TW476016B - Liquid crystal display device operating in a vertically aligned mode - Google Patents

Liquid crystal display device operating in a vertically aligned mode Download PDF

Info

Publication number
TW476016B
TW476016B TW87117250A TW87117250A TW476016B TW 476016 B TW476016 B TW 476016B TW 87117250 A TW87117250 A TW 87117250A TW 87117250 A TW87117250 A TW 87117250A TW 476016 B TW476016 B TW 476016B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
display device
crystal display
substrate
molecular alignment
Prior art date
Application number
TW87117250A
Other languages
Chinese (zh)
Inventor
Hideaki Tsuda
Katsufumi Ohmuro
Yoshio Koike
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Application granted granted Critical
Publication of TW476016B publication Critical patent/TW476016B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

A vertically aligned liquid crystal display device includes a liquid crystal layer of a negative dielectric anisotropy set to fall in a range between about -3.8 and about -2.0.

Description

476016 A7 B7 五、發明説明( 本發明-般係有關液晶顯示裝置,特別是有關一種以 所謂的VA(垂直g己向)模式運作之液晶顯示裝置,其中液晶 分子具有負的介電異方性,且大體上垂直於液晶顯示裝= 的一個面板表面而配向。 液晶顯示裝置係作為各種資訊處理裝置如電腦的一個 顯示裝置,液晶顯示裝置具有小型尺寸且消耗極小之電力 ,特別適用於可攜式資訊處理裝置。另一方面,文中亦探 討了這種液晶顯示裝置於固定式資訊處理裝置如桌上型電 腦方面的使用。 傳統的液晶顯示裝置通常使用一種所謂的TN(扭轉向 列)式構造,其中具有正介電異方性之p型液晶分子係於一 對互相對置的面板基板之間垂直配向,而緊鄰其中一片面 板基板之液晶分子和緊鄰其他面板基板之液晶分子係朝彼 此垂直父叉之各自方向配向β 在這種ΤΝ型式的液晶顯示裝置中,已經開發出各種不 同的液晶,且液晶顯示裝置可利用既定的低成本製程加 製造。 另一方面,ΤΝ型式液晶顯示裝置在實現高對比影像 現時有個缺點,應該注意的是,ΤΝ型式液晶顯示裝置藉 驅動電場之施加使液晶分子垂直面板基板的主表面配向 提供了一片黑色呈像,而緊鄰面板基板之液晶分子即使當 驅動電場施加時仍有助於維持水平配向,從而和這種水平 液晶分子相關之雙折射讓即使處於其中通過液晶層之光線 應該被完全中斷的致動狀態之光線依然能夠通過。因此當 以 呈 由 而 -------------……:囔…: (請先閲讀背面之注意事項再填寫本頁)476016 A7 B7 5. Description of the invention (The present invention is generally related to a liquid crystal display device, in particular to a liquid crystal display device operating in a so-called VA (vertical g orientation) mode, in which liquid crystal molecules have a negative dielectric anisotropy And is generally oriented perpendicular to a panel surface of the liquid crystal display device. The liquid crystal display device is a display device for various information processing devices such as computers. The liquid crystal display device has a small size and consumes very little power, and is particularly suitable for portable On the other hand, the use of such liquid crystal display devices in stationary information processing devices such as desktop computers is also discussed. Traditional liquid crystal display devices usually use a so-called TN (twisted nematic) type Structure, in which p-type liquid crystal molecules with positive dielectric anisotropy are vertically aligned between a pair of panel substrates facing each other, and liquid crystal molecules adjacent to one of the panel substrates and liquid crystal molecules adjacent to the other panel substrate are toward each other The respective orientations of the vertical parent forks are oriented β. In this TN type liquid crystal display device, Various types of liquid crystals are produced, and the liquid crystal display device can be manufactured by a predetermined low-cost process. On the other hand, the TN type liquid crystal display device has a disadvantage in realizing high-contrast images. It should be noted that the TN type liquid crystal display device borrows The application of a driving electric field causes the liquid crystal molecules to align with the main surface of the panel substrate, providing a black image. The liquid crystal molecules next to the panel substrate help maintain the horizontal alignment even when the driving electric field is applied, and are related to this horizontal liquid crystal molecule. The birefringence allows the light to pass even in the actuated state where the light passing through the liquid crystal layer should be completely interrupted. Therefore, it should be justified ------------- ……: 囔 ... : (Please read the notes on the back before filling this page)

、可I 蒙· 4 五、發明説明 试圖用TN型式之液晶顯示裝置於黑色背景(所謂的,,標準 黑色模式,,)中顯示白色影像時,_如常用於CRT顯示裝置 中一樣’會產生光線漏損現象,有時甚至會導致面板被染 色。因此,由於散光效應,使黑色表現變的比其中黑色影 像係於白色背景中顯示之,,標準白色模式,,更差。這就是為 何傳統的TN型式液晶顯示裝置係於標準白色模式運作的 原因。 VA型式液晶顯示裝置係一種其中具有負值或正值介 電異方性的液晶分子乃以液晶分子係朝大體上垂直於其中 液晶顯不裝置處於一種未致動狀態之面板基板的主表面方 向配向之狀態而被侷限在一對面板基板之間的一個液晶顯 示裝置,因此光線通過這種液晶顯示裝置中的一個液晶層 並不會改變液晶裝置處於未致動狀態時的極化平面,且光 線可利用配置在液晶層兩面上且在正交尼科耳狀態丁的一 對起偏振器有效地中斷《因此在這種VA型式的液晶顯示裝 置中,於未致動狀態下的液晶顯示裝置可達到近乎理想的 一個黑色表現,換句話說,這種VA型式液晶顯示裝置可以 谷易達到TN型式液晶顯.示裝置所無法達到的超高對比表 現。 在VA型式液晶顯示裝置的一個致動狀態中,即其中因 施加有超出預定臨界電壓之一驅動電壓而使驅動電場施加 於液晶分子上,應該注意的是,液晶分子大體上係平行面 板基板而配向,且入射光束之極化狀態產生一實質旋轉現 象;藉此,被致動之液晶分子在第一面板基板與第二面板 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 、τ •線— 476016 A7 ---- - B7 五、發明説明(3 ) 基板之間顯現出一個90 β的扭轉現象。 第1Α及1Β圖繪示了傳統的一個VA型式液晶顯示裝置 (請先閲讀背面之注意事項再填寫本頁) 1〇,分別示於未致動狀態(黑色呈像模式)與致動狀態(白色 呈像模式)。 參看第1A及1B圖,液晶顯示裝置1包括有一片下玻璃 基板11A和一片面向下玻璃基板而配置11A的上玻璃基板 11B,其中下玻璃基板ha於其面向上玻璃基板的頂面 上承載有一組電極圖案12A和一片分子配向膜13A,而使分 子配向膜13A覆蓋著電極圖案12A。再者,上玻璃基板11B 於其面向下玻璃基板11A的底面上承載有一組透明電極圖 案12B和一片分子配向膜13B,而使分子配向膜丨36覆蓋著 電極圖案12B。 再者,液晶顯示裝置10於上下基板11B與11A之間具有 一個液晶層14,而使液晶層14被侷限在下玻璃基板ha上 面的分子配向膜13A與上玻璃基板iiB上面的分子配向膜 13B之間所形成的一個間隙中,其中應該注意的是,液晶 層含有液晶分子14 A ,其每個均具有負的介電異方性。再 者,液晶顯示裝置10包括有一個第一起偏振器15A與一個 稱為檢偏器15B的第二起偏振器,分別以正交尼科耳狀態 配置在基板11A與11B的外側上。 第2 A圖繪示了液晶顯示裝置1 〇中的某個液晶分子14 A 於未致動狀態下的一個預傾角度0。 參看第2A圖,可以看出液晶顯示裝置1〇中的液晶分子 14A於未致動狀態下形成了 一個稍微偏離90。的傾斜角度 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 。利用這種方式,則與其中液晶分子係朝垂直於液晶顯示 裝置10之主表面方向的情況比較起來,可加速液晶顯示裝 置的回應速度。 第2B及2C圖繪示了基板iiA上面的分子配向膜13A與 基板11B上面的分子配向膜13B。 參看第2B圖,當從分子配向膜ΠΒ的向上方向觀測時 ’分子配向膜13B從第一參考方向ref^經由摩擦程序而朝順 時針方向轉動一個角度α,同樣地,當從分子配向膜13A 的向上方向觀測時,分子配向膜13 A亦從第二參考方向ref2 經由摩擦程序而朝順時針方向轉動一個角度α,其中應該 注意的是,第二參考方向ref2係與第一參考方向代匕相反。 由於上下分子配向膜13 A及13B中的摩擦,在形成液晶層14 之液晶分子14 A内形成了'一個扭角2 α。 於第1A圖之未致動模式中應該注意的是,電極圖案 12 A與12B之間並無電場施加,因此如前所述具有負介電異 方性之液晶分子14A因與分子配向膜13A或13B交互作甩 而大體上垂直基板11A或11B的主表面配向。由於液晶分子 14A的這種配向,從向下方向經由第一起偏振器15A而入射 至基板11A的光束於通過液晶層14時,其極化平面會稍微 偏轉。因此,通過液晶層14之光束實際上會被配置在基板 11B上面的第二起偏振器15B中斷。 另一方面,於第1B圖之致動模式中,在電極12A與12B 之間會形成一個驅動電場,而具有負介電異方性的液晶分 子14A大體上平行基板11A或11B的主表面而配向。由於液 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 476016 A7 B7 曰曰 五、發明説明 分子14A的平行配向結果,當從向下方向經由第一起偏 振器15A而入射至基板11A的光束於通過液晶層14時,其極 化平面會有實質旋轉。因此,通過液晶層14之光束會從配 置在基板11B上面的第一起偏振器15B離開而不會被中斷。 由於VA模式之液晶顯示裝置可匹敵CRT顯示裝置而 達到高對比等級之影像表現,因此吾人認為VA模式的液晶 顯示裝置可用於所謂的桌上型顯示裝置。然而,為使這種 VA模式之液晶顯示裝置能夠作為實用的桌上型顯示裝置 ’則除了較大顯示面積與較高回應速度之外,還進一步要 求液晶顯示裝置必須能夠提供較大的視角。 本發明之發明者先前就已經發現到,於第1A及1B圖之 VA液晶顯示裝置1 〇中,液晶顯示裝置丨〇之視角係隨著液晶 層14之延遲Δη · d的增加而減小,且液晶顯示裝置1〇於白 色呈像模式(致動模式)之透射比或顯示亮度隨著液晶層14 之延遲Δη· d的增加而增加,見第3圖之關係圖。 由第3圖之關係圖可以斷定出,較佳的液晶層14延遲△ n· d係落在大約〇·2# m到大約〇·4/ζ m的範圍之内(〇 瓜< △ η · d < 〇·4 # m)。於第3圖中應該注意的是,右邊的垂直 軸代表透射比,而左邊的垂直軸表示其中對比等級恰好超 出1 〇時的一個臨界視角。 另一方面,於第1A及1B圖之液晶顯示裝置中,吾人已 經發現到液晶層14之電壓維持比例隨著時間而減少,如第4 圖中的一條連續線所示。另一方面,於其中液晶層具有正 介電異方性的一個普通丁1^模式液晶顯示裝置例子中並不可可 蒙 · 4 5. Description of the Invention When trying to use a TN type liquid crystal display device to display a white image on a black background (so-called, standard black mode, etc.), it will be the same as that used in CRT display devices. Light leakage occurs, and sometimes the panel is stained. Therefore, due to the astigmatism effect, the black performance becomes worse than that in which the black image is displayed in a white background, which is worse in the standard white mode. This is why the conventional TN type liquid crystal display device operates in the standard white mode. The VA type liquid crystal display device is a liquid crystal molecule having a negative or positive dielectric anisotropy. The liquid crystal molecule system is generally perpendicular to the main surface of the panel substrate in which the liquid crystal display device is in an unactuated state. An alignment state is limited to a liquid crystal display device between a pair of panel substrates, so light passing through a liquid crystal layer in such a liquid crystal display device does not change the plane of polarization when the liquid crystal device is in an unactuated state, and The light can be effectively interrupted by a pair of polarizers arranged on both sides of the liquid crystal layer and in a crossed Nicol state. Therefore, in this VA type liquid crystal display device, the liquid crystal display device in an unactuated state It can achieve a nearly ideal black performance. In other words, this VA type liquid crystal display device can achieve ultra-high contrast performance that TN type liquid crystal display device cannot achieve. In an actuated state of the VA-type liquid crystal display device, that is, a driving electric field is applied to the liquid crystal molecules due to a driving voltage exceeding a predetermined threshold voltage, it should be noted that the liquid crystal molecules are generally parallel to the panel substrate. Alignment, and the polarization state of the incident beam produces a substantial rotation phenomenon; by this, the actuated liquid crystal molecules are applied to the first panel substrate and the second panel. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm). (Please read the precautions on the back before filling this page), τ • Line — 476016 A7 -----B7 V. Description of the invention (3) A 90 β twist appears between the substrates. Figures 1A and 1B show a conventional VA-type liquid crystal display device (please read the precautions on the back before filling out this page) 1〇, shown in the non-actuated state (black image mode) and actuated state ( White image mode). 1A and 1B, the liquid crystal display device 1 includes a lower glass substrate 11A and an upper glass substrate 11B configured with 11A facing the lower glass substrate, wherein the lower glass substrate ha carries a top surface facing the upper glass substrate. The group electrode pattern 12A and a molecular alignment film 13A, and the molecular alignment film 13A covers the electrode pattern 12A. Furthermore, the upper glass substrate 11B carries a set of transparent electrode patterns 12B and a molecular alignment film 13B on the bottom surface thereof facing the lower glass substrate 11A, and the molecular alignment film 36 covers the electrode pattern 12B. Furthermore, the liquid crystal display device 10 has a liquid crystal layer 14 between the upper and lower substrates 11B and 11A, so that the liquid crystal layer 14 is confined to the molecular alignment film 13A on the lower glass substrate ha and the molecular alignment film 13B on the upper glass substrate iiB. In a gap formed between them, it should be noted that the liquid crystal layer contains liquid crystal molecules 14 A, each of which has a negative dielectric anisotropy. Furthermore, the liquid crystal display device 10 includes a first polarizer 15A and a second polarizer called an analyzer 15B, which are disposed on the outer sides of the substrates 11A and 11B in a crossed Nicols state, respectively. FIG. 2A illustrates a pretilt angle 0 of a certain liquid crystal molecule 14 A in the liquid crystal display device 10 in an unactuated state. Referring to Fig. 2A, it can be seen that the liquid crystal molecules 14A in the liquid crystal display device 10 form a slight deviation from 90 in the unactuated state. The inclination angle of this paper applies the Chinese National Standard (CNS) A4 specification (210X297 mm). In this way, the response speed of the liquid crystal display device can be accelerated as compared with the case where the liquid crystal molecules are oriented perpendicular to the main surface of the liquid crystal display device 10. Figures 2B and 2C show the molecular alignment film 13A on the substrate iiA and the molecular alignment film 13B on the substrate 11B. Referring to FIG. 2B, when viewed from the upward direction of the molecular alignment film ΠB, the 'molecular alignment film 13B is rotated from the first reference direction ref ^ by an angle α in a clockwise direction via a friction process. Similarly, when the molecular alignment film 13A When viewed in the upward direction, the molecular alignment film 13 A is also rotated clockwise by an angle α from the second reference direction ref2 via the friction program. It should be noted that the second reference direction ref2 is a substitution of the first reference direction. in contrast. Due to the friction in the upper and lower molecular alignment films 13 A and 13B, 'a twist angle 2 α is formed in the liquid crystal molecules 14 A forming the liquid crystal layer 14. In the non-actuated mode of FIG. 1A, it should be noted that no electric field is applied between the electrode patterns 12A and 12B. Therefore, the liquid crystal molecules 14A with negative dielectric anisotropy, as described above, are aligned with the molecular alignment film 13A. Or 13B alternately shakes and is substantially perpendicular to the main surface alignment of the substrate 11A or 11B. Due to this alignment of the liquid crystal molecules 14A, when the light beam incident on the substrate 11A through the first polarizer 15A from the downward direction passes through the liquid crystal layer 14, its polarization plane is slightly deflected. Therefore, the light beam passing through the liquid crystal layer 14 is actually interrupted by the second polarizer 15B disposed on the substrate 11B. On the other hand, in the actuation mode of FIG. 1B, a driving electric field is formed between the electrodes 12A and 12B, and the liquid crystal molecules 14A having negative dielectric anisotropy are substantially parallel to the main surface of the substrate 11A or 11B. Alignment. Since the size of the liquid paper is in accordance with the Chinese National Standard (CNS) A4 specification (210X297 mm) 476016 A7 B7, the fifth description of the invention, the result of the parallel alignment of the molecule 14A, when it enters the substrate from the downward direction through the first polarizer 15A When the 11A light beam passes through the liquid crystal layer 14, its polarization plane will substantially rotate. Therefore, the light beam passing through the liquid crystal layer 14 leaves from the first polarizer 15B disposed on the substrate 11B without being interrupted. Since the VA mode liquid crystal display device can match the CRT display device to achieve a high contrast level of image performance, I think that the VA mode liquid crystal display device can be used for a so-called desktop display device. However, in order for this VA mode liquid crystal display device to be a practical desktop display device, in addition to a large display area and a high response speed, it is further required that the liquid crystal display device must provide a larger viewing angle. The inventor of the present invention has previously discovered that in the VA liquid crystal display device 10 of FIGS. 1A and 1B, the viewing angle of the liquid crystal display device 丨 0 decreases as the retardation Δη · d of the liquid crystal layer 14 increases, And the transmittance or display brightness of the liquid crystal display device 10 in the white imaging mode (actuation mode) increases as the retardation Δη · d of the liquid crystal layer 14 increases, see the relationship diagram in FIG. 3. From the relationship diagram in FIG. 3, it can be concluded that the retardation Δ n · d of the preferred liquid crystal layer 14 falls within a range of about 0.2 # m to about 0.4 / ζ m (〇 瓜 < △ η D < 〇.4 # m). It should be noted in Figure 3 that the vertical axis on the right represents the transmittance, and the vertical axis on the left represents a critical viewing angle when the contrast level is just beyond 10. On the other hand, in the liquid crystal display device of FIGS. 1A and 1B, we have found that the voltage maintenance ratio of the liquid crystal layer 14 decreases with time, as shown by a continuous line in FIG. On the other hand, in an example of a common D1-mode liquid crystal display device in which the liquid crystal layer has positive dielectric anisotropy, it is not

本紙張尺度適用中關家標準(CNS〉M規格⑽X29^D -------------:…訂 ......... (請先閲讀背面之注意事項再填寫本頁) 五、發明説明(6 ) 會有這樣的-個問題|生,如第4圖之虛線所示。此外必須 注意的是,前述電I維持比例減少的問題隨著液晶層14之 介電異方性Δ e大小的增加而變的更明顯。當電壓維持比 例本身減少時’通過液晶層之漏失電流會增加,並可能會 導致如亮度或色彩不均的一個嚴重呈像問題,特別是在液 晶顯示裝置使用主動式矩陣驅動技術的情況。 關於液晶層使用具有負介電異方性的液晶分子,吾人 更發現到直流f壓容易殘留在从模式液晶㈣裝置_ 液晶層14内。當這種直流電壓殘留在液晶層14内時,於液 晶顯示裝置10之呈像中容易產生一個殘像。 應該注意的是,前述電壓維持比例減少與殘留直流電 壓持續的問題可藉由減少負介電異方性“的大小而加以 避免,然而,這種△e之大小或絕對值的一個增加會導致 液晶分子對施加電壓回應較差的一個問題,並相對地減少 液晶層中的延遲Δη· d,因此就產生了液晶顯示裝置無法 再滿足視角特性條件以及第3圖中敘述之透射比的一個問 題再者,這種介電異方性△ ε大小的減少容易導致液晶 層14之開/關電壓的增加.,而這種液晶層14之開/關電壓的 增加需要一種經過特別設計的驅動電路來驅動液晶層14。 因此,本發明的一般目的在於提供一種能夠解決前述 問題之新式而有用的VA模式液晶顯示裝置。 本發明另一個目的在於提供一種具有一個負介電異方 性之液晶層的液晶顯示裝置,其視角加大、對比等級增高 、電壓維持比例增加、液晶層中的直流電壓持續時間減少 、發明説明 ,且回應速度加快。 本發明另一個目的在於提供一種液晶顯示裝置,其包 括有: 一片第一基板; 一片大體上平行於該第一基板而配置的第二基板; 於面向該第二基板之該第一基板的第一主表面上形成 之第一電極圖案; 於該第一主表面上形成以覆蓋著該第一電極圖案之第 一分子配向膜; 於面向該第一基板之該第二基板的第二主表面上形成 之第二電極圖案; 於該第一主表面上形成以覆蓋著該第二電極圖案之第 二分子配向膜; 一個侷限在該第一分子配向膜與該第二分子配向膜之 間的液晶層,該液晶層包括有一種由多個至少含有具負電 介電異方性之液晶分子的液晶成分所組成之液晶混合物, 而使該液晶分子大體上能夠垂直於該第一主表面、並以該 液晶顯示裝置之内並無驅動電壓施加於該第一與第二電極 圖案之間的一個未致動狀態而配向, 該第一基板、該第二基板、該第一電極圖案、該第二 電極圖案、該第一分子配向膜、該第二分子配向膜以及該 液晶層藉以形成一片液晶面板, 一個配置於該液晶面板第一側的第一極化元件· 一個配置於該液晶面板反側、亦即第二側的第二極化 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公楚) --------------------—— (請先閲讀背.面之注意事項再填寫本頁) 、言 -费· 丄οThis paper size applies to the Zhongguanjia standard (CNS> M specification⑽X29 ^ D -------------: ... Order ... (Please read the precautions on the back before (Fill in this page) 5. Description of the invention (6) There will be such a problem | as shown by the dotted line in Figure 4. In addition, it must be noted that the aforementioned problem of reducing the electrical I maintenance ratio decreases with the liquid crystal layer 14 The increase in the dielectric anisotropy Δe becomes more pronounced. When the voltage maintenance ratio itself decreases, the leakage current through the liquid crystal layer increases, and may cause a serious imaging problem such as uneven brightness or color, Especially when the active matrix drive technology is used in the liquid crystal display device. Regarding the use of liquid crystal molecules with negative dielectric anisotropy in the liquid crystal layer, I have found that the DC f voltage tends to remain in the slave liquid crystal device _ liquid crystal layer 14 When such a DC voltage remains in the liquid crystal layer 14, a residual image is easily generated in the image of the liquid crystal display device 10. It should be noted that the problems of the reduction in the voltage maintenance ratio and the persistence of the residual DC voltage can be reduced by Negative dielectric anisotropy "size To avoid, however, such an increase in the magnitude or absolute value of Δe will cause a problem that the liquid crystal molecules respond poorly to the applied voltage and relatively reduce the retardation Δη · d in the liquid crystal layer, so a liquid crystal display device is produced. A problem that the viewing angle characteristic conditions can no longer be satisfied and the transmittance described in FIG. 3 is a problem. Furthermore, the decrease in the size of the dielectric anisotropy Δ ε easily leads to an increase in the on / off voltage of the liquid crystal layer 14. The increase of the on / off voltage of the liquid crystal layer 14 requires a specially designed driving circuit to drive the liquid crystal layer 14. Therefore, a general object of the present invention is to provide a new and useful VA mode liquid crystal display device capable of solving the aforementioned problems. Another object of the invention is to provide a liquid crystal display device having a liquid crystal layer with a negative dielectric anisotropy, which has a larger viewing angle, a higher contrast level, a higher voltage maintenance ratio, a shorter DC voltage duration in the liquid crystal layer, and a description of the invention. And the response speed is faster. Another object of the present invention is to provide a liquid crystal display device, which includes A first substrate; a second substrate disposed substantially parallel to the first substrate; a first electrode pattern formed on a first main surface of the first substrate facing the second substrate; A first molecular alignment film formed on the surface to cover the first electrode pattern; a second electrode pattern formed on a second main surface of the second substrate facing the first substrate; and formed on the first main surface A second molecular alignment film covering the second electrode pattern; a liquid crystal layer limited between the first molecular alignment film and the second molecular alignment film, the liquid crystal layer comprising a plurality of A liquid crystal mixture composed of liquid crystal components of dielectric anisotropic liquid crystal molecules, so that the liquid crystal molecules can be substantially perpendicular to the first main surface, and no driving voltage is applied to the first liquid crystal display device. Alignment with a second electrode pattern in an unactuated state, the first substrate, the second substrate, the first electrode pattern, the second electrode pattern, the first molecular alignment film, The second molecular alignment film and the liquid crystal layer form a liquid crystal panel, a first polarizing element disposed on the first side of the liquid crystal panel, and a second electrode disposed on the opposite side of the liquid crystal panel, that is, on the second side. The size of this paper is applicable to the Chinese National Standard (CNS) A4 specification (210X297). ------------------------ (Please read the back. Note on the front (Fill in this page again), speech-fees · 丄 ο

五、發明説明(8 元件; 該液晶混合物之介電異方性範圍介於-3.8與大約_2.丨 之間 本發明另一個目的在於提供一種液晶顯示裝置,其包 括有: 、 一片第一基板; 一片大體上平行於該第一基板而配置的第二基板; 於面向該第二基板之該第一基板的第一主表面上形成 之第一電極圖案; 於該第一主表面上形成以覆蓋著該第一電極圖案之第 一分子配向膜; 於面向該第一基板之該第二基板的第二主表面上形成 之第二電極圖案; 於該第二主表面上形成以覆蓋著該第二電極圖案之第 二分子配向膜; 一個侷限在該第一分子配向膜與該第二分子配向膜之 間的液晶層,該液晶層包括有一種由多個至少含有具負電 介電異方性之液晶分子的液晶成分所組成之液晶混合物; 該第一基板、該第二基板、該第一電極圖案、該第二 電極圖案、該第一分子配向膜、該第二分子配向膜以及該 液晶層藉以形成一片液晶面板, 一個配置於該液晶面板第一側的第一極化元件; 一個配置於該液晶面板反側、亦即第二側的第二極化 元件; 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公楚) -----------------------裝---------------…訂..................線. (請先閲讀背面之注意事項再填寫本頁) 11 476016 A7 五、發明説明( 該 液晶混合物之介電異方性範圍介於_3 8與大約·2 〇 之間 根據本發明,藉將前述之介電異方性的值設定在-3.8 與大約-2.0的一個範圍之間,則使用具有負介電異方性之 液晶分子的液晶顯示裝置之電壓維持比例得以增加,並維 持最佳的一個視角特性。 從下文之詳細敘述中,並同時參閱諸幅附圖,則本發 明之其他目的及進一步特色將會變得很明顯。 第1A及1B圖繪示了傳統VA模式液晶顯示裝置的原理 ..............!聲…· (請先閲讀背面之注意事項再填窝本頁) 第2A-2C圖說明了傳統VA模式液晶顯示裝置的預傾角 度; 第3圖緣示了傳統VA模式液晶顯示裝置的視角特性及 透射比; 第4圖說明了在傳統VA模式液晶顯示裝置中所發生的 電壓維持比例減少問題; 第5 A及5B圖說明了本發明之原理; 第6圖為說明了本發明之原理的另一個圖示; 第7A-7D圖繪示了本發明第一項實施例之液晶顯示裝 置的製造過程; 第8圖繪示了利用本發明第一項實施例之液晶顯示裝 置而達到的電壓維持比例增加; 第9圖繪示了本發明第一項實施例之液晶顯示裝置中 的液晶分子預傾角度; 本紙張尺度適用中國國家標準(CNS) M規格(2ι〇χ297公釐) 12 訂— 4/0U16 A7 - -—- _ B7____ 五、發明説明(丨〇 ) 第10圖緣示了本發明第一項實施例之液晶顯示裝置的 回應情形; 第11圖例示了利用本發明第一項實施例之液晶顯示袭 置而達到的液晶分子預傾角度對熱退火過程之穩定性; 第12圖例示了利用本發明第一項實施例之液晶顯示裝 置而達到的液晶分子預傾角度隨著時間之穩定性; 第13A及13B圖繪示了本發明第一項實施例之液晶顯 示裝置中的介電常數之感壓變化; 第14圖繪示了本發明第一項實施例之液晶顯示裝置的 透射比之感壓變化; 第15A及15B圖緣示了本發明第一項實施例之液晶顯 示裝置的視角特性; 第16圖繪示了本發明第二項實施例之主動式矩陣液晶 顯示裝置的構造;以及 第17A及17B圖繪示了本發明第三項實施例中具有區 域結構的一個液晶顯示裝置之構造。 第5A及5B圖纟會示了在介電異方性△ ε值作各種變化 的情況下,第1Α及1Β圖之VA模式液晶顯示裝置的電壓雄 持比例與殘留的直流電壓,其中第5Α圖繪示了電廢維持比 例於7 0 C置測到的結果,而第5 Β圖纟會示了利用閃光消除法 於70QC量測到的殘留直流電壓。 參看第5A圖,可以看出當△ ε已經超出4·5時,液晶層 14之電壓維持比例會急速下降,當電壓維持比例因此而降 低時,會促進液晶層14内之放電,且無法在達到希望的影 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐)V. Description of the invention (8 elements; the dielectric anisotropy range of the liquid crystal mixture is between -3.8 and about _2. 丨 Another object of the present invention is to provide a liquid crystal display device, including: A substrate; a second substrate disposed substantially parallel to the first substrate; a first electrode pattern formed on a first main surface of the first substrate facing the second substrate; formed on the first main surface A first molecular alignment film covering the first electrode pattern; a second electrode pattern formed on a second main surface of the second substrate facing the first substrate; and a second electrode pattern formed on the second main surface to cover A second molecular alignment film of the second electrode pattern; a liquid crystal layer limited between the first molecular alignment film and the second molecular alignment film, the liquid crystal layer comprising a plurality of A liquid crystal mixture composed of liquid crystal components of square liquid crystal molecules; the first substrate, the second substrate, the first electrode pattern, the second electrode pattern, the first molecular alignment film, the second The sub-alignment film and the liquid crystal layer form a liquid crystal panel, a first polarizing element disposed on the first side of the liquid crystal panel, and a second polarizing element disposed on the opposite side of the liquid crystal panel, that is, the second side; This paper size is applicable to China National Standard (CNS) A4 specification (210X297). ----------------------- Packing --------- ------... Order ........ line. (Please read the notes on the back before filling out this page) 11 476016 A7 V. Description of the invention (The The dielectric anisotropy range of the liquid crystal mixture is between _3 8 and about · 20. According to the present invention, by setting the aforementioned value of the dielectric anisotropy to a range between -3.8 and about -2.0, Then the voltage maintenance ratio of the liquid crystal display device using liquid crystal molecules with negative dielectric anisotropy is increased and the optimal viewing angle characteristic is maintained. From the detailed description below and referring to the drawings, the present invention Other purposes and further features will become apparent. Figures 1A and 1B illustrate the principle of a traditional VA mode liquid crystal display device ................... Sound (please first read (Notes on the back of this page will be refilled on this page) Figures 2A-2C illustrate the pretilt angle of the traditional VA mode liquid crystal display device; Figure 3 shows the viewing angle characteristics and transmittance of the traditional VA mode liquid crystal display device; Figure 4 The problem of reducing the voltage sustaining ratio that occurs in the conventional VA mode liquid crystal display device is illustrated; Figures 5 A and 5B illustrate the principle of the present invention; Figure 6 is another diagram illustrating the principle of the present invention; Figure 7A Figure -7D shows the manufacturing process of the liquid crystal display device of the first embodiment of the present invention; Figure 8 shows the increase in the voltage maintenance ratio achieved by using the liquid crystal display device of the first embodiment of the present invention; Figure 9 The pretilt angle of the liquid crystal molecules in the liquid crystal display device according to the first embodiment of the present invention is shown. The paper size applies the Chinese National Standard (CNS) M specification (2ιχχ297 mm). 12 Order — 4 / 0U16 A7-- —- _ B7____ 5. Description of the invention (丨 〇) Figure 10 illustrates the response of the liquid crystal display device of the first embodiment of the present invention; Figure 11 illustrates the use of the liquid crystal display device of the first embodiment of the present invention. Leave The stability of the reached pretilt angle of the liquid crystal molecules on the thermal annealing process; FIG. 12 illustrates the stability of the pretilt angle of the liquid crystal molecules over time using the liquid crystal display device of the first embodiment of the present invention; FIG. 13B shows the pressure-sensitive change of the dielectric constant in the liquid crystal display device of the first embodiment of the present invention; FIG. 14 shows the pressure-sensitive change of the transmittance of the liquid crystal display device of the first embodiment of the present invention Figures 15A and 15B show the viewing angle characteristics of the liquid crystal display device of the first embodiment of the present invention; Figure 16 shows the structure of the active matrix liquid crystal display device of the second embodiment of the present invention; and Figure 17A And FIG. 17B illustrates a structure of a liquid crystal display device having a region structure in a third embodiment of the present invention. Figs. 5A and 5B show the voltage dominant ratio and residual DC voltage of the VA mode liquid crystal display device in Figs. 1A and 1B in the case of various changes in the dielectric anisotropy Δ ε value, of which 5A The figure shows the results of the electrical waste maintenance ratio measured at 70 C, and Figure 5B shows the residual DC voltage measured at 70QC using the flash elimination method. Referring to FIG. 5A, it can be seen that when Δ ε has exceeded 4.5, the voltage maintenance ratio of the liquid crystal layer 14 will decrease rapidly. When the voltage maintenance ratio is reduced accordingly, the discharge in the liquid crystal layer 14 will be promoted, and the Reaching the desired photo paper size Applies to Chinese National Standard (CNS) A4 specifications (210X297 mm)

• 13 - 476016 A7 —--------B7 五、發明説明(Η ) 像表現。如前所述,此問題在具有主動式矩陣構造的一個 液晶顯示裝置中顯的特別嚴重。另一方面,當△ ε大小小 於大約4·5時,可以看出電壓維持比例保證能夠超過95%。 另一方面,第5Β圖指出了當△ ε超出大約4.0時,液晶 層14中的殘留直流電壓會急速增加,且殘像或影像堆疊會 因液晶層14中餘留的電荷而變成一個明顯的問題。 當液晶層14之介電異方性△ ε大小被降至4以下時,前 述電壓維持比例與殘留直流電壓的問題均會消失。另一方 面,由於第6圖中液晶顯示裝置之驅動電壓會有隨△ ε大小 之減少而增加的傾向,因此就有了當△ e大小過度減少時 ,液晶顯示裝置無法再由標準驅動電路驅動的一個問題產 生。再者,當液晶顯示裝置被驅動時,無法得到足夠的亮 度’且呈像品質可能會因此而降低。於第6圖中應該注意的 疋’ V1()”和’’v%”分別表示提供了 1〇%和9〇()/❶之透射比的驅 動電壓值。再者,應該注意的是,△ ε大小過度減少會導 致液晶層之驅動電壓增加,並使液晶層14之有效雙折射率 △ 11明顯降低,而使液晶層之延遲△ η · d亦減低,其中前述 延遲表示式中的d代表液,晶層14之厚度。應該注意的是,液 晶層14之厚度d無法以各種理由作任意改變。 於本發明中,藉將前述之介電異方性值設定在_3.8與 -2.0之間的一個範圍内,最好是介於·3·8與·3〇之間的一個 範圍,"於-3.8與-3.5之間的範圍更佳,則使用了含有負介 電異方性液晶分子之液晶混合物的液晶顯示裝置其電壓維 持比例得以増加,而同時維持最佳的一個視角特性,如此 本紙張尺度顧巾_ 21〇χ297^) " " -14 - (請先閲讀背面之注意事項再填寫本頁)• 13-476016 A7 —-------- B7 V. Description of invention (Η) Image performance. As mentioned earlier, this problem is particularly serious in a liquid crystal display device having an active matrix structure. On the other hand, when the magnitude of Δε is less than about 4.5, it can be seen that the voltage maintenance ratio is guaranteed to exceed 95%. On the other hand, FIG. 5B indicates that when Δε exceeds approximately 4.0, the residual DC voltage in the liquid crystal layer 14 will increase rapidly, and the afterimage or image stack will become a significant one due to the charge remaining in the liquid crystal layer 14. problem. When the magnitude of the dielectric anisotropy Δε of the liquid crystal layer 14 is reduced to less than 4, the problems of the aforementioned voltage maintenance ratio and the residual DC voltage will disappear. On the other hand, since the driving voltage of the liquid crystal display device in FIG. 6 tends to increase as the size of Δ ε decreases, there is a tendency that when the size of Δ e decreases excessively, the liquid crystal display device cannot be driven by a standard driving circuit. A question arises. Furthermore, when the liquid crystal display device is driven, sufficient brightness is not obtained 'and the image quality may be lowered accordingly. It should be noted in Fig. 6 that 疋 'V1 () "and' 'v%" represent driving voltage values that provide a transmittance of 10% and 90 () / ❶, respectively. Furthermore, it should be noted that excessive reduction in the size of Δ ε will cause the driving voltage of the liquid crystal layer to increase, and the effective birefringence Δ 11 of the liquid crystal layer 14 will be significantly reduced, and the retardation Δ η · d of the liquid crystal layer will also be reduced. Wherein, d in the aforementioned retardation expression represents the thickness of the liquid and crystal layer 14. It should be noted that the thickness d of the liquid crystal layer 14 cannot be arbitrarily changed for various reasons. In the present invention, by setting the aforementioned dielectric anisotropy value within a range between _3.8 and -2.0, it is preferably a range between · 3 · 8 and · 3〇, " If the range between -3.8 and -3.5 is better, a liquid crystal display device using a liquid crystal mixture containing negative dielectric anisotropic liquid crystal molecules can increase the voltage maintenance ratio while maintaining the best viewing angle characteristics. Gu paper towel _ 21〇χ297 ^) " " -14-(Please read the precautions on the back before filling this page)

476016 A7 B7 五、發明説明(12 ) 一來,於液晶層14中殘留直流電壓持續的問題亦得到解決 ...................……裝—— (請先閲讀背面之注意事項再填寫本頁) [第一實施例] 第7A-7D圖繪不了本發明第一項實施例之液晶顯示裝 置20的製造過程,其中那些與先前所述之元件相對應者以 相同參考編號表示,並省略其敘述。 •訂| :線- 參看第7A圖,製備了一片大型的主玻璃基板π,其上 界定了基板區域11Α’與11Β,之範圍,與形成之玻璃基板 11Α與11Β相對應,其中前述之電極圖案12Α與分子配向膜 13Α係於界定之基板區域11Α,上面形成。同樣地,前述之 電極圖案12Β與分子配向膜13Β係於界定之基板區域ι1Β, 上面形成。於苐7 Α圖之製程中應該注意的是,分子配向膜 13 A係由一個摩擦滾筒60朝虛線11 a所示方向摩擦,而分子 配向膜13B則由摩擦滾筒60朝虛線nb所示方向摩擦,應該 注思的疋,其中摩擦滾筒60作用於主要基板11的方向ua 與1 lb係偏離參考方向”reP—個角度〇;。於第7A圖中,每 組電極圖案12A包括有一個像素電極12p,與液晶層14中所 界定的一個像素對應;同樣地,每組電極圖案12B包括有 一個像素電極12 Q ’與液晶層14中所界定的一個像素對應 。再者,第 7A圖緣示 了一個符號”No.ring(+),,或,,No.ring(-)” ,用以區別由主要基板11所形成之玻璃基板11八與11]6的方 向0 其次,於第7B圖之步驟中,主要基板Η基板被分割成 玻璃基板11A與11B ,而分割成的玻璃基板iiB被朝側面垂 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 15 476016 A7 一 —_____B7 ___ 五、發明説明(13 ) ----------------------— (請先閲讀背面之注意事項再填寫本頁) 直轉動。再者,有一個封裝件lie於玻璃基板11A的上表面 形成,而使封裝件lie包覆著其上必須形成液晶面板的玻璃 基板11A區域。 接著在第7C及7D圖之步驟中,以垂直玻璃基板的方向 觀之,將下玻璃基板11A與上玻璃基板11B彼此疊合,而使 上玻璃基板11B上面的像素電極nQ與下玻璃基板11A上面 的像素電極12P重疊。因此,藉將液晶層14注入玻璃基板 11A與11B之間所形成的空隙中,則可得到一片液晶面板。 應該注意的是,第7C圖繪示了從向上方向觀測的液晶面板 ,而第7D圖繪示了從向下方向觀測的同一片液晶面板。 •、j-T— 再者,有一個具有一根光透過軸15a的起偏振器配置在 液晶面板下方,如第7D圖之起偏振器15A所示,並有一個 具有一根光透過軸15b的起偏振器配置在液晶面板上方,如 檢偏器15B。由於第7C及7D圖緣示了從相反方向觀測的同 一片液晶面板,應該注意的是,起偏振器15A之光透過軸 15a與檢偏器15B之光透過軸15b係呈正交狀態,換句話說 ,起偏振器15A與檢偏器15B處於正交尼科耳狀態。 於第7C及7D圖中更應該注意的是,玻璃基板UA之摩 擦方向11a與玻璃基板iiB之摩擦方向Ub係於液晶顯示裝 置的裝配狀態下彼此相交一個角度2 q。由於摩擦方向之相 交,故於形成液晶層14之液晶分子内產生一個扭角2α。 在一項對所形成之VA模式液晶顯示裝置2〇進行的研 究中,本發明之發明者已經研究出當採用下表I所列之各種 不同液晶作為液晶層14時該裝置的運作特性,於實驗中 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 16 476016 液晶 壓(V) 性質 驅動電 V10/V9〇 A MJ95785 2.37/5.86 消除點=79QC 曰本默克化學 Δ ε = -4.6 Δη = 0.0813 B MJ961213 2.43/5.85 消除點=71QC 曰本默克化學 Δ ε = -3.8 Δη = 0.0822 C MJ961320 诮除點=71QC 3.20/6.88 曰本默克化學 Δ ε = -2.1 Δ η = 0.0836 於25V下進行測量 A7 _B7 五、發明説明(14 ) 液晶層14之厚度始終設為3 · 4 /z m476016 A7 B7 V. Description of the invention (12) As a result, the problem of persistent residual DC voltage in the liquid crystal layer 14 has also been resolved ............... — (Please read the precautions on the back before filling in this page) [First Embodiment] Figures 7A-7D cannot depict the manufacturing process of the liquid crystal display device 20 according to the first embodiment of the present invention, which are the same as those described previously. The corresponding elements are denoted by the same reference numerals, and descriptions thereof are omitted. • Order |: Line-Referring to Figure 7A, a large main glass substrate π is prepared, which defines a range of substrate regions 11A ′ and 11B, corresponding to the formed glass substrates 11A and 11B, in which the aforementioned electrodes The pattern 12A and the molecular alignment film 13A are formed on the defined substrate region 11A. Similarly, the aforementioned electrode pattern 12B and the molecular alignment film 13B are formed on the defined substrate region ι1B and formed thereon. It should be noted in the process of Figure 7A that the molecular alignment film 13 A is rubbed by a friction roller 60 in the direction shown by the dotted line 11 a, and the molecular alignment film 13B is rubbed by the friction roller 60 in the direction shown by the dotted line nb. It should be noted that the directions ua and 1 lb of the friction roller 60 acting on the main substrate 11 deviate from the reference direction by “reP—an angle.” In FIG. 7A, each group of electrode patterns 12A includes a pixel electrode. 12p corresponds to one pixel defined in the liquid crystal layer 14. Similarly, each group of electrode patterns 12B includes one pixel electrode 12Q 'corresponding to one pixel defined in the liquid crystal layer 14. Furthermore, the edge of FIG. 7A shows A symbol “No.ring (+), or, No.ring (-)” is used to distinguish the direction of the glass substrate 11 and 11] 6 formed by the main substrate 11 Second, as shown in FIG. 7B In this step, the main substrate / substrate is divided into glass substrates 11A and 11B, and the divided glass substrate iiB is oriented to the side. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm). 15 476016 A7- _____B7 ___ 5. Description of the invention 13) ----------------------- (Please read the precautions on the back before filling this page) Straight rotation. In addition, there is a package The upper surface of the glass substrate 11A is formed, and the package lie covers the area of the glass substrate 11A on which the liquid crystal panel must be formed. Next, in the steps of FIGS. 7C and 7D, view the glass substrate in a direction perpendicular to the bottom, and The glass substrate 11A and the upper glass substrate 11B are overlapped with each other, so that the pixel electrode nQ on the upper glass substrate 11B and the pixel electrode 12P on the lower glass substrate 11A are overlapped. Therefore, the liquid crystal layer 14 is injected between the glass substrates 11A and 11B. In the formed gap, a piece of liquid crystal panel can be obtained. It should be noted that FIG. 7C shows the liquid crystal panel viewed from the upward direction, and FIG. 7D shows the same liquid crystal panel viewed from the downward direction. •, jT— Furthermore, a polarizer having a light transmission axis 15a is disposed below the liquid crystal panel, as shown by the polarizer 15A in FIG. 7D, and a light having a light transmission axis 15b. The polarizer is arranged above the liquid crystal panel, such as the analyzer 15B. Since the edges of Figures 7C and 7D show the same liquid crystal panel viewed from opposite directions, it should be noted that the light transmission axis 15a of the polarizer 15A and the light transmission axis 15b of the analyzer 15B are orthogonal. In other words, the polarizer 15A and the analyzer 15B are in a crossed Nicols state. In FIGS. 7C and 7D, it should be noted that the rubbing direction 11a of the glass substrate UA and the rubbing direction Ub of the glass substrate iiB are at The liquid crystal display devices intersect each other at an angle 2 q in the assembled state. Since the friction directions intersect, a twist angle 2α is generated in the liquid crystal molecules forming the liquid crystal layer 14. In a study on the formed VA-mode liquid crystal display device 20, the inventors of the present invention have studied the operating characteristics of the device when various liquid crystals listed in Table I below are used as the liquid crystal layer 14. In the experiment, the paper size is in accordance with the Chinese National Standard (CNS) A4 specification (210X297 mm) 16 476016 Liquid crystal pressure (V) Nature driving voltage V10 / V90 OA MJ95785 2.37 / 5.86 Elimination point = 79QC -4.6 Δη = 0.0813 B MJ961213 2.43 / 5.85 Elimination point = 71QC Merck Chemicals Δ ε = -3.8 Δη = 0.0822 C MJ961320 Depletion point = 71QC 3.20 / 6.88 Merck Chemicals Δ ε = -2.1 Δ η = 0.0836 Measurement at 25V A7 _B7 V. Description of the Invention (14) The thickness of the liquid crystal layer 14 is always set to 3 · 4 / zm

表I 參看表I,液晶A係一種市場上可買的到的N類型(負介 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) ----------------------------裝--------………:訂------------------緣 (請先閲讀背面之注意事項再填寫本頁) 17 476016 A7 ------— _ B7 五、發明説明(15 ) 電異方性)液晶(日本默克化學有限公司之MJ95785),傳統 上用於VA模式的一個液晶顯示裝置,且其特徵在於具有 斗-^之負^/丨電異方性么^〜❹”^^之雙折射率^以乂及乃。。 之液晶/液體相變溫度NI。另一方面,液晶B係一種傳統上 亦用於VA模式液晶顯示裝置的n類型液晶(日本默克化學 有限公司之MJ961213),且其特徵在於具有·38之負介電異 方性△ ε、0.0822之雙折射率△ η以及71〇c之液晶/液體相 變溫度NI。再者,液晶C係一種市場上可買的到的N類型液 晶(日本默克化學有限公司之MJ961320),其特徵在於具有 •2.1之負介電異方性△ e、00836之雙折射率An以及710c 之液晶/液體相變溫度NI。應該注意的是,每種液晶A_c均 為製備成具有多種液晶成分之混合物形式的氟化物。應該 注意的是,前述之相變溫度71°C通常會有誤差,相信真正 的相變溫度會落在70:tl°C的一個範圍内。 第8圖緣示了與液晶層14採用具有正介電異方性的一 個傳統TN液晶之情況比較起來,當液晶層14液晶A或液晶 B用於液晶層14時,液晶顯示裝置2〇在7〇°C下的電壓維持 比例。於第8圖中,實心三角形表示當使用液晶a時的結果 ,而實心圓形表示當使用液晶B時的結果。再者,實心正 方形表示當使用TN液晶時的結果。應該注意的是,第8圖 之測量係於70°C下進行。 參看第8圖,可以看出當使用具有_4.6之介電異方性△ ε的液晶A時,雖然電壓維持比例會和第4圖之情況一樣隨 著時間而減少,然而應該注意的是,當使用具有_38之介 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) ---------……——鬢…: (請先閲讀背面之注意事項弄填寫本頁) .訂丨 18 476016 A7 B7 五、發明說明(16 ) 電異方性Δ ε的液晶B時,電壓維持比例大體上並不會隨 著時間而改變。當使用液晶Β時可以看出,可得到與ΤΝ模 式液晶顯示裝置之電壓維持比例相當的一個電壓維持比例 〇 再者,本發明之發明者已經發現到,於液晶顯示裝置 20中,預傾角度0 (見第2Α圖)會與液晶層14之介電異方性 △ ε同時改變。 第9圖繪示了液晶顯示裝置2〇内之液晶分子14Α的預 傾角度0與液晶層14之介電異方性△ ε之間的關係。 參看第9圖,預傾角度0會有隨著介電異方性△ ε大小 的減少而稍微減小的傾向,如前所述,預傾角度係與液晶 顯示裝置之回應速度息息相關。 第10圖緣示了液晶顯示裝置2〇之回應速度與介電異方 性△ ε之間的關係,其中第丨0圖之實心圓表示液晶顯示裝 置20之透射比自未致動狀態(透射比為〇%)到達9〇%的時間 T〇N,同樣地,第1 〇圖之實心三角形繪示了液晶顯示裝置 20之透射比自完全致動狀態(透射比為ι〇〇%)到達1〇%的時 間 T〇FF 0 參看第10圖,可以看出雖然參數T〇FF對介電異方性△ ε並不敏感,然而當液晶層14之介電異方性△ ε已經超過4 的一個值時,參數Τ0Ν會急遽增加,如此一來必然減低液 晶顯示裝置的回應速度。 再者,本發明之發明者已經發現到在液晶顯示裝置2〇 中,當進行一項退火程序時預傾角度$會改變,而這種退 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公楚) ------------------------裝—— (請先閱讀背面之注意事項再填寫本頁) .訂丨 :線丨 19 476016 A7 ---- B7 —__ 五、發明説明(17) —_ ' ~ "~— 火程序通常是將液晶層14侷限於基板uA與基板UB之間 後,於液晶顯示裝置内進行,如第u圖中所示。 參看第11圖,可以看出只要介電異方性Δε落在_2與 -4之間的範圍内則預傾角度0都會很小,最好是落在與 -3·8之間的範圍内,落在-3.〇與_38之間的範圍内更佳,落 在-3.5與-3·8之間的範圍内則最佳。另一方面,當介電異方 性Δε增加或減少且其值在前述範圍之外時,可以看出預 傾角度β會由於退火程序而出現明暴貝的改變,應該注意的 是,第11圖之結果可藉由在25〇c下進行一項晶體旋轉程序 而得到。 第12圖繪示了液晶顯示裝置2 〇内預傾角度的時間穩定 性,其中應該注意的是,第12圖之結果係使液晶顯示裝置 20於7G°C以上持續不同的時間而得到,預傾角度本身之量 測係於25°C下進行。 參看第12圖,可以看出當起始預傾角度被設定在88。 或更同時,預傾角度一點也不會改變;另一方面,當起始 預傾角度降至大約86。以下時,預傾角度會有隨著時間而減 少的傾向。當預傾角度變的太小時,液晶顯示裝置於未致 動狀態下的入射光束極化平面會發生旋轉,且呈現出來的 影像對比會變差。 由則文與第6圖中驅動電壓與△ ε之間的關係、再根據 視角特性可以斷定VA模式液晶顯示裝置2〇之液晶層14的 介電異方性△ ε值最好是設在大約_3·8與大約_2 〇之間的 範圍内。 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公楚) (請先閲讀背面之注意事項再填寫本頁) •訂丨 -20 4^6016 A7 B7 五、發明説明(丨8 ) 第13A友13B圖繪示了液晶顯示裝置20内之液晶層14 的介電常數為施加於電極圖案12A與12B之間驅動電壓的 一個函數,其中第13A圖繪示了介電異方性△ ε為-4.6而雙 折射率△ η為0.0813的一個液晶(液晶Α)或介電異方性△ e 為-3.8而雙折射率Δη為0.0822的一個液晶(液晶B)用於液 晶層14的一個例子;而第13Β圖繪示了介電異方性Δε為 •5.5而雙折射率△ η為0.0945的一個液晶(Shinetsu化學有限 公司的SLX-2030)、或介電異方性△ £為-5.1而雙折射率△ η為0.0793的一個液晶(日本默克化學有限公司的MJ96723) 、或介電異方性Δε為-4.6而雙折射率Δη為0.0813的一個 液晶(液晶Α)、或介電異方性△ ε為-2·1而雙折射率△ η為 0.0836的一個液晶(液晶C)用於液晶層14的一個例子。應該 注意的是,除了液晶SLX-2030之外,所有的液晶均為氣化 液晶,而液晶SLX-2030為一種含有氧(F)的石夕化合物(_si-) 〇 參看第13A及13B圖,可以看出由於在其中施加於電極 圖案12A與12B之間的驅動電壓未超出預定臨界電壓之未 致動狀態與其中施加於電極圖案12A與12B之間的驅動電 壓超出預定臨界電壓之致動狀態之間的液晶分子配向方向 發生變化,因此液晶層14之介電常數隨著施加在電極圖案 12A與12B之間的驅動電壓而改變。於未致動狀態中,與液 晶分子14 A之主軸或長軸對應的一個介電常數被視作液晶 層14之介電常數·,而在致動狀態中,與液晶分子之副軸或 短軸對應的一個介電常數被視作液晶層14之介電常數。 (請先閲讀背面之注意事項再填寫本頁) -裝丨 •訂· :線丨 -21 476016 A7 ____B7 五、發明説明(19 ) 當液晶層14之介電異方性△ ε值被設定在前述介於大 約-3.8與大約-2.0之間的一個較佳範圍内時,液晶層14在致 動狀態(白色呈像模式)下的介電常數介於4.0與7.0之間,其 中施加於電極圖案12Α與12Β之間的驅動電壓大約為5.5V 。另一方面,於未致動狀態(黑色呈像模式)下,液晶層14 之介電常數介於3.0與4.2之間。 第14圖繪示了當前述之液晶A、B及C用於液晶層14時 ,液晶顯示裝置20之驅動電壓與透射比之間的關係。 參看第14圖,其繪示了以液晶顯示裝置2〇之相對亮度 表示之透射比,可以看出當介電異方性為_3·8之液晶B 被用於液晶層14時,透射比大體上與同樣將介電異方性八 ε為-4.6之液晶A用於液晶層時所得到的透射比相等。另一 方面,當使用介電異方性△ ε為-2 · 1的液晶c時,可以看出 透射比稍微降低,有鑑於此,必須稍微增加驅動電壓。 第15 Α圖繪示了當使用液晶Β時液晶顯示裝置2 〇的視 角特性,其中第15A圖繪示了沿該圖之圓周的方位角,第 15A圖更描繪了以等高線表示從10到1〇〇的對比值。再者 第15B圖繪示了當極角從-70。變化到+70。時,液晶顯示裝置 於某一特定方位角的對比輪廓線。 參看第15A及15B圖,可以看出藉將液晶層14之延遲△ η · d值設定在0.2# m與0.4# m之間的範圍内,則即使將介 電異方性△ ε設在-3.8與-2.0之間的範圍内,液晶顯示裝置 20仍提供了不錯的對比及視角特性。再者,對於延遲值 • d與液晶Β之延遲值△ η · d相似的液晶a及C而言,亦可得 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) -……........:贊…; (請先閲讀背面之注意事項再填寫本頁) •訂丨 22 476016 A7 B7 五、發明説明(2G ) 到類似的一個結果。應該注意的是,第15 A圖之結果係針 對玻璃基板11A或11B外側並不配置延遲補償薄膜的情況, 因此,液晶顯示裝置20之視角特性可進一步藉由配置這種 額外的延遲補償薄膜而得到改善。 [第二實施例] 第16圖繪示了本發明第二項實施例之主動式矩陣驅動 液晶顯示裝置30的構造,其中那些與前述元件相對應之元 件係以相同參考編號表示。 參看第16圖,液晶顯示裝置30係液晶顯示裝置2〇的一 個變更,且包括了在基板11A上朝橫向方向延伸作為一條 位址線的|極圖案12a,以及朝縱向方向延伸作為一條資料 線的電極圖案12b,其中電極圖案12a及12b係與第7B圖之 電極圖案12A對應。另一方面,目前於第7^圖之基板 上面形成的透明電極圖案12B係用以蓋住或多或少具有均 勻厚度之基板11B的整個表面。再者,基板UA於其中一條 位址線11A與一條資料線12b交叉的元件上面承載了一個 薄膜電晶體(TFT)和一根與TFT共同運作的透明像素電極 12C。再者,基板11B可搭載一面彩色濾鏡(未示出),與前 述每根透明像素電極12C對應。 透過第16圖之液晶顯示裝置3 〇 ,本發明之發明者已經 進行過一項殘留直流電壓的實驗,利用前述之液晶Α(Δε =-4.6、Δη=0·0813)和前述之液晶 Β(Δ ε :=·3 6、Δη=() 〇822) 以及液晶D(Z\ ε=-5·1、^ 11=0.0793)作為液晶層14,則液 顯示裝置30内會由於電荷殘留在液晶層14中而造成殘像 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) ..................:裝……........:…訂..................線 (請先閲讀背面之注意事項再填寫本頁) 23 五、發明説明(21 ) 該實驗首先係以最佳的— _ 、個驅動電壓驅動液晶顯示裝置3〇 、/肖除15動電壓、再以最佳的驅動電壓第二次驅動液晶顯 不裝置30,藉以評估殘像之形成係起因於第二次驅動液晶 顯示裝置騎觀察到的透射比較第—次驅動時為低。 根據實驗結果,當液晶八被用於液晶層⑷寺,可以觀 固殘像形成;另一方面,當使用液晶B 時’可以發現形成之殘像增加到大約5%; #者,當使用液 曰曰Da夺,可以觀察出殘像形成增力u到大約。從前述中可 斷定,液晶層14之介電異方性△ e最好是設在大約乂8與 大約-2.0之間的範圍内。 [第三實施例] 第17A及17B圖繪示了本發明第三項實施例之液晶顯 示裝置40分別於未致動狀態與致動狀態下的部分結構圖, 由於液晶顯示裝置40乃前述實施例之液晶顯示裝置3〇的一 個變更,因此那些與前述元件對應的元件係以相同參考編 號表示,而其敘述則予以省略。 參看17A及17B圖,液晶顯示裝置40在分子配向膜13A 與像素電極12C對應的部分上面包括有一個與分子配向膜 13A不同的分子配向膜13A’;同樣地,分子配向膜13B在與 分子配向膜13 A未被分子配向膜13 A’覆蓋之部分對應的部 分上面承載了一個不同於分子配向膜13B的分子配向膜 13B’,藉使分子配向膜13A’面對著分子配向膜13B外露之 部分。 藉由改變分子配向膜13A與分子配向膜13A’之間或分 •度適用中國國家標準(CNS) A4規格(210X297公爱) 24 .............……零…: (請先閲讀背面之注意事項再填寫本頁) 訂丨 476016 A7 _ ____B7 __ 五、發明説明(22 ) 子配向膜13B與分子配向膜13B’之間的成分及摩擦方向, 則液晶分子的預傾角度會在分子配向膜13 A外露部分與分 子配向膜13A’配置部分之間或分子配向膜13B ’配置部分與 分子配向膜13A外露部分之間變化,換句話說,在液晶顯 示裝置40的像素區域内會出現一個區域結構。 如第17B圖中所示,於致動狀態下之液晶顯示裝置4〇 中的液晶分子14A大體上係呈水平配向,而傾斜狀態下的 液晶分子14A在形成分子配向膜13A’之像素區域及形成分 子配向膜13B’之區域中會呈對稱狀態,藉使液晶顯示裝置 40之光束1及2以不同的入射角度及或多或少相同的透射比 穿過該處而進入。 利用第17A及17B圖之區域結構,則於第16圖之液晶顯 示裝置30中,液晶顯示裝置之視角特性可進一步改善。 再者,應該注意的是,本發明並不侷限於VA模式的液 晶顯示裝置,亦可應用於使用N類型液晶的普通液晶顯示 裝置上。 再者,本發明並不限於前述諸項實施例,亦可作各種 不同之變更及修正,並不會偏離本發明之範圍。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公楚) .......................裝---------------…訂..................線· (請先閲讀背面之注意事項再填寫本頁) 25 476016 A7 B7 五、發明説明(23 ) 元件標號對照 1、2 光束 10 、 20、 40 液晶顯示裝置 11、11A、 11B 玻璃基板 11a、 lib 虛線、摩擦方向 11c 封裝件 11A,、11B’ 基板區域 12A、12B、 .12a、 12b 電極圖案 12P、12Q、 12C 像素電極 13A、13A, 、13B、 13B’ 分子配向膜 14 液晶層 14A 液晶分子 15A 第一起偏振器 15a、 15b 光透過軸 15B 第二起偏振、 檢偏器 30 主動式矩陣驅動液晶顯示裝置 60 摩擦滾筒 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 26Table I See Table I. Liquid crystal A is a commercially available type N (negative paper size applies to China National Standard (CNS) A4 specifications (210X297 mm)) ----------- ----------------- Equipment --------.........: Order ------- Fate (Please read the precautions on the back before filling this page) 17 476016 A7 -------- _ B7 V. Description of the invention (15) Electrical anisotropy) Liquid crystal (MJ95785 of Merck Chemical Co., Ltd.), traditional A liquid crystal display device used in the VA mode, and is characterized by a negative refractive index ^ / 丨 electric anisotropy ^ ~ ❹ "^^ 's birefringence ^ and 乃 and ... Phase transition temperature NI. On the other hand, liquid crystal B is an n-type liquid crystal (MJ961213 of Merck Chemical Co., Ltd.) which is also traditionally used in VA mode liquid crystal display devices, and is characterized by a negative dielectric difference of 38. The squareness Δ ε, the birefringence Δ η of 0.0822, and the liquid crystal / liquid phase transition temperature NI of 71 ° C. Furthermore, the liquid crystal C is a commercially available N-type liquid crystal (Nippon Merck Chemical Co., Ltd. MJ961320), which is characterized by Negative dielectric anisotropy Δe, birefringence An of 00836, and liquid crystal / liquid phase transition temperature NI of 710c. It should be noted that each liquid crystal A_c is a fluoride prepared as a mixture with a plurality of liquid crystal components. It should be noted that the aforementioned phase transition temperature of 71 ° C usually has an error, and it is believed that the true phase transition temperature will fall within a range of 70: tl ° C. Fig. 8 illustrates the use of a positive phase transition temperature with the liquid crystal layer 14 Comparing the case of a conventional TN liquid crystal with dielectric anisotropy, when the liquid crystal layer 14 or liquid crystal B is used for the liquid crystal layer 14, the voltage ratio of the liquid crystal display device 20 at 70 ° C is maintained. In the figure, the solid triangle indicates the result when liquid crystal a is used, and the solid circle indicates the result when liquid crystal B is used. Furthermore, the solid square indicates the result when TN liquid crystal is used. It should be noted that in FIG. 8 The measurement was performed at 70 ° C. Referring to Fig. 8, it can be seen that when the liquid crystal A having a dielectric anisotropy Δ ε of _4.6 is used, although the voltage maintenance ratio will be the same as that in the case of Fig. 4 over time While reducing, however it should be noted that Use the paper size with _38. The paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm) --------- …… —— 鬓…: (Please read the precautions on the back to fill in this Page). Order 丨 18 476016 A7 B7 V. Description of the invention (16) When liquid crystal B with electric anisotropy Δ ε, the voltage maintenance ratio does not change with time. When liquid crystal B is used, it can be seen that A voltage maintenance ratio equivalent to the voltage maintenance ratio of the TN mode liquid crystal display device can be obtained. Furthermore, the inventor of the present invention has found that in the liquid crystal display device 20, the pretilt angle 0 (see FIG. 2A) is related to The dielectric anisotropy Δε of the liquid crystal layer 14 changes at the same time. FIG. 9 shows the relationship between the pretilt angle 0 of the liquid crystal molecules 14A in the liquid crystal display device 20 and the dielectric anisotropy Δε of the liquid crystal layer 14. Referring to FIG. 9, the pretilt angle 0 tends to decrease slightly as the size of the dielectric anisotropy Δ ε decreases. As mentioned earlier, the pretilt angle is closely related to the response speed of the liquid crystal display device. FIG. 10 shows the relationship between the response speed of the liquid crystal display device 20 and the dielectric anisotropy Δ ε. The solid circle in FIG. 0 indicates the transmittance of the liquid crystal display device 20 since the unactuated state (transmission The time TON when 90% is reached 90%. Similarly, the solid triangle in FIG. 10 shows that the transmittance of the liquid crystal display device 20 has reached from the fully actuated state (the transmittance is ι〇00%). 10% of time T〇FF 0 Referring to FIG. 10, it can be seen that although the parameter TOF is not sensitive to the dielectric anisotropy Δ ε, when the dielectric anisotropy Δ ε of the liquid crystal layer 14 has exceeded 4 When the value is a value, the parameter TON will increase sharply, so that the response speed of the liquid crystal display device must be reduced. Furthermore, the inventor of the present invention has discovered that in the liquid crystal display device 20, the pretilt angle $ will change when an annealing process is performed, and this paper size for returning paper conforms to the Chinese National Standard (CNS) A4 specification ( 210X297 公 楚) ------------------------ Install—— (Please read the precautions on the back before filling this page). Order 丨: Line 丨19 476016 A7 ---- B7 —__ V. Description of the invention (17) —_ '~ " ~ — The fire program is usually performed after the liquid crystal layer 14 is confined between the substrate uA and the substrate UB in a liquid crystal display device. , As shown in figure u. Referring to Figure 11, it can be seen that as long as the dielectric anisotropy Δε falls within the range between _2 and -4, the pretilt angle 0 will be small, and it is preferably in the range between -3 and 8. Within the range between -3.0 and _38 is better, and between -3.5 and -3.8 is the best. On the other hand, when the dielectric anisotropy Δε increases or decreases and its value is outside the aforementioned range, it can be seen that the pretilt angle β will change due to the annealing process. It should be noted that the 11th The results of the figure can be obtained by performing a crystal rotation program at 25 ° C. FIG. 12 shows the time stability of the pretilt angle of the LCD device 20, and it should be noted that the results of FIG. 12 are obtained by making the liquid crystal display device 20 at different temperatures above 7G ° C for a period of time. The inclination angle itself is measured at 25 ° C. Referring to Figure 12, it can be seen that when the initial pretilt angle is set at 88. Or at the same time, the pretilt angle does not change at all; on the other hand, when the initial pretilt angle drops to about 86. In the following cases, the pretilt angle tends to decrease with time. When the pretilt angle becomes too small, the polarization plane of the incident beam of the liquid crystal display device in the unactuated state will rotate, and the contrast of the image displayed will become worse. Based on the relationship between the driving voltage and Δ ε in FIG. 6 and FIG. 6, the dielectric anisotropy Δ ε of the liquid crystal layer 14 of the VA-mode liquid crystal display device 20 can be determined based on the viewing angle characteristics. In the range between 3.8 and about _2 〇. This paper size applies Chinese National Standard (CNS) Α4 specification (210X297). (Please read the precautions on the back before filling this page) • Order 丨 -20 4 ^ 6016 A7 B7 V. Description of Invention (丨 8) Section 13A You 13B illustrates the dielectric constant of the liquid crystal layer 14 in the liquid crystal display device 20 as a function of the driving voltage applied between the electrode patterns 12A and 12B, and FIG. 13A illustrates the dielectric anisotropy Δε as An example of a liquid crystal (liquid crystal A) having a birefringence Δη of 0.0813 or a dielectric anisotropy Δe of -3.8 and a birefringence Δη of 0.0822 for an example of the liquid crystal layer 14 Figure 13B shows a liquid crystal with a dielectric anisotropy Δε of 5.5 and a birefringence Δ η of 0.0945 (SLX-2030 by Shinetsu Chemical Co., Ltd.), or a dielectric anisotropy △ £ -5.1 A liquid crystal with a birefringence Δη of 0.0793 (MJ96723 from Merck, Japan), or a liquid crystal (Liquid Crystal A) with a dielectric anisotropy Δε of -4.6 and a birefringence Δη of 0.0813, or a dielectric A liquid crystal (liquid crystal) with anisotropy Δ ε of -2 · 1 and birefringence Δ η of 0.0836 C) An example used for the liquid crystal layer 14. It should be noted that except for the liquid crystal SLX-2030, all liquid crystals are vaporized liquid crystals, and the liquid crystal SLX-2030 is a stone evening compound (_si-) containing oxygen (F). See FIGS. 13A and 13B. It can be seen that due to the unactuated state where the driving voltage applied between the electrode patterns 12A and 12B does not exceed the predetermined threshold voltage and the actuated state where the driving voltage applied between the electrode patterns 12A and 12B exceeds the predetermined threshold voltage The alignment direction of the liquid crystal molecules between them changes, so the dielectric constant of the liquid crystal layer 14 changes with the driving voltage applied between the electrode patterns 12A and 12B. In the non-actuated state, a dielectric constant corresponding to the major or long axis of the liquid crystal molecule 14 A is regarded as the dielectric constant of the liquid crystal layer 14. A dielectric constant corresponding to the axis is regarded as a dielectric constant of the liquid crystal layer 14. (Please read the precautions on the back before filling this page) -Installation 丨 Ordering: Line 丨 -21 476016 A7 ____B7 V. Description of the Invention (19) When the dielectric anisotropy of the liquid crystal layer 14 is set to ε When the foregoing is in a preferred range between approximately -3.8 and approximately -2.0, the dielectric constant of the liquid crystal layer 14 in the actuated state (white image mode) is between 4.0 and 7.0, wherein the dielectric constant is applied to the electrode The driving voltage between the patterns 12A and 12B is about 5.5V. On the other hand, in the non-actuated state (black image mode), the dielectric constant of the liquid crystal layer 14 is between 3.0 and 4.2. FIG. 14 illustrates the relationship between the driving voltage and transmittance of the liquid crystal display device 20 when the aforementioned liquid crystals A, B, and C are used in the liquid crystal layer 14. Referring to FIG. 14, which shows the transmittance in terms of the relative brightness of the liquid crystal display device 20, it can be seen that when the liquid crystal B having a dielectric anisotropy of −3 · 8 is used for the liquid crystal layer 14, the transmittance is It is substantially equal to the transmittance obtained when a liquid crystal layer A having a dielectric anisotropy eight ε of -4.6 is also used for the liquid crystal layer. On the other hand, when a liquid crystal c having a dielectric anisotropy Δε of -2 · 1 is used, it can be seen that the transmittance is slightly reduced, and in view of this, the driving voltage must be increased slightly. Fig. 15A shows the viewing angle characteristics of the liquid crystal display device 20 when the liquid crystal B is used. Fig. 15A shows the azimuth angle along the circumference of the figure. Fig. 15A further depicts the contour from 10 to 1 〇〇 Comparative value. Furthermore, Figure 15B shows when the polar angle is from -70. Change to +70. Contrast contour lines of a liquid crystal display device at a certain azimuth angle. 15A and 15B, it can be seen that by setting the retardation Δ η · d value of the liquid crystal layer 14 in a range between 0.2 # m and 0.4 # m, even if the dielectric anisotropy Δ ε is set at − In the range between 3.8 and -2.0, the liquid crystal display device 20 still provides good contrast and viewing angle characteristics. In addition, for liquid crystals a and C whose retardation value • d is similar to the retardation value Δ η · d of liquid crystal B, the Chinese paper standard (CNS) A4 specification (210 X 297 mm) can be obtained for this paper size- …… ........: Like…; (Please read the notes on the back before filling out this page) • Order 丨 22 476016 A7 B7 V. Description of Invention (2G) to a similar result. It should be noted that the result of FIG. 15A is for the case where the retardation compensation film is not arranged on the outside of the glass substrate 11A or 11B. Therefore, the viewing angle characteristics of the liquid crystal display device 20 can be further configured by such an additional retardation compensation film. Improved. [Second Embodiment] Fig. 16 shows a configuration of an active matrix driving liquid crystal display device 30 according to a second embodiment of the present invention, in which those components corresponding to the aforementioned components are denoted by the same reference numerals. Referring to FIG. 16, the liquid crystal display device 30 is a modification of the liquid crystal display device 20, and includes a pole pattern 12a extending in the lateral direction as an address line on the substrate 11A, and extending as a data line in the longitudinal direction. The electrode patterns 12b, wherein the electrode patterns 12a and 12b correspond to the electrode patterns 12A in FIG. 7B. On the other hand, the transparent electrode pattern 12B currently formed on the substrate of Fig. 7 is used to cover the entire surface of the substrate 11B with more or less uniform thickness. In addition, the substrate UA carries a thin film transistor (TFT) and a transparent pixel electrode 12C working together with the TFT on a component where one of the address lines 11A and one data line 12b intersect. Furthermore, the substrate 11B may be equipped with a color filter (not shown) on one side, corresponding to each of the transparent pixel electrodes 12C described above. Through the liquid crystal display device 3 of FIG. 16, the inventor of the present invention has performed an experiment of residual DC voltage using the aforementioned liquid crystal A (Δε = -4.6, Δη = 0.0813) and the aforementioned liquid crystal B ( Δ ε: = · 3 6, Δη = () 〇822) and liquid crystal D (Z \ ε = -5 · 1, ^ 11 = 0.0793) as the liquid crystal layer 14, the liquid crystal display device 30 may remain in the liquid crystal due to electric charge. The residual image caused by layer 14 is in accordance with the Chinese National Standard (CNS) A4 specification (210X297 mm) ..............: ... ....: ...... Order ........ line (please read the notes on the back before filling out this page) 23 V. Description of the invention (21) The experiment first The optimal driving voltage is used to drive the liquid crystal display device 30, the driving voltage is divided by 15, and the liquid crystal display device 30 is driven a second time with the optimal driving voltage to evaluate the cause of the afterimage formation. The transmission observed during the second driving of the liquid crystal display device was lower than that during the first driving. According to the experimental results, when the liquid crystal eight is used in the liquid crystal layer, it is possible to observe the formation of afterimages; on the other hand, when using the liquid crystal B, it can be found that the residual image formed increases to about 5%; After Da Da, you can observe the residual image formation force u to about. From the foregoing, it can be determined that the dielectric anisotropy Δe of the liquid crystal layer 14 is preferably set in a range between about 乂 8 and about -2.0. [Third Embodiment] Figs. 17A and 17B show partial structural diagrams of a liquid crystal display device 40 in a non-actuated state and an activated state according to a third embodiment of the present invention. An example of a change of the liquid crystal display device 30, so those components corresponding to the aforementioned components are denoted by the same reference numerals, and the description thereof is omitted. 17A and 17B, the liquid crystal display device 40 includes a molecular alignment film 13A ′ different from the molecular alignment film 13A on a portion corresponding to the molecular alignment film 13A and the pixel electrode 12C. Similarly, the molecular alignment film 13B is aligned with the molecular alignment film 13A. A portion of the film 13 A that is not covered by the molecular alignment film 13 A ′ carries a molecular alignment film 13B ′ different from the molecular alignment film 13B. If the molecular alignment film 13A ′ faces the molecular alignment film 13B and is exposed, section. By changing between or between the molecular alignment film 13A and the molecular alignment film 13A ', the Chinese National Standard (CNS) A4 specification (210X297 public love) is applied. 24 ............. Zero …: (Please read the precautions on the back before filling this page) Order 丨 476016 A7 _ ____B7 __ V. Description of the invention (22) The composition and friction direction between the sub-alignment film 13B and the molecular alignment film 13B ', then the liquid crystal molecules The pretilt angle may vary between the exposed portion of the molecular alignment film 13 A and the disposition portion of the molecular alignment film 13A ′ or between the exposed portion of the molecular alignment film 13B ′ and the exposed portion of the molecular alignment film 13A. In other words, in a liquid crystal display device A region structure appears within a 40-pixel region. As shown in FIG. 17B, the liquid crystal molecules 14A in the liquid crystal display device 40 in the actuated state are generally horizontally aligned, and the liquid crystal molecules 14A in the inclined state are formed in the pixel region of the molecular alignment film 13A ′ and The region in which the molecular alignment film 13B ′ is formed will be in a symmetrical state, and the light beams 1 and 2 of the liquid crystal display device 40 enter there through at different angles of incidence and more or less the same transmittance. By using the area structure of FIGS. 17A and 17B, in the liquid crystal display device 30 of FIG. 16, the viewing angle characteristics of the liquid crystal display device can be further improved. Furthermore, it should be noted that the present invention is not limited to the liquid crystal display device of the VA mode, but can also be applied to a general liquid crystal display device using N-type liquid crystal. Moreover, the present invention is not limited to the foregoing embodiments, and various changes and modifications can be made without departing from the scope of the present invention. This paper size is applicable to China National Standard (CNS) A4 specification (210X297) .............--------- ------... Order ........ line · (Please read the notes on the back before filling this page) 25 476016 A7 B7 V. Description of the invention ( 23) Component number comparison 1, 2 beams 10, 20, 40 Liquid crystal display device 11, 11A, 11B glass substrate 11a, lib dotted line, rubbing direction 11c package 11A, 11B 'substrate area 12A, 12B, .12a, 12b electrodes Patterns 12P, 12Q, 12C Pixel electrodes 13A, 13A, 13B, 13B 'Molecular alignment film 14 Liquid crystal layer 14A Liquid crystal molecules 15A First polarizer 15a, 15b Light transmission axis 15B Second polarization, analyzer 30 Active matrix Driving the liquid crystal display device 60 Friction roller (please read the precautions on the back before filling this page) This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) 26

Claims (1)

476016 公告本 I _(- D8 六、申請專利範圍 I 一種液晶顯示裝置,其包括有: 一片第一基板; 一片大體上平行於該第一基板而配置的第二基板; 於面向該第二基板之該第一基板的第一主表面上 形成之第一電極圖案; 於該第一主表面上形成以覆蓋著該第一電極圖案 之第一分子配向膜; 於面向該第一基板之該第二基板的第二主表面上 形成之第二電極圖案; 於該第二主表面上形成以覆蓋著該第二電極圖案 之第二分子配向膜; 一個侷限在該第一分子配向膜與該第二分子配向 膜之間的液晶層,,該液晶層包括有一種由多個至少含有 具負電介電異方性之液晶分子的液晶成分所組成之液 晶混合物,而使該液晶分子大體上能夠垂直於該第一主 表面、並以該液晶顯示裝置之内並無驅動電壓施加於該 等第一與第二電極圖案之間的一個未致動狀態而配向, 該第一基板、該第二基板、該第一電極圖案、該第 二電極圖案、該第一分子配向膜、該第二分子配向膜以 及該液晶層藉以形成一片液晶面板, 一個配置於該液晶面板第一側的第一極化元件; 一個配置於該液晶面板反側、亦即第二側的第二極 化元件; 該液晶混合物之介電異方性範圍介於—3 8與大約 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) •訂— -27 - A8 B8 C8 D8 、申請專利範圍 一2· 〇之間。 2·如申請專利範圍第1項之液晶顯示裝置,其中該液晶混 合物之介電異方性範圍介於_3.8與—3 〇大約之間。 3·如申呀專利範圍第1項之液晶顯示裝置,其中該液晶混 合物之介電異方性範圍介於-3.8與-3.5大約之間。 4·如申請專利範圍第1項之液晶顯示裝置,其中該液晶混 合物之介電常數係朝其主轴方向量測,而使該介電常數 落在大約3· 0與大約4. 2之間的一個範圍内。 5·如申請專利範圍第1項之液晶顯示裝置,其中該液晶層 於未致動狀態下之介電常數介於大約3·〇與大約4.2 之間,而該液晶層於其中有一驅動電壓施加在該第一與 第二電極圖案之間的致動狀態下之介電常數介於大約 4· 0與大約7. 0之間。 6.如申請專利範圍第1項之液晶顯示裝置,其中該液晶層 之相變溫度介於液晶相與70。(:或更高的一個液體相之 間’且其中該液晶於-2(TC與70°C的一個溫度範圍中呈 線體狀。 7·如申請專利範圍第1項之液晶顯示裝置,其中該液晶層 之延遲介於大約0.2/zm與大約0,4# m之間。 8·如申請專利範圍第1項之液晶顯示裝置,其中該液晶分 子之預傾角度大於大約87。而小於大約90°。 9·如申請專利範圍第8項之液晶顯示裝置,其中該液晶分 子之預傾角度落在大約88。與89°之間的一個範圍内。 10 ·如申請專利範圍第1項之液晶顯示裝置,其中該液晶 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) •訂丨 :線丨 28 476016 A8 B8 C8 ____________ D8 六、申請專利範圍 層内之該液晶分子的扭角大於〇。而小於丨8〇。。 11 ·如申請專利範圍第1 〇項之液晶顯示裝置,其中該液晶 (請先閲讀背面之注意事項再填窝本頁) 分子之扭角係藉由摩擦該第一及第二分子配向膜而決 定的。 12·如申請專利範圍第1項之液晶顯示裝置,其中該液晶 層包括有多個與該第一電極圖案及第二電極圖案的一 個父點相對應之像素區域,而其中每個該像素區域包括 有多個分子配向方向彼此不同的區域。 13. —種液晶顯示裝置,其包括有: 一片第一基板; 一片大體上平行於該第一基板而配置的第二基板; 於面向該第二基板之該第一基板的第一主表面上 形成之第一電極阖案; 於該第一主表面上形成以覆蓋著該第一電極圖案 之第一分子配向膜; 於面向該第一基板之該第二基板的第二主表面上 形成之第二電極圖案; 於該第二主表面上形成以覆蓋著該第二電極圖案 之第二分子配向膜; 一個侷限在該第一分子配向膜與該第二分子配向 膜之間的液晶層,該液晶層包括有一種由多個至少含有 具負電介電異方性之液晶分子的液晶成分所組成之液 晶 >昆合物, 該第一基板、該第二基板、該第一電極圖案、該第 本紙張尺度適用中國國家標準M規格(21〇χ297公釐) -29 - 476016 A8 B8 C8 D8 申請專利範圍 二電極圖案、該第一分子配向膜、該第二分子配向膜以 及該液晶層藉以形成一片液晶面板, 一個配置於該液晶面板第一側的第一極化元件; 一個配置於該液晶面板反侧、亦即第二側的第二極 化元件; 該液晶混合物之介電異方性範圍介於-3.8與大約 -2. 0之間。 14·如申請專利範圍第13項之液晶顯示裝置,其中該液晶 混合物之介電異方性介於-3· 8與-3.0之間的一個範圍 内。 15 ·如申請專利範圍第13項之液晶顯示裝置,其中該液晶 混合物之介電異方性介於-3· 8與-3· 5之間的一個範圍 内0 (請先閲讀背面之注意事項再填寫本頁) .訂· :線丨 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 30476016 Bulletin I _ (-D8 VI. Patent Application Scope I A liquid crystal display device includes: a first substrate; a second substrate disposed substantially parallel to the first substrate; facing the second substrate A first electrode pattern formed on a first main surface of the first substrate; a first molecular alignment film formed on the first main surface so as to cover the first electrode pattern; the first electrode pattern facing the first substrate A second electrode pattern formed on the second main surface of the two substrates; a second molecular alignment film formed on the second main surface so as to cover the second electrode pattern; one limited to the first molecular alignment film and the first A liquid crystal layer between two molecular alignment films. The liquid crystal layer includes a liquid crystal mixture composed of a plurality of liquid crystal components containing at least liquid crystal molecules with negative dielectric anisotropy, so that the liquid crystal molecules can be substantially vertical. Aligning on the first main surface with no driving voltage applied to the first and second electrode patterns within the liquid crystal display device, The first substrate, the second substrate, the first electrode pattern, the second electrode pattern, the first molecular alignment film, the second molecular alignment film, and the liquid crystal layer form a liquid crystal panel, and one is disposed on the liquid crystal. A first polarizing element on the first side of the panel; a second polarizing element disposed on the opposite side of the liquid crystal panel, that is, on the second side; the dielectric anisotropy range of the liquid crystal mixture is between -38 and approximately The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the precautions on the back before filling out this page) • Order — -27-A8 B8 C8 D8, patent application range 1-2 · 0. 2. The liquid crystal display device as claimed in the first item of the patent application, wherein the dielectric anisotropy range of the liquid crystal mixture is between about _3.8 and -30. 3. The liquid crystal display as the first application of the patent application Device, wherein the dielectric anisotropy range of the liquid crystal mixture is between approximately -3.8 and -3.5. 4. The liquid crystal display device according to item 1 of the patent application range, wherein the dielectric constant of the liquid crystal mixture is toward its main axis direction Measure so that the dielectric constant falls within a range between about 3.0 and about 4.2. 5. The liquid crystal display device of item 1 in the patent application range, wherein the liquid crystal layer is in an unactuated state The dielectric constant below is between about 3.0 and about 4.2, and the dielectric constant of the liquid crystal layer in the actuated state where a driving voltage is applied between the first and second electrode patterns is between about 4.0 and about 7.0. 6. The liquid crystal display device according to item 1 of the patent application range, wherein the phase transition temperature of the liquid crystal layer is between the liquid crystal phase and 70. (: or higher of a liquid phase And the liquid crystal is linear in a temperature range of -2 ° C and 70 ° C. 7. The liquid crystal display device according to item 1 of the application, wherein the retardation of the liquid crystal layer is between about 0.2 / zm and about 0.4 m. 8. The liquid crystal display device according to item 1 of the patent application range, wherein the pretilt angle of the liquid crystal molecules is greater than about 87. And less than about 90 °. 9. The liquid crystal display device according to item 8 of the application, wherein the pretilt angle of the liquid crystal molecules falls at about 88. And a range between 89 °. 10 · If the liquid crystal display device in the scope of patent application No.1, the paper size of the liquid crystal is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling this page) Order 丨: Line 丨 28 476016 A8 B8 C8 ____________ D8 VI. The twist angle of the liquid crystal molecules in the patent application layer is greater than 0. And less than 丨 80. . 11 · If you apply for a liquid crystal display device with the scope of patent application item 10, where the liquid crystal (please read the precautions on the back before filling this page) The twist angle of the molecules is obtained by rubbing the first and second molecular alignment films. decided. 12. The liquid crystal display device according to item 1 of the application, wherein the liquid crystal layer includes a plurality of pixel regions corresponding to a parent point of the first electrode pattern and the second electrode pattern, and each of the pixel regions A plurality of regions having different molecular alignment directions are included. 13. A liquid crystal display device comprising: a first substrate; a second substrate disposed substantially parallel to the first substrate; and on a first main surface of the first substrate facing the second substrate A first electrode pattern formed; a first molecular alignment film formed on the first main surface to cover the first electrode pattern; formed on a second main surface of the second substrate facing the first substrate A second electrode pattern; a second molecular alignment film formed on the second main surface to cover the second electrode pattern; a liquid crystal layer limited between the first molecular alignment film and the second molecular alignment film, The liquid crystal layer includes a liquid crystal composed of a plurality of liquid crystal components containing at least liquid crystal molecules having negative dielectric anisotropy. The first substrate, the second substrate, the first electrode pattern, This paper size applies to Chinese national standard M specifications (21 × 297 mm) -29-476016 A8 B8 C8 D8 Patent application scope Two electrode patterns, the first molecular alignment film, the second molecular alignment The film and the liquid crystal layer form a liquid crystal panel, a first polarizing element disposed on the first side of the liquid crystal panel, a second polarizing element disposed on the opposite side of the liquid crystal panel, that is, the second side, and the liquid crystal mixture. The dielectric anisotropy ranges between -3.8 and about -2.0. 14. The liquid crystal display device as claimed in claim 13 in which the dielectric anisotropy of the liquid crystal mixture is within a range between -3.8 and -3.0. 15 · If the liquid crystal display device in the scope of application for item 13 of the patent, wherein the dielectric anisotropy of the liquid crystal mixture is in a range between -3.8 and -3.5 0 (Please read the precautions on the back before filling (This page). Order ·: Line 丨 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 30
TW87117250A 1997-10-21 1998-10-19 Liquid crystal display device operating in a vertically aligned mode TW476016B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28855697 1997-10-21
JP28537798A JPH11190861A (en) 1997-10-21 1998-10-07 Liquid crystal display device

Publications (1)

Publication Number Publication Date
TW476016B true TW476016B (en) 2002-02-11

Family

ID=26555854

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87117250A TW476016B (en) 1997-10-21 1998-10-19 Liquid crystal display device operating in a vertically aligned mode

Country Status (2)

Country Link
JP (1) JPH11190861A (en)
TW (1) TW476016B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030004458A (en) 2001-07-05 2003-01-15 삼성전자 주식회사 a vertically aligned mode liquid crystal display
JP5584606B2 (en) * 2010-12-13 2014-09-03 スタンレー電気株式会社 LCD shutter device

Also Published As

Publication number Publication date
JPH11190861A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
JP4926063B2 (en) Liquid crystal display device and electronic apparatus including the same
JPH01120527A (en) Liquid crystal display device
US20050237465A1 (en) Electrode array structures of fringe field switching mode LCDs
KR20010021234A (en) Liquid crystal display apparatus
WO2005111708A1 (en) Liquid crystal display and electronic device having same
JP2008293041A (en) Liquid crystal display device
US6469762B1 (en) Optically compensated splay mode LCD
JP2010217853A (en) Liquid crystal panel and liquid crystal display
US20060250547A1 (en) Optically compensated birefringence (OCB) mode liquid crystal display device
US20070024802A1 (en) Liquid crystal display
JP2009229895A (en) Liquid crystal display apparatus
JP2009229894A (en) Twisted vertical alignment type liquid crystal display device
TW476016B (en) Liquid crystal display device operating in a vertically aligned mode
JP2011164273A (en) Liquid crystal display element
JP2007094020A (en) Liquid crystal display device
US7019811B1 (en) Smectic liquid crystal high-contrast control or display device
JP2001281664A (en) Liquid crystal display device
JP2006018116A (en) Liquid crystal display device
KR100735272B1 (en) Optically compensated bend mode lcd
WO2017099124A1 (en) Method for improving optical response and liquid crystal display element using same
JP2000206535A (en) Transmissive hybrid aligned liquid crystal display device
JP4545770B2 (en) Liquid crystal display
JP5161577B2 (en) Liquid crystal display
JP2009086242A (en) Birefringence mode liquid crystal display
JPH112793A (en) Liquid crystal display panel

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees