding operation unit 4 2, it is also possible to perform critical processing. The critical unitary processing is performed by using the absolute differential unitary 1 time before the first differential unit 41 is obtained and subjected to the rounding operation. In the above-mentioned FIG. 24, although the point before the polarity of the double differential 値 changes from negative to positive is extracted as the specimen point, the point after the negative change to positive may be extracted as the specimen point. In addition, the critical 値 processing shown in Fig. 24 is not limited to the case of performing double differentiation to detect the specimen point, and it can also be applied to the case of detecting the specimen point by only one differentiation. Figure 2 5 shows the size of the compressed paper output according to the example shown in Figure 2 2 above. Applicable to China National Standard (CNS) A4 (210X297 mm) '" " -45-484259 A7 B7 V. Description of the invention (43) (Please read the notes on the back before filling this page) Data (a combination of amplitude data 値 and timing data 各 of each specimen point). The compressed data output in this way, for example, determination data (2 bits) for determining the type of signal is added, and an error correction symbol is also added. After that, compression processing such as variable length encoding may be performed. The principle of compression and expansion according to the second embodiment are also shown in Figs. 1 and 2. However, in the case of this embodiment, the waveform data shown in FIG. 1 corresponds to the oversampling data that is continuously processed by the data interpolation processing in the above-mentioned oversampling circuit 1. In addition, the data of the waveform shown in FIG. 2 is equivalent to the data obtained in the process of regenerating the original oversampling data by expansion processing. First, the compression processing will be described using FIG. 1. In the present embodiment, from the inputted oversampling data 101, the absolute value of the detection differential becomes extremely small, and the specimen points 1 02a to 102f are extremely small. Then, obtain the digital data 振幅 of the amplitude of each of the specimen points 1 0 2 a to 1 〇 2 f and the timing data indicating the time interval at which each specimen point 1 0 2 a to 1 〇 2 f appears, and this amplitude 値The combination with the timing data 値 is output as compressed data in the error correction coding section 5 of FIG. 13. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Next, using FIG. 2, the unfolding processing of the data compressed as shown in FIG. 1 will be described. When the input data 1 0 1 is compressed by the compression method in FIG. 1, the obtained compressed data becomes (*, 7) (5, 3) (7, 9) (3, 1) (3, 6) (3, 3 ). In addition, * in FIG. 1 shows those who are not shown. In accordance with the sequence shown here, compressed data is input to the timing generator 13 and the D-type flip-flop 14 on the expansion side. Jade paper scale is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) -46- 484259 A7 B7 V. Description of the invention (44) (Please read the precautions on the back before filling this page) Expand processing shown in Figure 1 4 In Section 15, first, the amplitude data 値, 7 〃, and timing data 値 '' 5 最初 which are initially output by the error correction circuit 1 1 are used to generate the waveform a 1 through interpolation. Information. Next, from the above-mentioned timing data 値, 5 〃, and two pieces of data 接着 '' 3 接着 which are then inputted, the data of waveform a 2 is generated by interpolation. Next, from the above-mentioned amplitude data 値, 3 〃, and two pieces of data 値 7 个 which are then inputted, the data of waveform b 2 is generated by interpolation. Further, from the above-mentioned timing data 7, '7 〃, and the amplitude data 値 9 输入 which is input next, the data of waveform b 1 is generated by interpolation. The following is the same. The waveform c1, c2, d2, d1, d1, e2 are sequentially generated from the combination of the amplitude data 値 and the timing data 输入 which are sequentially input. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs through the above process, digital data (a upper part of Fig. 2) and waveforms a 2 and b where waveforms a 1, b 1, c 1, d 1 and e 1 are continuously generated are generated. 2, c 2, d 2, e 2 is the continuous digital data (lower part of Figure 2). Furthermore, the expansion processing unit 15 adds the two digital data generated in this manner to each other, and outputs the digital data to the D / A converter 16 to perform digital-analog conversion to reproduce the oversampling data 1 shown in FIG. 1. 1 analog signal. As the synthesis, the digital data displayed in the upper stage of FIG. 2 and the digital data displayed in the lower stage are processed for data interpolation. For example, the process described in FIG. 6 may be applied. Also, in the second embodiment, 8 times oversampling is performed during compression. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 47-484259 A7 B7 V. Description of the invention (45) (please first (Please read the notes on the back and fill in this page). Therefore, the timing information of the time interval between specimen points is not odd and it often becomes even (corresponding to 2 T in the horizontal axis of Figure 6). That is, the timing data of the five pieces shown in FIG. 1 '' 5, 7, 3, 3, 3 〃 are actually oversampled by 8 times, and 4 0, 5 6, 2 4, 2 4, 2 4 6値 is transmitted or stored. In the case where the timing data 奇 T is an odd number, there is a state where there is no interpolation position t at exactly the intermediate time point between the specimen points, and the timing data 値 is even or odd and needs to be processed separately according to the situation. However, in the case of the present application form, the timing data indicating the time interval between specimen points is often an even number. Therefore, it is not necessary to perform complicated processing that requires separate processing due to even or odd numbers. Next, other processing examples of the above-mentioned data interpolation will be described below. Here, the method of using the amplitude data 。D1, D2 of the continuous sample points and the timing data 値 T between them to calculate the interpolation 値 by performing double oversampling and convolution operation is explained. Figure 2-6 shows the case where this oversampling and convolution operation is applicable for the first two specimen points of the compressed data shown in Figure 25 (Dl = 29 · 5, D2 = 24 · 4, T = 6 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. In Fig. 26 (a), the number of 2 9 · 5 左 in the leftmost column is the 値 of the amplitude data D 1 in the first column. The numbers `` 2 9 · 5 〃 and 、, 〇 倂 are arranged in the vertical direction. 1 2 shows the above-mentioned amplitude data — D 1 —plane 1 clock 1 clock is delayed in order, and one side is maintained The state of d-type flip-flops and the like not shown in the timing data 値 T = 6 is twice the number of parts. In addition, the numbers in the second to sixth columns from the left are in accordance with the Chinese standard (CNS) A4 specification (210X297 mm). -48- 484259 Printed by A7, B7, Employee Cooperatives, Intellectual Property Bureau, Ministry of Economic Affairs Explanation of the invention (46) is the result of sequentially shifting the numbers 1 clock 1 clock displayed on the first column. In addition, the number column of the seventh column shows the result of dividing the number columns of the first to sixth columns by 6 in the corresponding row. That is, the number columns of the first to sixth columns are divided into six phases. The result of the convolution operation. Each of the eighth to twelfth columns is a number that is a result of a convolution operation performed on the seventh column, and the clock is further shifted by one clock and one clock. The numbers and columns of the 13th and 12th columns show the result of dividing the number and columns of the 7th and 12th columns by 6 in the corresponding rows. That is, the number and columns of the 7th and 12th columns are divided. The result of a 6-phase convolution operation. The number 13 of the rightmost column 13 is the interpolation curve to be obtained (in the example of FIG. 2, the sampling function a 1). The sequence is the same as that shown in Fig. 26 (a), using the same timing data 値 T (two 6) and the other amplitude data 値 D 2 (= 2 4 · 4) to calculate the same as the above sampling function a 1 Interval sampling function a 2. Furthermore, by obtaining the sum of the respective calculation results, an interpolation curve finally obtained in this interval is obtained as shown in FIG. 26 (b). This kind of data interpolation processing is performed sequentially between the specimen points across the whole frame to reproduce the original oversampled data. In addition, the operation shown in FIG. 2 (a) can be implemented by appropriately combining the hardware configuration of a complex D-type flip-flop, an adder, and a multiplier while holding the data 値 1 clock 1 clock delayed. achieve. As another processing example of the data interpolation operation, the method described in Fig. 7 may be used. Figure 2 7 shows the oversampled capital paper size reproduced from the compressed data shown in Figure 25. The Chinese paper standard (CNS) A4 specification (210X297 mm) is applicable to '-49-(Please read the precautions on the back before filling in this Page) 1 ^^.
、1T 484259 A7 _ _ B7 _ 五、發明説明(47 ) 料之圖。 (請先閲讀背面之注意事項再填寫本頁) 如比較藉由此圖2 7所示之展開所獲得之過取樣資料 與顯示於圖2 0之壓縮前的過取樣資料可以淸楚地,藉由 本實施形態之展開處理能夠再現與原來的過取樣資料幾乎 同等之資料。 在圖1 4所示之展開裝置中,雖將如此再現之過取樣 資料輸入D / A轉換器1 6而進行數位-類比轉換,但是 D / A轉換前之數位資料係如圖2 7所示般地,已經被連 續化之平滑的信號。因此,不須如習知之D / A轉換器般 地,利用數位濾波器進行虛擬地提升取樣頻率之處理,即 使單純做D / A轉換,也可以格外提升被輸出之類比信號 之品質。 經濟部智慧財產局員工消費合作社印製 如以上詳細說明般地,於第2實施形態中,在壓縮側 對於被輸入之離散的數位資料進行過取樣與捲積運算以產 生平滑變化之連續的資料,以其之微分絕對値成爲最小之 不定的時間間隔取樣所獲得之過取樣資料,作爲壓縮資料 可以獲得離散的振幅資料値與表示彼等之不定的時間間隔 之定時資料値。而且,於展開側中,依循被包含在壓縮資 料中之振幅資料値與定時資料値,以與壓縮側相同之不定 的時間間隔讀出離散資料,輸出藉由內插處理接續其之間 之連續的資料。 因此,在壓縮、展開時間軸上之類比信號之際,可以 不進行頻率轉換而在時間軸上進行處理。因此,壓縮以及 展開之處理不會變得複雜,也可以使爲此之構成簡單化。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 晒50_ 484259 A7 B7 __ 五、發明説明(48 ) (請先閱讀背面之注意事項再填寫本頁) 又,於由壓縮側傳送壓縮資料,在展開側再生之情形,藉 由在時間軸上之簡單的內插運算,可以依序處理被輸入展 開側之壓縮資料而再生之故,能夠實現即時動作。 又,在本實施形態中,將數位資料之微分絕對値成爲 極小之點當成標本點檢測,由檢測之各標本點之振幅資料 値與表示各標本點出現之時間間隔之定時資料値,產生壓 縮資料而加以傳送或記錄之故,可以指使標本點之資料當 成壓縮資料而獲得,能夠達成高壓縮率。 又,如依據本實施形態,存在於壓縮對象之信號中的 回折點成爲標本點被檢測,藉由展開側之內插運算再現原 來資料所必要之最低限度之點全部被包含在壓縮資料中。 因此,可以提高對原來資料之再現性,能夠獲得高品質之 .再生資料。 經濟部智慧財產局員工消費合作社印製 進而,在本實施形態中,對於數位資料實行過取樣與 捲積運算之際,由數位基本波形被產生之函數係在有限之 標本位置收斂爲0之有限的取樣函數,只可以1次微分之 函數之故,在求得某1個之內插値之情形,成爲只考慮有 限數目之離散資料之値即可,能夠大幅削減處理量。而且 ,不會產生捨位誤差之故,可以獲得正確的內插値,利用 此內插値在進行壓縮處理之情形,關於在展開側被再生之 資料,能夠提升對壓縮前之原來的資料之再現性。 又,在上述第2實施形態所示之捲積運算不過爲其之 一例,本發明並不限定於此。 又,在上述第2實施形態,雖設數位基本波形爲- 1 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) _ 51 - 484259 A7 __ B7 __ 五、發明説明(49 ) ,1,8,8, 1,一 1,數位基本波形並不限定於此例 (請先閲讀背面之注意事項再填寫本頁) 。即,於獲得之內插函數在全域中只可以1次微分,而且 ,於有限之標本位置中,如成爲收斂爲〇之有限的函數, 哪種波形都可。例如,相當於兩側之部份的重量不爲一 1 而爲1或0亦可。又,也可以使相當於正中部份之重量爲 8以外之値。不管哪一種都可以實現良好之曲線內插。 又,在圖14之展開處理部15進行之內插運算也可 以進行依據圖1 5所示之數位基本波形之圖1 6般之捲積 運算。在此情形,只以捲積運算之數位處理便可以獲得連 續之內插値之故,D / A轉換此之結果成爲平滑之類比信 號。藉由此,可以省略L P F 1 7,具有可以抑制由於濾 波器之相位特性之劣化之優點。 (第3實施形態) 以下,依據圖面說明本發明之第3實施形態。 經濟部智慧財產局員工消費合作社印製 上述第1以及第2實施形態係採用在時間軸上之處理 而且,利用表之可變時脈長之內插方式者。相對於此,以 下敘述之第3實施形態不使用表可以更簡單進行壓縮、展 開處理。 在第3實施形態中,首先,作爲壓縮對象之信號在輸 入類比信號之情形,A / D轉換被輸入之類比信號進行數 位資料。而且,利用第1以及第2値,進行化整被A / D 轉換之數位資料之處理。第1値與第2値雖也可以爲相同 値,但是以使第2値大於第1値爲佳。 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐) " -52- 484259 Α7 Β7 五、發明説明(50 ) (請先閱讀背面之注意事項再填寫本頁) 又,將以上述第1値被化整之數位資料在各標本點微 分1次,將其之微分値之極性變化之點當成標本點檢測。 而且,作爲檢測之各標本點壓縮振幅資料,求得以上述第 2値被化整之數位資料之同時,求得表示各標本點出現之 時間間隔之定時資料。進而,求得所獲得之壓縮振幅資料 彼此之差分資料,將此壓縮振幅差分資料與定時資料之組 合當成壓縮資料傳送或記錄。 另一方面,再如上述般地被產生之壓縮資料之展開側 中,將壓縮資料(壓縮振幅差分資料與定時資料之組合) 之中壓縮振幅差分資料依循偶數倍頻率之時脈過取樣。而 且,將此過取樣之壓縮振幅差分資料在藉由定時資料被表 示之各標本點之每一區間之其中間位置符號反轉,對於藉 由此所獲得之資料列在各標本點之每一區間進行多重積分 後,進行移動平均運算或捲積運算。 經濟部智慧財產局員工消費合作社印製 藉由此,在各標本點之每一區間可以獲得平滑之波形 的壓縮振幅資料。接著,利用如此獲得之壓縮振幅資料與 上述之定時資料,在壓縮側中,藉由進行包含只以第2値 被化整運算之位元數之份倍數化之處理之內插運算,產生 平滑連續每一區間之振幅資料彼此之內插資料。進而,因 應需要D / A轉換被產生之內插資料,轉換類比信號而輔ί 出。 圖2 8係顯示實現上述之壓縮方式之第3實施形態之 壓縮裝置之全體構成例之方塊圖。 在此圖2 8中,顯示例如作爲壓縮對象輸入以 本紙張尺度適用中國國家標準(CNS) Α4規格(210Χ297公釐) -53- 484259 A7 B7 五、發明説明(51 ) (請先閲讀背面之注意事項再填寫本頁) 4 4 · 1 Κ Η z之取樣頻率(設此爲基準頻率)被取樣之 數位資料之情形。此處被輸入之數位資料例如爲1 6位元 之含符號之數位資料。在以下作爲數位資料之一例,說明 壓縮聲音信號之情形。 又,此處,作爲壓縮對象之資料雖然直接輸入數位資 料,但是也可以輸入類比信號。在此情形,於壓縮裝置之 輸入段例如具備L P F或A / D轉換器。即,輸入之類比 信號爲了容易進行標本點之檢測,藉由L P F去除雜訊後 ,藉由A / D轉換器被轉換爲數位資料。 如圖2 8所示般地,本實施形態之壓縮裝置由具備: 定時產生器1 1 1,以及振幅產生器1 1 2,以及化整運 算部1 1 3,以及差分運算部1 1 4,以及編碼器1 1 5 ,以及資料記憶體1 1 6 (選項)而構成。 經濟部智慧財產局員工消費合作社印製 定時產生器1 1 1將被輸入之數位資料在各標本點1 次微分,因應該微分値之極性的變化,檢測標本點。而且 ,求得表示該檢測點之定時之定時脈衝T P,以及表示各 標本點之時間間隔之定時資料(基準頻率之時脈C K之數 目)分別輸出。又,此定時產生器1 1 1也產生包含資料 記憶體1 1 6之讀出時脈之各種時脈而輸出。 又,振幅產生器1 1 2依循基準頻率之時脈(:1^,由 被取樣被輸入之各標本點之數位資料之中,只取出相當於 由藉由上述之定時產生器1 1 1被輸出之定時脈衝T P所 顯示之定時之標本點位置之數位資料,將其當成各標本點 之振幅資料輸出。 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -54 - 484259 A7 _ B7 __ 五、發明説明(52 ) 圖2 9係說明上述定時產生器1 1 1以及振幅產生器 (請先閲讀背面之注意事項再填寫本頁) 1 1 2之動作原理用之圖。又,被輸入定時產生器1 1 1 以及振幅產生器1 1 2之資料雖係數位資料,但是在圖 2 9爲了說明之故,將數位資料之波形類比地顯示。 於本實施形態中,由作爲壓縮對象被輸入之數位資料 5〇1之中,將微分値之極性變化之點以及微分値爲零之 點5 0 2 a〜5 0 2 f當成標本點檢測。而且,求得這些 各標本點5 0 2 a〜5 0 2 f之振幅資料値與表示各標本 點5 0 2 a〜5 0 2 f出現之時間間隔之定時資料値,輸 出於下一段。 在圖2 9之例中,作爲各標本點5 0 2 3〜5021 之數位的振幅資料値,求得“ D 〇,D 1,D 2,D 3, D 4 , D 5 ,作爲表不各標本點502 a〜502 f出 現之時刻t 0 — t 1間、t 1 一 t 2間、t 2 — t 3間、 t 3 — t 4間、t 4 一 t 5間之個別的時間間隔之定時, 求得 “ T 1, T 2, 丁 3,T 4,T 5 “。 經濟部智慧財產局員工消費合作社印製 在時刻t 〇之時間點,可以獲得標本點5 〇 2 a之振 幅資料値'' D 〇 〃與表示在其之前標本點(未圖示出)被 檢測之時刻起之時間間隔之定時資料値(未圖示出)之故 ,將這些資料値之組合當成時刻t 〇之資料輸出。 接著,在標本點5 0 2 b被檢測之時刻t 1之時間點 中,可以獲得表示在其之前標本點5 0 2 a被檢測之時刻 t〇起之時間間隔之定時資料値τ 1 〃 ,以及標本點 5 0 2 b之振幅資料値、D 1 〃之故,將這些資料値之組 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -- -55 - 484259 經濟部智慧財產局員工消費合作社印製 A7 B7___五、發明説明(53 ) 合(T 1,d 1 )當成時刻t 1之資料輸出。 進而,在接著標本點5 0 2 c被檢測之時刻t 2之時 間點中,可以獲得表示在其之前標本點5 0 2 b被檢測之 時刻t 1起之時間間隔之定時資料値T 2 〃,以及標本 點5 〇 2 c之振幅資料値'、D 2 〃之故,將這些資料値之 組合(T 2,D 2 )當成時刻t 2之資料輸出。 以下同樣地,將表示時刻t 2 — t 3間、t 3 - t 4 間、t 4 一 t 5間之時間間隔之定時資料値與在時刻t 3 、t 4、t 5被檢測之各標本點5〇2 d、5 0 2 e、 5〇2 f之振幅資料値之組合(T 3,D 3 ) 、 ( T 4, D 4 ) 、( T 5,D 5 )分別當成時刻 t 3、t 4、t 5 之資料輸出。 圖3 0係顯示上述定時產生器1 1 1之構成例之方塊 圖。圖3 0中,化整運算部1 1 7對於作爲壓縮對象之資 料被輸入之數位資料,進行以第1値Ν 1化整運算(使用 第1値Ν 1之除法)。例如,化整運算部1 1 7進行以8 或1 6化整被輸入之數位資料之處理。 微分器1 1 8 1次微分藉由化整運算部1 1 7被化整 之數位資料。此時微分器1 1 8在4 4 · 1 Κ Η ζ之輸入 時脈C Κ被次被給予,即在依據基準頻率之各標本點進行 數位資料之微分。微分値例如藉由將以某輸入時脈C Κ之 定時取得之現在資料由以時間上1個之前的時脈的定時取 得之資料減掉而求得。 又,標本點檢測部1 1 9依據由微分器1 1 8被算出 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閲讀背面之注意事項再填寫本頁) -56 - 484259 A7 _ B7 五、發明説明(54 ) (請先閲讀背面之注意事項再填寫本頁) 之微分値,將數位資料之微分値之極性變化之點當成標本 點檢測。例如,標本點檢測部1 1 9檢測微分値之極性由 正變化爲負或由負變化爲正之點,以及微分値成爲〇之點 。而且,關於微分値之極性由正變爲負或由負變化爲正之 點,將其之極性變化之前的點當成標本點檢測。又,微分 値成爲0之點在2個以上連續出現之情形,例如,將其之 兩端之位置當成標本點檢測出。 定時產生部1 2 0計數由1個之標本點被檢測至下一 標本點被檢測爲止被供給之時脈C K之數目,將此當成定 時資料T輸出之同時,輸出表示各標本點之檢測點之定時 之定時脈衝T P。又,此定時產生部1 2 0也產生包含讀 出時脈之各種時脈而輸出之。 經濟部智慧財產局員工消費合作社印製 如上述般地,在本實施形態中,在進行應檢測標本點 之數位資料的微分之前,對於該數位資料進行化整運算。 此化整運算雖然不一定要進行,但是以進行爲佳。即,如 不進行化整運算在原來資料之狀況下微分,會有被包含在 原來的資料中之微小雜訊成分或不需要之信號成分部份也 當成標本點被檢測之情形,壓縮率降低。因此,進行化整 運算後再進行微分較佳。 但是,如使進行化整運算之第1値N 1太大,本來微 分値之極性變化之原來資料之回折點(峰値點)被平滑化 ,認爲必要支點無法作爲標本點被檢測出。在此情形,在 展開側有無法再生正確資料之情形。因此,第1之値N 1 需要選擇不太小而且不太大之適當値(以第1値N 1 = 8 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -57- 484259 A7 B7 五、發明説明(55 ) 或1 6爲佳)。 (請先閱讀背面之注意事項再填寫本頁) 圖3 1係顯示產生上述定時脈衝T P之部份的詳細構 成例圖。於圖3 1中,第1D型正反器1 2 1依循基準頻 率之時脈C K取樣保持作爲壓縮對象被輸入之數位資料。 乘法器(或除法器)1 2 2使被保持在第1 D型正反器 1 2 1之數位資料1 / n 1倍。 藉由此乘法器1 2 2被1 / N 1倍之數位資料被供給 於減法器1 2 4之負側之同時,以第2 D型正反器1 2 3 被延遲1個之時脈C K份後,被供給於減法器1 2 4之正 側。藉由此,在減法器1 2 4中,藉由將以某輸入時脈 C K之定時取得之現在資料由以時間上1個之前的定時取 得之資料減掉,可以求得微分値。 經濟部智慧財產局員工消費合作社印製 於本實施形態中,在檢測標本點之際,微分値本身並 非必要者,只要知道其之極性即可。因此,由減法器 1 2 4只被輸入微分資料之符號位元。由減法器1 2 4被 輸出之微分資料的符號位元被供給於E X N〇R電路 1 2 6之一方的輸入端之同時,以第3D型正反器1 2 5 只被延遲1時脈C K份後,被供給於E X N〇R電路 1 2 6之另一方之輸入端。藉由此,藉由EXN OR電路 1 2 6,微分値之極性變化之標本點被檢測出,作爲表示 其之檢測點之資料,定時脈衝T P被輸出。 回到圖2 8繼續說明。化整運算部1 1 3對於藉由振 幅產生器1 1 2被輸出之振幅資料,以比上述第1値N 1 還大之第2値N 2進行化整運算,輸出壓縮振幅資料。例 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐Γ 一 -58- 484259 A7 B7 __ 五、發明説明(56) (請先閲讀背面之注意事項再填寫本頁) 如,化整運算部1 1 3進行以1 〇 2 4化整藉由振幅產生 器1 2 4被輸出之各標本點之振幅資料之處理。藉由以 1〇2 4化整振幅資料,每一字元可以1 0位元削減資料 長,此處,可以大幅削減資料量。 又,差分運算部1 1 4求得藉由化整運算部1 1 3所 求得之壓縮振幅資料彼此之差分。例如,藉由由某標本點 之壓縮振幅資料減掉比其時間上1個之前之標本點之壓縮 振幅資料,逐次求得差分資料。如依圖2 9所示之例加以 說明,在差分運算部114中,成爲運算D1/1024 —D〇/l〇24、D2/l〇24 — D1/10 24、 D 3 / 1 0 2 4 — D 2 / 1 0 2 4 、…(以 1 〇 2 4 相除 係藉由化整運算部11 3之化整運算)。如此藉由運算差 .分,與取得差分之前的壓縮振幅資料相比,可以使個個之 資料値更小,能夠更削減資料長。 經濟部智慧財產局員工消費合作社印製 編碼器1 1 5區塊化藉由定時產生器1 1 1被求得之 定時資料,以及藉由差分運算部1 1 4被求得之壓縮振幅 差分資料之組合,將此當成串列壓縮區塊資料,輸出於未 圖示出之傳送路徑或資料記憶體1 1 6。 即,編碼器1 1 5並列/串列轉換壓縮振幅差分資料 與定時資料之組合而區塊化,在該資料區塊之前端附加頭 部或各種旗標而輸出。在頭部例如包含:頭部之辨識標記 、藉由化整運算部1 1 7之化整的値N 1等之資訊。在此 種頭部之後,由壓縮振幅資料之初期値以及壓縮振幅差分 資料以及定時資料之組合所形成之資料區塊以上升順序接 本紙張尺度適用中國國家標隼(CNS ) A4規格(210X297公釐) 59- 經濟部智慧財產局員工消費合作社印製 484259 A7 B7 __ 五、發明説明(57 ) 續。又,將化整之値N 1包含於頭部係因應壓縮對象之信 號係爲了可以使化整之値N 1改變爲適合於該信號之値之 故。 資料記憶體1 1 6爲儲存壓縮資料之記錄媒體,依循 由定時產生器1 1 1透過編碼器1 1 5被送至之時脈取得 藉由編碼器1 1 5被產生之串列壓縮區塊資料而記錄之。 又,因應由外部被給予之讀出時脈,讀出被儲存之壓縮資 料而輸出。 圖3 2係說明藉由上述圖2 8所示之壓縮裝置而進行 之壓縮處理之實際的動作例用之圖。又,於圖3 2中,縱 方向由上而下係顯示時間之經過。 圖3 2所示之各種的資料列A〜I之中,最左之資料 列A係壓縮處理進行前之生資料。此生資料依循4 4 . 1 Κ Η z之取樣頻率被取樣。 由左起第2之資料列Β係藉由圖3 0所示之化整運算 部1 1 7 (圖3 1所示之乘法器1 2 2 ),以1 6化整生 資料之結果的資料。第3之資料列C係藉由圖2 8所示之 化整運算部1 1 3以1 〇 2 4化整生資料之結果的資料。 第4之資料列D係藉由圖3 0所示之微分器1 1 8微 分第2之資料列Β (以1 6化整生資料之資料)之結果的 資料。例如,由上第2之微分値、' 2 4 〃係利用資料列Β 之資料,由6 9 6 — 6 7 2 〃而求得,下一微分値、、 1 1 〃係利用資料列Β之下一資料,由'、7 0 7 — 6 9 6 〃而求得。 :紙張尺度適用中關家標規格(21〇Χ一公釐) ^— _ 60圈 (請先聞讀背面之注意事項再填寫本頁)、 1T 484259 A7 _ _ B7 _ V. Description of the invention (47) Material drawing. (Please read the precautions on the back before filling this page.) If you compare the oversampling data obtained by the expansion shown in Figure 27 and the oversampling data before compression shown in Figure 20, you can borrow it clearly. The unfolding processing of this embodiment can reproduce data almost equal to the original oversampling data. In the expansion device shown in FIG. 14, although the oversampled data thus reproduced is input to the D / A converter 16 for digital-analog conversion, the digital data before the D / A conversion is shown in FIG. 27. Generally, a smooth signal that has been continuous. Therefore, it is not necessary to use a digital filter to virtually increase the sampling frequency like a conventional D / A converter. Even if only D / A conversion is performed, the quality of the analog signal being output can be greatly improved. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs as detailed above. In the second embodiment, the input discrete digital data is oversampled and convolved on the compression side to produce smooth continuous data. The oversampling data obtained by sampling with its differential absolute 値 becoming the smallest indefinite time interval, as the compressed data can obtain discrete amplitude data 値 and timing data indicating their indefinite time interval 値. Further, in the unfolding side, the amplitude data 定时 and the timing data 包含 included in the compressed data are read, and the discrete data is read out at the same indefinite time interval as the compression side, and the output is continued by interpolation between them. data of. Therefore, when compressing and expanding analog signals on the time axis, processing can be performed on the time axis without frequency conversion. Therefore, the processing of compression and expansion is not complicated, and the structure for this can be simplified. This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm). Sun exposure 50_ 484259 A7 B7 __ V. Description of the invention (48) (Please read the precautions on the back before filling this page). It is also sent by the compression side. When compressed data is reproduced on the expansion side, it is possible to process the compressed data input on the expansion side sequentially and reproduce it by simple interpolation operation on the time axis, so that real-time action can be realized. Also, in this embodiment, the absolute absolute value of the digital data becomes extremely small as the specimen point detection, and the amplitude data of each detected specimen point and the timing data indicating the time interval at which each specimen point appears are compressed. The reason why the data is transmitted or recorded can mean that the data of the specimen point is obtained as compressed data, which can achieve a high compression rate. In addition, according to this embodiment, the turning points existing in the signal of the compression target are detected as the specimen points, and the minimum points necessary to reproduce the original data by interpolation operations on the expansion side are all included in the compressed data. Therefore, the reproducibility of the original data can be improved, and high-quality reproduced data can be obtained. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy Because the sampling function can only be differentiated once, it is only necessary to consider only a limited number of discrete data in the case of obtaining a certain interpolation, which can greatly reduce the amount of processing. In addition, there is no rounding error, and correct interpolation can be obtained. When this interpolation is used for compression processing, the data that is reproduced on the expansion side can improve the original data before compression. Reproducibility. The convolution operation shown in the second embodiment is only an example, and the present invention is not limited to this. Moreover, in the second embodiment, although the digital basic waveform is set to -1, the paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) _ 51-484259 A7 __ B7 __ V. Description of the invention (49) The basic digital waveforms are not limited to this example (please read the precautions on the back before filling this page). In other words, the obtained interpolation function can be differentiated only once in the entire domain, and in a limited sample position, any waveform can be used as long as it is a finite function that converges to zero. For example, the weight of the parts corresponding to both sides may be not 1 but 1 or 0. It is also possible to make the weight equivalent to the middle part to a weight other than 8. Either way, good curve interpolation can be achieved. The interpolation operation performed by the expansion processing unit 15 in Fig. 14 may also perform a convolution operation as shown in Fig. 16 based on the digital basic waveform shown in Fig. 15. In this case, the continuous interpolation can be obtained only by the digital processing of the convolution operation, and the result of the D / A conversion becomes a smooth analog signal. Thereby, it is possible to omit L P F 1 7, and there is an advantage that deterioration in phase characteristics due to the filter can be suppressed. (Third Embodiment) A third embodiment of the present invention will be described below with reference to the drawings. Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. The above-mentioned first and second embodiments are processed on the time axis and the variable clock length interpolation method is used. On the other hand, in the third embodiment described below, compression and expansion processing can be performed more easily without using a table. In the third embodiment, first, in the case where an analog signal is input as a signal to be compressed, the analog signal inputted by the A / D conversion is digital data. Furthermore, the digital data converted by A / D is processed using the first and second frames. The first frame and the second frame may be the same frame, but the second frame is preferably larger than the first frame. This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) " -52- 484259 Α7 Β7 V. Description of the invention (50) (Please read the precautions on the back before filling this page) The first rounded digital data is differentiated once at each specimen point, and the point at which the polarity of the differentiated ridge is changed is detected as the specimen point. In addition, as the compressed amplitude data of each specimen point detected, while obtaining the second rounded digital data, the timing data indicating the time interval at which each specimen point appears is obtained. Furthermore, the difference data between the obtained compressed amplitude data is obtained, and the combination of the compressed amplitude difference data and the timing data is transmitted or recorded as compressed data. On the other hand, in the unfolding side of the compressed data generated as described above, the compressed amplitude difference data in the compressed data (combination of the compressed amplitude difference data and the timing data) is oversampled by a clock of an even multiple frequency. Moreover, the sign of this oversampled compressed amplitude difference data is reversed at the middle position of each interval of each specimen point represented by the timing data, and the data obtained by this is listed at each specimen point. After performing multiple integrals in the interval, a moving average operation or a convolution operation is performed. Printed by the Employees' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. With this, smooth waveform compression amplitude data can be obtained in each section of each specimen point. Then, using the thus obtained compressed amplitude data and the above-mentioned timing data, on the compression side, smoothing is performed by performing an interpolation operation including a process of multiplying the multiples of the number of bits that are rounded by the second unit to be rounded. The amplitude data of each consecutive interval is interpolated with each other. Furthermore, in response to the need to generate interpolation data for D / A conversion, analog signals are supplemented. Fig. 28 is a block diagram showing an example of the overall configuration of a compression device that implements the third embodiment of the compression method described above. In this figure 2-8, for example, it is input as the compression target to apply the Chinese National Standard (CNS) A4 specification (210 × 297 mm) at this paper scale -53- 484259 A7 B7 V. Description of the invention (51) (Please read the back Please fill in this page for the matters needing attention) 4 4 · 1 Κ Η z The sampling frequency (set this as the reference frequency) of the digital data sampled. The digital data input here is, for example, 16-bit signed digital data. In the following, as an example of digital data, a case where a sound signal is compressed will be described. Here, although the digital data is directly input as the data to be compressed, an analog signal may also be input. In this case, the input section of the compression device is provided with an L P F or A / D converter, for example. That is, the input analog signal is easily converted to digital data by the A / D converter after the noise is removed by the L P F in order to facilitate the detection of the specimen point. As shown in FIG. 28, the compression device of this embodiment includes: a timing generator 1 1 1 and an amplitude generator 1 1 2; a rounding operation unit 1 1 3; and a difference operation unit 1 1 4; And encoder 1 1 5 and data memory 1 1 6 (optional). Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economics. The timing generator 1 1 1 differentiates the input digital data at each specimen point, and detects the specimen point according to the change in the polarity of the differential 値. Furthermore, a timing pulse T P indicating the timing of the detection point and timing data (the number of clocks C K of the reference frequency) indicating the time interval of each specimen point are obtained and output respectively. The timing generator 1 1 1 also generates and outputs various clocks including the read clock of the data memory 1 1 6. In addition, the amplitude generator 1 1 2 follows the clock of the reference frequency (: 1 ^, from the digital data of each sample point that is sampled and input, only taking out is equivalent to the above by the timing generator 1 1 1 The output digital data of the timing sample point position displayed by the output timing pulse TP will be output as the amplitude data of each sample point. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -54-484259 A7 _ B7 __ V. Description of the invention (52) Figure 2 9 is a diagram illustrating the operation principle of the above-mentioned timing generator 1 1 1 and amplitude generator (please read the precautions on the back before filling this page). In addition, although the data input to the timing generator 1 1 1 and the amplitude generator 1 1 2 are coefficient-bit data, the waveforms of the digital data are analogously displayed in FIG. 29 for the sake of explanation. In this embodiment, the Among the digital data 501 that is input as the compression target, the point at which the polarity of the differential 变化 changes and the point at which the differential 零 is zero 50 2 a to 5 0 2 f are detected as specimen points. Further, these specimens are obtained. Point 5 0 2 a ~ 5 0 2 f The frame data and timing data indicating the time interval between the occurrence of each specimen point 5 0 2 a ~ 5 0 2 f are output in the next paragraph. In the example of Figure 29, as the specimen point 5 0 2 3 ~ 5021 Digital amplitude data 値, find "D 〇, D 1, D 2, D 3, D 4, D 5, as the time t 0-t 1 and t 1 between the appearance of the specimen points 502 a ~ 502 f T 2-t 2-t 3-t 3-t 4-t 4-t 5 at different time intervals, find "T 1, T 2, D 3, T 4, T 5 ". The consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs printed the time point at time t 〇, and can obtain the amplitude data of the specimen point 5 〇 2 a 値" D 〇〃 and the specimen point before it (not shown) Therefore, the timing data 时间 (not shown) of the time interval from the time when the test is performed, the combination of these data 値 is output as the data at time t 0. Then, at the time t 1 when the specimen point 5 0 2 b is detected At the time point, timing data 可以获得 τ 1 表示 representing the time interval from the time t0 at which the previous specimen point 5 0 2 a was detected can be obtained, Specimen point 5 0 2 b amplitude data 値, D 1 故, the paper size of these data 适用 applies to the Chinese National Standard (CNS) A4 specification (210X297 mm)--55-484259 Ministry of Economic Affairs intellectual property A7 B7___ printed by the bureau's consumer cooperative. V. Invention Description (53) The combination (T1, d1) is output as the data at time t1. Further, at the time point following the time point t 2 at which the specimen point 5 0 2 c is detected, timing data (T 2) indicating the time interval from the time point 1 before the specimen point 5 0 2 b is detected can be obtained. As well as the amplitude data 値 ′ and D 2 标 of the specimen point 5 0 2 c, the combination of these data 値 (T 2, D 2) is output as the data at time t 2. In the same manner, the timing data indicating the time interval between time t 2-t 3, t 3-t 4, t 4-t 5 and the specimens detected at time t 3, t 4, and t 5 The combination of the amplitude data 値 (T 3, D 3), (T 4, D 4), and (T 5, D 5) of the amplitude data 値 at points 502 d, 50 2 e, and 502 f are regarded as time t 3, respectively. Data output at t 4, t 5. Fig. 30 is a block diagram showing a configuration example of the timing generator 1 1 1 described above. In FIG. 30, the rounding operation unit 1 1 7 performs rounding operation on the digital data that is input as the compression target data by the first 1N1 (using the division of the 1N1). For example, the rounding operation unit 1 7 performs rounding processing of the input digital data by 8 or 16. The differentiator 1 1 1 differentiates the digital data which has been rounded by the rounding operation section 1 1 7. At this time, the differentiator 1 1 8 is given the clock C 4 at the input of 4 4 · 1 κ Η ζ, that is, the digital data is differentiated at each specimen point according to the reference frequency. The differential 値 is obtained, for example, by subtracting the current data acquired at a timing of a certain input clock CK from the data acquired at a timing of a clock before one in time. In addition, the specimen point detection section 1 1 9 calculates the paper size based on the differentiator 1 1 8 and applies the Chinese National Standard (CNS) A4 specification (210 × 297 mm) (Please read the precautions on the back before filling out this page) -56 -484259 A7 _ B7 V. Differential 値 of the description of the invention (54) (please read the precautions on the back before filling this page), and use the differential point of the differential 値 of digital data as the specimen point detection. For example, the specimen point detection section 1 1 9 detects a point at which the polarity of the differential 値 changes from positive to negative or from negative to positive, and a point at which the differential 値 becomes 0. Moreover, regarding the point where the polarity of the differential 値 changes from positive to negative or from negative to positive, the point before the change of its polarity is detected as the specimen point. In addition, the case where the point at which the differential 在 becomes 0 occurs continuously in two or more, for example, the positions of the two ends are detected as the specimen points. The timing generator 1 2 0 counts the number of clocks CK supplied from the time when one specimen point is detected until the next specimen point is detected, and outputs this as timing data T, and outputs the detection points representing each specimen point. The timing pulse TP. The timing generating unit 120 generates various clocks including the read clocks and outputs them. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs As described above, in this embodiment, before performing differentiation on the digital data to be detected at the specimen point, the digital data is rounded. Although this rounding operation is not necessarily performed, it is preferably performed. That is, if the differentiation is not performed under the condition of the original data without the rounding operation, there may be cases where small noise components or unwanted signal components contained in the original data are also detected as specimen points, and the compression rate is reduced. . Therefore, it is better to perform differentiation after performing the rounding operation. However, if the first 値 N 1 for the rounding operation is too large, the turning point (peak point) of the original data that originally changed the polarity of the differential 値 is smoothed, and it is considered that the necessary pivot point cannot be detected as the specimen point. In this case, there is a case where the correct data cannot be reproduced on the development side. Therefore, the first 値 N 1 needs to be selected not too small and not too large (with the first 値 N 1 = 8 this paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -57- 484259 A7 B7 5. Invention description (55) or 16 is preferred). (Please read the precautions on the back before filling this page.) Figure 3 1 shows a detailed configuration example of the part that generates the above-mentioned timing pulse T P. In FIG. 31, the 1D-type flip-flop 1 2 1 samples and holds the digital data input as the compression target according to the clock C K of the reference frequency. The multiplier (or divider) 1 2 2 doubles the digital data 1 / n 1/1 that is held at the first D-type flip-flop 1 2 1. As a result, the digital data multiplied by 1 / N by the multiplier 1 2 2 is supplied to the negative side of the subtractor 1 2 4, and the clock D is delayed by 1 2 with the second D-type flip-flop 1 2 3. After serving, it is supplied to the positive side of the subtractor 1 2 4. As a result, in the subtractor 1 2 4, the differential chirp can be obtained by subtracting the current data acquired at a timing of a certain input clock C K from the data acquired at a timing before one in time. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. In this embodiment, when detecting the specimen point, the differential 値 itself is not necessary, as long as you know its polarity. Therefore, only the sign bits of the differential data are input by the subtractor 1 2 4. The sign bit of the differential data output by the subtractor 1 2 4 is supplied to one of the input terminals of the EXNOR circuit 1 2 6, and the 3D flip-flop 1 2 5 is delayed by only 1 clock CK. After that, it is supplied to the other input terminal of the EXNOR circuit 1 26. With this, by the EXN OR circuit 1 2 6, the specimen point at which the polarity of the differential chirp changes is detected, and as the data indicating the detection point thereof, the timing pulse T P is output. Returning to Figure 2 8 to continue the description. The rounding calculation unit 1 1 3 performs rounding operation on the amplitude data outputted by the amplitude generator 1 12 with the second 値 N 2 larger than the first 値 N 1, and outputs the compressed amplitude data. For example, the paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm Γ-58- 484259 A7 B7 __ V. Description of the invention (56) (Please read the precautions on the back before filling this page) The arithmetic unit 1 1 3 processes the amplitude data of each sample point outputted by the amplitude generator 1 2 4 and the amplitude generator 1 2 4. By the amplitude data of the amplitude of 104, each character can be adjusted. The length of data is reduced by 10 bits. Here, the amount of data can be greatly reduced. Also, the difference calculation unit 1 4 obtains the difference between the compressed amplitude data obtained by the rounding calculation unit 1 13. For example, by borrowing The differential amplitude data is successively obtained by subtracting the compressed amplitude data of a specimen point before the compressed amplitude data of a specimen point in time. As described in the example shown in FIG. 29, the difference calculation section 114 , Becomes the operation D1 / 1024 — D〇 / l〇24, D2 / l〇24 — D1 / 10 24, D 3/1 0 2 4 — D 2/1 0 2 4, ... (divide by 0 2 4 It uses the rounding operation by the rounding calculation unit 11 3). In this way, the difference amplitude and the compression amplitude data before the difference are obtained by calculating the difference. It can make individual data smaller, and reduce the length of data. The Intellectual Property Bureau, Ministry of Economic Affairs, Employee Consumption Cooperative, prints the encoder 1 1 5 block, and the timing data obtained by the timing generator 1 1 1 , And the combination of the compressed amplitude difference data obtained by the difference calculation unit 1 1 4 is used as the serial compressed block data and output to a transmission path or data memory 1 1 not shown. That is, The encoder 1 1 5 performs parallel / serial conversion to combine the compressed amplitude difference data and timing data to block, and outputs a header or various flags before the data block. The header includes, for example: Information such as identification marks, 値 N 1, etc. rounded by the rounding calculation unit 1 1 7. After this header, it is formed by a combination of the initial stage of the compressed amplitude data and the compressed amplitude difference data and timing data. The data blocks are connected to this paper in ascending order. The size of the paper applies to the Chinese National Standard (CNS) A4 (210X297 mm) 59- Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy 484259 A7 B7 __ V. Description of the Invention (57) Continue In addition, the rounded 値 N 1 is included in the head in response to the signal to be compressed, so that the rounded 値 N 1 can be changed to a signal suitable for the signal. The data memory 1 1 6 is for storing compressed data. The recording medium is recorded according to the serial compressed block data generated by the encoder 1 15 according to the clock sent by the timing generator 1 1 1 through the encoder 1 15. It should also be recorded by an external source. The given readout clock reads out the stored compressed data and outputs it. Fig. 32 is a diagram illustrating an actual operation example of the compression processing performed by the compression device shown in Fig. 28. In Fig. 32, the elapsed time is displayed from the top to the bottom in the vertical direction. Among the various data columns A to I shown in FIG. 3, the leftmost data column A is the raw data before the compression process is performed. The data of this life are sampled according to the sampling frequency of 4 4 1 κ Η z. The second data column B from the left is the data obtained by rounding the raw data by 16 through the rounding calculation unit 1 1 7 (the multiplier 1 2 2 shown in FIG. 31). . The third data row C is the data obtained by rounding the raw data by the rounding calculation unit 1 13 shown in FIG. The fourth data row D is the data obtained by differentiating the second data row B (the data of 16 whole life data) by the differentiator 1 18 shown in FIG. 30. For example, from the second differential 値, '2 4 〃 is the data using data row B, and it is obtained from 6 9 6 — 6 7 2 ,. The next information can be obtained from ', 7 0 7 — 6 9 6 〃. : Paper size applies to Zhongguan Family Standard (21〇 × 1mm) ^ — _ 60 turns (Please read the precautions on the back before filling this page)
484259 A7 ___B7 __ 五、發明説明(58 ) 第5之資料列E係顯示微分値之極性由正變化爲負或 由負變化爲正之前的點之旗標。即,在微分値之極性改變 之前的點,樹立、、1 〃,在其以外之點,樹立、、〇 〃 。例 如,在被顯示於第4之資料列D之各微分値之中,在微分 値由、、1 1 〃轉變爲—4 7 〃之部份中,在微分値之極 性改變前之、、1 1 〃之點,樹立旗標、、1 〃 。又,於微分 値由、一 1 5 〃轉變爲、2 0 〃之部份中,在微分値之極 性改變前之、'一 1 5 〃之點,樹立旗標、、1 〃 。此旗標、' 1 〃之站立之點成爲標本點。 第6之資料列F係藉由圖2 8之化整運算部1 1 3被 產生之壓縮振幅資料。此處,爲了在與之後的展開處理之 比較中說明上容易理解之故,雖然顯示以2倍頻率過取樣 壓縮振幅資料之情形之各點,但是實際上只在資料列E之 旗標“ 1 “站立之標本點存在壓縮振幅資料。此在以下之 資料列G〜I也相同。 第7之資料列G係藉由圖2 8之差分運算部1 1 4被 產生之壓縮振幅差分資料。例如,最上面之資料値、1 〃係使用資料列F中之連續的標本點之資料値,由、、1 〇 一 1 1 〃而求得,接著的資料値'' 0 〃係使用資料列F中 之連續的標本點之資料値,由> 1 0 - 1 0 〃而求得。 第8之資料列Η係藉由圖2 8之定時產生器1丨而 被產生之定時資料。此處,顯示1個之標本點被檢沏j @至 下一標本點被檢測爲止所被供給之時脈C K之數。此處, 雖每一 2倍頻率之各標本點顯示定時資料,實際上,只在 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ^ (請先閲讀背面之注意事項再填寫本頁)484259 A7 ___B7 __ V. Description of the invention (58) The fifth column E indicates the flag of the point where the polarity of the differential 値 changes from positive to negative or from negative to positive. That is, at the point before the polarity of the differential , changes, set 、, 1 1, and at other points, set 、, 0 〃. For example, among the differential 値 shown in the data column D of the fourth, in the part where the differential 値 changes from ,, 1 1 为 to -4 7 〃, before the polarity of the differential 値 changes, 1, 1 Set a flag at 1 point, 1 point. In addition, in the part where the differential 値 changes from -1 1 5 为 to 2 0 〃, before the extreme change of the differential 値, the point of '1 1 5 ,, set the flag, 1 〃. This flag, the point at which '1 〃 stands, becomes the specimen point. The sixth data line F is the compressed amplitude data generated by the rounding operation unit 1 1 3 of FIG. 28. Here, in order to make it easier to understand in comparison with the subsequent expansion processing, although the points of the case where the amplitude data is oversampled and compressed at twice the frequency are shown, in fact, only the flag “1” in the data column "There is compression amplitude data for standing specimen points. The same applies to the following data columns G to I. The seventh data row G is the compressed amplitude difference data generated by the difference calculation section 1 1 4 of FIG. 28. For example, the top data 値, 1 〃 are data using continuous specimen points in data row F, and are obtained from 、, 1 〇 1 1 〃, and the next data 値 0 0 〃 is the use of data. The data 连续 of the continuous specimen points in F are obtained from > 1 0-1 0 〃. The eighth data row is the timing data generated by the timing generator 1 in FIG. Here, the number of clocks C K supplied from the time when one specimen point is inspected to the next specimen point is detected is displayed. Here, although the timing data is displayed at each specimen point at 2 times the frequency, in fact, the Chinese National Standard (CNS) A4 specification (210X297 mm) is only applicable to this paper size ^ (Please read the precautions on the back before filling (This page)
、1T 經濟部智慧財產局員工消費合作社印製 -61 - 484259 A7 B7 五、發明説明(59 ) 旗標 1 之標本點存在定時資料。 (請先閲讀背面之注意事項再填寫本頁) 第9之資料列I係顯示資料之切換之旗標。即,在連 續之標本點之壓縮振幅資料爲相同値之情形,爲了顯示該 標本點之區隔,0 〃以及、、1 〃之旗標値被設定著。例 如,被顯示於資料列F之第2標本點與第3標本點之壓縮 振幅資料之値都是、、1 〇 〃之故,雖係相同之壓縮振幅資 料値,但是爲了顯示爲不同標本點之資料値,至目前爲止 不同値之資料切換旗標被設定於此。 以上之各主資料列之中,被顯示於資料列F之壓縮振 幅資料之初期値1 1 〃以及被顯示於資料列G、Η之各 標本點之壓縮振幅差分與定時資料之組合(- 1,2 )、 (〇, 1 ) 、( — 3, 3 )……藉由編碼器1 1 5被區塊 化,當成串列壓縮區塊資料被輸出。 由此可以明白地,如依據本實施形態之壓縮裝置,可 以將被顯示於資料列Α之壓縮對象之生資料幾乎壓縮爲被 顯示於資料列G、Η之各標本點之資料,而且,將各標本 點之資料之値與生資料比較,可以壓縮爲極爲小之値。 經濟部智慧財產局員工消費合作社印製 圖3 3係顯示藉由本實施形態之串列壓縮區塊資料之 構成例圖。於本實施形態中,如以下說明般地,設區塊資 料爲可變長度之資料。 圖3 3 ( a )係顯示壓縮振幅差分資料之區塊構造。 於此圖3 3 ( a )中,第1位元係資料符號位元(符號位 元),顯示壓縮振幅差分資料之極性。例如,資料符號位 元之値爲'' 1 〃時,表示負數,0 〃時,表示正數。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -62- 484259 A7 B7 ___ 五、發明説明(60 ) (請先閲讀背面之注意事項再填寫本頁) 又,第2位元係區隔期間,顯示壓縮振幅差分資料之 位元數。例如,區隔旗標値爲、、1 〃時,壓縮振幅差分資 料爲連續2位元(第3〜4位元),、、0 〃時,壓縮振幅 差分貪料爲連續5位元(第3〜7位元)。其意義爲區隔 旗標係顯示與下一資料區塊之區隔。 如鼠3 2之資料列G所示般地,壓縮振幅差分資料除 了符號位元,幾乎可以以2位元表示。因此,對於大部分 之壓縮振幅差分資料,使區隔旗標爲、1 〃,分配2位元 長,對於以2位元無法表現完之壓縮振幅差分資料,使區 隔旗標爲'' 0 〃,分配5位元長。最大如分配5位元,可 以表現全部之壓縮振幅差分資料。 另一方面,圖3 3 ( b )係顯示定時資料之區塊構造 。此定時資料之區塊爲接續於壓縮振幅差分資料之區塊之 後者。於圖3 3 ( b )中,第1位元爲區隔旗標,顯示定 時資料之位元數。例如,區隔旗標値爲'' 1 〃時,定時資 料爲連續3位元(第2〜4位元),爲'' 0 〃時,定時資 料爲連續8位元(第2〜9位元)。 經濟部智慧財產局員工消費合作社印製 如圖3 2之資料列Η所示般地,定時資料全部爲正數 ,其之大部分可以3位元表示。因此,對於大部分之定時 資料,使區隔旗標爲'' 1 〃 ,分配3位元長,對於無法以 3位元表現完之定時資料,使區隔旗標爲'' 0 〃,分配8 位元長。最大如分配8位元,可以表現全部之定時資料。 如此,在本實施形態之壓縮裝置中,將被產生之壓縮 資料進而當成可變長度區塊資料加以傳送或記錄。藉由此 I紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) ~ -63- 484259 經濟部智慧財產局員工消費合作社印製 A7 B7五、發明説明(61 ) ,可以使壓縮率更提局1 · 5倍程度,能夠實現更筒壓縮 率。例如,在C D之音樂資料之一部份,能夠達成1 2以 上之壓縮率。 接著,說明對應以上說明之壓縮裝置之展開裝置。圖 3 4係顯示依據本實施形態之展開裝置之構成例之方塊圖 。如圖3 4所不般地,本實施形態之展開裝置係由具備·' P L L ( Phase Locked Loop )電路1 3 1,以及資料記憶 體(選項)1 3 2,以及解碼器1 3 3,以及定時產生器 1 3 4,以及平方內插資料產生部1 3 5而構成。 PLL電路131由基準頻率(44·ΙΚΗζ)之 輸入時脈C K產生2倍頻率(8 8 · 2 Κ Η z )之時脈 2 C Κ,將其供給定時產生器1 3 4以及平方內插資料產 .生部1 3 5。又,資料記憶體1 3 2爲儲存由壓縮裝置被 傳送來之串列壓縮區塊資料之記錄媒體。 解碼器1 3 3係將由資料記憶體1 3 2被讀出之串列 壓縮區塊資料藉由與2倍頻率之時脈2 C Κ同步之各種時 脈解碼,取出壓縮振幅差分資料與定時資料之組合。而且 ,將取出之壓縮振幅差分資料輸出於平方內插資料產生部 1 3 5之同時,將取出之定時資料輸出於定時產生器 1 3 4以及平方內插資料產生部1 3 5。壓縮振幅差分資 料在平方內插資料產生部1 3 5中,藉由依循定時脈衝 Τ Ρ被取樣,成爲與各標本點間之週期同步之資料。 定時產生器1 3 4接受由解碼器1 3 3被供給之定時 資料,由輸入時脈2 C Κ產生表示與在壓縮側被檢測之標 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 -64- 484259 A7 B7 五、發明説明(62) (請先閲讀背面之注意事項再填寫本頁) 本點間相同之不定的時間間隔之定時脈衝T P。又,此定 時產生器1 3 4也產生包含對於資料記憶體1 3 2之讀出 時脈之各種時脈而輸出之。 平方內插資料產生部1 3 5利用由解碼器1 3 3被輸 入之壓縮振幅差分資料與定時資料,進行指定之平方內插 運算,產生塡補各標本點之間之數位內插資料。關於此平 方內插運算之詳細,雖然之後敘述,但是此處被產生之內 插資料對於被壓縮前之原來資料,爲被施以2倍之過取樣 之一連串之振幅資料。如此被產生之數位內插資料當成展 開資料被輸出。 又,在圖3 4之例中,雖然就數位資料之展開而顯示 ,但是也可以因應需要將所獲得之數位資料轉換爲類比信 號而輸出。在此情形,例如,於平方內插資料產生部 1 3 5之輸出段具備D / A轉換器以及L P F。即,藉由 平方內插資料產生部1 3 5被輸出之數位內插資料藉由D / A轉換器被轉換爲類比信號後,透過L P F以再生類比 信號被輸出。 經濟部智慧財產局員工消費合作社印製 圖3 5係顯示上述平方內插資料產生部1 3 5之詳細 構成例。於圖3 5中,作爲壓縮資料之一部份被輸入之定 時資料(T )依循逐次被給予之定時脈衝τ P,分別被保 持在3個之D型正反器143、146、149。又,2 倍頻率之時脈2 C K被輸入第1計數器1 4 1,此處,其 數目被依序計數。 第1比較器1 4 2比較以第1計數器1 4 1被計數之 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29?公釐) -65 - 484259 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(63) 時脈2 C K之數目與被保持在D型正反器1 4 3之定時資 料。而且,被計數之時脈2 C K之數目每超過定時資料之 値,輸出表示其之旨意之信號(A>B)。第20R電路 1 4 8取用由此第1比較器1 4 2被輸出之信號與外部開 始信號之邏輯和,將其結果當成定時脈衝T P輸出° 又,以此第2 R〇電路1 4 8產生定時脈衝τ p係也 有只在展開裝置再生定時脈衝T P之必要之故。在此情形 ,如以第2〇R電路取得第1比較器142之輸出信號與 外部開始信號之邏輯和,由此可以獲得定時脈衝T P ° 又,第2計數器1 4 4依序計數基準頻率之時脈C K 之數目。第2比較器1 4 5比較以第2計數器1 4 4被計 數之時脈C K之數目,以及被保持在D型正反器1 4 6之 .定時資料。而且,被計數之時脈C K之數目每超過定時資 料之値,輸出表示其旨意之信號。第1〇R電路1 4 7取 得藉由此第2比較器1 4 5被輸出之信號與外部開始信號 之邏輯和,將其結果輸出於E X〇R電路1 5 1。 如上述般地,將依據基準頻率之時脈C K之數目以及 依據2倍頻率之時脈2 C K之數目分別與定時資料比較, 如利用個別之比較結果之信號取得邏輯和,在以定時資料 被顯示之2個之標本點間之時間間隔之剛好中間位置(表 不該時間間隔之時脈2 C K之數目的一半的位置),由第 1〇R電路1 4 7,一致信號(A > B )被輸出。 另一方面,作爲壓縮資料之一部份被輸入之壓縮振幅 差分資料依循逐次被給予之定時脈衝Τ P被保持在D型正 本紙張尺度適用中.國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) -66 - 484259 A7 _ _ B7 五、發明説明(64 ) (請先閱讀背面之注意事項再填寫本頁) 反器1 5 2。被保持在此D型正反器1 5 2之壓縮振幅差 分資料依循2倍頻率之時脈2 C K,藉由D型正反器 1 5 3被過取樣後,被供給於第1加法器1 5 4。 第1加法器1 5 4藉由相加由D型正反器1 5 3被供 給之壓縮振幅差分資料,以及被保持在D型正反器1 5 5 之目前爲止之累積資料,實行壓縮振幅差分資料之積分。 在此積分之際,第1加法器1 5 4依據由上述 EX〇R電路151來之輸出信號,使由D型正反器 1 5 3被輸入之壓縮振幅差分資料之符號適當反轉。在由 上述第1〇R電路1 4 7被輸出之一致信號(A > B )之 外,依循定時脈衝T P,被保持在D型正反器1 5 2之資 料符號位元(圖3 3之符號位元)被輸入於上述E X〇R 電路1 5 1 。 經濟部智慧財產局員工消費合作社印製 藉由此,第1加法器1 5 4在被包含於壓縮振幅差分 資料之區塊資料中之資料符號位元或由第1〇r電路 1 4 7來之一致信號(A > B )之値反轉時,即,在各標 本點之iu置以及2個之標本點間之剛好中間位置使壓縮振 幅差分資料之符號反轉。 藉由此第1加法器1 5 4被求得之壓縮振幅差分資料 之1次積分値被供給於第2加法器1 5 6。第2加法器 1 5 6藉由相加由第1加法器1 5 4被供給之壓縮振幅差 分資料之1次積分値,以及被保持在D型正反器1 5 7之 至目前爲止之累積資料,對於上述1次積分値進而實行積 分。 ¥紙張尺度適用中國國家標準(CNS ) A4規格(210X:Z97公釐) -67- 484259 A7 B7 五、發明説明(65 ) 藉由此第2加法器1 5 6被求得之壓縮振幅差分資料 之2次積分値被直接輸入第3加法器1 5 9之一方的輸入 端之同時,一時被保持在D型正反器1 5 8後,被輸入第 3加法器1 5 9之另一方之輸入端。第3加法器1 5 9藉 由相加壓縮振幅差分資料之2次積分値與只使其移位1個 之時脈2 C K份之値,實行移動平均運算(捲積運算), 將其結果輸出於乘法器1 6 0。Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs of the 1T. -61-484259 A7 B7 V. Description of the invention (59) There is timing information on the specimen point of flag 1. (Please read the precautions on the back before filling this page) The 9th column I is the flag for switching the displayed data. That is, in the case where the compression amplitude data of consecutive specimen points are the same, in order to show the segmentation of the specimen points, the flags 0 and 1, and 1 are set. For example, the compressed amplitude data of the second specimen point and the third specimen point displayed in the data column F are both 、, 10, and although they are the same compressed amplitude data, they are shown as different specimen points. The data flags are set here. Among the above main data rows, the initial 値 1 1 压缩 of the compressed amplitude data displayed in data row F and the combination of the compressed amplitude difference and timing data of each specimen point displayed in data rows G and ((-1 , 2), (0, 1), (—3, 3) ... are block-coded by the encoder 1 1 5 and output as serial compressed block data. It can be clearly understood that, according to the compression device according to this embodiment, the raw data of the compression target displayed in the data row A can be almost compressed into the data displayed at the specimen points of the data rows G and Η Compared with the raw data, the size of the data at each specimen point can be reduced to a very small size. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Figure 3 3 shows an example of the composition of the serial compressed block data in this embodiment. In this embodiment, as described below, the block data is assumed to be variable-length data. Figure 33 (a) shows the block structure of the compressed amplitude difference data. In Figure 3 3 (a), the first bit is the data sign bit (sign bit), which shows the polarity of the compressed amplitude difference data. For example, when the data sign bit is '' 1 〃, it means a negative number, and 0 〃 means a positive number. This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) -62- 484259 A7 B7 ___ V. Description of invention (60) (Please read the precautions on the back before filling this page) Also, the second digit During the segmentation period, the number of bits in the compressed amplitude difference data is displayed. For example, when the segmentation flags 、, 1, ,, the compressed amplitude difference data is 2 consecutive bits (3rd to 4th bits), and 0, the compressed amplitude difference data is expected to be 5 consecutive bits (number 3 ~ 7 bits). The meaning is the segmentation flag which shows the segmentation from the next data block. As shown in the data row G of the mouse 32, the compressed amplitude difference data can be represented by almost 2 bits except for the sign bit. Therefore, for most compressed amplitude difference data, the segmentation flag is set to 1 、 and 2 bits are allocated. For compressed amplitude difference data that cannot be expressed with 2 bits, the segmentation flag is set to '' 0. Alas, allocated 5 bits long. Allocating 5 bits at the maximum can represent all the compressed amplitude difference data. On the other hand, Figure 33 (b) shows the block structure of timing data. The block of timing data is the latter following the block of compressed amplitude difference data. In Figure 3 3 (b), the first bit is the segmentation flag, which shows the number of bits in the timing data. For example, when the segmentation flag is `` 1 '', the timing data is 3 consecutive bits (2 to 4 bits), and when `` 0 '', the timing data is 8 consecutive bits (2 to 9 bits) yuan). Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs As shown in the data column of Fig. 3, the timing data are all positive numbers, and most of them can be represented by 3 bits. Therefore, for most timing data, the segmentation flag is set to `` 1 '', and the length is allocated to 3 bits. For timing data that cannot be expressed in 3 bits, the segmentation flag is set to `` 0, '' and allocated. 8 bits long. If the maximum is 8 bits, all timing data can be expressed. In this way, in the compression device of this embodiment, the generated compressed data is further transmitted or recorded as variable-length block data. By applying the I paper size to the Chinese National Standard (CNS) A4 specification (210 × 297 mm) ~ -63- 484259, printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, A7 and B7, the invention description (61) can make the compression ratio more It can be lifted 1.5 times to achieve a more compact compression ratio. For example, in a part of CD music data, a compression ratio of 12 or more can be achieved. Next, an expansion device corresponding to the compression device described above will be described. Fig. 34 is a block diagram showing a configuration example of a deployment device according to this embodiment. As shown in FIG. 34, the deployment device of this embodiment is provided with a PLL (Phase Locked Loop) circuit 1 3 1 and a data memory (option) 1 3 2 and a decoder 1 3 3, and The timing generator 1 3 4 and the square interpolation data generating section 1 3 5 are configured. The PLL circuit 131 generates a clock 2 C κ that is twice the frequency (8 8 · 2 κ Η z) from the input clock CK of the reference frequency (44 · ΙΚΗζ), and supplies it to the timing generator 1 3 4 and the square interpolation data.产. 生 部 1 3 5. The data memory 1 2 2 is a recording medium that stores serial compressed block data transmitted by the compression device. The decoder 1 3 3 decodes the serial compressed block data read from the data memory 1 2 2 by various clocks synchronized with the clock 2 C 2 of the frequency, and extracts the compressed amplitude difference data and timing data. Of combination. Furthermore, while outputting the extracted compressed amplitude difference data to the square interpolation data generating section 1 35, the extracted timing data is output to the timing generator 1 34 and the square interpolation data generating section 1 35. The compressed amplitude difference data is sampled in the square-interpolated data generating unit 135 by following the timing pulse TP to become data synchronized with the period between each specimen point. The timing generator 1 3 4 accepts the timing data supplied by the decoder 1 3 3 and generates the input clock 2 C KK to indicate the paper size of the specimen detected and detected on the compression side. The Chinese national standard (CNS) Α4 specification (210X 297) Mm) (Please read the notes on the back before filling this page) Order-64- 484259 A7 B7 V. Description of the invention (62) (Please read the notes on the back before filling this page) Time interval timing pulse TP. In addition, the timing generator 1 3 4 also generates and outputs various clocks including read clocks to the data memory 1 2 2. The square interpolation data generating unit 1 3 5 uses the compressed amplitude difference data and timing data input by the decoder 1 3 3 to perform a specified square interpolation operation to generate digital interpolation data to complement the sample points. Regarding the details of this square interpolation operation, although described later, the interpolation data generated here is a series of amplitude data which is subject to 2 times oversampling for the original data before being compressed. The digitally interpolated data generated in this way is output as expanded data. In the example shown in FIG. 34, although the digital data is displayed as being expanded, the digital data obtained may be converted into an analog signal and output as required. In this case, for example, the output section of the square-interpolated data generating section 135 includes a D / A converter and L P F. That is, the digitally-interpolated data outputted by the square-interpolated data generating section 135 is converted into an analog signal by a D / A converter, and then is output as a reproduced analog signal through L P F. Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 3 5 shows an example of the detailed structure of the above-mentioned square interpolation data generating unit 135. In FIG. 3, the timing data (T) input as part of the compressed data is sequentially given timing pulses τ P, which are respectively maintained at three D-type flip-flops 143, 146, and 149. In addition, a clock 2 C K of twice the frequency is input to the first counter 1 4 1, and the number thereof is sequentially counted. The first comparator 1 4 2 compares the paper size counted by the first counter 1 4 1 to the Chinese National Standard (CNS) A4 specification (210X29? Mm) -65-484259 A7 B7 Employees ’Cooperatives of Intellectual Property Bureau of the Ministry of Economic Affairs Printed 5. Description of the invention (63) The number of clocks 2 CK and timing data kept in D-type flip-flops 1 4 3. When the number of counted clocks 2 C K exceeds 値 of the timing data, a signal (A > B) indicating its purpose is output. The 20R circuit 1 4 8 takes the logical sum of the signal output from the first comparator 1 4 2 and the external start signal, and outputs the result as a timing pulse TP °. In this way, the 2 R0 circuit 1 4 8 The generation of the timing pulse τ p is necessary to reproduce the timing pulse TP only in the expansion device. In this case, if the logical sum of the output signal of the first comparator 142 and the external start signal is obtained by the 20R circuit, the timing pulse TP ° can be obtained, and the second counter 1 4 4 sequentially counts the reference frequency. The number of clocks CK. The second comparator 1 4 5 compares the number of clocks C K counted by the second counter 1 4 4 and the timing data held in the D flip-flop 1 4 6. Moreover, each time the number of counted clocks C K exceeds the timing data, a signal indicating its intention is output. The 10th circuit 1 4 7 obtains the logical sum of the signal output from the second comparator 1 4 5 and the external start signal, and outputs the result to the E X0R circuit 15 1. As described above, the number of clocks CK based on the reference frequency and the number of clocks 2 CK based on 2 times the frequency are compared with the timing data respectively. The exact middle position of the time interval between the two specimen points shown (representing half the number of clocks 2 CK at the time interval) is determined by the 10th circuit 1 4 7 and the coincidence signal (A > B) is output. On the other hand, the compressed amplitude difference data that is input as part of the compressed data is sequentially given timing pulses T P that are kept in the D-size original paper size application. National Standard (CNS) A4 specification (210X297 mm) ) (Please read the precautions on the back before filling this page) -66-484259 A7 _ _ B7 V. Invention Description (64) (Please read the precautions on the back before filling out this page) Inverter 1 5 2. The compressed amplitude difference data held in this D-type flip-flop 1 5 2 follows the clock 2 CK of twice the frequency. After being oversampled by the D-type flip-flop 1 5 3, it is supplied to the first adder 1 5 4. The first adder 1 5 4 performs the compressed amplitude by adding the compressed amplitude difference data supplied from the D-type flip-flop 1 5 3 and the accumulated data held so far in the D-type flip-flop 1 5 5. Points for difference data. At the time of integration, the first adder 15 4 inverts the sign of the compressed amplitude difference data inputted from the D-type flip-flop 15 3 appropriately according to the output signal from the EX0R circuit 151 described above. In addition to the coincidence signal (A > B) outputted by the 10th circuit above, according to the timing pulse TP, it is held at the data sign bit of the D-type flip-flop 1 5 2 (Fig. 3 3 The sign bit) is input to the above-mentioned EX0R circuit 151. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. As a result, the data bit of the first adder 1 5 4 in the block data included in the compressed amplitude difference data may be derived from the 10th circuit 1 4 7 When the coincidence signal of the coincidence signal (A > B) is reversed, that is, the sign of the compressed amplitude difference data is reversed at the iu position of each specimen point and the exact middle position between the two specimen points. The first integration 値 of the compressed amplitude difference data obtained by the first adder 1 5 4 is supplied to the second adder 1 5 6. The second adder 1 5 6 adds up the 1st integral of the compressed amplitude difference data supplied from the first adder 1 5 4 and the accumulation so far held in the D-type flip-flop 1 5 7 so far. Data, for the above 1 point, and then points. ¥ The paper size applies the Chinese National Standard (CNS) A4 specification (210X: Z97 mm) -67- 484259 A7 B7 V. Description of the invention (65) The compressed amplitude difference data obtained by the second adder 1 5 6 The second integral is directly input to one of the input terminals of the third adder 1 5 9 and is temporarily held in the D-type flip-flop 1 5 8 and then input to the other of the third adder 1 5 9 Input. The third adder 1 5 9 performs a moving average operation (convolution operation) by adding the second integral 値 of the compressed amplitude difference data and the clockwise 2 CK parts by shifting it by one. Output to multiplier 1 6 0.
構成上述第1段之積分器以及第2段之積分器之D型 正反器1 5 5、1 5 7以及只使2次積分値移位1個之時 脈2 CK份之D型正反器1 5 8之3個D型正反器在每次 定時脈衝T P被給予時,値被重置爲零。藉由此,壓縮振 幅差分資料之2次積分與移動平均運算在定時脈衝τ p之 每一週期(各標本點間之每一區間)個別被實行Z 乘法器1 6 0對於藉由第3加法器1 5 9被求得之移 動平均資料値,乘以5 1 2 / T 2 ( T爲定時資料),將其 結果輸出於第4加法器1 6 1。第4加法器1 6 1相加由 此乘法器1 6 0來之資料値,以及在別的乘法器1 6 2使 壓縮振幅資料之初期値(在圖3 2之例中,爲、、1 1 〃 ) 1 0 2 4倍之資料値。而且,藉由此第4加法器1 6 i被 輸出之資料依循2倍頻率之時脈2 C K以D型正反器 1 6 2被一時保持後,當成展開資料被輸出。 藉由以上之構成,2次積分壓縮振幅差分資料後,進 fj 1段之移動平均運算,對於其之運算結果之資料Μ嘗行 以下之式(8)所示之運算。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 、τ 經濟部智慧財產局員工消費合作社印製 -68- 484259 A7 B7 五、發明説明(66 ) (M/2T2 + F) X1024 =(M/T2) x512 + Fxl〇24 ...... (8) (請先閱讀背面之注意事項再填寫本頁) 但是,F爲壓縮振幅資料之現在値。藉由此,不使用 表,可以實現進行對應不定間隔之標本點(可變時脈)之 過取樣平方內插之電路。 圖3 6係說明藉由上述圖3 4所示之展開裝置被進行 之展開處理之實際的動作例之圖。又,於圖3 6中,縱方 向由上而下係表示時經的經過。 圖3 6所示之各種之資料列A〜G之中,最左之資料 列A係以2倍頻率之時脈2 C K過取樣壓縮振幅差分資料 ,以定時脈衝T P之週期的1 / 2之週/期使符號反轉之資 料。例如,由上起之4個之資料列{ — 1,— 1, 1,1 }係對於在圖3 2之資料列G由上起4個之資料列{ 一 1 ,一 1,— 1,— 1 },在其中間位置使符號反轉者。 由左起第2之資料列B係藉由圖3 5所示之第1加法 器1 5 4將壓縮振幅差分資料1次積分之結果的資料。例 如,在最上段之運算中,D型正反器1 5 5之初期値、、〇 經濟部智慧財產局員工消費合作社印製 "與D型正反器1 5 3來之資料値、、一 1 〃被相加,D型 正反器15 5之累積値成爲、、一丨〃。在第2段之運算中 ’ D型正反器1 5 5之累積値、、一 ι〃與由d型正反器 1 5 3來之貧料値、'一 1 〃被相加,d型正反器1 5 5之 累積値成爲''一 2 〃 。以下同樣地,藉由進行第3段、第 4段之運算,D型正反器1 5 5之累積値依序成爲、、一 1 "、、、〇 " 0 ^紙張尺度適用中國國家標準(CNS ) A4規招公慶)--- -69- 484259 A7 B7 五、發明説明(67 ) (請先閲讀背面之注意事項再填寫本頁) 第3資料列C係耢由圖3 5所示之第2加法器1 5 6 將壓縮振幅差分資料2次積分之結果的資料。例如,在最 上段之運算中,D型正反器1 5 7之初期値、、〇〃與由第 1加法器1 5 4來之資料値、、一 1 〃被相加,D型正反器 1 5 7之累積値成爲一 1 "。又,在第2段之運算中, D型正反器1 5 7之累積値、、一 1〃與由第1加法器 1 5 4來之資料値2〃被相加,D型正反器1 5 7之 累積値成爲''一 3 〃 。以下同樣地,藉由進行第3段、第 4段之運算,D型正反器1 5 7之累積値依序成爲、、一 4 ” 、 vv _ 4 。 第4之資料列D係藉由圖3 5所示之D型正反器 1 5 8,使第3資料列C只移位1個時脈2 C K之結果的 資料。又,第5之資料列E係藉由圖3 5之第3加法器 1 5 9,將第3資料列C與第4資料列D相加之結果的資 料。 經濟部智慧財產局員工消費合作社印製 如上述般地,求得此第5之資料列E爲止之2次積分 與移動平均運算係在各定時脈衝T P之每一週期(各標本 點間之每一區間)個別被實行。即,在圖3 6中以點線區 隔之個個的每一區隔實行以上之運算。藉由此,在個別的 標本點間之每一區隔產生獨立之數位波形。 第6之資料列F係藉由圖3 5所示之乘法器1 6 0以 後之處理被產生之展開資料。即,對於如上述般地在個個 之標本點之每一區間被求得之數位波形,進行式(8 )之 內插運算,獲得平滑接續個個之區間的數位波形之全體的 本紙張尺度適用中.國國家標隼(CNS ) A4規格(210X297公釐) -70 - 484259 A7 _ B7 _ 五、發明説明(68 ) 數位波形(被過取樣之內插資料)。 (請先閱讀背面之注意事項再填寫本頁) 於本實施形態中,如圖2 9所示般地,將數位波形之 各回折點(峰値點)當成標本點檢測出,處理此標本點之 資料當成壓縮資料。因此,藉由展開處理再現原來資料用 之所需要的最低限度之資料全部被包含在壓縮資料中。因 此,藉由進行平方內插處理,可以以1 6位元精度平滑內 插回折點以外之資料。 又,在本實施形態中,在進行壓縮振幅差分資料之雙 重積分之際,將被輸入初段的積分器(第1加法器1 5 4 )之壓縮振幅差分資料之符號以各標本點間之週期的一半 的週期切換之。藉由此,藉由接續於此之第2段之積分以 及移動平均運算,可以獲得振幅値更平滑變化之數位波形 〇 經濟部智慧財產局員工消費合作社印製 又,在本實施形態中,在實行積分等之運算之際,使 各段之積分器以及移動平均運算器之D型正反器之値在每 1定時脈衝T P重置。藉由此,正確實行全體之算法之同 時,可以排除積分器之累積誤差,能夠再生更正確之數位 波形。 藉由以上,如依據本發明之展開裝置,可以幾乎忠實 地再現原來資料。 圖3 6所示之第7之資料列G係顯示以2倍之頻率內 插壓縮前之原來資料之資料。如比較顯示於此資料列G之 壓縮前原來資料以及顯示於資料列F之展開資料可以明白 地,藉由本實施形態之展開裝置而被產生之展開資料與壓 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -71 - 484259 經濟部智慧財產局員工消費合作社印製 A7 B7__五、發明説明(69) 縮前原來資料成爲幾乎相同之値。 圖3 7係曲線化此資料列F、G者。由此也可以明白 地,如依據本實施形態之展開裝置,可以再生與壓縮前之 原來資料幾乎同等之資料。 如以上詳細說明般地,如依據本實施形態,可以不須 將成爲壓縮對象之數位資料做時間/頻率轉換,在時間軸 上進行壓縮、展開之故,處理不會變得複雜,也可以使構 成簡單化。又,藉由在時間軸上之簡單的內插運算,可以 不使用表資料,將被輸入之壓縮資料依序處理而再生之故 ,能夠實現即時動作。 又,在本實施形態中,將數位資料之微分値之極性變 化之點當成標本點檢測出,由檢測之各標本點之振幅資料 値與表示各標本點出現之時間間隔之定時資料値,產生壓 縮資料加以傳送或記錄之故,可以只使標本點之資料當成 壓縮資料而獲得,能夠達成高壓縮率。 又,在本實施形態中,不將各標本點之振幅資料原原 本本當成壓縮資料,將其以1 〇 2 4値化整之故,每一字 元可以將資料長削減數位元,此處可以大幅削減資料量。 進而,不將化整之振幅資料原原本本當成壓縮資料,進而 求得其之差分資料以當成壓縮資料,可以更減少壓縮資料 所必要之位元數,更削減資料量。 進而,在本實施形態中,將獲得之壓縮振幅差分資料 與定時資料編碼爲可變長度之區塊資料以當成最終的壓縮 資料。因此,此處更可使壓縮率提高1 · 5倍之程度,其 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁)The D-type flip-flops 1 5 5 and 1 5 7 constituting the integrator of the first paragraph and the integrator of the second paragraph, and the D-type forward and reverse of the 2 CK components by a clock that shifts the integral 2 only once. Each of the three D-type flip-flops of the inverter 1 8 is reset to zero every time the timing pulse TP is given. As a result, the second integration and moving average calculation of the compressed amplitude difference data is performed individually in each period of the timing pulse τ p (each interval between each specimen point). The Z multiplier 1 6 0 is obtained by the third addition The moving average data 値 obtained by the device 1 5 9 is multiplied by 5 1 2 / T 2 (T is timing data), and the result is output to the fourth adder 16 1. The fourth adder 16 1 adds the data 由此 from the multiplier 16 0 and the initial stage 使 of the compressed amplitude data by the other multiplier 16 2 (in the example of FIG. 3, it is, 1, 1). 1 〃) 1 0 2 4 times the data 値. Furthermore, the data output by the fourth adder 16 i follows the clock 2 C K of 2 times the frequency, and the D flip-flop 1 6 2 is temporarily held, and is output as expanded data. With the above structure, the amplitude difference data is integrated and compressed twice, and then a moving average operation is performed in the first stage of fj, and the operation result data M is tried as shown in the following formula (8). This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling out this page), τ Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -68- 484259 A7 B7 V. Description of the invention (66) (M / 2T2 + F) X1024 = (M / T2) x512 + Fxl024 ...... (8) (Please read the precautions on the back before filling this page) However, F is Compression amplitude data is now rampant. By this, without using a table, a circuit for performing oversampling square interpolation of sample points (variable clocks) corresponding to indefinite intervals can be realized. Fig. 36 is a diagram illustrating an actual operation example of the unfolding process performed by the unfolding device shown in Fig. 34. In Fig. 36, the passage of time is shown from the top to the bottom in the vertical direction. Among the various data rows A to G shown in Fig. 3, the leftmost data row A is a 2 CK oversampling compression amplitude difference data, and a half of the period of the timing pulse TP Week / period information that reverses the sign. For example, the four data rows {— 1, 1, 1, 1, 1} from the top are for the four data rows {— 1, 1, 1, — 1, — 1} to reverse the sign at its middle position. The second data row B from the left is data obtained by integrating the compressed amplitude difference data once by the first adder 1 54 shown in FIG. 35. For example, in the calculation of the top paragraph, the initial stage of D-type flip-flops 155, 〇 printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs " data from D-type flip-flops 153 ,,, One 1 〃 is added, and the accumulated 値 of the D-type flip-flop 15 5 becomes ,, 一 〃. In the operation of the second paragraph, the cumulative 値, 〃, and 〃 of the D-type flip-flop 1 5 5 and the lean material 値, ′-1 来 from the d-type flip-flop 1 5 3 are added, and the d-type The cumulative 値 of the flip-flops 1 5 5 becomes 一 12. In the same manner, by performing the calculations in the third and fourth paragraphs, the cumulative 値 of the D-type flip-flops 1 5 5 becomes,, 1 1 " ,,, 0 " 0 ^ The paper standard is applicable to China Standard (CNS) A4 Regulations for Public Holiday) ----69- 484259 A7 B7 V. Description of Invention (67) (Please read the precautions on the back before filling this page) The third column C is shown in Figure 3 5 The data shown in the second adder 1 5 6 is the result of integrating the compressed amplitude difference data twice. For example, in the calculation of the uppermost stage, the initial stage 値, 〇 正 of the D-type flip-flop 15 7 and the data 値, -1 〃 from the first adder 154 are added, and the D-type forward and reverse The accumulation of the device 1 5 7 becomes a 1 ". In addition, in the operation of the second paragraph, the accumulation 値, 一, 〃 of the D-type flip-flop 1 5 7 and the data 値 2〃 from the first adder 154 are added, and the D-type flip-flop is added. The accumulation of 1 5 7 becomes `` a 3 3 ''. In the same manner, by performing the calculations in the third and fourth paragraphs, the cumulative 値 of the D-type flip-flops 1 5 and 7 sequentially becomes,, -4 ", vv_4. The fourth data column D is obtained by The D-type flip-flop 1 5 8 shown in FIG. 3 is a result of shifting the third data row C by only one clock 2 CK. Moreover, the fifth data row E is obtained by The third adder 159 is the data obtained by adding the third data column C and the fourth data column D. The employee consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs printed as above to obtain the fifth data column. The two integrals and moving average calculations up to E are performed individually in each cycle of each timing pulse TP (each interval between each specimen point). That is, each of them is separated by a dotted line in Figure 36 Each segment performs the above operation. As a result, an independent digital waveform is generated at each segment between individual specimen points. The sixth data column F is represented by the multiplier 1 6 0 shown in FIG. 3 5. The expanded data generated by subsequent processing. That is, the digital waveform obtained in each interval of each specimen point as described above is interpolated within formula (8). This paper is applicable to all paper scales that obtain smooth digital waveforms in successive intervals. National Standards (CNS) A4 Specification (210X297 mm) -70-484259 A7 _ B7 _ V. Description of the Invention (68) Digital Waveform (interpolated data that has been oversampled). (Please read the precautions on the back before filling this page.) In this embodiment, as shown in Figure 29, the turning points (peak points) of the digital waveform ) It is detected as the specimen point, and the data for processing this specimen point is regarded as compressed data. Therefore, the minimum data required to reproduce the original data by expansion processing is included in the compressed data. Therefore, by performing square The interpolation processing can smoothly interpolate data other than the return point with 16-bit precision. In this embodiment, when performing double integration of the compressed amplitude difference data, it will be input to the integrator (first addition) in the initial stage. The sign of the compressed amplitude difference data of the device 1 5 4) is switched at a period of half of the period between each specimen point. Thus, by the integration and moving average calculation of the second paragraph following this Digital waveforms with smoother amplitudes can be obtained. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy The D-type flip-flop is reset at every timing pulse TP. With this, while the overall algorithm is correctly implemented, the cumulative error of the integrator can be eliminated, and a more accurate digital waveform can be reproduced. With the above, according to the basis The unfolding device of the present invention can reproduce the original data almost faithfully. The seventh data column G shown in Fig. 36 shows the data of the original data before compression is interpolated at twice the frequency. If it is compared and displayed in this data column The original data before the compression of G and the expansion data displayed in the data column F can clearly understand that the expansion data generated by the expansion device of this embodiment and the paper size are applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) ) -71-484259 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7__V. Description of the invention (69) The original information before the contraction is almost the same値. Figure 37 shows the data lines F and G of the 7 series. It is also clear from this that, according to the expansion device according to this embodiment, it is possible to reproduce almost the same data as the original data before compression. As explained in detail above, according to this embodiment, it is not necessary to perform time / frequency conversion on the digital data to be compressed, and the compression and expansion are performed on the time axis, so the processing will not become complicated, and it can also make The composition is simplified. In addition, by simple interpolation operation on the time axis, the input compressed data can be sequentially processed and reproduced without using table data, and real-time actions can be realized. Also, in this embodiment, the point where the polarity of the differential data of the digital data changes is detected as the specimen point, and the amplitude data of each detected specimen point and the timing data indicating the time interval at which each specimen point appears are generated The compressed data is transmitted or recorded, and only the data of the specimen point can be obtained as compressed data, and a high compression rate can be achieved. In addition, in this embodiment, the amplitude data of each specimen point is not originally regarded as compressed data, and it is rounded to a value of 102. As a result, the data length can be reduced by a few digits per character. Reduce the amount of data. Furthermore, instead of using the rounded amplitude data as compressed data, the differential data can be obtained as compressed data, which can reduce the number of bits necessary for compressed data and reduce the amount of data. Furthermore, in this embodiment, the obtained compressed amplitude difference data and timing data are coded into variable-length block data to be used as the final compressed data. Therefore, the compression ratio can be increased by 1.5 times here. The paper size is applicable to the Chinese National Standard (CNS) A4 (210X 297 mm) (Please read the precautions on the back before filling this page)
-72- 484259 A7 B7 五、發明説明(70 ) 結果成爲可以貫現非吊局之壓縮率。 又,在本實施形態中,爲了檢測標本點,在求取微分 値之前,以適當之値化整數位資料之故,可以使雜訊成分 或不需要之信號成分之位置不會當成標本點檢測出,可以 只使正確之位置當成標本點檢測出。又,在展開處理之際 ,於雙重積分器之初段,在定時脈衝T P之週期的前半與 後半切換加法與減法之故,能夠使壓縮側之捨位誤差相抵 之同時,能夠再現振幅値更平滑變化之數位波形。 又,在本實施形態中,在實行伴隨過取樣之雙重積分 等之運算之際,於各定時脈衝T P重置各段之積分器之累 積値之故,能夠排除積分器之累積誤差,可以再生更正確 之數位波形。藉由此,可以獲得接近壓縮前之原來資料之 高品質的展開資料。 由以上,如依據本實施形態之壓縮、展開方式,可以 提供實現非常高之壓縮率與再生資料之品質提升之兩方之 新的壓縮、展開方式。 又,在上述第3實施形態中,在化整運算部1 1 3中 ,雖然顯示以1 0 2 4化整振幅資料値之例,但是並不限 定於此値。 又,在上述第3實施形態中,雖然實施2倍之過取樣 ,但是只要爲偶數倍,並不限定爲2倍。 又,在上述第3實施形態中,在壓縮處理之際,由作 爲壓縮對象被輸入之數位資料之中,雖然抽出標本點之振 幅資料後,以第2値N 2化整該抽出之振幅資料,但是, 本紙張尺度適用中.國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -73- 484259 Α7 Β7 五、發明説明(71 ) 先化整被輸入之數位資料後,抽出標本點之壓縮振幅資料 亦可。 又,在上述第3實施形態中,在展開處理之際,雙重 進行積分之同時,進行1段之移動平均運算,但是積分並 不限定爲雙重,也可以進行比其更多之多重積分。又,移 動平均運算也不限定爲1段,也可以進行比其還多段之移 動平均運算或捲積運算。 又,也可以適當組合依據以上說明之第1〜第3實施 形態之壓縮、展開之手法,或適當更替適用要素技術。例 如,在上述第1〜第3實施形態中,作爲標本點之檢測方 法雖然顯示三者三樣之方法,但是哪一實施形態使用哪一 檢測方法都可。 又,依據以上說明之第1〜第3實施形態之壓縮、展 開之手法如上述般地,也可以藉由硬體構成、D S P、軟 體之任何一種而實現。例如,藉由軟體實現之情形,本實 施形態之壓縮裝置以及展開裝置實際以電腦之C P U或 Μ P U、R A Μ、R〇Μ等構成,可以藉由被記憶在 R A Μ或R Ο Μ之程式動作而實現。 因此,將電腦達成上述實施形態之機能地使之動作之 程式記錄於例如C D - R Ο Μ之記錄媒體,藉由使其讀入 電腦而可以貫現者。作爲記錄上述程式之記錄媒體,在 C D — R〇Μ以外,也可以使用:軟碟、硬碟、磁帶、光 碟、光磁性碟片、D V D、不揮發性記憶體卡等。又,也 可以透過網際網路等之網路將上述程式下載於電腦而實現 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 衣· -、1Τ 經濟部智慧財產局員工消費合作社印製 -74- 經濟部智慧財產局員工消費合作社印製 484259 A7 _ B7 _ _ 五、發明説明(72) 〇 又,藉由電腦實行被供給之程式,不單上述之實施形 態之機能被實現,該程式與電腦中稼動之〇S (作業系統 )或其它之應用軟體等共同實現上述之實施形態之機能之 情形,或被供給之程式之處理的全部或一部份藉由電腦之 機能擴充板或機能擴充單元被進行,實現上述之實施形態 之機能之情形,此種程式也被包含在本發明之實施形態。 又,上述說明之各實施形態都不過是在實施本發明之 際的具體化的一例,並非藉由彼等,本發明之技術範圍被 限定地解釋。即,本發明在不脫離其之精神、或其之主要 特徵下,可以以種種之形式實施之。 產業上之利用可能性 本發明在提供:以簡單之構成,壓縮、展開之處理時 間短,而且可以實現非常高之壓縮率與再生資料之品質提 升之兩方之新的壓縮、展開方式方面有用。 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇><297公釐) (請先閲讀背面之注意事項再填寫本頁)-72- 484259 A7 B7 V. Description of the invention (70) The result becomes a compression ratio that can realize non-suspended rounds. In addition, in this embodiment, in order to detect the specimen point, before obtaining the differential value, the integer data is appropriately converted, so that the position of noise components or unwanted signal components may not be detected as the specimen point. It can detect only the correct position as the specimen point. In addition, during the unfolding process, in the early stage of the double integrator, the addition and subtraction can be switched between the first half and the second half of the period of the timing pulse TP, so that the rounding error on the compression side can be offset, and the amplitude 値 can be reproduced more smoothly. Changing digital waveform. In addition, in the present embodiment, when performing calculations such as double integration with oversampling, the accumulation of the integrator of each stage is reset at each timing pulse TP, so that the accumulation error of the integrator can be eliminated and can be reproduced More accurate digital waveform. With this, it is possible to obtain high-quality expanded data close to the original data before compression. From the above, according to the compression and expansion method according to this embodiment, it is possible to provide a new compression and expansion method that realizes both a very high compression ratio and the quality improvement of the reproduced data. In the third embodiment described above, the rounding calculation unit 1 13 shows an example of rounding the amplitude data 値 by 1,024, but it is not limited to this. In the third embodiment described above, although the oversampling is performed twice, it is not limited to two times as long as it is an even number. In the third embodiment described above, during the compression process, the amplitude data of the sample point is extracted from the digital data input as the compression target, and the extracted amplitude data is rounded by the second 値 N 2 However, this paper size is applicable. China National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling out this page) Ordered by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives -73- 484259 Α7 Β7 V. Description of the invention (71) After digitalizing the input digital data, it is also possible to extract the compressed amplitude data of the specimen point. In the third embodiment described above, during the unrolling process, the integration is performed at the same time as the one-step moving average calculation. However, the integration is not limited to double, and multiple integrations may be performed. Furthermore, the moving average operation is not limited to one stage, and a moving average operation or a convolution operation may be performed more than that. Further, the methods of compression and expansion according to the first to third embodiments described above may be appropriately combined, or the applicable element technology may be appropriately replaced. For example, in the first to third embodiments described above, although three methods are used as the method for detecting the specimen point, any method may be used in any embodiment. In addition, as described above, the compression and expansion methods according to the first to third embodiments may be implemented by any of a hardware configuration, DS, and software. For example, in the case of software implementation, the compression device and expansion device of this embodiment are actually constituted by a computer's CPU or MPU, RA M, ROM, etc., and can be stored in a program of RA M or R 0 M To achieve. Therefore, a program that enables a computer to function as described in the above embodiment can be recorded on a recording medium such as CD-ROM, and can be implemented by reading it into a computer. As a recording medium for recording the above programs, in addition to CD-ROM, you can also use: floppy disks, hard disks, magnetic tapes, optical discs, magneto-optical discs, DVD, non-volatile memory cards, etc. In addition, the above program can also be downloaded to a computer through the Internet and other networks to achieve this paper size. Applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) (Please read the precautions on the back before filling out this page. ) Clothing ·-, 1T Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs -74- Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 484259 A7 _ B7 _ _ V. Description of the Invention (72) The supplied program not only implements the functions of the above-mentioned implementation form, but also the program and the computer's operating system (OS) or other application software to realize the functions of the above-mentioned implementation form, or the supplied program. In the case where all or a part of the processing is performed by a function expansion board or a function expansion unit of a computer to realize the functions of the above-mentioned embodiment, such programs are also included in the embodiment of the present invention. It should be noted that each of the embodiments described above is merely an example of a specific embodiment when the present invention is implemented, and the technical scope of the present invention is not limitedly interpreted by them. That is, the present invention can be implemented in various forms without departing from its spirit or its main characteristics. Industrial Applicability The present invention is useful in providing a new compression and expansion method with a simple structure, short processing time for compression and expansion, and achieving both a very high compression rate and improved quality of reproduced data . This paper size applies Chinese National Standard (CNS) A4 specification (21〇 > < 297mm) (Please read the precautions on the back before filling this page)
-75 --75-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31287899A JP2001136073A (en) | 1999-11-02 | 1999-11-02 | Compression method and device, compression and expansion system, and recording medium |
JP2000033864A JP2001223595A (en) | 2000-02-10 | 2000-02-10 | Compression method and system, expansion method and system, and recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
TW484259B true TW484259B (en) | 2002-04-21 |
Family
ID=26567356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90105613A TW484259B (en) | 1999-11-02 | 2001-03-09 | Compression method and device, compression and expansion system, and recording medium |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW484259B (en) |
-
2001
- 2001-03-09 TW TW90105613A patent/TW484259B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI221706B (en) | Compressing method and device, decompression method and device, compression/decompression system, and recorded medium | |
US5982832A (en) | Apparatus and method for compensating for timing and phase error using a poly-phase filter | |
JP2009504107A (en) | Asynchronous sample rate converter | |
US6791482B2 (en) | Method and apparatus for compression, method and apparatus for decompression, compression/decompression system, record medium | |
RU2369036C2 (en) | Device for reproduction of data with isr, recording/reproduction system and interpolation filter | |
TW567680B (en) | Compression device and method, decompression device and method, compression/decompression system, program, recording medium | |
TW484259B (en) | Compression method and device, compression and expansion system, and recording medium | |
TW569180B (en) | Speech recognition method and device, speech synthesis method and device, recording medium | |
JP2001136073A (en) | Compression method and device, compression and expansion system, and recording medium | |
TW479413B (en) | D/A converter, its method, and the data interpolation device | |
TW522660B (en) | Compression method and device, expansion method and device, compression/expansion system, recording medium | |
US20090002208A1 (en) | Sampling frequency conversion apparatus | |
JPH05145900A (en) | Digital video signal processor | |
JP3221034B2 (en) | Sampling frequency converter | |
JPH10126645A (en) | Frequency conversion device | |
JP2001069010A (en) | Compression method and device, expansion method and device, companding system and recording medium | |
KR20030005315A (en) | Method and apparatus for compression, method and apparatus for decompression, compression/decompression system, recored medium | |
JP3221041B2 (en) | Sampling frequency converter | |
JP2600820B2 (en) | Sampling frequency converter | |
JPS61184993A (en) | Correcting device for speed error | |
JP3312539B2 (en) | Sound signal processing device | |
US20070109929A1 (en) | Differential phase detector | |
WO2000068826A1 (en) | Interpolation circuit | |
JP3308143B2 (en) | Clock rate conversion circuit | |
JP2001223595A (en) | Compression method and system, expansion method and system, and recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |