TW477151B - Method and apparatus for recovery of encoded data using central value - Google Patents

Method and apparatus for recovery of encoded data using central value Download PDF

Info

Publication number
TW477151B
TW477151B TW089112537A TW89112537A TW477151B TW 477151 B TW477151 B TW 477151B TW 089112537 A TW089112537 A TW 089112537A TW 89112537 A TW89112537 A TW 89112537A TW 477151 B TW477151 B TW 477151B
Authority
TW
Taiwan
Prior art keywords
data
dynamic range
patent application
scope
range
Prior art date
Application number
TW089112537A
Other languages
Chinese (zh)
Inventor
Tetsujiro Kondo
James J Carrig
Yasuhiro Fujimori
William Knox Carey
Original Assignee
Sony Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Electronics Inc filed Critical Sony Electronics Inc
Application granted granted Critical
Publication of TW477151B publication Critical patent/TW477151B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/89Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving methods or arrangements for detection of transmission errors at the decoder
    • H04N19/895Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving methods or arrangements for detection of transmission errors at the decoder in combination with error concealment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/98Adaptive-dynamic-range coding [ADRC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

The present invention provides a method for comprising data by determining a central value that is greater than the minimum value and less than the maximum value of the range of data. In one embodiment, the central value is chosen to be a value that substantially reduces a decoding error in the event that the range of values is subsequently estimated. In one embodiment, the central value is the value that minimizes the expected mean square error during reconstruction when there is an error. In one embodiment, the maximum and minimum values represent intensity data for pixels of an image. In another embodiment, the compression process is adaptive dynamic range coding, and the central value is a value within the dynamic range, excluding the maximum and minimum values.

Description

477151 A7 B7_ 五、發明說明(1 ) 發明背景 1 .發明領域 本發明係關於資料之編碼處理,以提供由於信號傳輸 或訊號儲存所造成之資料損失之堅固錯誤復原。 2 .發明背景 現今已經有若干技術存在,以重建由信號傳輸或儲存 時所發生之隨機錯誤的損失/破壞資料。然而,這些技術 並不能處理連續分封資料的損失。連續損失之分封資料於 此技藝中係被描述爲叢發錯誤。叢發錯誤可能造成具有劣 化品質之重建信號,該劣化品質對於末端使用者係明顯的 〇 另外,用以完成高速通訊之壓縮技術組合由叢發錯誤 造成之信號劣化,因而,加入至重建信號之劣化。影響傳 送及/或儲存信號之叢發錯誤損失的例子可以由高解析度 電視(H D T V )信號,行動電信應用,及視訊儲存技術 中看到,該等視訊儲存技術包含影碟(如D V D ),微碟 片及錄影機(V C R )。 例如,H D Τ V之出現已經造成具有較現行由國家電 視系統委員會(N T S C )所提之標準爲高之解析度之電 視信號。所提之H D Τ V信號係爲數位的。因此’當一彩 色電視信號被轉換用於數位用途時’經常地亮度及色度信 號可以使用八位元加以數位化。N T S C彩色電視信號之 數位傳送每秒需要約2 6 0百萬位元之額定位元速率。對 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -4 - (請先閱讀背面之注意事項再填寫本頁) 裝 l·---訂--------- 經濟部智慧財產局員工消費合作社印制衣 477151 A7 B7 五、發明說明(2 ) 於H D T V傳輸速率更大’該速率可能額定需要每秒約 1 2 0 〇百萬位元。此等局傳輸速率可能早超出現丫了無線 標準所支援之頻寬。因此,需要一有效壓縮方法。 於行動電信應用中,壓縮方法也是一重要角色。典型 地,分封資料係被傳送於行動電信號應用中之遠方終端間 。於行動通訊中傳輸頻道的有限數量需要於傳輸分封則’ 一有效之壓縮方法。若干壓縮技術係可以採用以完成高速 傳輸速率。 適應動態範圍編碼(A D R C )及離散餘弦轉換( D C T )編碼提供爲本技藝中所知之影像壓縮技術。這兩 技術利用於一影像中之局部共相關以完成高壓縮比。然而 ,一有效壓縮演繹法可能因爲於後續編碼時,一較重要編 碼信號中之錯誤,而造成合成錯誤傳遞。此錯誤放大作用 可能造成一劣化視訊影像,其係可以迅速爲使用者所看到 (請先閱讀背面之注意事^填寫本頁) i 裝477151 A7 B7_ V. Description of the invention (1) Background of the invention 1. Field of the invention The present invention relates to data encoding processing to provide robust error recovery of data loss caused by signal transmission or signal storage. 2. BACKGROUND OF THE INVENTION Several technologies exist today to reconstruct loss / damage data of random errors that occur during signal transmission or storage. However, these techniques cannot deal with the loss of continuous packaging data. The continuum of loss information is described as a burst error in this technique. Burst errors may cause reconstructed signals with degraded quality, which is obvious to end users. In addition, the compression technology used to complete high-speed communication combines signal degradation caused by burst errors, so it is added to the reconstructed signal. Degradation. Examples of burst errors that affect transmission and / or storage signals can be seen in high-resolution television (HDTV) signals, mobile telecommunications applications, and video storage technologies. These video storage technologies include video discs (such as DVDs), micro- Discs and VCRs. For example, the advent of HDTV has resulted in TV signals with higher resolution than the current standard proposed by the National Television System Committee (NTSC). The HDV signal mentioned is digital. Therefore, 'when a color television signal is converted for digital use', often the luminance and chrominance signals can be digitized using eight bits. The digital transmission of NTSC color television signals requires a nominal bit rate of about 260 million bits per second. Applicable to China Paper Standard (CNS) A4 (210 X 297 mm) for this paper size -4-(Please read the notes on the back before filling this page) -Printed clothing by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 477151 A7 B7 V. Description of the invention (2) Higher transmission speed of HDTV 'This rate may be rated at about 12 million bits per second. These transmission rates may have exceeded the bandwidth supported by the wireless standard. Therefore, an effective compression method is needed. In mobile telecommunications applications, compression methods also play an important role. Typically, the packetized data is transmitted between remote terminals in mobile electrical signal applications. The limited number of transmission channels in mobile communications requires an effective compression method for transmission packetization. Several compression techniques can be used to achieve high-speed transfer rates. Adaptive Dynamic Range Coding (ADRC) and Discrete Cosine Transform (DCT) encoding provide image compression techniques known in the art. These two techniques use local co-correlation in an image to achieve high compression ratios. However, an effective compression deduction method may result in a synthetic error transmission due to errors in a more important encoded signal during subsequent encoding. This incorrect magnification may cause a degraded video image, which can be quickly seen by the user (please read the precautions on the back first ^ fill this page) i

I i an n 一5,r I n ·ϋ ϋ an ϋ 1 I #- 發明槪要 經濟部智慧財產局員工消費合作社印製 本發明提低種方法以包含藉由決定大於資料範圍之最 小値和小於資料範圍之最大値之中央値之資料。在一實施 例中,中央値受選擇爲在範圍値於後受到評估時,實際降 低一解碼錯誤之値。在一實施例中,中央値爲在重建時當 有錯誤時縮小預期均方錯誤之値。在一實施例中,最大値 和最小値表示一影像之圖素資料之強度。在另一實施例中 ,壓縮處理爲適應動態範圍編碼,和中央値爲除了最大和 -5- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 477151 A7 __B7____ 五、發明說明(3 ) 最小値外,在資料之動態範圍內之値。 圖式之簡要說明 本發明之目的,特性及優點將爲熟習於此技藝者參考 以下之詳細說明而容易了解,其中: 圖1 A爲信號編碼,傳輸,及隨後解碼之處理的一實 施例。 圖1B和1C爲由處理器所執行當成軟體實施之本發 明之實施例。 圖1D和1E爲當成硬體邏輯實施之本發明之實施例 〇 圖2爲分封構造之一實施例。 圖3 A和3 B爲依照一實施例,當動態範圍(D R ) 過度評估時之實際和復原Q碼位準間之差異。 元件對照表 請 先 閱 讀 背 之 注 意 事 項i 填, 寫裝 本衣 頁 蓮 I 訂 經濟部智慧財產局員工消費合作社印製 封統 構 分器系器 結 號:碼理理出封 訊 Ν 解處處輸分 〇 一 0 0 5 5 0 〇 ·: 2 7 7 8 0 1-1 1-^ ΤΧ IX 1-- IX οοI i an n 5, r I n · ϋ ϋ an ϋ 1 I #-Invention 槪 ask the Intellectual Property Bureau of the Ministry of Economic Affairs to print the present invention to reduce the method to include the minimum method and Data that is smaller than the largest frame of the data frame. In one embodiment, the central receiver is selected to actually reduce a decoding error when the range is later evaluated. In one embodiment, the central frame is the frame that reduces the expected mean square error when there are errors during reconstruction. In one embodiment, the maximum 値 and the minimum 値 represent the intensity of the pixel data of an image. In another embodiment, the compression process is adapted to the dynamic range encoding, and the central unit is in addition to the maximum and -5- This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 477151 A7 __B7____ V. Invention Explanation (3) The minimum value is within the dynamic range of the data. Brief Description of the Drawings The purpose, characteristics and advantages of the present invention will be easily understood by those skilled in the art with reference to the following detailed description, in which: Figure 1A is an embodiment of the processing of signal encoding, transmission, and subsequent decoding. Figures 1B and 1C are embodiments of the invention implemented as software executed by a processor. Figures 1D and 1E are embodiments of the present invention implemented as hardware logic. Figure 2 is an embodiment of a decapsulation structure. 3A and 3B are differences between actual and recovered Q code levels when the dynamic range (DR) is over-evaluated according to an embodiment. For the component comparison table, please read the notes on the back. I fill in and write this book. I order this book. I order the printed product of the Intellectual Property Department of the Intellectual Property Bureau of the Ministry of Economic Affairs. Lost points 〇 0 0 5 5 0 〇 ·: 2 7 7 8 0 1-1 1- ^ TX IX 1-- IX οο

器媒 體 器 碼輸號憶入示 編傳訊記輸顯 0 5 0 0 0 5 1 3 3 9 8 9 Γ"Η IX 1-1 1-1 1-1 1—I 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -6 - 477151 A7 B7 五、發明說明(3 ) 最小値外,在資料之動態範圍內之値 圖式之簡要說明 本發明之目的,特性及優點將爲熟習於此技藝者參考 以下之詳細說明而容易了解,其中: 圖1 A爲信號編碼,傳輸,及隨後解碼之處理的一實 施例。 圖1 B和1 C爲由處理器所執行當成軟體實施之本發 明之實施例。 圖1 D和1 E爲當成硬體邏輯實施之本發明之實施例 圖2爲分封構造之一實施例。 圖3 A和3 B爲依照一實施例,當動態範圍(D R ) 過度評估時之實際和復原Q碼位準間之差異。 元件對照表 請 先 閱 讀 背 面 之 注 意 事 項赢I 5裝 〇 〇 1-1 經濟部智慧財產局員工消費合作社印製 0 0 5 5 0 2 7 7 8 0 1—I 1—1 一—- TX 0〇 封統 構 分器系器 結 號:碼理理出封 訊N解處處輸分The device media device code input number is entered into the display and the communication record is displayed. 0 5 0 0 0 5 1 3 3 9 8 9 Γ " Η IX 1-1 1-1 1-1 1—I This paper size applies to Chinese national standards ( CNS) A4 specification (210 X 297 mm) -6-477151 A7 B7 V. Description of the invention (3) Except for the minimum, the diagram in the dynamic range of the data will briefly explain the purpose, characteristics and advantages of the present invention. For those skilled in the art, it is easy to understand with reference to the following detailed description, where: FIG. 1A is an embodiment of the signal encoding, transmission, and subsequent decoding processing. Figures 1B and 1C show an embodiment of the invention implemented as software executed by a processor. Figures 1D and 1E are embodiments of the present invention implemented as hardware logic. Figure 2 is an embodiment of the decapsulation structure. 3A and 3B are differences between actual and recovered Q code levels when the dynamic range (DR) is over-evaluated according to an embodiment. Component comparison table, please read the note on the back to win I 5 packs. 〇1-1 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 0 0 5 5 0 2 7 7 8 0 1—I 1—1 1—- TX 0 〇Funding System Detector System Ending Number: The code manager can figure out the message N solution and lose points everywhere.

澧 器媒 體 器 碼輸號憶入示 編傳訊記輸顯 0 5 0 0 0 5 1 3 3 9 8 9 1-- IX 1—- IX IX I—I -6 - 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 477151 A7 B7 五、發明說明(4 ) 詳細說明 本發明提供一種方法’用以編碼和安排一訊號流,以 提供堅固錯誤復原,和一方法以執行錯誤復原。於以下說 明中’爲了解釋目的,各種細節係加以說明,以提供對本 發明之完全了解。然而,對於熟習於本技藝者而言,這些 細節於實施本發明中並不需要。於其他例子中,已知之電 氣結構及電路係示於方塊圖中,以防止不必要地限制本發 明。 下列說明在適應動態範圍編碼(A D R C )編碼視頻 影像之文中,更明確地說,關於一損失或損壞(損失/損 壞)之例如動態範圍(D R )之壓縮參數的復原。然而, 可以想出本發明並不限定於視頻,不限於A D R C編碼及 所產生之特定壓縮參數;而是對於本發明明顯的是適用至 不同壓縮技術,不同類型之共相關資料,包含,但並不限 定於二維靜態影像,全息影像,三維靜態影像,視訊,二 維移動影像,三維移動影像,單音聲音,和N頻道聲音。 本發明亦可應用至不同壓縮參數包括,但不限制於此,中 央値(CEN),其可使用在ADRC處理中。此外,本 發明亦可應用至不同型式A R D C處理包括邊緣匹配及非 邊緣匹配A D R C。有關於A R D C之進一步資料見於 1 9 9 1年九月4至6日之意大利突尼舉行之第四屆國際 HDTV會議由今度,富士森,中屋所發表之”未來 H D T V數位V T R之自適應動態範圍編碼設計”中。 信號編碼,傳輸及後續解碼處理係如於圖1 Α所示。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -------------··裝----l·---訂 i (請先閱讀背面之注意事項再填寫本頁) #· 經濟部智慧財產局員工消費合作社印製 477151 A7 B7_ 五、發明說明(5 ) 信號1 0 0係爲至編碼器1 1 0之資料串流輸入。編碼器 1 1 0遵循自適應動態範圍編碼(A D R C )壓縮演繹法 並產生分封1 ,…,N用於沿著傳輸媒體1 3 5傳輸。解 碼器1 2 0由傳輸媒體1 3 5接收分封1 ,…,N,並產 生信號1 3 0。信號1 3 0係爲信號1 0 0之再重建。 編碼器1 1 0及解碼器1 2 0可以以各種方式加以實 施,以執行於此所述之功能。於一實施例中,編碼器 1 1 0及/或解碼器1 2 0可以被實施爲儲存於媒體上之 軟體並被爲一般目的或特殊規格之電腦或資料處理系統所 執行,該電腦系統典型包含一中央處理單元,記憶體及一 或多數輸入/輸出裝置及共處理機,如於圖1 B和1 C所 示。或者,編碼器1 1 0及/或解碼器1 2 0可以被實施 爲邏輯,以執行於此所述之功能,如於圖1 D和1 E所示 。另外,編碼1 1 0及/或解碼器1 2 0可以被實施爲硬 體,軟體或韌體之組合。 用以編碼和復原損失/損壞壓縮參數之電路的實施例 係如圖1 B和1 C所示。於此所述之方法可以被執行於一 特殊規格或一般目的處理機系統1 7 〇執行。指令係儲存 於記憶體1 9 0及由處理機1 7 5所接取,以執行於此所 述之很多步驟。輸入1 8 0接收輸入串流並轉送資料至處 理機175。輸出185輸出資料。於圖1B中,輸出可 以包含已編碼資料。於圖1 C中,一旦壓縮參數復原時, 輸出可以包含已解碼資料,例如解碼之影像資料,以足以 驅動例如顯示器1 9 5之外部裝置。 (請先閱讀背面之注意事項再填寫本頁) r.·裝 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -8- 477151 A7 B7______ 五、發明說明(6 ) 在另一實施例中,輸出1 8 5輸出復原壓縮參數。復 原壓縮參數於後輸入至其它電路以產生解碼資料。 圖1 D和1 E顯示用以編碼壓縮參數和復原損失/損 壞壓縮參數之電路之實施例。於此所述之方法可在特殊構 成邏輯中執行,如應用特殊積體電路(A S I C ),大尺 寸積體(L S I )邏輯,可程式閘陣列,或一或多個處理 器。 圖2顯示用以於點對點連接及網路間之資料傳輸之資 料結構或分封結構3 0 0之一實施例。分封結構3 0 0係 由編碼1 1 0產生並傳輸於傳輸媒體1 3 5之間。對於一 實施例,分封結構3 0 0包含五位元組之信頭資訊’八 D R位元,八C E N位元,一移動旗標位元’五位元臨界 指標,及3 5 4位元之Q碼。於此所述之分封結構係被例 示及可以實施用以傳輸於非同步傳輸模式(A τ Μ )網路 。然而,本發明並不限定於此所述之分封結構及用於各網 路中之分封結構可以加以利用。 在一實施例中,資料結構3 0 0可儲存在一電腦可讀 取記憶體中,因此資料結構3 0 0可由在一資料處理系統 上執行之程式所存取。儲存在記憶體中之此資料結構 3 0 0包括一動態範圍目標(D R )和相關於動態範圍資 料目標之一中央値資料目標(C Ε Ν )。中央値資料目標 具有一値,其大於動態範圍資料目標之最小値,且小於動 態範圍資料目標之最大値。當動態範圍資料目標受評估時 ,中央値資料目標實質降低一解碼錯誤。每一資料結構 (請先閱讀背面之注意事項再填寫本頁) 裝-----:----訂---- 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -9-Enter the code of the media device code and enter the display of the communication record. 0 5 0 0 0 5 1 3 3 9 8 9 1-- IX 1—- IX IX I—I -6-This paper size applies to Chinese national standards ( CNS) A4 size (210 X 297 mm) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 477151 A7 B7 V. Description of the invention (4) Detailed description The present invention provides a method 'for encoding and arranging a signal stream to provide Robust error recovery, and a method to perform error recovery. In the following description, 'for the purposes of explanation, various details are described to provide a thorough understanding of the present invention. However, for those skilled in the art, these details are not needed in the practice of the present invention. In other examples, known electrical structures and circuits are shown in block diagrams to prevent unnecessary limitations to the invention. The following description, in the article Adapting Dynamic Range Coding (A D R C) encoded video images, more specifically, relates to the restoration of compression parameters such as dynamic range (DR) for a loss or damage (loss / damage). However, it is conceivable that the present invention is not limited to video, and is not limited to ADRC encoding and the specific compression parameters generated; but it is obvious to the present invention that it is applicable to different compression technologies and different types of related materials, including, but not Not limited to two-dimensional still images, holographic images, three-dimensional still images, video, two-dimensional moving images, three-dimensional moving images, mono sound, and N-channel sound. The present invention can also be applied to different compression parameters including, but not limited to, the central chirp (CEN), which can be used in ADRC processing. In addition, the present invention can also be applied to different types of A R D C processing, including edge matching and non-edge matching A D R C. Further information on ARDC can be found in the 4th International HDTV Conference held in Tunis, Italy, September 4-6, 1991. "Future Sensitivity, Future Sensitivity, HDTV Digital VTR Adaptive Dynamics" published by Today, Fujimori, and China House. Range Coding Design. " The signal encoding, transmission and subsequent decoding processes are shown in Figure 1A. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ------------- · Installation ---- l · --- Order i (Please read first Note on the back, please fill in this page) # · Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 477151 A7 B7_ V. Description of the invention (5) Signal 1 0 0 is the data stream input to the encoder 1 1 0. The encoder 1 1 0 follows the adaptive dynamic range coding (A D R C) compression deduction method and generates a packet 1, ..., N for transmission along the transmission medium 1 3 5. The decoder 1 2 0 receives the packets 1, ..., N from the transmission medium 1 3 5 and generates a signal 1 3 0. Signal 130 is a reconstruction of signal 100. The encoder 110 and decoder 120 can be implemented in various ways to perform the functions described herein. In an embodiment, the encoder 110 and / or the decoder 120 may be implemented as software stored on a medium and executed by a general purpose or special specification computer or data processing system. The computer system is typically Contains a central processing unit, memory, and one or more input / output devices and coprocessors, as shown in Figures 1B and 1C. Alternatively, the encoder 110 and / or the decoder 120 may be implemented as logic to perform the functions described herein, as shown in Figs. 1D and 1E. In addition, the encoding 110 and / or the decoder 120 may be implemented as a combination of hardware, software or firmware. An embodiment of a circuit for encoding and restoring the loss / damage compression parameters is shown in Figs. 1B and 1C. The methods described herein can be performed on a special specification or general purpose processor system 170. The instructions are stored in the memory 190 and accessed by the processor 175 to perform many of the steps described herein. Input 1 8 0 receives the input stream and forwards the data to processor 175. Output 185 output data. In Figure 1B, the output can include encoded data. In FIG. 1C, once the compression parameters are restored, the output may include decoded data, such as decoded image data, to drive external devices such as the display 195. (Please read the precautions on the back before filling this page) r. · The size of this paper is applicable to China National Standard (CNS) A4 (210 X 297 mm) -8- 477151 A7 B7______ 5. Description of the invention (6) In another embodiment, the output 1 8 5 output restores the compression parameters. The restored compression parameters are then input to other circuits to generate decoded data. Figures 1 D and 1 E show an embodiment of a circuit for encoding compression parameters and restoring loss / corruption compression parameters. The methods described herein can be performed in special configuration logic, such as the application of special integrated circuit (A S I C), large size integrated circuit (L S I) logic, programmable gate array, or one or more processors. FIG. 2 shows an embodiment of a data structure or decapsulation structure 300 for point-to-point connection and data transmission between networks. The decapsulation structure 3 0 0 is generated by the code 1 1 0 and transmitted between the transmission media 1 3 5. For an embodiment, the encapsulation structure 300 includes five-byte header information 'eight DR bits, eight CEN bits, a mobile flag bit' five-bit critical index, and three-five-four bits. Q code. The decapsulation structure described herein is exemplified and can be implemented for transmission in an asynchronous transmission mode (A τ M) network. However, the present invention is not limited to the decapsulation structure described here and the decapsulation structure used in each network can be used. In one embodiment, the data structure 300 can be stored in a computer-readable memory, so the data structure 300 can be accessed by a program running on a data processing system. The data structure 3 0 0 stored in the memory includes a dynamic range target (DR) and a central data target (C Ε Ν) related to one of the dynamic range data targets. The central frame data target has a frame that is larger than the minimum frame of the dynamic range data object and smaller than the maximum frame of the dynamic range data object. When the dynamic range data target is evaluated, the central frame data target substantially reduces a decoding error. Each data structure (please read the precautions on the back before filling this page) Pack -----: ---- Order ---- Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs This paper is printed in accordance with Chinese national standards (CNS) A4 size (210 X 297 mm) -9-

//1M A7// 1M A7

3 〇 0亦可爲分封結構。 如上所述’上述之範例系統和裝置可使用以編碼影像 如使用A D R C之視頻或移動影像。a D R C已建立如 同〜可實現之實時技術以編碼和壓縮影像,以準備用於固 定位元率傳輸。 組成數位影像之離散資料點已知如同圖素。每一圖素 可獨立的使用8位元表示,但是亦可使用其它表示以用於 壓縮或分析之目的。許多表示藉由將原始資料分成分離資 料組而開始。爲了習知之理由,這些組,其可由一或多片 資料或圖素構成,乃視爲塊,即使它們不具有習知之塊狀 。而後這些資料可特徵在於壓縮參數。在一實施例中,這 些壓縮參數包括塊參數和位元流參數。 一塊參數包括說明影像如何之資料。因此,塊參數亦 可使用以界定塊之一或多個屬性。例如,在A D R C中, 塊寬資訊可包括最小圖素値(Μ I N ),最大圖素値( MAX),中央値(C E N ),圖素値之動態範圍(D R ),或這些値之結合。 位元流參數亦可包括影像如何編碼之資料。在一實施 例中,一位元流參數亦指示使用以編碼資料之位元數目。 例如,在A D R C中,位元流參數亦可包括Q位元和移動 旗標(M F )値。因此,在此實施例中,位元流參數可指 示資料如何編碼,其表示一圖素値位在由全球資訊所特定 之範圍內。 在使用A D R C編碼之例中,塊資料包含Μ I Ν, ------------裝 (請先閱讀背面之注意事項再填寫本頁) 訂--------- 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -10- 477151 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(8 ) D R,和Q位元編號(於下界定)’和圖素資料包含Q碼 。DR 可界定當成 MAX — MI N 或 MAX — MI N+1 。在本實施例中,如下所述,C E N亦可界定爲介於 Μ I N和M A X間之値。例如,C E N可等於Μ I N + D R / 2。300 can also be a sealed structure. As described above, the above-described example systems and devices can be used to encode images, such as video or moving images using ADRC. a D R C has established the same real-time technology to encode and compress images in preparation for fixed-bit rate transmission. The discrete data points that make up a digital image are known as pixels. Each pixel can be independently represented in 8 bits, but other representations can also be used for compression or analysis purposes. Many representations begin by dividing the source data into separate data groups. For reasons of convention, these groups, which can be composed of one or more pieces of data or pixels, are considered blocks, even if they do not have a conventional block shape. This information can then be characterized by compression parameters. In one embodiment, these compression parameters include block parameters and bit stream parameters. A parameter includes information describing how the image is. Therefore, block parameters can also be used to define one or more attributes of a block. For example, in A D R C, the block width information may include the minimum pixel size (M I N), the maximum pixel size (MAX), the central frame size (CEN), the dynamic range of the pixel size (DR), or a combination of these. The bitstream parameters may also include information on how the image is encoded. In one embodiment, the bitstream parameter also indicates the number of bits used to encode the data. For example, in A D R C, the bit stream parameters may also include Q bits and a moving flag (M F) 値. Therefore, in this embodiment, the bit stream parameter can indicate how the data is encoded, which indicates that a pixel is located in a range specified by global information. In the case of using ADRC encoding, the block data contains Μ Ν Ν, ------------ installed (please read the precautions on the back before filling this page) Order -------- -Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs of the Consumer Cooperatives, the paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -10- 477151 Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs of the Consumer Cooperatives of Consumers A7 B7 V. Description of the invention (8) DR, and Q bit numbers (defined below) 'and the pixel data include Q codes. DR can be defined as MAX — MI N or MAX — MI N + 1. In this embodiment, as described below, C E N can also be defined as the interval between M IN and M A X. For example, C E N may be equal to M I N + D R / 2.

Q碼爲在範圍〔0 ,2 Q _ 2〕中之整數,其指示在組 {MIN,MIN+1 ,···,CEN,…,MAX}中之一 値。由於Q位元,Q,通常較小且DR値可爲相當大,一 般不可能正確呈現所有的圖素値。因此,當圖素値降低至 Q碼値時,會導入一些量化錯誤。例如,如果Q位元編號 爲3時,則其可從組{ Μ I N,Μ I N + 1 ,…,C E N ,…,M A X }中呈現2 3二8之値,而無錯誤。具有其它 値之圖素環繞此8個値之一。這些環熱會導入錯誤。 暫時的壓縮對於如及時展開超過一次之影像之序列是 可行的。一影像框界定當成在一給定時間周期內上升之圖 素之2維集合。已知的是,來自暫時靠近影像框之相關位 置之資料易於包含相似的値。當此爲真時,藉由編碼只一 次這些相似値,即可改善壓縮。 在第二例中,藉由添加移動旗標(M F )至第一例之 塊資訊,即可編碼多重影像框。此M F指示來自每一框之 資料是否使用分離Q碼編碼。如果無指示移動,則使用相 同Q碼以表示每一框資料。如果指示移動,則分離Q碼使 用以編碼每一框。The Q code is an integer in the range [0, 2 Q _ 2], which indicates one of the groups {MIN, MIN + 1, ..., CEN, ..., MAX} 値. Due to the Q bits, Q is usually small and DR 値 can be quite large, and it is generally impossible to render all pixels 正确 correctly. Therefore, when the pixel 値 is reduced to Q code 一些, some quantization errors are introduced. For example, if the Q bit number is 3, it can show 2 3 2 8 from the group {Μ IN N, Μ N + 1, ..., C E N, ..., M A X} without error. Pixels with other frames surround one of these 8 frames. These ring heats can introduce errors. Temporary compression is possible for sequences such as images that are unrolled more than once in time. An image frame is defined as a 2-dimensional set of pixels that rises over a given period of time. It is known that data from related locations that are temporarily close to the image frame tend to contain similar frames. When this is true, compression can be improved by encoding these similarities only once. In the second example, multiple video frames can be encoded by adding a moving flag (M F) to the block information of the first example. This MF indicates whether the data from each frame is encoded using a separate Q code. If no movement is instructed, the same Q code is used to represent each frame of information. If movement is indicated, a separate Q code is used to encode each box.

可使用兩方法之A D R C編碼:非邊緣匹配A D R C 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ------------裝-----^—訂-------—· (請先閱讀背面之注意事項再填寫本頁) -11 - 477151 A7 -------£L__ 五、發明說明(9 ) 和邊緣匹配A D R C。此兩方法之不同在於使用以產生量 話碼(Q碼)値之準確公式。另一方面,此兩方法有許多 共同處。兩方法開始將影像分段成塊,而後決定每一塊之 最大(MAX)和最小(MI N)圖素値。在 2 D A D R C中’決定一量化碼(q碼)値以用於每一圖 素。在3DADRC中,決定一移動旗標(MF )値(如 果移動是1 ,否則爲0 )以用於每一塊。當移動旗標爲1 時’可決定一獨特Q碼以用於每一塊。當移動旗標爲0時 ,可平均相關圖素値以用於每一塊,塊參數因此更新,和 可決定會從每一框呈現相關圖素之單一 Q碼。 非邊緣匹配A D R C可界定D R値如 DR = MAX - MIN + 1 ⑴ 和一量化碼如 2Q{xi-MIN + V2) qi = ---- (2) ^ DR K } L- · - 其中Q爲量化位元之數目,和X ^爲原始圖素値(或平 均圖素値,在3 D A D R C中之非移動塊之例中)。圖素 値可依照下列公式重建或復原: 化,晌㈤ ⑶ L 2Q 」 其中MAX表示塊之最大位準,M I N表示塊之最小 位準,Q表示量化位元之數目’ Q 1表示量化碼(編碼資料 ),X,i表示每一樣本之解碼位準’和其預期爲X ’ & = x 1 (請先閱讀背面之注意事Μ填寫本頁) L., I - n H ϋ n I n n 一 δ 午· n n n an ·ϋ n ϋ I - 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) -12- 477151 A7 _____B7 五、發明說明(1〇) 邊緣匹配A D R C可界定D R値如Two methods of ADRC coding can be used: non-edge matching ADRC This paper size is applicable to China National Standard (CNS) A4 specification (210 X 297 mm) ------------ install ----- ^ —Order -------— · (Please read the notes on the back before filling out this page) -11-477151 A7 ------- £ L__ 5. Description of the invention (9) and edge matching ADRC. The difference between the two methods lies in the exact formula used to generate the volume code (Q code). On the other hand, these two approaches have many things in common. The two methods start by segmenting the image into blocks, and then determine the maximum (MAX) and minimum (MIN) pixels of each block. In 2 D A D R C ', a quantization code (q-code) is determined for each pixel. In 3DADRC, a move flag (MF) 决定 (if the move is 1 and 0 otherwise) is determined for each block. When the mobile flag is 1, a unique Q code can be determined for each block. When the moving flag is 0, the related pixels can be averaged for each block, the block parameters are updated accordingly, and a single Q code that determines the related pixels from each box can be decided. Non-edge matching ADRC can define DR 値 such as DR = MAX-MIN + 1 ⑴ and a quantization code such as 2Q (xi-MIN + V2) qi = ---- (2) ^ DR K} L- ·-where Q is The number of quantization bits, and X ^ is the original pixel 値 (or average pixel 値, in the example of a non-moving block in 3 DADRC). The pixel 値 can be reconstructed or restored according to the following formula: 化, ⑶ L 2Q ″ where MAX represents the maximum level of the block, MIN represents the minimum level of the block, Q represents the number of quantization bits, and Q 1 represents the quantization code ( (Encoding data), X, i represents the decoding level of each sample 'and its expected value is X' & = x 1 (please read the note on the back first and fill in this page) L., I-n H ϋ n I nn 一 δ afternoon · nnn an · ϋ n ϋ I-Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs This paper is printed in accordance with China National Standard (CNS) A4 (210 x 297 mm) -12- 477151 A7 _____B7 V. DESCRIPTION OF THE INVENTION (10) The edge matching ADRC can define DR such as

DR = MAX - MIN ⑷ 和一'量化碼如 (2qDR = MAX-MIN ⑷ and a 'quantization code such as (2q

DR + V2 (5) 其中Q爲量化位元之數目,和x t爲原始圖素値(或平 均圖素値,在3DADRC中之非移動塊之例中)。圖素 値可依照下列公式重建或復原: 歷+势+丨/2 ⑹ (請先閱讀背面之注意事項再填寫本頁) 其中MAX表示塊之最大位準,Μ I N表示塊之最小 位準,Q表示量化位元之數目,Q t表示量化碼(編碼資料 ),X ’ i表示每一樣本之解碼位準,和其預期爲XX : 經濟部智慧財產局員工消費合作社印製 雖然上述用於A D R C之範例量化碼和重建公式使用 Μ I N値,但是,任何大於或等於Μ I N,和小於或等於 M A X亦可伴隨D R使用以編碼和解碼圖素値。對於邊緣 匹配和非邊緣匹配A D R C而言,在傳輸時,D R値會損 失。如果D R損失,則圖素値可使用一用於D R之評估重 建。 當D R過度評估(或不足評估)時,最大解碼錯誤相 關於使用於編碼和解碼圖素値之値,如塊參數。圖3 A和 3 B顯示當D R過度評估2 0 %時之介於實際和復原Q碼 位準間之差異。 -13- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 477151 Α7 Β7 五、發明說明(n) 經濟部智慧財產局員工消費合作社印製 例如,圖3 A顯示當 碼錯誤,和Μ I N値使用 過度評估2 0 %時之最大 3 Β之最大解碼錯誤,其 最大解碼錯誤。 在圖3 Α左邊上之軸 ADRC之在2位元AD 軸2 2 0爲如果DR過度 示,最大解碼錯誤發生在 時亦發生相同的結果) 圖3 A所顯示之效能 3 B所顯示者比較。假設 C E N時,最大復原錯誤 誤降低,藉以提供在復原 應增加。因此,藉由使用 編碼,傳輸,和解碼之Q ,兩均方解碼錯誤和最大 D R過度評估2 0 %時之最大解 以編碼和解碼。圖3 B爲當D R 解碼錯誤’和使用C E N値。圖 使用C E N,小於使用Μ I N之 2 1 0爲使用非邊緣匹配 R C塊中之Q碼之適當復原。右 評估2 0 %時復原之Q碼。如所 最大Q碼値。(當D R不足評估 可與使用中央値取代Μ I Ν之圖 達成相同D R評估錯誤時,使用 變成一半。再者,預期之均方錯 訊號之雜訊比(S N R )中之對 C Ε Ν,可增強用於影像資料之 碼之復原,且在D R評估錯誤時 解碼錯誤可實質降低,且甚至更 可選擇中央値當成一値以在D R評估時實質降低,甚 至減少用於重建時之預期均方錯誤,且具有一固定D R評 估錯誤。此値可以下列處理決定。 一般型式之A D R C解碼等式而無截斷錯誤爲: = MIN + ~Zi 十 κ Μ ⑺ (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -14- 477151 A7 B7 五、發明說明(12 ) 其中Zl ’M’和κ之値提供在表1中。式(7)之一 般型式同時簡化A D R C符號且允許非邊緣匹配和邊緣匹 配之公式之同時導出。 表1 :使用在一 -般解碼等式中之項 目之値 項目 非邊緣匹配ADRC 邊緣匹配ADRC τ、 qi+ 1 /2 Q> Μ 2q 2Q-1 Κ 〇 y2 如果不傳送Μ I N値,而是傳送其它値且D R値爲絕 對正時,其它値可表示如: VAL = MIN + aDR ⑻ 其中α爲常數。因此,A D R C解碼等式爲: 請 先 閱 讀 背 面 之 注 意 事 項j I I 訂 (9) # 使D R e表示動態範圍之錯誤評估。則錯誤解碼可表示 經濟部智慧財產局員工消費合作社印製 爲 1 error (i)DR + V2 (5) where Q is the number of quantization bits, and x t is the original pixel 値 (or average pixel 値, in the example of a non-moving block in 3DADRC). The pixel 値 can be reconstructed or restored according to the following formula: calendar + potential + 丨 / 2 ⑹ (please read the precautions on the back before filling this page) where MAX represents the maximum level of the block, M IN represents the minimum level of the block, Q is the number of quantization bits, Q t is the quantization code (encoded data), X 'i is the decoding level of each sample, and it is expected to be XX: Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. ADRC's example quantization code and reconstruction formula use M IN 値, however, any greater than or equal to M IN and less than or equal to MAX can also be used with DR to encode and decode pixel 値. For edge-matched and non-edge-matched A D R C, D R 値 will be lost during transmission. If D R is lost, then the pixels 値 can use an evaluation reconstruction for D R. When DR is over-evaluated (or under-evaluated), the maximum decoding error is related to the use of encoding and decoding pixels, such as block parameters. Figures 3 A and 3 B show the difference between the actual and recovered Q code levels when DR is overestimated by 20%. -13- This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 477151 Α7 Β7 V. Description of the invention (n) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economics For example, Figure 3 A shows the code Error, and the maximum decoding error of the maximum 3 Β when MIMO is over-evaluated by 20%, and its maximum decoding error. The axis ADRC on the left side of Figure 3 is the 2-bit AD axis 2 2 0, which is the same result if the maximum decoding error occurs if the DR is overrepresented. Figure 3 A shows the performance 3 B shows the comparison . Assuming C EN, the maximum recovery error is reduced by mistake, thereby providing an increase in recovery. Therefore, by using the encoding, transmission, and decoding Q, the two mean square decoding errors and the maximum DR are overestimated by 20% of the maximum solution for encoding and decoding. Fig. 3B shows when D R is decoded wrong 'and C E N 値 is used. The figure using C E N, less than 2 1 0 using M I N is a proper restoration of Q codes in non-edge matching R C blocks. Right Evaluates the Q code recovered at 20%. As shown in the maximum Q code. (When the DR under-evaluation can achieve the same DR evaluation error as the graph using the central 値 instead of M IN, the use becomes half. Moreover, the expected C ε in the noise-to-noise ratio (SNR) of the mean square error signal, It can enhance the recovery of the code used for image data, and the decoding error can be substantially reduced when the DR evaluation is wrong, and even the center can be selected as a unit to substantially reduce the DR evaluation, and even reduce the expected average for reconstruction. Square error, and has a fixed DR evaluation error. This can be determined by the following processing. The general type of ADRC decoding equation without truncation error is: = MIN + ~ Zi 十 κ Μ ⑺ (Please read the precautions on the back before filling (This page) The paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) -14- 477151 A7 B7 V. Description of the invention (12) Where Zl 'M' and κκ are provided in Table 1. The general type of equation (7) simultaneously simplifies ADRC symbols and allows the derivation of non-edge matching and edge matching formulas at the same time. Table 1: Use of non-edge matching non-edge matching ADRC edges of the items in the general decoding equation Match ADRC τ, qi + 1/2 Q > Μ 2q 2Q-1 Κ 〇y2 If you do not transmit Μ IN 値, but transmit other 値 and DR 値 is absolutely positive, other 値 can be expressed as: VAL = MIN + aDR ⑻ Where α is a constant. Therefore, the ADRC decoding equation is: Please read the precautions on the back j II Order (9) # Let DR e represent the wrong evaluation of dynamic range. The wrong decoding can indicate the staff consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed as 1 error (i)

VAL-aDRe + DR^^-K (10) 其中 error 表示一錯誤解碼,且因此解碼錯誤 r C t )可寫成 : error{ = (DR-DRe) Μ a (11) 本紙張尺度適用中_家標準(CNS)A4規格(21〇 X 297公釐) -15- 477151 A7 B7 五、發明說明(13) 因此’均方錯誤(MS E )可表示成α之函數: MSE{a)^^(err〇ri)2 (12) ^ i=l 一 a (13)VAL-aDRe + DR ^^-K (10) where error indicates an incorrect decoding, and therefore the decoding error r C t) can be written as: error {= (DR-DRe) Μ a (11) This paper is applicable in the home Standard (CNS) A4 specification (21 × X 297 mm) -15- 477151 A7 B7 V. Description of invention (13) Therefore, 'mean square error (MS E) can be expressed as a function of α: MSE {a) ^^ ( err〇ri) 2 (12) ^ i = l a a (13)

N (D7?-丄〕2 [ζ,2-2々Μα + Μ2α:2] (14) 其中error i表示解碼錯誤,n表示錯誤解碼圖素之數 目,和α爲非負實數。 預期均方錯誤可表示成α之函數以使α最佳化: E{MSE(a)) = ^ (D/? ^ DRe )2ί ^ [ε{ζ^ )- 2E(Zi )Μα+Μ 2α2 ] -----------裝 (請先閱讀背面之注意事項再填寫本頁) (15) (DR-DRef [Ε(ζ;)-2Ε(ζί)Μα^Μ2α2 (16) 經濟部智慧財產局員工消費合作社印製 其中MS Ε (α )表示以α爲函數表示之均方錯誤,和 Ε表示預期均方錯誤。 藉由計算第一和第二偏差,可檢查縮小之條件: E’(MSE(a))=(DR — DRJ _ (17) 2Ε{ζ( )Μ + 2Μ2 a] ^ {MSE(a)) = (DR - DRe ff ~^\[2M2} (18) 從等式(1 8 )中可知,當D R e * D R時,第二偏差 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -16- 1T---------#_ //151 A7 B7 1 '發明說明(14) 〇上之點爲全 爲絕對正;因此,在E ’( M S E ( α )) 部最小。此可達成,如果: 2Λί2α = 2£:(ζ,·)Μ (19) 因此,等式(1 9 )爲 咏) α_ Μ (20) 假設Q碼値之一均勻分佈’預期値可爲 柳)=Σ 2q -1 _ 丨丨― (21) 因此,在非邊緣匹配A D R C之例中’等式(2〇 變成: 2q -1 E{q^V2) 2q -+ ½N (D7?-丄) 2 [ζ, 2-2々Μα + Μ2α: 2] (14) where error i represents a decoding error, n represents the number of erroneously decoded pixels, and α is a non-negative real number. Expected mean square error Can be expressed as a function of α to optimize α: E {MSE (a)) = ^ (D /? ^ DRe) 2ί ^ [ε {ζ ^)-2E (Zi) Μα + Μ 2α2] --- -------- Installation (please read the precautions on the back before filling this page) (15) (DR-DRef [Ε (ζ;)-2Ε (ζί) Μα ^ Μ2α2 (16) Intellectual Property of the Ministry of Economic Affairs Bureau employee consumer cooperative prints where MS Ε (α) represents the mean square error expressed as a function of α and E represents the expected mean square error. By calculating the first and second deviations, the narrowing conditions can be checked: E '( MSE (a)) = (DR — DRJ _ (17) 2Ε {ζ () Μ + 2Μ2 a] ^ {MSE (a)) = (DR-DRe ff ~ ^ \ [2M2} (18) From the equation ( 1 8), when DR e * DR, the second deviation of this paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -16- 1T --------- # _ // 151 A7 B7 1 'Invention (14) The points on 〇 are all absolutely positive; therefore, the E' (MSE (α)) part is the smallest. This can be achieved if: 2Λί2α = 2 £: (ζ, ·) M (19) Therefore, equation (1 9) is yong) α_ Μ (20) Assuming that one of the Q codes 均匀 is uniformly distributed 'expected 値 can be willow) = Σ 2q -1 _ 丨 丨― (21) Therefore, in the case of non-edge matching ADRC, the equation (2〇 becomes: 2q -1 E {q ^ V2) 2q-+ ½

2Q :½ (請先閱讀背面之注意事項再填寫本頁) (22) 經濟部智慧財產局員工消費合作社印製 相似的,在邊緣匹配A D R C之例中,等式(2〇) 變成: 2Q _1iy.=Z2Z=l/2 α 2Q -1 2Q-1 將 (23)1/2代入等式(8 )中’傳送之最佳値爲:2Q: ½ (Please read the notes on the back before filling out this page) (22) The consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs printed a similar one. In the example of edge matching ADRC, equation (2〇) becomes: 2Q _1iy . = Z2Z = l / 2 α 2Q -1 2Q-1 Substituting (23) 1/2 into equation (8) for 'best transmission' is:

VAL = MIN + DR/2 = CEN (24) 對於非邊緣匹配A D R C或邊緣匹配A D R c 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -17- 477151 Α7R7 五、發明說明(15 ) 雖然此偏差假設Q碼値之一均勻分佈,Q碼値靠近區 域中間之非均勻分佈亦可支持C E N値之使用。 使用等式(1 6 )和代換α = 0,因此,V A L = MIN,和α=1/2,因此,VAL = CEN,藉此可量 化C E N之傳輸優點。 ^ 假設Q碼値之一均勻分佈,E ( Q : 2 )可計算如下: 2β-1/ 1 、£^2) = Σ tq /Τ=Π , ^ (2β -1)(2δ+ι -1) (25) 用於C Ε Ν値解碼之均方錯誤對用於Μ I Ν値解碼之 均方錯誤之比例在各種Q位元値Q下列表如表2所示: MSE降低比例 (26) 万(用於軒馬之E^f] 表2 : C Ε N値解碼之Ε ( M S Ε )對Μ I N値解碼 之Ε ( M S Ε )之比例對Q位元値Q碼。 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 M S E降低比例 Q 非邊緣匹配ADRC 邊緣匹配ADRC 1 0.200 0.500 2 0.238 0.357 3 0.247 0.300 4 0.249 0.274 4 0.250 0.262 6 0.250 0.256 7 0.250 0.253 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) -18- 477151 A7 ____B7____ 五、發明說明(16 ) 因此可量化假設一些共同型式A D R C編碼下之D R 復原之均方錯誤之降低。因此,C E N値爲在A D R C傳 輸受到D R損失中之D R之均方最佳對應部份。此型之編 碼視爲中央値A D R C。 在中央値ADRC中,中央値(CEN)可取代 Μ I N値傳送。在一實施例中,如上所述,C E N値可界 定成 CEN = MIN + DR 丁 (27) 在此實施例中,用於重建x,之公式可藉由將Μ I N CEN - DR/2代入等式(3)和(6)中,即可得 亦即,對於非邊緣匹配A D R C : (28) 和在邊緣匹配A D R C之例中:VAL = MIN + DR / 2 = CEN (24) For non-edge-matched ADRC or edge-matched ADR c This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -17- 477151 Α7R7 V. Description of the invention (15) Although this deviation assumes that one of the Q codes 均匀 is evenly distributed, the non-uniform distribution of Q codes 値 near the middle of the area can also support the use of CEN 値. Using equation (1 6) and substituting α = 0, therefore, V A L = MIN, and α = 1/2, therefore, VAL = CEN, thereby quantifying the transmission advantage of C E N. ^ Assuming that one of the Q codes 均匀 is uniformly distributed, E (Q: 2) can be calculated as follows: 2β-1 / 1, £ ^ 2) = Σ tq / Τ = Π, ^ (2β -1) (2δ + ι -1 ) (25) The ratio of the mean square error used for C ΕΝ 値 decoding to the mean square error used for Μ Ν 値 decoding is shown in Table 2 under various Q bits. Q: MSE reduction ratio (26) Wan (E ^ f for Xuanma) Table 2: The ratio of C Ε N 値 decoded Ε (MS Ε) to M IN 値 decoded Ε (MS Ε) vs. Q bit 値 Q code. (Please read first Note on the back, please fill out this page again.) The MSE reduction ratio printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy Q Non-edge matching ADRC Edge matching ADRC 1 0.200 0.500 2 0.238 0.357 3 0.247 0.300 4 0.249 0.274 4 0.250 0.262 6 0.250 0.256 7 0.250 0.253 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 public love) -18- 477151 A7 ____B7____ V. Description of the invention (16) Therefore it can be quantified assuming the mean square error of DR restoration under some common ADRC codes Therefore, CEN 値 is the best corresponding part of the DR mean of the DR loss in ADRC transmission. This type of The code is regarded as the central 値 ADRC. In the central 値 ADRC, the central 値 (CEN) can be transmitted instead of M IN 値. In one embodiment, as described above, CEN 値 can be defined as CEN = MIN + DR Ding (27) in In this embodiment, the formula for reconstructing x can be obtained by substituting M IN CEN-DR / 2 into equations (3) and (6), that is, for non-edge matching ADRC: (28) And in the example of edge matching ADRC:

CfiV+M+DR 經濟部智慧財產局員工消費合作社印製 2β-1 -½ (29) 在無錯誤之例中,使用C E N之中央値A D R C之效 能和使用Μ I N値之A D R C相似。但是,在有D R損失 中,中央値A D R C可提供比Μ I N値A D R C更佳的損 失/損壞資料復原效能。 本發明並不限於上述之實施例,且於此仍可達成各種 改變和修飾,但其仍屬本發明之精神和範疇。因此,本發 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -19- 477151 A7 B7 五、發明說明(17 ) 明之精神和範疇應由下述申請專利範圍界定之 L——.------·;·裝 (請先閱讀背面之注意事項再填寫本頁) 訂---------. 經濟部智慧財產局員工消費合作社印製 -20- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)CfiV + M + DR Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 2β-1 -½ (29) In the case of no errors, the performance of using the central 値 A D R C of C E N is similar to the use of A D R C of Μ I N 値. However, in the presence of DR loss, the central 値 A D R C can provide better loss / corrupted data recovery performance than the M IN 値 A D R C. The present invention is not limited to the above-mentioned embodiments, and various changes and modifications can be achieved here, but it still belongs to the spirit and scope of the present invention. Therefore, the paper size of this issue applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -19- 477151 A7 B7 V. Description of the invention (17) The spirit and scope of the invention shall be defined by the following L ——.------ ;; installed (please read the precautions on the back before filling out this page) Order ---------. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs-20- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

477151 A8 B8 C8 D8 t、申請專利範圍 (請先閱讀背面之注意事項再填寫本頁) 1 . 一種編碼資料之方法,包含藉由選擇大於資料範 13之最小値和小於資料範圍之最大値而決定値範圍之中央 値,和在範圍値於後受到評估時,實際降低一解碼錯誤。 2 _·如申請專利範圍第1項之方法,其中最大和最小 値表示選自含二維靜態影像,全息影像,三維靜態影像, 視訊,二維移動影像,三維移動影像,單音聲音,和N頻 道聲音之群之資訊。 3 ·如申請專利範圍第1項之方法,其中編碼使用適 應動態範圍編碼(A D R C )執行,和該中央値爲除了最 大和最小値外,在資料之動態範圍內之値。 4 ·如申請專利範圍第1項之方法,其中編碼使用適 應動態範圍編碼(A D R C )執行,和該中央値爲在復原 時實質降低預期均方解碼錯誤和最大解碼錯誤之値。 5 ·如申請專利範圍第1項之方法,其中該資料包含 圖素資料,編碼使用適應動態範圍編碼(A D R C )在圖 素資料上執行,和該編碼資料包括~由依照選自下列群之 等式所界定之量化碼(Q碼): 經濟部智慧財產局員工消費合作社印製 」2Q[Xi-CEN+V2) Qi =.......—— _ DR . 其中,Qi表示一 Q碼,Q表示多數之量化位元,Xl 表示未編碼圖素資料,D R表示資料之動態範圍,和 C E N表示中央値。 6 ·如申請專利範圍第1項之方法,其中該資料包含 圖素資料,編碼使用適應動態範圍編碼(A D R C )在圖 -21 - 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 477151 A8 B8 C8 D8 申請專利範圍 素資料上執行,和該復原資料依照選自,下列群之等式之編 碼貝料所重建: 和 CEN + ^-(qH-V2-2^1) 其中,x ’i表示復原資料,CEN爲中央値,DR爲 資料之動態範圍,Q t表示一 q碼,和q表示多數之量化位 元。 7 .如申請專利範圍第1項之方法,其中編碼使用適 應動態範圍編碼(A D R C )執行,和該中央値界定爲: CEN = MIN + DR (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 其中C ΕΝ表示中央値,μ I N表示最小値,和DR 表不資料之動態範圍。 8 .如申請專利範圍第1項之方法,其中當範圍値之 評估具有一固定錯誤時,中央値會縮小所評估範圍値之預 期均方解碼錯誤。 9 . 一種δ己憶體’用以藉由在一處理系統上執行一程 式而儲存存取資料,包含: 一資料結構儲存在該記憶體中,該資料結構由該應、用 程式所使用且包括: 一動態範圍資料目標,和 相關於動態範圍資料目標之一中央値資料目標,其具 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) -22- -n -_ϋ n II ·ϋ n n 一sejI ϋ ·ϋ I I I n ϋ I · 477151 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 有大於動態範圍資料目標之最小値和小於動態範圍資料目 標之最大値之値,和在動態範圍資料目標受到評估時,實 際降低一解碼錯誤。 1 0 . —種解碼一編碼資料之位元流之方法,包含復 原使用以編碼編碼資料之一參數,該參數使用具有大於資 料範圍之最小値和小於資料範圍目標之最大値,和在資料 範圍受到評估時,實際降低一解碼錯誤之中央値所復原。 1 1 ·如申請專利範圍第丨〇項之方法,其中最大和 最小値表示選自含二維靜態影像,全息影像,三維靜態影 像,視訊’二維移動影像,三維移動影像,單音聲音,和 N頻道聲音之群之資訊。 1 2 ·如申§靑專利範圍第1 q項之方法,其中編碼使 用適應動態範圍編碼(A D R C )執行,和該中央値爲除 了最大和最小値外,在資料之動態範圍內之値。 1 3 ·如申請專利範圍第丨〇項之方法,其中編碼使 用適應動態範圍編碼(A D R C )執行,和該中央値爲在 復原時實質降低預期均方解碼錯誤和最大解碼錯誤之値。 1 4 ·如申請專利範圍第1 〇項之方法,其中該資料 包含圖素資料,編碼使用適應動態範圍編碼(A D R C ) 在圖素資料上執行,和該復原資料依照選自下列群之等式 之編碼資料所重建: X,丨·= CKV+i/2 + DR〔-# —- L -1 ϊ ;和 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -23- ^--------^—------- (請先閱讀背面之注意事項再填寫本頁) 477151 A8 B8 C8 D8 六、申請專利範圍 X’i = CEN 七%,2。’1) (請先閱讀背面之注意事項再填寫本頁) 其中,义、表示復原資料,CEn爲中央値,]3尺爲 資料之動態範圍,Q ^表示一 Q碼,和Q表示多數之量化位 元。 1 5 ·如申請專利範圍第1 〇項之方法,其中編碼使 用適應動悲範S編碼(A D R C )執行,和該中央値界定 爲: DR CEN^MIN+ ~ 2 其中C E N表示中央値,M I n表示最小値,和D R 表示資料之動態範圍。 1 6 ·如申請專利範圍第1 Q項之方法,其中中央値 會縮小所評估範圍値之預期均方解碼錯|吳。 1 7 · —種編碼方法,包含: 決定一序列相關資料點之中央値,因此當復原損失/ 損壞資料點時,該中央値實質降低錯誤;和 準備資料點之一壓縮表示,此壓縮表示包括中央値。 經濟部智慧財產局員工消費合作社印製 1 8 . —種解碼方法,包含: 接收損失/損壞資料點之壓縮表示,此壓縮表示包括 當復原損失/損壞資料點時實質降低錯誤之中央値,和 使用此中央値復原損失/損壞資料點。 1 9 · 一種電腦可讀取媒體,包含指示,其當由一處 理系統執行時,執行用以編碼資料之方法’包含藉由選擇 大於資料範圍之最小値和小於資料範圍之最大値而決定値 -24- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 477151 A8 B8 C8 D8 t、申請專利範圍 範圍之中央値,和在範圍値於後受到評估時,實際降低一 解碼錯誤。 2 0 .如申請專利範圍第1 9項之電腦可讀取媒體, 其中最大和最小値表示選自含二維靜態影像,全息影像’ 三維靜態影像,視訊,二維移動影像,三維移動影像’單 音聲音,和N頻道聲音之群之資訊。 2 1 .如申請專利範圍第1 9項之電腦可讀取媒體’ 其中編碼使用適應動態範圍編碼(A D R C )執行’和該 中央値爲除了最大和最小値外,在資料之動態範圍內2 f直 〇 2 2 .如申請專利範圍第1 9項之電腦可讀取媒體’ 其中編碼使用適應動態範圍編碼(A D R C )執行’和該 中央値爲在復原時實質降低預期均方解碼錯誤和最大解51 錯誤之値。 2 3 .如申請專利範圍第1 9項之電腦可讀取媒體’ 其中該資料包含圖素資料,編碼使用適應動態範圍編碼( A D R C )在圖素資料上執行,和該編碼資料包括一由依 照選自下列群之等式所界定之量化碼(Q碼): (請先閱讀背面之注意事項再填寫本頁) 裝 訂--- % 經濟部智慧財產局員工消費合作社印製 [2Q -l\xi^CEN) DR + ½ 2Q(xi^CEN + V2 ) DR ;和 其中,q i表示一 Q碼,Q表不多數之量化位兀 表示未編碼圖素資料,D R表示資料之動態範圍’和 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -25 - 477151 A8 B8 C8 D8 六、申請專利範圍 C E N表示中央値 2 4 •如申請專利範圍第1 9項之電腦可讀取媒體, 其中該資料包含圖素資料,編碼使用適應動態範圍編碼( A D R C )在圖素資料上執行,和該復原資料依照選自下 歹fj群之等式之編碼資料所重建: CEN + + DR| ]/2 和 C£7V + ^3t/+i/2,2q-i) 其中,义、表示復原資料,CEN爲中央値,dR爲 資料之動態範圍,Q i表示一 Q碼,和Q表示多數之量化位 元。 2 5 .如申請專利範圍第1 9項之電腦可讀取媒體, 其中編碼使用適應動態範圍編碼(A D R C )執行,和該 中央値界定爲: CEN = MIN + DR (請先閲讀背面之注意事項再填寫本頁) :裝 丨丨—丨訂-------— 經濟部智慧財產局員工消費合作社印製 其中C E N表不中央値,Μ I N表示最小値,和d R 表示資料之動態範圍。 2 6 ·如申請專利範圍第1 9項之電腦可讀取媒體, 其中中央値會縮小所評估範圍値之預期均方解碼錯誤。 2 7 . —種電腦可讀取媒體,包含指示,其當由一處 理系統執行時,執行用以解碼一編碼資料之位元流之方法 ,包含復原使用於編碼該編碼資料之參數,該參數藉由使 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -26- 477151 A8 B8 C8 D8 六、申請專利範圍 用大於資料範圍之最小値和小於資料範圍之最大値之中央 値復原’和在範圍値於後受到評估時,實際降低一解碼錯 誤。 2 8 ·如申請專利範圍第2 7項之電腦可讀取媒體, 其中解碼使用適應動態範圍編碼(A D R C )執行,和該 中央値爲除了最大和最小値外,在資料之動態範圍內之値 Q 2 9 ·如申請專利範圍第2 7項之電腦可讀取媒體, 其中編碼使用適應動態範圍編碼(A D R C )執行,和該 中央値爲在復原時實質降低預期均方解碼錯誤和最大解碼 錯誤之値。 3 0 ·如申請專利範圍第2 7項之電腦可讀取媒體, 其中中央値會縮小所評估範圍値之預期均方解碼錯誤。 3 1 . —種電腦可讀取媒體,包含指示,其當由一處 理系統執行時,執行編碼方法,包含: 決定一序列相關資料點之中央値,因此當復原損失/ 損壞資料點時,該中央値實質降低錯誤;和 準備資料點之一壓縮表示,此壓縮表示包括中央値。 3 2 · —種電腦可讀取媒體,包含指示’其當由一處 理系統執行時,執行解碼方法,包含: 接收損失/損壞資料點之壓縮表示,此壓縮表示包括 當復原損失/損壞資料點時實質降低錯誤之中央値,和 使用此中央値復原損失/損壞資料點。 3 3 . —種用以編碼包含中央値之資料之系統,該中 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -27 - illlh------^裝 (請先閱讀背面之注意事項再填寫本頁) ϋ H n 一口、I ·ϋ ϋ n n in I 經濟部智慧財產局員工消費合作社印製 477151 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 央値之値範圍爲大於資料範圍之最小値和小於資料範圍之 最大値,和在範圍値於後受到評估時,實際降低一解碼錯 誤。 3 4 .如申請專利範圍第3 3項之系統,其中最大和 最小値表示選自含二維靜態影像,全息影像,三維靜態影 像,視訊,二維移動影像,三維移動影像,單音聲音,和 N頻道聲音之群之資訊。 3 5 ·如申請專利範圍第3 3項之系統,其中編碼使 用適應動態範圍編碼(A D R C )執fj ’和該中央値爲除 了最大和最小値外,在資料之動態範圍內之値。 3 6 .如申請專利範圍第3 3項之系統,其中編碼使 用適應動態範圍編碼(A D R C )執行,和該中央値爲在 復原時實質降低預期均方解碼錯誤和最大解碼錯誤之値。 3 7 ·如申請專利範圍第3 3項之系統,其中該資料 包含圖素資料,編碼使用適應動態範圍編碼(A D R C ) 在圖素資料上執行,和該編碼資料包括一由依照選自下列 群之等式所界定之量化碼(Q碼): L-c_+V2 L DR 」;和 2Q{xi - CEN 十 V2) φ =- DR _ 其中,q i表示一Q碼,Q表示多數之量化位兀’ Χι 表示未編碼圖素資料,D R表示資料之動態範圍’和 c E N表示中央値。 度適用中國國家標準(CNS)A4規格(210 X 297公釐) -28 - -------------------訂--------1 ^_wwl (請先閱讀背面之注意事項再填寫本頁) 477151 A8 B8 C8 D8 六、申請專利範圍 3 8 .如申請專利範圍第3 3項之系統,其中該資料 包白圖素資料,編碼使用適應動態範圍編碼(A D R C ) 在Η素資料上執行,和該復原資料依照選自下列群之等式 之編碼資料所重建·· C£iV 十1/2 十 DR -½ 其中 CSV+ 尝(分+1/2-2^1) ’I表示復原資料,C ΕΝ爲中央値,DR爲 資料之動態範圍,Q i表示一 Q碼,和Q表示多數之量化位 元。 3 9 ·如申請專利範圍第3 3項之系統,其中編碼使 用適應動態範圍編碼(A D R C )執行,和該中央値界定 爲. CEN = MIN + DR 了 請 先 閱 讀 背 面 之 注 意 事 項 再 填 寫 本 頁 經濟部智慧財產局員工消費合作社印製 4〇.如申請專利範圍第3 3項之系統,其中中央値 會縮小所評估範圍値之預期均方解碼錯誤。 4 1 · 一種用以解碼編碼資料之一位元流之系統,包 含一解碼器構成以復原使用以編碼編碼資料之一參數,該 參數使用一中央値而復原,該中央値之値範圍爲大於資料 範圍之最小値和小於資料範圍之最大値,和在範圍値於後 受到評估時,實際降低一解碼錯誤。 4 2 ·如申請專利範圍第4 1項之系統,其中最大和 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -29- 477151 A8 B8 C8 D8 六、申請專利範圍 (請先閱讀背面之注意事項再填寫本頁) 最小値表示選自含二維靜態影像,全息影像,三維靜態影 像,視訊,二維移動影像,三維移動影像,單音聲音,和 N頻道聲音之群之資訊。 4 3 ·如申請專利範圍第4 1項之系統,其中該解碼 器進一步構成以使用適應動態範圍編碼(A D R C )解碼 ,和該中央値爲除了最大和最小値外,在資料之動態範圍 內之値。 4 4 ·如申請專利範圍第4 1項之系統,其中編碼使 用適應動態範圍編碼(A D R C )執行,和該中央値爲在 復原時實質降低預期均方解碼錯誤和最大解碼錯誤之値。 4 5 .如申請專利範圍第4 1項之系統,其中該資料 包含圖素資料,該解碼器進一步構成以使用適應動態範圍 編碼(A D R C )解碼圖素資料,和復原資料從依照選自 下列群之等式之編碼資料所重建: xr/= CEN;和 x,i: CEN+菩(q〖+¥z-2Q·1) 經濟部智慧財產局員工消費合作社印製 其中,X、表示復原資料,CEN爲中央値,DR爲 資料之動態範圍,Q ^表示一 Q碼,和Q表示多數之量化位 元。 4 6 .如申請專利範圍第4 1項之系統,其中解碼器 進一步構成以使用適應動態範圍編碼(A D R C )解碼’ 和該中央値界定爲: 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -30 - 477151 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍 DR CEN = MIN + — 2 其中C ΕΝ表示中央値,Μ I N表示最小値,和DR 表示資料之動態範圍。 4 7 ·如申請專利範圍第4 1項之系統’其中中央値 會縮小所評估範圍値之預期均方解碼錯誤° 4 8 · —種用以編碼資料點之系統’包含·· 一序列相關資料點之中央値,其在復原損失/損壞資 料點時實質降低錯誤;和 一編碼器,其構成以準備資料點之壓縮表示’該壓縮 表示包括中央値。 4 9 · 一種用以解碼資料點之系統,包含一解碼器以 接收損失/損壞資料點之一壓縮表示,該壓縮表示包括一 中央値,其在復原損失/損壞資料點時實質降低錯誤,和 該解碼器進一步構成以復原使用中央値之損失/損壞資料 5 〇 ·如申請專利範圍第3 3項之系統,其中該系統 選自包含至少一處理器,至少一大尺寸積體(L S I )元 件,和至少一 A S I C之群。 5 1 ·如申請專利範圍第4 1項之系統,其中該系統 選自包含至少一處理器,至少一大尺寸積體(LS I )元 件,和至少一 A S I C之群。 5 2. —種用以編碼資料之裝置,包含用以決定中央 値之機構’該中央値之値範圍爲大於資料範圍之最小値和 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 31 -----------ml 裝--------訂-------— (請先閱讀背面之注意事項再填寫本頁) 477151 A8 B8 C8 D8 六、申請專利範圍 小於資料範圍之最大値之値,和在範圍値於後受到評估時 ,實際降低一解碼錯誤。 5 3 ·如申請專利範圍第5 2項之裝置,其中最大和 最小値表不运自含一維靜悲影像,全息影像’二維靜態影 像,視訊,二維移動影像,三維移動影像,單音聲音,和 N頻道聲音之群之資訊。 5 4 ·如申請專利範圍第5 2項之裝置,其中編碼使 用適應動態範圍編碼(A D R C )執行,和該中央値爲除 了最大和最小値外,在資料之動態範圍內之値。 5 5 ·如申請專利範圍第5 2項之裝置,其中編碼使 用適應動態範圍編碼(A D R C )執行,和該中央値爲在 復原時實質降低預期均方解碼錯誤和最大解碼錯誤之値。 5 6 .如申請專利範圍第5 2項之裝置,其中中央値 會縮小所評估範圍値之預期均方解碼錯誤。 5 7 · —*種用以解碼編碼資料之一位元流之裝置,包 含用以復原使用以編碼編碼資料之一參數之機構,該參數 使用一中央値而復原,該中央値之値範圍爲大於資料範圍 之最小値和小於資料範圍之最大値,和在範圍値於後受到 評估時,實際降低一解碼錯誤。 5 8 ·如申請專利範圍第5 7項之裝置,其中該解碼 使用適應動態範圍編碼(A D R C )執行,和該中央値爲 除了最大和最小値外,在資料之動態範圍內之値。 5 9 ·如申請專利範圍第5 7項之裝置,其中編碼使 用適應動態範圍編碼(A D R C )執行,和該中央値爲在 (請先閱讀背面之注意事項再填寫本頁) 裝 ----訂--- 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -32- 477151 A8 B8 C8 D8 六、申請專利範圍 復原時實質降低預期均方解碼錯誤和最大解碼錯誤之値。 6〇.如申請專利範圍第5 7項之裝置,其中中央値 會縮小所評估範圍値之預期均方解碼錯誤。 6 1 · —種用以編碼資料點之裝置,包含: 決定一序列相關資料點之中央値之機構,因此在復原 損失/損壞資料點時,該中央値可實質降低錯誤;和 準備資料點之壓縮表示之機構,該壓縮表示包括中央 値。 6 2 · —種用以解碼資料點之裝置,包含: 用以接收損失/損壞資料點之一壓縮表示之機構,該 壓縮表示包括一中央値,其在復原損失/損壞資料點時實 質降低錯誤,和 用以復原使用中央値之損失/損壞資料點之機構。 (請先閱讀背面之注音?事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 -33- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)477151 A8 B8 C8 D8 t. Patent application scope (please read the precautions on the back before filling this page) 1. A method of encoding data, including by selecting the minimum value greater than the data range 13 and the maximum value less than the data range Decide on the center of the range, and actually reduce a decoding error when the range is later evaluated. 2 _ · The method according to item 1 of the scope of patent application, wherein the maximum and minimum values are selected from the group consisting of two-dimensional still images, holographic images, three-dimensional still images, video, two-dimensional moving images, three-dimensional moving images, mono sound, and Information about the N-channel sound group. 3. The method according to item 1 of the patent application range, in which the encoding is performed using adaptive dynamic range encoding (A D R C), and the central frame is within the dynamic range of the data except for the maximum and minimum frames. 4 · The method according to item 1 of the patent application range, in which the encoding is performed using adaptive dynamic range encoding (A D R C), and the central unit is the one that substantially reduces the expected mean square decoding error and the maximum decoding error during restoration. 5 · If the method of applying for the first item of the patent scope, wherein the data contains pixel data, the coding is performed on the pixel data using adaptive dynamic range coding (ADRC), and the coding data includes ~ Quantitative code (Q code) defined by the formula: Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 2Q [Xi-CEN + V2) Qi = .......—— _ DR. Among them, Qi represents a Q Code, Q represents the majority of quantization bits, Xl represents the unencoded pixel data, DR represents the dynamic range of the data, and CEN represents the central frame. 6 · If the method of applying for the first item of the patent scope, where the data contains pixel data, the coding uses adaptive dynamic range coding (ADRC) in Figure-21-This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 (Mm) 477151 A8 B8 C8 D8 patent application range is executed on the prime data, and the restored data is reconstructed according to the coding material selected from the following group of equations: and CEN + ^-(qH-V2-2 ^ 1) Among them, x 'i represents the recovered data, CEN is the central frame, DR is the dynamic range of the data, Q t represents a q code, and q represents a majority of quantization bits. 7. The method according to item 1 of the patent application scope, in which the coding is performed using adaptive dynamic range coding (ADRC), and the central definition is: CEN = MIN + DR (please read the precautions on the back before filling this page) Economy Printed by the Consumer Cooperatives of the Ministry of Intellectual Property Bureau, where C ENE stands for the central bank, μ IN stands for the smallest bank, and DR indicates the dynamic range of the data. 8. The method according to item 1 of the patent application range, wherein when the evaluation of the range 具有 has a fixed error, the central 値 will reduce the expected mean square decoding error of the evaluated range 値. 9. A delta memory is used to store and access data by executing a program on a processing system, including: a data structure stored in the memory, the data structure used by the application and the program, and Including: a dynamic range data target and a central 値 data target related to one of the dynamic range data targets, the paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 public love) -22- -n -_ϋ n II · ϋ nn a sejI ϋ · ϋ III n ϋ I · 477151 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 VI. The scope of patent application has a minimum value greater than the dynamic range data target and less than the dynamic range data target The largest one, and actually reduces a decoding error when the dynamic range data target is evaluated. 1 0. — A method for decoding a bit stream of encoded data, including restoring a parameter used to encode the encoded data, which uses a minimum value greater than the data range and a maximum value less than the data range target, and the data range When evaluated, the central frame that actually reduces a decoding error is recovered. 1 1 · According to the method in the scope of patent application, the maximum and minimum 値 are selected from the group consisting of two-dimensional still images, holographic images, three-dimensional still images, video 'two-dimensional moving images, three-dimensional moving images, monophonic sound, And N channel sound group information. 1 2 The method of item 1 q of the patent scope, such as § 靑, in which the encoding is performed using adaptive dynamic range coding (A D R C), and the central frame is within the dynamic range of the data except for the maximum and minimum frames. 1 3 · The method according to the scope of the patent application, wherein the encoding is performed using adaptive dynamic range encoding (ADRC), and the central unit is the one that substantially reduces the expected mean square decoding error and the maximum decoding error during restoration. 14 · The method according to item 10 of the patent application range, wherein the data contains pixel data, the coding is performed on the pixel data using adaptive dynamic range coding (ADRC), and the restored data is according to an equation selected from the following group Reconstruction of coded data: X , 丨 · = CKV + i / 2 + DR 〔-# —- L -1 ϊ; and this paper size applies Chinese National Standard (CNS) A4 (210 X 297 mm) -23 -^ -------- ^ —------- (Please read the notes on the back before filling out this page) 477151 A8 B8 C8 D8 VI. Patent application scope X'i = CEN 7%, 2. '1) (Please read the precautions on the back before filling in this page) Among them, meaning, means to restore the data, CEn is the central frame,] 3 feet is the dynamic range of the data, Q ^ means a Q code, and Q means most of the Quantization bit. 15 · The method according to item 10 of the scope of patent application, wherein the coding is performed using adaptive dynamic range S coding (ADRC), and the central frame is defined as: DR CEN ^ MIN + ~ 2 where CEN represents the central frame and MI n represents The minimum value, and DR represent the dynamic range of the data. 1 6 · If the method of item 1 Q of the scope of patent application is applied, the central government will reduce the expected mean square decoding error of the evaluated scope | Wu. 1 7 · — a coding method, including: determining the central unit of a series of related data points, so when recovering lost / damaged data points, the central unit substantially reduces errors; and preparing a compressed representation of one of the data points, this compressed representation includes Central puppet. Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives. 18 — A decoding method, including: receiving a compressed representation of lost / damaged data points, this compressed representation includes a central frame that substantially reduces errors when recovering lost / damaged data points, and Use this central unit to recover lost / damaged data points. 1 9 · A computer-readable medium containing instructions that, when executed by a processing system, executes a method for encoding data 'including determining by selecting a minimum value greater than the data range and a maximum value less than the data range. -24- This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 477151 A8 B8 C8 D8 t, the center of the scope of the patent application, and when the scope is later evaluated, the actual reduction Decoding error. 20. If the computer-readable media of item 19 in the scope of patent application, where the maximum and minimum 値 means selected from the group consisting of two-dimensional still images, holographic images 'three-dimensional still images, video, two-dimensional moving images, three-dimensional moving images' Information on monophonic sound and N-channel sound. 2 1. Computer-readable media such as item 19 of the scope of patent application 'where the encoding is performed using adaptive dynamic range coding (ADRC)' and the central frame is within the dynamic range of the data except for the maximum and minimum frames 2 f Directly to the computer-readable media such as patent application No. 19, where the encoding is performed using adaptive dynamic range coding (ADRC) and the central unit is to substantially reduce the expected mean square decoding error and maximum resolution when recovering. 51 Mistakes. 2 3. If the computer-readable media of item 19 of the scope of patent application ', where the data contains pixel data, encoding is performed on the pixel data using adaptive dynamic range coding (ADRC), and the encoded data includes a Quantitative code (Q code) defined by the following group of equations: (Please read the precautions on the back before filling this page) Binding ---% Printed by the Consumer Consumption Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs [2Q -l \ xi ^ CEN) DR + ½ 2Q (xi ^ CEN + V2) DR; and among them, qi represents a Q code, most of the quantization bits in the Q table represent uncoded pixel data, and DR represents the dynamic range of the data 'and this Paper size applies to China National Standard (CNS) A4 (210 X 297 mm) -25-477151 A8 B8 C8 D8 6. The scope of patent application CEN means central 値 2 4 • Computer readable as item 19 of patent scope Take the media, where the data contains pixel data, encoding is performed on the pixel data using adaptive dynamic range coding (ADRC), and the restored data is reconstructed according to the encoded data selected from the equation of the following fj group: CEN + + DR |] / 2 And C £ 7V + ^ 3t / + i / 2,2q-i) where meaning and meaning represent the recovered data, CEN is the central frame, dR is the dynamic range of the data, Q i is a Q code, and Q is the quantification of the majority Bit. 25. If the computer-readable media of item 19 of the scope of patent application, the encoding is performed using adaptive dynamic range coding (ADRC), and the central definition is: CEN = MIN + DR (Please read the precautions on the back first (Fill in this page again): Install 丨 丨 — 丨 Order -------— Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, where CEN is not the center 値, MIN is the minimum value, and d R is the dynamic information. range. 2 6 · If the computer-readable media of item 19 of the scope of patent application, the central government will reduce the expected mean square decoding error of the evaluated scope. 27. — A computer-readable medium including instructions that, when executed by a processing system, executes a method for decoding a bit stream of encoded data, including restoring parameters used to encode the encoded data, the parameters By adapting the paper size to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -26- 477151 A8 B8 C8 D8 VI. For the scope of patent application, the minimum value greater than the data range and the maximum value less than the data range Central 'recovery' and when range is later evaluated are actually reduced by a decoding error. 2 8 · If the computer-readable media of item 27 of the scope of patent application, the decoding is performed using adaptive dynamic range coding (ADRC), and the central frame is in addition to the maximum and minimum frames, within the dynamic range of the data. Q 2 9 · If the computer-readable media of item 27 of the patent application range, where the encoding is performed using adaptive dynamic range encoding (ADRC), and the central unit is to substantially reduce the expected mean square decoding error and the maximum decoding error during restoration値. 30 · If the computer-readable media of item 27 of the patent application scope, the central authority will reduce the expected mean square decoding error of the assessed scope. 3 1. — A computer-readable medium containing instructions that, when executed by a processing system, performs an encoding method, including: determining the center of a sequence of related data points, so when recovering lost / damaged data points, the Central ridges substantially reduce errors; and prepare a compressed representation of one of the data points, this compressed representation includes central ridges. 3 2 · —A computer-readable medium containing instructions' when executed by a processing system, performs a decoding method, including: receiving a compressed representation of lost / damaged data points, this compressed representation includes when recovering lost / damaged data points Substantially reduce the error center and use this center to recover lost / damaged data points. 3 3. — A system for encoding the data containing the central bank, the Chinese paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -27-illlh ------ ^ installation ( (Please read the notes on the back before filling this page) ϋ H n sip, I · ϋ nn in I Printed by the Employees ’Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 477151 Printed by the Employees’ Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 The scope of the patent application scope is the minimum range larger than the data range and the maximum range smaller than the data range, and when the range is later evaluated, the decoding error is actually reduced. 34. The system according to item 33 of the scope of patent application, wherein the maximum and minimum values are selected from the group consisting of two-dimensional still images, holographic images, three-dimensional still images, video, two-dimensional moving images, three-dimensional moving images, and monophonic sound. And N channel sound group information. 3 5 · The system according to item 33 of the scope of patent application, in which the coding uses adaptive dynamic range coding (ADRC) and fj 'and the central frame is within the dynamic range of the data except for the maximum and minimum frames. 36. The system according to item 33 of the patent application range, wherein the encoding is performed using adaptive dynamic range encoding (ADRC), and the central unit is the one that substantially reduces the expected mean square decoding error and the maximum decoding error during restoration. 37. If the system of item 33 of the patent application scope, wherein the data contains pixel data, the coding is performed on the pixel data using adaptive dynamic range coding (ADRC), and the coded data includes The quantization code (Q code) defined by the equation: L-c_ + V2 L DR ”; and 2Q {xi-CEN ten V2) φ =-DR _ where qi represents a Q code and Q represents a majority of quantization bits Wu'x represents unencoded pixel data, DR represents the dynamic range of the data, and c EN represents the central frame. Degree applies to China National Standard (CNS) A4 specification (210 X 297 mm) -28-------------------- Order -------- 1 ^ _wwl (Please read the notes on the back before filling out this page) 477151 A8 B8 C8 D8 VI. Application for patent scope 38. For the system of patent application scope No. 33, where the data package contains white pixel information, the coding is used to adapt Dynamic range coding (ADRC) is performed on the prime data, and the restored data is reconstructed according to the coded data selected from the equations of the following group: C £ iV ten 1/2 ten DR -½ where CSV + taste (minutes +1) / 2-2 ^ 1) 'I represents the recovered data, C EN is the central frame, DR is the dynamic range of the data, Q i represents a Q code, and Q represents a majority of quantized bits. 3 9 · If the system of item 33 of the scope of patent application, the coding is performed using adaptive dynamic range coding (ADRC), and the central frame is defined as. CEN = MIN + DR Please read the notes on the back before filling this page The Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs printed 40. If the system of item 33 in the scope of patent application is applied, the central government will reduce the expected mean square decoding error of the evaluated scope. 4 1 · A system for decoding a bit stream of encoded data, including a decoder structure to recover a parameter used to encode the encoded data, the parameter is restored using a central frame, and the range of the central frame is greater than The minimum value of the data range is smaller than the maximum value of the data range, and when the range is evaluated later, a decoding error is actually reduced. 4 2 · If the system of item 41 in the scope of patent application, the largest and the paper size are applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) -29- 477151 A8 B8 C8 D8 Please read the notes on the back before filling in this page) Minimal 値 means selected from two-dimensional still images, holographic images, three-dimensional still images, video, two-dimensional moving images, three-dimensional moving images, mono sound, and N-channel sound Group of information. 4 3 · The system according to item 41 of the patent application range, wherein the decoder is further configured to use adaptive dynamic range coding (ADRC) decoding, and the central frame is in addition to the maximum and minimum frames, within the dynamic range of the data. value. 4 4 · The system according to item 41 of the patent application range, in which the encoding is performed using adaptive dynamic range encoding (ADRC), and the central unit is the one that substantially reduces the expected mean square decoding error and the maximum decoding error during restoration. 45. The system according to item 41 of the scope of patent application, wherein the data includes pixel data, the decoder is further configured to decode the pixel data using adaptive dynamic range coding (ADRC), and restore the data from a group selected from the following group according to Reconstruction of the encoded data of the equation: xr / = CEN; and x, i: CEN + Pu (q 〖+ ¥ z-2Q · 1) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, where X is the restoration data CEN is the central frame, DR is the dynamic range of the data, Q ^ represents a Q code, and Q represents the majority of quantization bits. 46. The system according to item 41 of the scope of patent application, wherein the decoder is further configured to use adaptive dynamic range coding (ADRC) decoding 'and the central definition is: The paper standard is applicable to the Chinese National Standard (CNS) A4 specification ( (210 X 297 mm) -30-477151 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 VI. Patent application scope DR CEN = MIN + — 2 where C Ε stands for the central unit, MIN stands for the smallest unit, and DR represents the dynamic range of the data. 4 7 · If the system of item 41 of the patent application scope 'where the central area will reduce the estimated range', the expected mean square decoding error ° 4 8 · —A system for encoding data points' contains a sequence of related data The central unit of points, which substantially reduces errors when recovering lost / damaged data points; and an encoder, which is constructed to prepare a compressed representation of the data points, 'The compressed representation includes a central unit. 4 9 · A system for decoding data points, comprising a decoder to receive a compressed representation of one of the lost / corrupted data points, the compressed representation comprising a central frame which substantially reduces errors when recovering the lost / corrupted data points, and The decoder is further configured to recover the loss / damage data using the central unit. 5. The system according to item 33 of the patent application scope, wherein the system is selected from the group consisting of at least one processor and at least one large-size integrated circuit (LSI) element. , And at least one ASIC group. 5 1 · The system according to item 41 of the scope of patent application, wherein the system is selected from the group consisting of at least one processor, at least one large-size integrated body (LS I) element, and at least one AS IC. 5 2. —A device for encoding data, including a mechanism for determining the central government's scope of the central government is greater than the minimum of the data scope, and this paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 31 ----------- ml Pack -------- Order ----------- (Please read the precautions on the back before filling in this page) 477151 A8 B8 C8 D8 VI. The scope of patent application is less than the maximum of the data scope, and when the scope is evaluated later, a decoding error is actually reduced. 5 3 · If the device in the scope of patent application No. 52, the maximum and minimum are not self-contained one-dimensional static image, holographic image 'two-dimensional static image, video, two-dimensional moving image, three-dimensional moving image, single Information about audio sounds and N channel sounds. 54. The device according to item 52 of the patent application range, in which the encoding is performed using adaptive dynamic range encoding (ADRC), and the central frame is within the dynamic range of the data except for the maximum and minimum frames. 5 5 · The device according to item 52 of the patent application range, wherein the encoding is performed using adaptive dynamic range encoding (ADRC), and the central unit is the one that substantially reduces the expected mean square decoding error and the maximum decoding error during restoration. 56. If the device in the scope of patent application No. 52 is applied, the central 値 will reduce the expected mean square decoding error of the evaluated 値. 5 7 · — * A device for decoding a bit stream of encoded data, including a mechanism for restoring a parameter used to encode the encoded data, the parameter is restored using a central frame, and the range of the central frame is A minimum error greater than the data range and a maximum error less than the data range, and when the range is later evaluated, a decoding error is actually reduced. 5 8 · The device according to item 57 of the patent application range, wherein the decoding is performed using adaptive dynamic range coding (A D R C), and the central frame is within the dynamic range of the data except for the maximum and minimum frames. 5 9 · If the device in the scope of patent application No. 57 is used, the coding is performed using adaptive dynamic range coding (ADRC), and the center is installed (please read the precautions on the back before filling this page). Order --- Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives The paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) -32- 477151 A8 B8 C8 D8 Expected mean square decoding error and maximum decoding error. 60. If the device in the scope of patent application No. 57 is applied, the central 値 will reduce the expected mean square decoding error of the evaluated 値. 6 1 · —A device for encoding data points, including: a mechanism for determining the central point of a sequence of related data points, so that the central point can substantially reduce errors when recovering lost / damaged data points; and preparing the data points A mechanism that compresses a representation, which includes a central ridge. 6 2 · —A device for decoding data points, including: a mechanism for receiving a compressed representation of one of the lost / damaged data points, the compressed representation includes a central frame that substantially reduces errors when recovering the lost / damaged data points , And institutions to recover lost / damaged data points using a central bank. (Please read the note on the back? Matters before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economy
TW089112537A 1999-06-29 2000-06-26 Method and apparatus for recovery of encoded data using central value TW477151B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/342,296 US6549672B1 (en) 1999-06-29 1999-06-29 Method and apparatus for recovery of encoded data using central value

Publications (1)

Publication Number Publication Date
TW477151B true TW477151B (en) 2002-02-21

Family

ID=23341210

Family Applications (1)

Application Number Title Priority Date Filing Date
TW089112537A TW477151B (en) 1999-06-29 2000-06-26 Method and apparatus for recovery of encoded data using central value

Country Status (6)

Country Link
US (2) US6549672B1 (en)
JP (1) JP2003503914A (en)
AU (1) AU5875800A (en)
DE (1) DE10084763B3 (en)
TW (1) TW477151B (en)
WO (1) WO2001001694A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9081681B1 (en) 2003-12-19 2015-07-14 Nvidia Corporation Method and system for implementing compressed normal maps
US8078656B1 (en) 2004-11-16 2011-12-13 Nvidia Corporation Data decompression with extra precision
US7961195B1 (en) * 2004-11-16 2011-06-14 Nvidia Corporation Two component texture map compression
US7928988B1 (en) 2004-11-19 2011-04-19 Nvidia Corporation Method and system for texture block swapping memory management
US7916149B1 (en) 2005-01-04 2011-03-29 Nvidia Corporation Block linear memory ordering of texture data
JP4144598B2 (en) * 2005-01-28 2008-09-03 三菱電機株式会社 Image processing apparatus, image processing method, image encoding apparatus, image encoding method, and image display apparatus
CA2610467C (en) * 2005-06-03 2014-03-11 The Commonwealth Of Australia Matrix compression arrangements
JP4508132B2 (en) * 2006-02-27 2010-07-21 ソニー株式会社 Imaging device, imaging circuit, and imaging method
US20080212773A1 (en) * 2007-03-02 2008-09-04 Houlberg Christian L Parallel data stream decryption device
JP5151919B2 (en) * 2008-11-11 2013-02-27 ソニー株式会社 Image decoding apparatus, image decoding method, and computer program
US8610732B2 (en) * 2008-12-11 2013-12-17 Nvidia Corporation System and method for video memory usage for general system application
US8504847B2 (en) * 2009-04-20 2013-08-06 Cleversafe, Inc. Securing data in a dispersed storage network using shared secret slices
EP2932193A4 (en) * 2012-12-12 2016-07-27 Merton G Hale Coding system for satellite navigation system

Family Cites Families (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3311879A (en) 1963-04-18 1967-03-28 Ibm Error checking system for variable length data
US3805232A (en) 1972-01-24 1974-04-16 Honeywell Inf Systems Encoder/decoder for code words of variable length
FR2387557A1 (en) 1977-04-14 1978-11-10 Telediffusion Fse NOISE VISIBILITY REDUCTION SYSTEMS ON TELEVISION IMAGES
GB2073534B (en) 1980-04-02 1984-04-04 Sony Corp Error concealment in digital television signals
GB2084432A (en) 1980-09-18 1982-04-07 Sony Corp Error concealment in digital television signals
US4509150A (en) 1980-12-31 1985-04-02 Mobil Oil Corporation Linear prediction coding for compressing of seismic data
GB2121642B (en) 1982-05-26 1985-11-27 Sony Corp Error concealment in digital television signals
US4532628A (en) 1983-02-28 1985-07-30 The Perkin-Elmer Corporation System for periodically reading all memory locations to detect errors
US4574393A (en) 1983-04-14 1986-03-04 Blackwell George F Gray scale image processor
GB2163619A (en) 1984-08-21 1986-02-26 Sony Corp Error concealment in digital television signals
JPH0746864B2 (en) 1984-08-22 1995-05-17 ソニー株式会社 High efficiency encoder
GB2164521B (en) 1984-09-18 1988-02-03 Sony Corp Error concealment in digital television signals
CA1251555A (en) 1984-12-19 1989-03-21 Tetsujiro Kondo High efficiency technique for coding a digital video signal
JPH0793724B2 (en) 1984-12-21 1995-10-09 ソニー株式会社 High efficiency coding apparatus and coding method for television signal
EP0232417B1 (en) 1985-10-02 1991-11-06 Deutsche Thomson-Brandt GmbH Process for correcting transmission errors
JP2512894B2 (en) 1985-11-05 1996-07-03 ソニー株式会社 High efficiency coding / decoding device
JP2670259B2 (en) 1985-11-29 1997-10-29 ソニー株式会社 High efficiency coding device
JPH0746862B2 (en) 1985-11-30 1995-05-17 ソニー株式会社 Frame dropping compression encoding and decoding method
JP2612557B2 (en) 1985-12-18 1997-05-21 ソニー株式会社 Data transmission receiving system and data decoding device
JPS62152225A (en) * 1985-12-26 1987-07-07 Canon Inc Forecasting encoding device
JPS62231569A (en) 1986-03-31 1987-10-12 Fuji Photo Film Co Ltd Quantizing method for estimated error
JP2751201B2 (en) 1988-04-19 1998-05-18 ソニー株式会社 Data transmission device and reception device
JP2508439B2 (en) 1987-05-29 1996-06-19 ソニー株式会社 High efficiency encoder
ATE74219T1 (en) 1987-06-02 1992-04-15 Siemens Ag METHOD FOR DETERMINING MOTION VECTOR FIELDS FROM DIGITAL IMAGE SEQUENCES.
US4885636A (en) 1987-06-22 1989-12-05 Eastman Kodak Company Block adaptive linear predictive coding with adaptive gain and bias
US5122873A (en) 1987-10-05 1992-06-16 Intel Corporation Method and apparatus for selectively encoding and decoding a digital motion video signal at multiple resolution levels
US5093872A (en) 1987-11-09 1992-03-03 Interand Corporation Electronic image compression method and apparatus using interlocking digitate geometric sub-areas to improve the quality of reconstructed images
JP2629238B2 (en) * 1988-02-05 1997-07-09 ソニー株式会社 Decoding device and decoding method
US5162923A (en) * 1988-02-22 1992-11-10 Canon Kabushiki Kaisha Method and apparatus for encoding frequency components of image information
US4903124A (en) * 1988-03-17 1990-02-20 Canon Kabushiki Kaisha Image information signal transmission apparatus
US4953023A (en) 1988-09-29 1990-08-28 Sony Corporation Coding apparatus for encoding and compressing video data
JP2900385B2 (en) 1988-12-16 1999-06-02 ソニー株式会社 Framing circuit and method
US5150210A (en) 1988-12-26 1992-09-22 Canon Kabushiki Kaisha Image signal restoring apparatus
JP3018366B2 (en) 1989-02-08 2000-03-13 ソニー株式会社 Video signal processing circuit
JPH02248161A (en) 1989-03-20 1990-10-03 Fujitsu Ltd Data transmission system
US5185746A (en) 1989-04-14 1993-02-09 Mitsubishi Denki Kabushiki Kaisha Optical recording system with error correction and data recording distributed across multiple disk drives
JPH02280462A (en) 1989-04-20 1990-11-16 Fuji Photo Film Co Ltd Picture data compression method
EP0394976B1 (en) * 1989-04-27 1995-11-29 Matsushita Electric Industrial Co., Ltd. Data companding method and data compressor/expander
EP0398741B1 (en) 1989-05-19 1997-10-29 Canon Kabushiki Kaisha Image information transmitting system
US5052021A (en) * 1989-05-19 1991-09-24 Kabushiki Kaisha Toshiba Digital signal decoding circuit and decoding method
US5208816A (en) 1989-08-18 1993-05-04 At&T Bell Laboratories Generalized viterbi decoding algorithms
JPH03141752A (en) 1989-10-27 1991-06-17 Hitachi Ltd Picture signal transmitting method
US5228059A (en) * 1989-11-21 1993-07-13 Nippon Hoso Kyokai Differential code transmission system
JP2533393B2 (en) 1990-02-16 1996-09-11 シャープ株式会社 NTSC-HD converter
US5166987A (en) 1990-04-04 1992-11-24 Sony Corporation Encoding apparatus with two stages of data compression
US5101446A (en) 1990-05-31 1992-03-31 Aware, Inc. Method and apparatus for coding an image
JPH0474063A (en) 1990-07-13 1992-03-09 Matsushita Electric Ind Co Ltd Coding method for picture
JP2650472B2 (en) 1990-07-30 1997-09-03 松下電器産業株式会社 Digital signal recording apparatus and digital signal recording method
JP2969867B2 (en) 1990-08-31 1999-11-02 ソニー株式会社 High-efficiency encoder for digital image signals.
GB9019538D0 (en) 1990-09-07 1990-10-24 Philips Electronic Associated Tracking a moving object
US5416651A (en) 1990-10-31 1995-05-16 Sony Corporation Apparatus for magnetically recording digital data
US5243428A (en) 1991-01-29 1993-09-07 North American Philips Corporation Method and apparatus for concealing errors in a digital television
JP2861379B2 (en) * 1990-11-22 1999-02-24 ソニー株式会社 Image data encoding method and circuit thereof
JP2861380B2 (en) * 1990-11-22 1999-02-24 ソニー株式会社 Image signal encoding apparatus and method, image signal decoding apparatus and method
US5636316A (en) 1990-12-05 1997-06-03 Hitachi, Ltd. Picture signal digital processing unit
JP2906671B2 (en) * 1990-12-28 1999-06-21 ソニー株式会社 Highly efficient digital video signal encoding apparatus and method
EP0744869B1 (en) 1990-12-28 2000-03-22 Canon Kabushiki Kaisha Image processing apparatus
EP0806872B1 (en) 1991-01-17 2000-04-12 Mitsubishi Denki Kabushiki Kaisha Video signal encoding apparatus using a block shuffling technique
EP0495501B1 (en) 1991-01-17 1998-07-08 Sharp Kabushiki Kaisha Image coding and decoding system using an orthogonal transform and bit allocation method suitable therefore
US5455629A (en) 1991-02-27 1995-10-03 Rca Thomson Licensing Corporation Apparatus for concealing errors in a digital video processing system
JP3125451B2 (en) 1991-11-05 2001-01-15 ソニー株式会社 Signal processing method
JPH04358486A (en) 1991-06-04 1992-12-11 Toshiba Corp High efficiency code signal processing unit
JP2766919B2 (en) 1991-06-07 1998-06-18 三菱電機株式会社 Digital signal recording / reproducing device, digital signal recording device, digital signal reproducing device
JPH04372779A (en) * 1991-06-21 1992-12-25 Sony Corp Soft judging and decoding circuit
US5263026A (en) 1991-06-27 1993-11-16 Hughes Aircraft Company Maximum likelihood sequence estimation based equalization within a mobile digital cellular receiver
JP3141896B2 (en) 1991-08-09 2001-03-07 ソニー株式会社 Digital video signal recording device
ATE148607T1 (en) 1991-09-30 1997-02-15 Philips Electronics Nv MOTION VECTOR ESTIMATION, MOTION IMAGE CODING AND STORAGE
JPH05103309A (en) 1991-10-04 1993-04-23 Canon Inc Method and device for transmitting information
US5398078A (en) 1991-10-31 1995-03-14 Kabushiki Kaisha Toshiba Method of detecting a motion vector in an image coding apparatus
JPH05145885A (en) * 1991-11-22 1993-06-11 Matsushita Electric Ind Co Ltd Recording and reproducing device
US5400076A (en) 1991-11-30 1995-03-21 Sony Corporation Compressed motion picture signal expander with error concealment
JP3278881B2 (en) 1991-12-13 2002-04-30 ソニー株式会社 Image signal generator
US5473479A (en) 1992-01-17 1995-12-05 Sharp Kabushiki Kaisha Digital recording and/or reproduction apparatus of video signal rearranging components within a fixed length block
JP3360844B2 (en) 1992-02-04 2003-01-07 ソニー株式会社 Digital image signal transmission apparatus and framing method
JPH05236427A (en) 1992-02-25 1993-09-10 Sony Corp Device and method for encoding image signal
US5247363A (en) 1992-03-02 1993-09-21 Rca Thomson Licensing Corporation Error concealment apparatus for hdtv receivers
US5307175A (en) 1992-03-27 1994-04-26 Xerox Corporation Optical image defocus correction
JP3259323B2 (en) 1992-04-13 2002-02-25 ソニー株式会社 De-interleave circuit
US5325203A (en) 1992-04-16 1994-06-28 Sony Corporation Adaptively controlled noise reduction device for producing a continuous output
JP3438233B2 (en) 1992-05-22 2003-08-18 ソニー株式会社 Image conversion apparatus and method
US5750867A (en) 1992-06-12 1998-05-12 Plant Genetic Systems, N.V. Maintenance of male-sterile plants
JP2976701B2 (en) 1992-06-24 1999-11-10 日本電気株式会社 Quantization bit number allocation method
US5359694A (en) 1992-07-27 1994-10-25 Teknekron Communications Systems, Inc. Method and apparatus for converting image data
US5438369A (en) 1992-08-17 1995-08-01 Zenith Electronics Corporation Digital data interleaving system with improved error correctability for vertically correlated interference
US5481554A (en) 1992-09-02 1996-01-02 Sony Corporation Data transmission apparatus for transmitting code data
JPH06153180A (en) 1992-09-16 1994-05-31 Fujitsu Ltd Picture data coding method and device
JPH06121192A (en) 1992-10-08 1994-04-28 Sony Corp Noise removing circuit
DE69312953T2 (en) * 1992-10-29 1998-03-05 Hisamitsu Pharmaceutical Co MIXTURES CONTAINING CYCLOHEXANOL DERIVATIVES AS A MEANS FOR TRANSMITTING A PLEASANT COOLING FEEL, METHOD FOR PRODUCING THESE DERIVATIVES AND INTERIM PRODUCTS REQUIRED
EP0596826B1 (en) 1992-11-06 1999-04-28 GOLDSTAR CO. Ltd. Shuffling method for a digital videotape recorder
US5689302A (en) 1992-12-10 1997-11-18 British Broadcasting Corp. Higher definition video signals from lower definition sources
US5477276A (en) 1992-12-17 1995-12-19 Sony Corporation Digital signal processing apparatus for achieving fade-in and fade-out effects on digital video signals
JPH06205386A (en) 1992-12-28 1994-07-22 Canon Inc Picture reproduction device
US5805762A (en) 1993-01-13 1998-09-08 Hitachi America, Ltd. Video recording device compatible transmitter
US5416847A (en) 1993-02-12 1995-05-16 The Walt Disney Company Multi-band, digital audio noise filter
US5737022A (en) 1993-02-26 1998-04-07 Kabushiki Kaisha Toshiba Motion picture error concealment using simplified motion compensation
JP3259428B2 (en) 1993-03-24 2002-02-25 ソニー株式会社 Apparatus and method for concealing digital image signal
KR100261072B1 (en) 1993-04-30 2000-07-01 윤종용 Digital signal processing system
KR940026915A (en) 1993-05-24 1994-12-10 오오가 노리오 Digital video signal recording device and playback device and recording method
JP3360695B2 (en) * 1993-06-17 2002-12-24 ソニー株式会社 Image data quantization circuit
US5499057A (en) 1993-08-27 1996-03-12 Sony Corporation Apparatus for producing a noise-reducded image signal from an input image signal
US5406334A (en) 1993-08-30 1995-04-11 Sony Corporation Apparatus and method for producing a zoomed image signal
KR960012931B1 (en) 1993-08-31 1996-09-25 대우전자 주식회사 Channel error concealing method for classified vector quantized video
US5602858A (en) * 1993-09-20 1997-02-11 Kabushiki Kaisha Toshiba Digital signal decoding apparatus having a plurality of correlation tables and a method thereof
JP3590996B2 (en) 1993-09-30 2004-11-17 ソニー株式会社 Hierarchical encoding and decoding apparatus for digital image signal
US5663764A (en) 1993-09-30 1997-09-02 Sony Corporation Hierarchical encoding and decoding apparatus for a digital image signal
JP3495766B2 (en) 1993-10-01 2004-02-09 テキサス インスツルメンツ インコーポレイテツド Image processing method
JP2862064B2 (en) 1993-10-29 1999-02-24 三菱電機株式会社 Data decoding device, data receiving device, and data receiving method
KR100269213B1 (en) 1993-10-30 2000-10-16 윤종용 Method for coding audio signal
US5617333A (en) 1993-11-29 1997-04-01 Kokusai Electric Co., Ltd. Method and apparatus for transmission of image data
JP3271108B2 (en) 1993-12-03 2002-04-02 ソニー株式会社 Apparatus and method for processing digital image signal
JPH07203428A (en) 1993-12-28 1995-08-04 Canon Inc Image processing method and its device
JP3321972B2 (en) 1994-02-15 2002-09-09 ソニー株式会社 Digital signal recording device
JP3161217B2 (en) 1994-04-28 2001-04-25 松下電器産業株式会社 Image encoding recording device and recording / reproducing device
JP3336754B2 (en) 1994-08-19 2002-10-21 ソニー株式会社 Digital video signal recording method and recording apparatus
JP3845870B2 (en) 1994-09-09 2006-11-15 ソニー株式会社 Integrated circuit for digital signal processing
US5577053A (en) 1994-09-14 1996-11-19 Ericsson Inc. Method and apparatus for decoder optimization
JPH08140091A (en) 1994-11-07 1996-05-31 Kokusai Electric Co Ltd Image transmission system
US5571862A (en) * 1994-11-28 1996-11-05 Cytec Technology Corp. Stabilized polyacrylamide emulsions and methods of making same
US5594807A (en) 1994-12-22 1997-01-14 Siemens Medical Systems, Inc. System and method for adaptive filtering of images based on similarity between histograms
US5852470A (en) 1995-05-31 1998-12-22 Sony Corporation Signal converting apparatus and signal converting method
US5748593A (en) * 1995-06-02 1998-05-05 Nikon Corporation Data reproduction apparatus
US5552608A (en) * 1995-06-26 1996-09-03 Philips Electronics North America Corporation Closed cycle gas cryogenically cooled radiation detector
JP3015832B2 (en) * 1995-06-27 2000-03-06 富士通株式会社 Data playback device
US5946044A (en) 1995-06-30 1999-08-31 Sony Corporation Image signal converting method and image signal converting apparatus
FR2736743B1 (en) 1995-07-10 1997-09-12 France Telecom METHOD FOR CONTROLLING THE OUTPUT RATE OF AN ENCODER OF DIGITAL DATA REPRESENTATIVE OF IMAGE SEQUENCES
JP3617879B2 (en) 1995-09-12 2005-02-09 株式会社東芝 Disk repair method and disk repair device for real-time stream server
KR0155900B1 (en) 1995-10-18 1998-11-16 김광호 Phase error detecting method and phase tracking loop circuit
US5724369A (en) 1995-10-26 1998-03-03 Motorola Inc. Method and device for concealment and containment of errors in a macroblock-based video codec
KR100197366B1 (en) 1995-12-23 1999-06-15 전주범 Apparatus for restoring error of image data
KR100196872B1 (en) 1995-12-23 1999-06-15 전주범 Apparatus for restoring error of image data in image decoder
US5751862A (en) 1996-05-08 1998-05-12 Xerox Corporation Self-timed two-dimensional filter
JP3748088B2 (en) * 1996-07-17 2006-02-22 ソニー株式会社 Image processing apparatus and method, and learning apparatus and method
JPH10240796A (en) * 1996-08-09 1998-09-11 Ricoh Co Ltd Circuit simulation method and record medium for recording circuit simulation program and circuit simulation device
JP3352887B2 (en) 1996-09-09 2002-12-03 株式会社東芝 Divider with clamp, information processing apparatus provided with this divider with clamp, and clamp method in division processing
US6134269A (en) 1996-09-25 2000-10-17 At&T Corp Fixed or adaptive deinterleaved transform coding for image coding and intra coding of video
KR100196840B1 (en) 1996-12-27 1999-06-15 전주범 Apparatus for reconstucting bits error in the image decoder
KR100239302B1 (en) 1997-01-20 2000-01-15 전주범 Countour coding method and apparatus using vertex coding
US5938318A (en) * 1997-08-19 1999-08-17 Mattsen; Gregory Paul Novelty shadow projection lamp
JP4558193B2 (en) * 1997-10-23 2010-10-06 ソニー エレクトロニクス インク Data receiving method and apparatus, received data recovery processing apparatus and recording medium
JP4558195B2 (en) * 1997-10-23 2010-10-06 ソニー エレクトロニクス インク Encoding method and apparatus, decoding method and apparatus, digital signal processing apparatus and recording medium
US6311297B1 (en) * 1997-10-23 2001-10-30 Sony Corporation Apparatus and method for mapping an image to blocks to provide for robust error recovery in a lossy transmission environment
EP1040444B1 (en) * 1997-10-23 2010-08-11 Sony Electronics, Inc. Apparatus and method for recovery of quantization codes in a lossy transmission environment
WO1999021286A1 (en) * 1997-10-23 1999-04-29 Sony Electronics, Inc. Apparatus and method for localizing transmission errors to provide robust error recovery in a lossy transmission environment
CA2308223C (en) * 1997-10-23 2007-07-24 Sony Electronics Inc. Apparatus and method for mapping and image to blocks to provide for robust error recovery in a lossy transmission environment
JP4558191B2 (en) * 1997-10-23 2010-10-06 ソニー エレクトロニクス インク Damaged data recovery method and apparatus, digital arithmetic processing apparatus and recording medium
EP1027651B1 (en) * 1997-10-23 2013-08-07 Sony Electronics, Inc. Apparatus and method for providing robust error recovery for errors that occur in a lossy transmission environment
US6137915A (en) 1998-08-20 2000-10-24 Sarnoff Corporation Apparatus and method for error concealment for hierarchical subband coding and decoding
US6363118B1 (en) * 1999-02-12 2002-03-26 Sony Corporation Apparatus and method for the recovery of compression constants in the encoded domain

Also Published As

Publication number Publication date
DE10084763T1 (en) 2002-07-25
US20030133618A1 (en) 2003-07-17
JP2003503914A (en) 2003-01-28
US6549672B1 (en) 2003-04-15
US7224838B2 (en) 2007-05-29
DE10084763B3 (en) 2013-03-28
AU5875800A (en) 2001-01-31
WO2001001694A1 (en) 2001-01-04

Similar Documents

Publication Publication Date Title
TW477151B (en) Method and apparatus for recovery of encoded data using central value
Thyagarajan Still image and video compression with MATLAB
US9438849B2 (en) Systems and methods for transmitting video frames
WO2019015389A1 (en) Method and device for chroma prediction
US20040008781A1 (en) Differential encoding
US6256348B1 (en) Reduced memory MPEG video decoder circuits and methods
JP2002514363A (en) Pixel block compressor in image processing system
JPH11513205A (en) Video coding device
KR20150010903A (en) Method And Apparatus For Generating 3K Resolution Display Image for Mobile Terminal screen
WO2003047268A3 (en) Global motion compensation for video pictures
NO338810B1 (en) Method and apparatus for intermediate image timing specification with variable accuracy for digital video coding
CN115191116A (en) Correcting signal impairments using embedded signaling
KR20060126988A (en) Spatial and snr scalable video coding
Chen et al. Design of digital video coding systems: a complete compressed domain approach
EP1511320A1 (en) Film grain encoding
CN110572673B (en) Video encoding and decoding method and device, storage medium and electronic device
CN113228664A (en) Method, device, computer program and computer readable medium for scalable image coding
JP2006254456A (en) Method of controlling error resilience in compression data transmitting system, system, and medium or waveform
CN110572677B (en) Video encoding and decoding method and device, storage medium and electronic device
CN113228665A (en) Method, device, computer program and computer-readable medium for processing configuration data
EP2370934A1 (en) Systems and methods for compression transmission and decompression of video codecs
US20120121022A1 (en) Systems and methods for compression, transmission and decompression of video codecs
CN115866297A (en) Video processing method, device, equipment and storage medium
EP3409016A1 (en) Method for encoding and decoding data, device for encoding and decoding data, and corresponding computer programs
US20050259735A1 (en) System and method for video error masking using standard prediction

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees