TW478107B - Method for producing copper dual damascene - Google Patents

Method for producing copper dual damascene Download PDF

Info

Publication number
TW478107B
TW478107B TW89125111A TW89125111A TW478107B TW 478107 B TW478107 B TW 478107B TW 89125111 A TW89125111 A TW 89125111A TW 89125111 A TW89125111 A TW 89125111A TW 478107 B TW478107 B TW 478107B
Authority
TW
Taiwan
Prior art keywords
layer
copper
wire
trench
forming
Prior art date
Application number
TW89125111A
Other languages
Chinese (zh)
Inventor
Ji-Jin Luo
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW89125111A priority Critical patent/TW478107B/en
Application granted granted Critical
Publication of TW478107B publication Critical patent/TW478107B/en

Links

Abstract

A method for producing a copper dual damascene mainly uses an activation of the to-be-connected metal surface layer on the bottom of a via to generate a copper seed crystal. An electroless plating method is used to grow the seed from the bottom towards the top. The conductive trench part is filled with copper by a PVD or formed with a copper seed crystal by a PVD and then an electroplating of copper is performed to achieve the objective of having no void. The method comprises: using an activation solution to activate a metal layer on the to-be-connected line of a substrate formed with a dual damascene pattern; using an electroless plating of copper to grow copper from the bottom towards the top on the whole via; depositing a metal barrier layer in the line trench; using a PVD process to fill in copper or using an electroplating process to plate copper until the line trench is filled up with a copper metal layer; and applying a chemical mechanical polishing process.

Description

478107 五、發明說明(1) 發明領域: 本發明揭露一種有關於半導體元件製程,特別是有關 於一種銅雙鑲嵌製程,以防止孔洞(vo i d)形成於介層洞 (v i a )之製程。 發明背景: 積體電路之製程除了使得晶片内元件的體積小,以達 到南雄、度及降低單位成本之目的外,元件之最後的性能更 是關鍵’而除了電晶體元件本身之設計外,最後之内連接 金屬導線乃至内連線間介電層都是重要影響元件速度表現 的重要因素,這是因導線之阻值R,與上層導線和下層導 線及相鄰導線之間會有電容C存在,一如熟悉相關技術之 人士所共知,此RC值愈低代表較低之時間延遲,因此目前 内連線使用銅製程代替鋁製程已成為一種趨勢。另外,將 内連線間介電層改用低介電常數之介電層以使寄生電容降 低,以提高速度。已成目前半導體業共同追求的目標。 傳統的銅雙鑲嵌製程多利用大馬士革的方法,在形成478107 V. Description of the invention (1) Field of the invention: The present invention discloses a process related to the fabrication of semiconductor devices, in particular, a copper dual damascene process to prevent holes (vo i d) from being formed in via holes (v i a). Background of the Invention: In addition to the process of making integrated circuits, in addition to making the components in the chip small, in order to achieve Nanxiong, degrees and reduce unit costs, the final performance of the components is more critical. In addition to the design of the transistor component itself, Finally, the inter-connected metal wires and even the dielectric layer between the interconnects are important factors that affect the speed performance of the device. This is because the resistance R of the wire has a capacitance C between the upper wire and the lower wire and adjacent wires. Existence. As everyone familiar with the related technology knows, the lower the RC value, the lower the time delay. Therefore, it has become a trend to use copper process instead of aluminum process for the interconnect. In addition, the dielectric layer between interconnects was changed to a low-constant dielectric layer to reduce parasitic capacitance and increase speed. Has become a common goal of the current semiconductor industry. The traditional copper double inlay process uses Damascus methods to form

沉積 J用無電鍍銅法或PVD法形成 側壁f底部,再利用電鍍銅 一種最新的技術則是在形成 478107 五、發明說明(2) 雙鑲嵌圖案後利用PVD法形成金屬阻障層,再浸入活化溶 液促使金屬阻障層上具有銅晶種,再以電鍍銅方式形成金 屬銅。上述不管是以PVD法形成銅晶種,或以CVD法,甚或 以活化溶液的方法,均係使電鍍銅的沉積方式由介層洞側 壁及底部成長。 請參考圖一的說明,其中金屬導線1 1係待連接的導 線,一介層洞1 5形成於介電層1 2中,用以連接金屬導線 11,1 4係姓刻終止層,例如氮化石夕層。1 8係利用活化液使 金屬阻障層1 6活化後的銅晶種層。由橫截面示意圖可以發 現電鍍銅將由三個方向成長填滿介層洞1 5,對孔徑小的介 層洞而言,預期將有孔洞產生於介層洞之中。 有鑑於如上所述的問題,本發明將提供一銅雙鑲嵌的 方法以加以解決。 發明目的及概述: 本發明之目的在提供一銅之雙鑲嵌製程以防止有孔洞 產生於介層洞之中。 本發明為一種銅之雙鑲嵌製程方法,本發明方法主要 是利用由介層洞底部待連接之金屬表層活化,以產生銅成 長的晶種’再措由下向上並以無電鐘銅方式成長’而在導Deposition J uses electroless copper method or PVD method to form the bottom of the side wall f, and then uses copper electroplating. The latest technology is to form 478107 V. Description of the invention (2) After the double damascene pattern, a metal barrier layer is formed by PVD method, and then immersed The activation solution promotes copper seeds on the metal barrier layer, and then forms metal copper by electroplating copper. Regardless of whether the copper seed is formed by the PVD method, the CVD method, or even the activation solution method, the deposition method of the electroplated copper is grown from the side wall and the bottom of the via hole. Please refer to the description of FIG. 1, in which the metal wire 11 is a wire to be connected, and a via hole 15 is formed in the dielectric layer 12 to connect the metal wire 11, 14 to a stop layer such as a nitride. Evening floor. The 18 series is a copper seed layer after the metal barrier layer 16 is activated by using an activating solution. From the schematic diagram of the cross-section, it can be found that the electroplated copper will grow from three directions to fill the interstitial holes 15. For the interstitial holes with small pore diameters, it is expected that there will be holes in the interstitial holes. In view of the problems described above, the present invention will provide a copper dual damascene method to solve the problem. OBJECTS AND SUMMARY OF THE INVENTION The object of the present invention is to provide a copper dual damascene process to prevent holes from being generated in via holes. The present invention is a copper dual damascene process method. The method of the present invention mainly utilizes the metal surface layer to be connected at the bottom of the via hole to activate the seed crystals for copper growth. On guide

478107 ——~~-__-—-—1— — ---- 五、發明說明(3) __ 線溝渠的部分則利用PVD法填入銅或者利用pvD法形 種再利用電鍍達到無孔洞之目的。主要包含以下步;銅首曰曰 先在已形成雙鑲嵌圖案之基板,先利用活化溶液使欲連接 之導線上方之金屬層活化,再利用無電鍍銅方式成長填滿 整個介層洞。再上一層金屬阻障層於導線溝渠,最後則利 用P V D法填入銅或者利用電鍵法鍍銅直到銅金屬層填滿導 線溝渠;最後再施化學機械式研磨的製程。 發明詳細說明: 鑑於上述發明背景所述,傳統之銅雙鑲嵌製程中介層 洞及導線溝渠係先以銅晶種層形成於導線溝渠及介層洞 上’再藉由電鍍銅方法自側壁銅晶種以向内及底部銅晶種 以向上等方向而成長,這樣就很容易造成介層洞内有孔洞 (void)產生。 本發明的方法係設法使介層洞底部待連接之金屬表層 活化以形成銅晶種層,再由介層洞底部向上以無電鍍銅的 方式成長銅金屬層,而使得尺寸小的介層洞由底部單一方 向成長銅金屬層而達到無孔洞產生之目的。 以下之製程詳細說明,將佐以圖示說明。說明如下: 首先請參考圖二所示之橫截面示意圖。首先圖案化一形成 於一基板100上的鋁銅合金105A/TiN 105B的金屬導線 478107 五、發明說明(4) 1 0 5。其中T i N層1 0 5 B除了做為抗反射塗層外,並可以做為 後續進行銅轉位法(copper di'splacement)的介面金屬 層0 接著,再以CVD法形成一具有良好散熱功能之内襯層 (1 i n i n g 1 a y e r ) 1 1 0以覆蓋金屬導線1 0 5及基板1 〇 〇上,以 一較佳的實施例而言,内概層11 0至少包含一厚度約為 100-800埃的氮化銘層。 隨後,形成一第一介電層120於該内襯層11〇上,第一 介電層1 2 0可以係利用旋塗式玻璃法所形成的低介電常數 (low-k)之有機介電層,例如p〇lymer或者Flare、H0SP等 皆可,當然,以化學氣相沉積法所沉積之1 ow — k ,例如黑 鑽石或者Coral也是可以選用的low-k介電材料。 第一介電層1 2 0形成後,再形’成一第一蝕刻終止層1 2 5 於該第一介電層1 2 〇上;第一蝕刻終止層1 2 5以一較佳的實 施例而言,係氮化矽。一光阻圖案(未圖示)接著以微影技 術塗佈於第一餘刻終止層1 2 5上,用·以定義介層洞位置, 此光阻圖案需適當的對準以使介層洞和金屬線1 〇 5可以連 接。接著再進行乾式蝕刻以形成介層洞開口 1 2 5 A於第一蝕 刻終止層1 2 5之中,在去光阻圖案後緊接著再沉積第二介 電層130,第二介電層130為簡化製程起見,以和第一介電 層相同材質為最佳,當然,也可以自上述第一介電層材料 478107 五、發明說明(5) 中選用不同的材質。 、之後,再形成一氮化硼層1 4 0於該第二介電層1 3 0上以 做為硬式罩幕層,其他的材料例如氮化矽也同樣可以選用 以做為硬式罩幕層之材料。再接著以光阻圖案145形成 於硬式罩幕層140上以定義導線溝渠開口 146的位置。 请參考圖三所示的橫截面示意圖,接著進行乾蝕刻以 移轉光阻圖案145至硬式罩幕層14〇後,光阻圖案145即予 以移除。並以硬式罩幕層i 4 〇為蝕刻罩幕,蝕刻第二介電 層1 3 0 ’以第一蝕刻終止層丄2 5為終止層,形成導線溝渠 140A。其中蝕刻氣體並藉由介層洞開口 125A钱刻第一介電 層1 2 0而停止於内襯層i丨〇。再更換蝕刻混合氣體以蝕穿内 襯層1 1 0而停止於T i N 1 0 5 BJi。 明參考圖四A所示的橫截面示意圖,接著以化學氣相 >儿積法沉積厚度約為2 0 0 - 1 5 0 0埃的氮化石夕層,此氮化石夕層 的功能係防止銅原子向介電層擴散,並隨後施以一非等向 性蝕刻方法,形成氮化矽間隙壁層.丨4 8、1 4 7,分別形成於 導線溝渠1 4 0 A及介層洞1 2 5 B的側壁上。氮化石夕間隙壁層 1 4 8、1 4 7亦具有阻擋有機介電層受電漿損傷所釋放的水氣 擴散至導線溝渠1 4 0 A及介層洞1 2 5 B内。以一較佳的實施例 而言,此步驟的進行可以以反應離子蝕刻法(R丨E )進行。 478107 五、發明說明(6) ' —一一: 接著利用金屬導線1 〇 5上的T i N 1 0 5B表面進行銅轉位 -· 法(copper displacement),銅轉位法係將基板1〇〇浸入使 銅活化的溶液,而使得銅原子可以附著在T i N丨〇 5β上表面 上。銅活化的溶液主要以去離子水為主,去離子水中並至 . 少包含有〇· 01至2莫耳/公升的銅Cu+雔子,〇· 〇1至5莫耳/ 公升的氟F離子及表面活性劑,〇.01至10公克/公升界面 活性劑。界面活性劑包含RH0DAFAC re 610(製造商為 Rhone-Poulenc)、聚乙烯(p〇iye1:hy lene,乙二醇 (glycol)及 Triton X-1〇〇 (製造商為 Aldrich)。基板 1〇〇在 上述的銅活化溶液中以18至40(rc浸約3〇 —1〇〇〇秒,就可以〇 使得T i N 1 0 5B上形成一銅活化層1 5 〇 A,請同時參考圖四 B (圖四A的一局部放大圖)。 利用這一層銅活化層1 5 0 A就可以以習知技術進行無電 鍍銅程序。由於銅活化層150A僅存在於介層洞125B的底 部,側壁並沒有任何的銅活化層,因此無電鑛銅的成長方 -向是單一的,即銅金屬層由下而上成長形成,習知技術的 孔洞問題因而可以迎刃而解。 請參考圖五所示的橫截面示意圖。當無電鑛銅填滿整 個介電層洞1 2 5 B後,再接著形成一金屬阻障層1 5 5於氮化 矽間隙壁1 48及第一蝕刻終止層1 25上,。對於尺寸較大的 導線溝渠1 4 0 A有兩個方法可以填入銅金屬層,第一個方法 是利用金屬阻障層1 5 5的電導性,施以電鑛法沉積銅金屬 478107 五、發明說明(7) 層1 6 0至導線溝渠1 4 0 A内。第二個方法是以物理氣相沉積 法直接沉積銅金屬層至導線溝渠1 4 0 A内。 最後請參考圖六,施以化學/機械式研磨製程以移除 部分之銅金屬層,以硬式罩幕層1 4 0為研磨終止層。 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。478107 —— ~~ -__-—-— 1— — ---- V. Description of the invention (3) The __ part of the line trench is filled with copper by PVD method or by electroplating using pvD method to achieve no holes. purpose. It mainly includes the following steps: firstly, the copper layer is formed on the substrate with the double damascene pattern, the activation solution is used to activate the metal layer above the wires to be connected, and then the electroless copper is used to grow and fill the entire via hole. Then add a metal barrier layer to the wire trench, and finally use the P V D method to fill the copper or use the bond method to plate copper until the copper metal layer fills the wire trench. Finally, a chemical mechanical polishing process is applied. Detailed description of the invention: In view of the above background of the invention, in the conventional copper dual damascene process, the interposer holes and the lead trenches are first formed on the lead trenches and the via holes with a copper seed layer, and then copper is crystallized from the side wall by a copper plating method. The seeds grow inward and at the bottom, the copper seed crystals grow in upward directions, so that it is easy to cause voids in the vias. The method of the invention is to try to activate the metal surface layer to be connected at the bottom of the via hole to form a copper seed layer, and then grow the copper metal layer from the bottom of the via hole upward in an electroless copper manner, so that the small-sized via hole is formed by The copper metal layer is grown in a single direction at the bottom to achieve the purpose of no holes. The detailed description of the following process will be illustrated with illustrations. The explanation is as follows: First, please refer to the cross-sectional diagram shown in Figure 2. First, a metal wire of aluminum-copper alloy 105A / TiN 105B formed on a substrate 100 is patterned 478107 V. Description of the invention (4) 105. The TiN layer 1 0 5B can be used as an anti-reflection coating and can also be used as an interface metal layer for copper di'splacement. Next, a CVD method is used to form a layer with good heat dissipation. A functional inner lining layer (1 ining 1 ayer) 1 10 covers the metal wire 105 and the substrate 100. In a preferred embodiment, the inner layer 1 10 includes at least a thickness of about 100 -800 Angstrom nitride layer. Subsequently, a first dielectric layer 120 is formed on the inner lining layer 110. The first dielectric layer 120 can be a low-k organic dielectric formed by a spin-on glass method. The electrical layer, for example, polymer or Flare, HOSP, etc. may be used. Of course, 1 ow-k deposited by chemical vapor deposition, such as black diamond or Coral, is also a low-k dielectric material that can be selected. After the first dielectric layer 12 is formed, a first etch stop layer 1 2 5 is formed on the first dielectric layer 1 2 0. The first etch stop layer 1 2 5 is a preferred embodiment. In terms of silicon nitride. A photoresist pattern (not shown) is then applied on the first remaining stop layer 1 2 5 by lithography technology to define the position of the via hole. This photoresist pattern needs to be properly aligned to make the interlayer The hole and the metal wire 105 can be connected. Next, dry etching is performed to form a dielectric hole opening 1 2 5 A in the first etch stop layer 12 25. After removing the photoresist pattern, a second dielectric layer 130 and a second dielectric layer 130 are then deposited. In order to simplify the manufacturing process, it is best to use the same material as the first dielectric layer. Of course, different materials can be selected from the above-mentioned first dielectric layer material 478107 V. Description of Invention (5). After that, a boron nitride layer 140 is formed on the second dielectric layer 130 as a hard mask layer. Other materials such as silicon nitride can also be used as a hard mask layer. Of materials. Then, a photoresist pattern 145 is formed on the hard mask layer 140 to define the position of the wire trench opening 146. Please refer to the schematic cross-sectional view shown in FIG. 3, and then perform dry etching to transfer the photoresist pattern 145 to the hard mask layer 140, and then the photoresist pattern 145 is removed. And using the hard mask layer i 4 o as an etching mask, the second dielectric layer 1 3 0 ′ is etched, and the first etching stop layer 丄 25 is used as a stop layer to form a wire trench 140A. The etching gas stops the first dielectric layer 120 through the opening 125A of the interlayer hole, and stops at the inner layer i0. The etching gas mixture is replaced to etch through the inner liner 1 10 and stop at T i N 1 0 5 BJi. Referring to the schematic diagram of the cross-section shown in FIG. 4A, a chemical vapor phase deposition method is then used to deposit a nitride layer with a thickness of about 200-1500 angstroms. The function of this nitride layer is to prevent Copper atoms diffuse into the dielectric layer, and then an anisotropic etching method is applied to form a silicon nitride spacer layer. 4 8 and 1 4 7 are respectively formed in the wire trench 1 4 0 A and the dielectric hole 1 2 5 B on the side wall. Nitrogen stone gap wall layers 1 4 8 and 1 4 7 also prevent the water vapor released from the organic dielectric layer from being damaged by the plasma to diffuse into the wire trench 1 40 A and the dielectric hole 1 2 5 B. In a preferred embodiment, this step can be performed by a reactive ion etching method (R 丨 E). 478107 V. Description of the invention (6) '-One by one: Then use copper surface T i N 1 0 5B on metal wire 1 0 5 to perform copper displacement-copper displacement method, the copper displacement method is to substrate 1 〇 Immerse in a solution that activates copper so that copper atoms can attach to the upper surface of T i N0 5β. The copper-activated solution is mainly deionized water, and it does not contain at least 0.01 to 2 mol / L of copper Cu + ions, and 0.001 to 5 mol / L of fluorine F ions. And surfactants, 0.01 to 10 g / L of surfactant. Surfactants include RHODAFAC re 610 (manufacturer Rhone-Poulenc), polyethylene (poiye1: hylene, glycol), and Triton X-100 (manufacturer: Aldrich). Substrate 100 Immerse the copper activation solution in the above-mentioned copper activation solution at 18 to 40 (rc for about 30 to 10,000 seconds, so that a copper activation layer 15 OA can be formed on T i N 105 B, please refer to FIG. 4 at the same time. B (a partial enlarged view of FIG. 4A). Using this copper activation layer 150 A, the electroless copper plating process can be performed by conventional techniques. Because the copper activation layer 150A exists only at the bottom of the via 125B, the sidewalls There is no copper activation layer, so the growth direction of electroless ore copper is single, that is, the copper metal layer grows from bottom to top, and the hole problem of the conventional technology can be solved. Please refer to the horizontal diagram shown in Figure 5. A schematic cross-sectional view. After the entire dielectric layer hole 12 5 B is filled with electroless copper, a metal barrier layer 15 is then formed on the silicon nitride spacer wall 148 and the first etch stop layer 125. For larger wire trenches 1 4 0 A, there are two ways to fill the copper metal layer. The first One method is to use the electrical conductivity of the metal barrier layer 1 5 to deposit copper metal 478107 by electro-mineral method. 5. Description of the invention (7) The layer 1 60 to the wire channel 1 40 A. The second method is to The physical vapor deposition method directly deposits the copper metal layer into the wire trench 1 40 A. Finally, referring to FIG. 6, a chemical / mechanical grinding process is performed to remove a portion of the copper metal layer, and a hard cover layer 1 4 0 It is a grinding stop layer. The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the patent application for the present invention; any other equivalent changes or modifications made without departing from the spirit disclosed by the present invention, All should be included in the scope of patent application described below.

第10頁 478107 圖式簡單說明 本發明的較佳實施例將於往後之說明文字中輔以下列 圖形做更詳細的闡述: 圖一顯示依據傳統方法於介層洞側壁及底部形成銅晶 種後再以無電鍍銅沉積銅層的橫截面示意圖。 圖二顯示依據本發明之方法形成圖案化的蝕刻終止 層,再沉積介電層與硬式罩幕層後以光阻定義導線溝渠的 橫截面示意圖。 圖三顯示依據本發明之方法形成導線溝渠及介層洞之 雙鑲嵌圖案並裸露TiN的橫截面示意圖。 圖四A顯示依據本發明之方法在阻障層形成後以無電 鍍銅法填滿介層洞的橫截面示意圖,圖四B則顯示無電鍍 銅沉積的方向係單方向由下向上成長的橫截面示意圖。 圖五顯示依據本發明之方法沉積金屬阻障層後再以 PVD或電鍍銅方式沉積銅於導線溝渠的橫截面示意圖。 圖六顯示依據本發明之方法施以化學機械式研磨以去 除 多 餘 之 金屬 的橫截面示 意圖。 圖 號 對 昭 ο、、 表: • 金 屬 導 線 11 介 電 層 12 刻 終 止 層 14 介 層 洞 15 金 屬 阻 障 層 16 晶 種 層 18 基 板 100 金 屬 導線 105 雀呂 銅 合 金 105A/TiN105B 内 概 層 110 〇Page 478107 The diagram simply illustrates the preferred embodiment of the present invention and will be explained in more detail in the following explanatory texts. Figure 1 shows the formation of copper seeds on the sidewall and bottom of the via hole according to the traditional method. A schematic cross-sectional view of a copper layer deposited by electroless copper. Figure 2 shows a schematic cross-sectional view of a conductive trench defined by photoresist after a patterned etch stop layer is formed according to the method of the present invention, and then a dielectric layer and a hard mask layer are deposited. FIG. 3 is a schematic cross-sectional view of forming a dual damascene pattern of a wire trench and a via hole and exposing TiN according to the method of the present invention. FIG. 4A shows a schematic cross-sectional view of filling a via hole with an electroless copper method after the barrier layer is formed according to the method of the present invention, and FIG. 4B shows a direction in which the electroless copper is deposited in a single direction from bottom to top. Schematic cross-section. FIG. 5 is a schematic cross-sectional view of depositing a metal barrier layer according to the method of the present invention and then depositing copper on the wire trench by PVD or electroplated copper. Fig. 6 shows a schematic cross-sectional view of a method for removing excess metal by chemical mechanical grinding according to the method of the present invention. Drawing numbers: • Table: • Metal wire 11 dielectric layer 12 etch stop layer 14 via hole 15 metal barrier layer 16 seed layer 18 substrate 100 metal wire 105 copper copper alloy 105A / TiN105B inner layer 110 〇

478107478107

第12頁 圖 式簡單說明 第 一 介 電 層 120 第 一 刻 終止層 125 介 層 洞 開 V 125A 介 層 洞 125B 第 二 介 電 層 130 硬 式 罩 幕 層 140 導 線 溝 渠 140A 光 阻 圖 案 145 氮 化 矽 間 隙 壁 147、 148 銅 活 化 層 150A 介 層 洞 内 之 銅 金屬> 層150 金 屬 阻 障 層 155 導 線 溝 渠 内 之 銅金, 饜層160導 線 溝 渠 開口 146The diagram on page 12 briefly explains the first dielectric layer 120, the first etch stop layer 125, the interlayer hole V 125A, the interlayer hole 125B, the second dielectric layer 130, the hard mask layer 140, the wire channel 140A, the photoresist pattern 145, and the silicon nitride gap. Walls 147, 148 Copper activation layer 150A Copper metal in via hole > Layer 150 Metal barrier layer 155 Copper and gold in wire trench, sacrificial layer 160 Wire trench opening 146

Claims (1)

478107 六、申請專利範圍 1 · 一種銅雙鑲嵌製程方法,該方法至少包含以下步驟: 圖案化一金屬層以形成一金屬導線於一基板上; 形成一具有散熱功能之内襯層以覆蓋該金屬導線及該 基板, 形成一第一介電層於該内概層上; 形成一第一钱刻終止層於該第一介電層上; 利用微影及乾蝕刻技術以形成一介層洞開口圖案於該 第一姓刻終止層之中; 形成一第二介電層於該第一姓刻終止層上; 形成一硬式罩幕層於該第二介電層上; 利用微影及乾蝕刻技術形成雙鑲嵌圖案,該雙鑲嵌圖 案包含導線溝渠及介層洞,其中該導線溝渠形成於第二介 電層中以第一飯刻終止層為底,該介層洞形成於該第一介 電層中以連接該導線溝渠及該金屬導線之上表面; 形成氮化矽層間隙壁於該導線溝渠及該介層洞之側 壁; 利用含銅之活化溶液進行該金屬導線之上表面的活 化; 利用該金屬導線上之銅活化層為晶種層進行無電鍍銅 以使得該介層洞由下向上沉積銅金屬層並填滿該介層洞; 形成金屬阻障層於所有表面,包含該導線溝渠内之氮 化矽間隙壁,該導線溝渠之底部及該導線溝渠岸邊的上表 面上; 形成銅層以填滿該導線溝渠至超出該導線溝渠岸邊;478107 VI. Scope of patent application1. A copper dual damascene process method, the method includes at least the following steps: patterning a metal layer to form a metal wire on a substrate; forming an inner lining layer with a heat dissipation function to cover the metal Forming a first dielectric layer on the inner layer; forming a first dielectric stop layer on the first dielectric layer; and using the lithography and dry etching techniques to form a dielectric hole opening pattern In the first engraved termination layer; forming a second dielectric layer on the first engraved termination layer; forming a hard mask layer on the second dielectric layer; using lithography and dry etching techniques Forming a dual mosaic pattern, the dual mosaic pattern includes a lead trench and a dielectric hole, wherein the lead trench is formed in a second dielectric layer with a first etch stop layer as a bottom, and the dielectric hole is formed in the first dielectric In the layer, the wire trench and the upper surface of the metal wire are connected; a silicon nitride layer gap is formed on the side wall of the wire trench and the via; and the upper surface of the metal wire is formed by using an activation solution containing copper. Activation; using copper activation layer on the metal wire as a seed layer for electroless copper plating so that the via hole deposits a copper metal layer from the bottom up and fills the via hole; forming a metal barrier layer on all surfaces, Contains a silicon nitride spacer in the wire trench, the bottom of the wire trench and the upper surface of the wire trench bank; forming a copper layer to fill the wire trench beyond the bank of the wire trench; 第13頁 478107 六、申請專利範圍 及 進行化學/機械式研磨製程並以該硬式罩幕層為研磨 之終止層。 2. 如申請專利範圍第1項之方法,其中上述之金屬導線之 上層具有T i N層。 3. 如申請專利範圍第1項之方法,其中上述之内襯層至少 包含氮化鋁層。 4. 如申請專利範圍第1項之方法,其中上述之形成介層洞 開口圖案至少包含以下步驟: ’ 形成一光阻圖案於該第一蝕刻終止層上; 施以乾式蝕刻技術以形成該介層洞開口圖案於第一蝕 刻終止層之中;及 移除該光阻圖案。 〇 5 ·如申請專利範圍第1項之方法,其中上述之形成導線溝 渠及介層洞至少包含以下步驟: . 形成一光阻圖案於該硬式罩幕層上; 施以乾式蝕刻技術以形成該導線溝渠開口圖案於該硬 式罩幕層之中; 移除該光阻圖案;及 施以乾式姓刻法,以第一钱刻終止層為停止層,钱刻Page 13 478107 VI. Scope of patent application and chemical / mechanical grinding process and using the hard mask layer as the termination layer for grinding. 2. The method according to item 1 of the patent application range, wherein the upper layer of the above-mentioned metal wire has a T i N layer. 3. The method according to item 1 of the patent application range, wherein the above-mentioned inner lining layer includes at least an aluminum nitride layer. 4. The method according to item 1 of the patent application, wherein the above-mentioned formation of the opening pattern of the interlayer hole includes at least the following steps: 'forming a photoresist pattern on the first etch stop layer; applying a dry etching technique to form the interlayer A hole opening pattern in the first etch stop layer; and removing the photoresist pattern. 〇 The method according to item 1 of the patent application scope, wherein the above-mentioned formation of the wire trench and the via hole includes at least the following steps:. Forming a photoresist pattern on the hard mask layer; applying dry etching technology to form the The wire trench opening pattern is in the hard mask layer; the photoresist pattern is removed; and a dry-type surname method is used, with the first money-cut stop layer as the stop layer, and money-cut 第14頁 478107 六、申請專利範圍 該第二介電層,並經由上述之介層洞開口圖案蝕刻該第一 介電層及該内襯層,以曝露該金屬導線之上表面。 6. 如申請專利範圍第1項之方法,其中上述之利用含銅之 活化溶液進行該金屬導線之上表面的活化係使該金屬導線 之上表面進行銅轉位法(copper displacement)以形成銅 活4匕層。 7. 如申請專利範圍第1項之方法,其中上述之含銅之活化 溶液溶液至少包含去離子水、0. 0 1至2莫耳/公升的銅Cu 離子、0 . 0 1至5莫耳/公升的氟F離子及0 . 0 1至1 0公克/公 升界面活性劑。 8. 如申請專利範圍第1項之方法,其中上述之氮化矽層間 隙壁形成步驟至少包含: 形成一厚約2 0 0 - 1 5 0 0埃之氮化矽層於該介層洞、該導 線溝渠及該導線溝渠岸邊所有裸露之上表面; 施以非等向性蝕刻該氮化矽層,以形成上述之氮化矽 層間隙壁。 9. 如申請專利範圍第1項之方法,其中上述之氮化矽層間 隙壁係用以防止銅原子向上述之第一介電層及第二介電層 擴散。Page 14 478107 VI. Scope of patent application The second dielectric layer is etched through the aforementioned hole pattern of the dielectric layer to etch the first dielectric layer and the inner lining layer to expose the upper surface of the metal wire. 6. The method according to item 1 of the scope of patent application, wherein the activation of the upper surface of the metal wire by using a copper-containing activation solution is performed by copper displacement on the upper surface of the metal wire to form copper. Live 4 dagger layers. 7. The method according to item 1 of the patent application range, wherein the above-mentioned copper-containing activating solution solution includes at least deionized water, 0.01 to 2 mol / liter of copper Cu ions, and 0.01 to 5 mol / L of fluorine F ion and 0.01 to 10 g / L of surfactant. 8. The method according to item 1 of the scope of patent application, wherein the step of forming the spacer of the silicon nitride layer at least includes: forming a silicon nitride layer having a thickness of about 200 to 1 500 angstroms in the via hole, The wire trench and all exposed upper surfaces of the bank of the wire trench; the silicon nitride layer is etched anisotropically to form the aforementioned silicon nitride layer gap. 9. The method according to item 1 of the scope of patent application, wherein the above-mentioned silicon nitride layer gap wall is used to prevent copper atoms from diffusing into the above-mentioned first dielectric layer and the second dielectric layer. 第15頁 478107 六、申請專利範圍 1 0 .如申請專利範圍第1項之方法,其中上述之形成銅層 以填滿該導線溝渠至超出該導線溝渠岸邊係以PVD沉積填 滿該導線溝渠或以電鑛法填滿該導線溝渠其中之一。 1 1. 一種銅形成於介層洞的製程方法,該方法至少包含以 下步驟: 提供一含介層洞於介電層之中的半導體基板,該介層 洞係用以連接金屬導線,該金屬導線係選自鋁銅合金/ TiN ; 形成氮化矽層間隙壁於該介層洞之侧壁; 利用含銅之活化溶液進行T i N的活化;及 利用該金屬導線上之銅活化層/晶種層進行無電鍍銅 法以由下向上沉積銅以填滿整個該介層洞。 1 2.如申請專利範圍第1 1項之方法,其中上述之之活化溶 液進行該金屬導線之上表面的活化係使該金屬導線之上表 面進行銅轉位法(c〇p p e r d i s p 1 a c e m e n t)以形成銅活化 層。 1 3 .如申請專利範圍第1 1項之方法,其中上述之氮化矽層 間隙壁形成步驟至少包含: 形成一厚約2 0 0 - 1 5 0 0埃之氮化矽層於該介層洞、該導 線溝渠及該導線溝渠岸邊所有裸露之上表面;及 施以非等向性蝕刻該氮化矽層,以形成上述之氮化矽Page 15 478107 VI. Application for patent scope 10. For the method of applying for patent scope item 1, wherein the above-mentioned formation of a copper layer fills the wire trench to beyond the bank of the wire trench, the wire trench is filled with PVD deposition. Or fill one of the ditches by electric mining. 1 1. A manufacturing method of copper in a via hole, the method includes at least the following steps: providing a semiconductor substrate containing a via hole in a dielectric layer, the via hole is used to connect a metal wire, the metal The lead wire is selected from aluminum-copper alloy / TiN; forming a silicon nitride layer spacer on the side wall of the interlayer hole; using a copper-containing activation solution for T i N activation; and using a copper activation layer on the metal wire / The seed layer is subjected to electroless copper plating to deposit copper from bottom to top to fill the entire via hole. 1 2. The method according to item 11 of the scope of patent application, wherein the activation of the upper surface of the metal wire by the activation solution described above is performed by subjecting the upper surface of the metal wire to copper displacement method (copperdisp 1 acement) to A copper activation layer is formed. 13. The method according to item 11 of the scope of patent application, wherein the step of forming a spacer of the silicon nitride layer at least includes: forming a silicon nitride layer having a thickness of about 200 to 1 500 angstroms on the interposer. Hole, the wire trench, and all exposed upper surfaces of the banks of the wire trench; and anisotropically etch the silicon nitride layer to form the above-mentioned silicon nitride 第16頁 478107Page 16 478107 第17頁Page 17
TW89125111A 2000-11-27 2000-11-27 Method for producing copper dual damascene TW478107B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89125111A TW478107B (en) 2000-11-27 2000-11-27 Method for producing copper dual damascene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89125111A TW478107B (en) 2000-11-27 2000-11-27 Method for producing copper dual damascene

Publications (1)

Publication Number Publication Date
TW478107B true TW478107B (en) 2002-03-01

Family

ID=21662086

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89125111A TW478107B (en) 2000-11-27 2000-11-27 Method for producing copper dual damascene

Country Status (1)

Country Link
TW (1) TW478107B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226860B2 (en) 2004-04-28 2007-06-05 Taiwan Semiconductor Manfacturing Co. Ltd. Method and apparatus for fabricating metal layer
CN103904022A (en) * 2012-12-25 2014-07-02 中国科学院金属研究所 Electroless nickel alloy based through hole filling method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226860B2 (en) 2004-04-28 2007-06-05 Taiwan Semiconductor Manfacturing Co. Ltd. Method and apparatus for fabricating metal layer
CN103904022A (en) * 2012-12-25 2014-07-02 中国科学院金属研究所 Electroless nickel alloy based through hole filling method and application thereof

Similar Documents

Publication Publication Date Title
US9607946B2 (en) Reverse damascene process
TW441015B (en) Dual-damascene interconnect structures and methods for fabricating same
US8519461B2 (en) Device with post-contact back end of line through-hole via integration
US6380084B1 (en) Method to form high performance copper damascene interconnects by de-coupling via and metal line filling
US20140225278A1 (en) Interconnection structure for an integrated circuit
KR20060015515A (en) Method for manufacturing a multi-level interconnect structure
CN101558483A (en) 3D IC method and device
TW200535978A (en) Method for manufacturing semiconductor device
CN102364673A (en) Method for forming copper interconnection structure
CN104253108A (en) Interconnect structure and method for forming interconnect structure
TWI251898B (en) Damascene process for fabricating interconnect layers in an integrated circuit
CN102683270B (en) Method, semi-conductor device manufacturing method and semiconductor devices
TW478107B (en) Method for producing copper dual damascene
US20060057841A1 (en) Interconnection structure for IC metallization
KR100399909B1 (en) Method of forming inter-metal dielectric in a semiconductor device
KR20090024854A (en) Metal line and method for fabricating metal line of semiconductor device
US6903011B2 (en) Displacement method to grow cu overburden
US20100167531A1 (en) Semiconductor device and method for manufacturing the same
KR100458594B1 (en) Fabrication method of semiconductor device
KR100910443B1 (en) Method for forming copper line
KR100800920B1 (en) Method for manufacturing inductor of semiconductor device
TW513782B (en) Manufacture method of selective copper film on damascene interconnect
KR20010066720A (en) Method of forming Copper interconnects
TW472355B (en) Embedded type copper contact plug
TWI227929B (en) Method of building metal-insulator-metal capacitors embedded in Cu interconnects

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent