JP2009229894A - Twisted vertical alignment type liquid crystal display device - Google Patents

Twisted vertical alignment type liquid crystal display device Download PDF

Info

Publication number
JP2009229894A
JP2009229894A JP2008076184A JP2008076184A JP2009229894A JP 2009229894 A JP2009229894 A JP 2009229894A JP 2008076184 A JP2008076184 A JP 2008076184A JP 2008076184 A JP2008076184 A JP 2008076184A JP 2009229894 A JP2009229894 A JP 2009229894A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
vertical alignment
crystal display
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008076184A
Other languages
Japanese (ja)
Inventor
Hajime Shimizu
肇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2008076184A priority Critical patent/JP2009229894A/en
Publication of JP2009229894A publication Critical patent/JP2009229894A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical alignment type liquid crystal display device which has a good sharpness of a change in light transmittance when a voltage is applied and has less color shift. <P>SOLUTION: A twisted vertical alignment type liquid crystal display device includes a pair of substrates on the surface of which electrodes and vertical alignment films formed on the electrodes, are formed and which are disposed to be opposite to each other with a gap d therebetween and in which only one of vertical alignment films is alignment-treated; a vertical alignment liquid crystal layer which is disposed between the pair of substrates and has a chiral agent added thereto and satisfies 0<(d/p)≤0.5556 wherein a chiral pitch is defined as p; and a pair of polarizers in a crossed Nicol state, which are disposed on the outside of a liquid crystal cell. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液晶表示装置に関し、特に垂直配向型液晶表示装置に関する。   The present invention relates to a liquid crystal display device, and more particularly to a vertical alignment type liquid crystal display device.

電圧無印加状態で液晶分子が基板に垂直に配向する垂直配向型液晶表示装置は、クロスニコル配置の偏光板と組み合わせると、オフ時の光透過率を低くでき、高いコントラストを提供できる。   When a vertical alignment type liquid crystal display device in which liquid crystal molecules are aligned perpendicularly to a substrate in the absence of voltage application, when combined with a polarizing plate having a crossed Nicol arrangement, light transmittance at the time of off can be reduced and high contrast can be provided.

図1に、垂直配向型液晶表示装置の代表的構成例を示す(特開2005−234254号より引用)。第1の基板1と第2の基板2が対向し、その間に液晶層3を挟持する。第1の基板1は、透明基板13の対向表面上に透明電極14を形成し、その上に高分子垂直配向膜15を塗布し、その表面を18で示す方向にラビング処理したものであり、外側表面上には視角補償板12と偏光板11が配置されている。第2の基板2は、第1の基板1同様、透明基板23の対向表面上に透明電極24を形成し、その表面を高分子の垂直配向膜25で覆い、矢印28の方向にラビング処理したものである。外側表面上には視角補償板22と偏光板21が配置されている。液晶分子が一定方向にプレティルトするように、ラビング方向18,28はアンチパラレルに配置される。液晶層3は、基板1、2の面に垂直に配向する性質を有する液晶分子を含み、ラビング処理18、28により、基板の表面から一定の(90度より小さい)角度のプレティルト19、29を有する。   FIG. 1 shows a typical configuration example of a vertical alignment type liquid crystal display device (cited from JP-A-2005-234254). The first substrate 1 and the second substrate 2 face each other, and the liquid crystal layer 3 is sandwiched therebetween. The first substrate 1 is obtained by forming a transparent electrode 14 on the opposite surface of the transparent substrate 13, applying a polymer vertical alignment film 15 thereon, and rubbing the surface in a direction indicated by 18; A viewing angle compensation plate 12 and a polarizing plate 11 are disposed on the outer surface. Similar to the first substrate 1, the second substrate 2 is formed with a transparent electrode 24 on the opposite surface of the transparent substrate 23, covered with a polymer vertical alignment film 25, and rubbed in the direction of the arrow 28. Is. A viewing angle compensation plate 22 and a polarizing plate 21 are disposed on the outer surface. The rubbing directions 18 and 28 are arranged in antiparallel so that the liquid crystal molecules pretilt in a certain direction. The liquid crystal layer 3 includes liquid crystal molecules having a property of being aligned perpendicular to the planes of the substrates 1 and 2, and pre-tilts 19 and 29 having a certain angle (less than 90 degrees) from the surface of the substrate by rubbing treatments 18 and 28. Have.

垂直配向ECB−LCDの電気光学特性は、低印加電圧状態で透過光の遮断が良好であり、良好な黒表示が得られる。ただし、透過光スペクトルの角度分布は、液晶が屈折率異方性を有する方向の入射光において必ずしも平坦とならず、斜め方向からの観察において着色が視認されるという現象が生じることがある。また、垂直配向ECB−LCDにおいては、一般にデューティ比などの駆動信号条件と液晶材料、スペーサなどのセル条件の組み合わせの最適化が必要であり、駆動条件ごとに異なる材料を組み合わせるため、工程内で使用材料の混入による不良品が発生することがある。   As for the electro-optical characteristics of the vertical alignment ECB-LCD, the transmitted light is well blocked in a low applied voltage state, and a good black display can be obtained. However, the angular distribution of the transmitted light spectrum may not necessarily be flat for incident light in a direction in which the liquid crystal has refractive index anisotropy, and a phenomenon may occur in which coloring is observed in an observation from an oblique direction. In vertical alignment ECB-LCD, it is generally necessary to optimize the combination of driving signal conditions such as duty ratio and cell conditions such as liquid crystal materials and spacers, and different materials are combined for each driving condition. Defective products may occur due to mixing of materials used.

垂直配向型液晶層にカイラル剤を添加し、プレティルト角を基板法線方向から大きく離す提案がされている(特開2004−355032号、特開2007−101808号)。基板表面から測ったプレティルト角は、特開2004−355032号では85°〜60°の範囲、特開2007−101808号では80°〜86°に設定される。これらのプレティルト角を与える配向制御は容易でない。また、デューティ比によって最適なセル構成が変化し、デューティ比を変えるとセル構成を変更することが望まれる。   It has been proposed to add a chiral agent to the vertical alignment type liquid crystal layer so that the pretilt angle is greatly separated from the normal direction of the substrate (Japanese Patent Application Laid-Open Nos. 2004-355032 and 2007-101808). The pretilt angle measured from the substrate surface is set in the range of 85 ° to 60 ° in Japanese Patent Laid-Open No. 2004-355032, and in the range of 80 ° to 86 ° in Japanese Patent Laid-Open No. 2007-101808. It is not easy to control the orientation to give these pretilt angles. Further, it is desired that the optimum cell configuration changes depending on the duty ratio, and that the cell configuration be changed when the duty ratio is changed.

特開2005−234254号公報JP 2005-234254 A 特開2004−355032号公報JP 2004-355032 A 特開2007−101808号公報JP 2007-101808 A

本発明の目的は、カラーシフトの少ない、垂直配向型液晶表示装置を提供することである。   An object of the present invention is to provide a vertical alignment type liquid crystal display device with little color shift.

本発明の1観点によれば、
電極と該電極上に形成された垂直配向膜とを表面に形成し、間隔dで互いに対向配置された一対の基板であって、前記垂直配向膜の一方のみが配向処理されている一対の基板と、
前記一対の基板間に配置される、カイラル剤を添加した垂直配向液晶層であって、カイラルピッチをpとした時、0<(d/p)≦0.5556である垂直配向液晶層と、
前記液晶セル外側に配置されたクロスニコル配置の1対の偏光子と、
を有する垂直ねじれ配向液晶表示装置
が提供される。
According to one aspect of the present invention,
A pair of substrates formed on the surface with an electrode and a vertical alignment film formed on the electrode and arranged to face each other at a distance d, wherein only one of the vertical alignment films is subjected to an alignment treatment When,
A vertically aligned liquid crystal layer to which a chiral agent is added, disposed between the pair of substrates, wherein 0 <(d / p) ≦ 0.5556 when the chiral pitch is p;
A pair of polarizers arranged in a crossed Nicol arrangement disposed outside the liquid crystal cell;
A vertically twisted liquid crystal display device is provided.

カラーシフトの少ない、垂直配向型液晶表示装置を提供できる。   A vertically aligned liquid crystal display device with little color shift can be provided.

垂直配向型液晶表示装置において、オフ時の光透過率をなるべく低くするには、オフ時の液晶分子がなるべく基板表面に対して垂直に配向することが好ましい。オン時に液晶分子が一定方向に倒れるようにするには一定方向のプレティルトを付与することが望ましい。オフ時の光透過率とプレティルトはトレードオフの関係にある。本発明者は液晶層全体でのプレティルト角、ないしは液晶層の厚さ方向中央の液晶分子のプレティルト角を基板法線方向に近づけるため、一方の基板のみにラビングなどの配向処理を行なうことを考えた。   In the vertical alignment type liquid crystal display device, in order to reduce the light transmittance at the time of OFF as much as possible, it is preferable that the liquid crystal molecules at the time of OFF are aligned as perpendicular to the substrate surface as possible. In order for the liquid crystal molecules to tilt in a certain direction when turned on, it is desirable to apply a pretilt in a certain direction. There is a trade-off relationship between the off-light transmittance and the pretilt. The present inventor considered performing an alignment treatment such as rubbing on only one substrate in order to bring the pretilt angle of the entire liquid crystal layer or the pretilt angle of the liquid crystal molecules at the center of the liquid crystal layer in the thickness direction closer to the normal direction of the substrate. It was.

また、視角範囲を広くし、カラーシフトを抑制するために液晶層にカイラル剤を添加してねじれ配向を導入することを考えた。   In addition, in order to widen the viewing angle range and suppress color shift, it was considered to introduce a twisted alignment by adding a chiral agent to the liquid crystal layer.

図2A,2Bは、実施例による垂直配向液晶表示装置の電圧印加時、電圧無印加時の構成を概略的に示す断面図である。電圧無印加状態を示す図2Aにおいて、第1の基板1と第2の基板2が対向し、その間に負の誘電率異方性を有する液晶分子を含む垂直配向液晶層3を挟持する。第1の基板1は、透明基板13の対向表面上に透明電極14を形成し、その上に高分子垂直配向膜17を塗布し、ラビング処理はしないものであり、外側表面上には視角補償板12と偏光板11が配置されている。第2の基板2は、透明基板23の対向表面上に透明電極24を形成し、その表面を高分子の垂直配向膜25で覆い、垂直配向膜25に矢印28の方向にラビング処理したものである。外側表面上には視角補償板22と偏光板21が配置されている。視角補償板12と22は、液晶層の屈折率異方性を補償する。偏光板11と21とは、クロスニコル配置される。   2A and 2B are cross-sectional views schematically illustrating a configuration of a vertically aligned liquid crystal display device according to an embodiment when a voltage is applied and when no voltage is applied. In FIG. 2A showing a state in which no voltage is applied, the first substrate 1 and the second substrate 2 face each other, and a vertically aligned liquid crystal layer 3 including liquid crystal molecules having negative dielectric anisotropy is sandwiched therebetween. The first substrate 1 is formed by forming a transparent electrode 14 on the opposite surface of the transparent substrate 13, applying a polymer vertical alignment film 17 thereon, and without rubbing, and compensating the viewing angle on the outer surface. A plate 12 and a polarizing plate 11 are arranged. The second substrate 2 is formed by forming a transparent electrode 24 on the opposite surface of the transparent substrate 23, covering the surface with a polymer vertical alignment film 25, and rubbing the vertical alignment film 25 in the direction of an arrow 28. is there. A viewing angle compensation plate 22 and a polarizing plate 21 are disposed on the outer surface. The viewing angle compensation plates 12 and 22 compensate for the refractive index anisotropy of the liquid crystal layer. The polarizing plates 11 and 21 are arranged in crossed Nicols.

一方の基板のみにラビングによる配向処理がされている。ラビングは、例えば特開2005−234254号の段落0022−0035,0039−0072、図2B−9Bに開示する方法で行い、基板表面に対するプレティルト角を87°〜89.7°、より好ましくは88.4°〜89.7°にする。   Only one substrate is subjected to orientation treatment by rubbing. The rubbing is performed, for example, by the method disclosed in paragraphs 0022-0035, 0039-0072 and FIGS. 2B-9B of JP-A-2005-234254, and the pretilt angle with respect to the substrate surface is 87 ° to 89.7 °, more preferably 88. Set to 4 ° to 89.7 °.

液晶層3は、基板1、2の面に垂直に配向する性質を有する負の誘電率異方性を有する液晶分子を含み、ラビング処理28により、下側基板に接する液晶分子は、下側基板の表面から90°未満の一定角度のプレティルト29を有する。図では上側基板にはラビングがされていないので、上側基板に接する液晶分子はほぼ基板法線方向に配向する。下側基板に近づくにつれ、下側基板の配向処理の影響が現れる。図では下側基板の垂直配向膜25のみをラビングした場合を示したが、代わりに上側基板の垂直配向膜のみを配向処理してもよい。   The liquid crystal layer 3 includes liquid crystal molecules having a negative dielectric anisotropy having a property of being aligned perpendicular to the surfaces of the substrates 1 and 2, and the liquid crystal molecules in contact with the lower substrate by the rubbing treatment 28 are changed to the lower substrate. The pretilt 29 has a constant angle of less than 90 ° from the surface of the surface. In the figure, since the upper substrate is not rubbed, the liquid crystal molecules in contact with the upper substrate are aligned substantially in the normal direction of the substrate. As approaching the lower substrate, the influence of the alignment treatment of the lower substrate appears. Although the figure shows a case where only the vertical alignment film 25 of the lower substrate is rubbed, instead, only the vertical alignment film of the upper substrate may be subjected to alignment treatment.

液晶層3には、カイラル剤が添加されている。カイラル剤の添加により、液晶層は厚さ方向に沿ってチルト方向が旋回する性質を有する。旋回する角度はカイラル剤の添加量による。以下、液晶材料のカイラルピッチをp、液晶層の厚さをdで示す。   A chiral agent is added to the liquid crystal layer 3. By adding the chiral agent, the liquid crystal layer has a property that the tilt direction rotates along the thickness direction. The turning angle depends on the amount of chiral agent added. Hereinafter, the chiral pitch of the liquid crystal material is denoted by p, and the thickness of the liquid crystal layer is denoted by d.

図2Bは、電圧印加時の液晶分子の配向を概略的に示す。カイラル剤の添加により、液晶層の厚さ方向に沿って液晶分子のチルト方向は旋回している。倒れこむ方向は配向処理方向、カイラル角度、印加電圧などの影響を受ける。基板と接する液晶分子はアンカリング力を有し、倒れにくいので、電圧印加によって液晶層の厚さ方向中央部で最も強く液晶分子が倒れこむ。なお、一方の基板のみに配向処理した場合、電圧印加時に得られるカイラル角は、電圧無印加時と同じとは限らず、一般的には異なる。   FIG. 2B schematically shows the alignment of liquid crystal molecules when a voltage is applied. By adding the chiral agent, the tilt direction of the liquid crystal molecules rotates along the thickness direction of the liquid crystal layer. The direction of collapse is affected by the orientation processing direction, chiral angle, applied voltage, and the like. Since the liquid crystal molecules in contact with the substrate have an anchoring force and are not easily tilted, the liquid crystal molecules are most strongly tilted at the central portion in the thickness direction of the liquid crystal layer by voltage application. When only one substrate is subjected to orientation treatment, the chiral angle obtained when a voltage is applied is not necessarily the same as when no voltage is applied, and is generally different.

図2A、2Bに示す液晶表示装置は、例えば、以下のように作成することができる。まず透明電極が形成された一対の透明基板を用意する。フォトエッチングにより、透明電極を所定形状にエッチングする。フレキソ印刷により、パターニングした透明電極を覆って垂直配向膜を塗布し、焼成する。いずれか一方の基板の垂直配向膜に対し、ラビングによる配向処理を行なう。一方の基板の対向面にギャップコントロール材を添加したメインシール剤を、例えばスクリーン印刷で印刷する。他方の基板の対向面にギャップコントロール剤を散布する。対向面を対向させて一対の基板を重ね、焼成して空セルを作成する。真空注入、毛細管現象等を用いて、空セルに液晶材料を注入する。所定液晶層厚が得られるように、所定の圧力を印加しつつ、エンドシール材を塗布、硬化し、液晶セルを封止する。液晶セルを洗浄し、所定方向に設定した視角補償板、偏光板を外側表面に貼付する。   The liquid crystal display device shown in FIGS. 2A and 2B can be produced as follows, for example. First, a pair of transparent substrates on which transparent electrodes are formed are prepared. The transparent electrode is etched into a predetermined shape by photoetching. A vertical alignment film is applied by flexographic printing so as to cover the patterned transparent electrode and baked. Alignment treatment by rubbing is performed on the vertical alignment film on one of the substrates. A main sealant with a gap control material added to the opposite surface of one substrate is printed by, for example, screen printing. A gap control agent is sprayed on the opposite surface of the other substrate. A pair of substrates are stacked with the opposing surfaces facing each other, and baked to create an empty cell. A liquid crystal material is injected into the empty cell using vacuum injection, capillary action, or the like. The end sealing material is applied and cured while applying a predetermined pressure so as to obtain a predetermined liquid crystal layer thickness, and the liquid crystal cell is sealed. The liquid crystal cell is washed, and a viewing angle compensation plate and a polarizing plate set in a predetermined direction are attached to the outer surface.

d/pの値を種々の値に変化させた液晶セルサンプルの性能を評価した。比較例として、図1に示すように、両基板にラビングによる配向処理を行ない、カイラル剤を添加しない液晶材料を注入したサンプルも評価した。   The performance of liquid crystal cell samples in which the value of d / p was changed to various values was evaluated. As a comparative example, as shown in FIG. 1, a sample was also evaluated in which alignment treatment by rubbing was performed on both substrates and a liquid crystal material to which no chiral agent was added was injected.

図3−1,3−2は、シミュレーションによる比較例及びサンプルの特性をまとめた表である。液晶表示装置の面内角度は、観察者から見て右向き、3時の方向を0度とし、上向き、12時の方向を90度、左向き、9時の方向を180度、下向き、6時の方向を270度(−90度)とする。   FIGS. 3A and 3B are tables summarizing characteristics of comparative examples and samples obtained by simulation. The in-plane angles of the liquid crystal display device are as follows: rightward and 3 o'clock as viewed from the observer, 0 degrees up, 90 o'clock in the 12 o'clock direction, left direction, 180 o'clock in the 9 o'clock direction, down and 6 o'clock The direction is 270 degrees (-90 degrees).

表において、最左欄にサンプル番号を記載する。次の3欄にd/p、電圧無印加時のセル内のねじれ角度、最適ラビング方向及び駆動時のねじれ角度を示す。d/pによって、電圧無印加時のねじれ角度[(d/p)×360]が与えられる。駆動時のねじれ角度は、電圧無印加時のねじれ角度から変化するので、最適なラビング方向は駆動時の状態に基づいて設定するべきであろう。その右には電圧(V)に対する光透過率(T)の変化を示すV−T曲線から判定した急峻性と最大透過率を示し、さらに右側にコントラスト視角特性図から判定した3つの特性、法線方向のコントラスト、拡がりから判断した視角特性、左右の対象性から判断した視角対象性を示し、最右欄に総合判断の結果を示す。比較例は、現在製造しているもので、この特性を基準○とし、特性が改善されれば◎、劣化すれば△とする。×は使用できない性能を示す。   In the table, the sample number is written in the leftmost column. The next three columns show d / p, the twist angle in the cell when no voltage is applied, the optimum rubbing direction, and the twist angle during driving. The twist angle [(d / p) × 360] when no voltage is applied is given by d / p. Since the twist angle during driving varies from the twist angle when no voltage is applied, the optimum rubbing direction should be set based on the state during driving. The right side shows the steepness and the maximum transmittance determined from the VT curve indicating the change of the light transmittance (T) with respect to the voltage (V), and the right side shows three characteristics and methods determined from the contrast viewing angle characteristic diagram. The line direction contrast, the viewing angle characteristic determined from the spread, the viewing angle target determined from the left and right targets, and the result of the comprehensive determination are shown in the rightmost column. The comparative example is currently manufactured, and this characteristic is set as a standard ◯, ◎ if the characteristic is improved, and △ if the characteristic is deteriorated. X indicates performance that cannot be used.

比較例は、一対の基板両方にラビングによる配向処理を行ない、カイラル剤を添加しない液晶材料を注入した液晶表示装置である。サンプル0〜18は、一方の基板にのみラビングによる配向処理を行ない、カイラル剤を添加した液晶材料を注入した液晶表示装置であり、電圧無印加時のねじれ角度を1°〜275°に変化させるように、d/pを−0.0028〜−0.7639に設定した。   The comparative example is a liquid crystal display device in which an alignment process by rubbing is performed on both a pair of substrates and a liquid crystal material to which no chiral agent is added is injected. Samples 0 to 18 are liquid crystal display devices in which alignment treatment by rubbing is performed on only one substrate and a liquid crystal material added with a chiral agent is injected, and the twist angle when no voltage is applied is changed from 1 ° to 275 °. Thus, d / p was set to -0.0028 to -0.7639.

比較例ではラビング方向は270度である。片側ラビングのサンプルにおいては、電圧を印加した駆動時のねじれ角度は、電圧無印加時のねじれ角度から変化している。このため、液晶層の厚さ中央の液晶分子を対象とした条件も変化する。この変化は、最適なラビング方向に影響する。   In the comparative example, the rubbing direction is 270 degrees. In the one-side rubbing sample, the twist angle at the time of driving with a voltage applied is changed from the twist angle at the time of no voltage application. For this reason, the conditions for the liquid crystal molecules at the center of the thickness of the liquid crystal layer also change. This change affects the optimal rubbing direction.

V−T曲線の急峻性は、比較例、サンプル0〜14で顕著な変化は無く、サンプル15で劣化が見え出し、サンプル16,17では明らかに劣化し、サンプル18は使用不可の性能となる。最大光透過率は、サンプル0〜14では比較例と同等であり、サンプル15で若干悪化し、サンプル16,17で明らかに悪化し、サンプル18でさらに悪化する。   The steepness of the VT curve does not change significantly in the comparative examples, samples 0 to 14, the deterioration appears in the sample 15, clearly deteriorates in the samples 16 and 17, and the sample 18 has an unusable performance. . The maximum light transmittance is the same as that of the comparative example in the samples 0 to 14, slightly deteriorated in the sample 15, clearly deteriorated in the samples 16 and 17, and further deteriorated in the sample 18.

法線方向コントラストは、サンプル0〜14では、サンプル7以外比較例より高くなる。サンプル7も比較例と同程度といえる。サンプル15で若干悪化し、サンプル16,17は明らかに低下し、サンプル18は著しく悪化する。   The normal direction contrast is higher in the samples 0 to 14 than in the comparative example except for the sample 7. Sample 7 can be said to be comparable to the comparative example. Sample 15 is slightly worse, samples 16 and 17 are clearly reduced, and sample 18 is significantly worse.

広がりから見た視角特性は、サンプル0〜5で比較例より改善の傾向があり、サンプル6〜12で明らかに改善し、サンプル13は改善の傾向を示し、サンプル14は比較例同等といえるが視角中心がずれ始め、サンプル15,16,17は拡がりはあるが、問題も生じ、サンプル18は問題が大きくなっている。   The viewing angle characteristics seen from the spread tend to be improved in comparison with the comparative examples in samples 0 to 5, clearly improved in samples 6 to 12, sample 13 shows a tendency to improve, and sample 14 can be said to be equivalent to the comparative example. The center of the visual angle starts to shift, and the samples 15, 16, and 17 are widened, but problems also occur, and the problem is large in the sample 18.

左右対称性から見た比較対象性は、サンプル0〜11は比較例と同等であり、サンプル13,14で悪化が見え出し、サンプル15は明らかに悪化し、サンプル16,17,18は使用不可となる。   From the viewpoint of symmetry, samples 0 to 11 are equivalent to the comparative example, and deterioration is apparent in samples 13 and 14, sample 15 is clearly deteriorated, and samples 16, 17, and 18 are unusable. It becomes.

総合判断の結果は、使用不可の特性を含むサンプル16〜18は、使用不可であり、残りのサンプルが検討の対象であろう。サンプル0〜7は改善の傾向を示し、サンプル8〜12は明らかに改善する。サンプル13、14は改善の傾向を示し、サンプル15は、比較例同等となる。   As a result of the comprehensive judgment, the samples 16 to 18 including the unusable characteristics are unusable, and the remaining samples will be considered. Samples 0-7 show a trend of improvement, and samples 8-12 clearly improve. Samples 13 and 14 show an improvement trend, and sample 15 is equivalent to the comparative example.

比較例と同等以上の総合特性を提供できる点からサンプル0〜15(0<(d/pの絶対値)≦0.5556)が使用可能であり、総合特性が改善の傾向を示すサンプル0〜14(0<(d/pの絶対値)≦0.5000)が望ましく、劣化要素の無いサンプル0〜11(0<(d/pの絶対値)≦0.4167)がさらに望ましい。   Samples 0 to 15 (0 <(absolute value of d / p) ≦ 0.5556) can be used because they can provide an overall characteristic equivalent to or better than that of the comparative example, and samples 0 to 0 in which the overall characteristic shows a tendency to improve. 14 (0 <(absolute value of d / p) ≦ 0.5000) is desirable, and samples 0 to 11 (0 <(absolute value of d / p) ≦ 0.4167) having no deterioration element are more desirable.

図4は、改善された特性を発揮できるd/p範囲のほぼ中心であるサンプル10と比較例の特性をより詳細に検討した結果を示すグラフ、ダイアグラムである。分図符号中のCが比較例、Eがサンプル例を示す。   FIG. 4 is a graph and diagram showing the results of a more detailed examination of the characteristics of the sample 10 and the comparative example, which are approximately the center of the d / p range where improved characteristics can be exhibited. C in the fractional code indicates a comparative example, and E indicates a sample example.

図4C1,4E1はV−T曲線を示す。比較例は印加電圧増加に伴い、光透過率が増加した後、直ちに低下し始め、ほぼ0となった後再び増加する。サンプル例は光透過率の低下が相対的に極めて緩やかになり、0近くまで低下することはない。サンプル例のほうが明らかに、安定に利用しやすい特性である。   4C1 and 4E1 show VT curves. In the comparative example, as the applied voltage increases, the light transmittance increases and then immediately begins to decrease. In the sample example, the decrease in light transmittance is relatively very slow and does not decrease to near zero. Obviously, the sample example is more stable and easier to use.

図4C2,4E2の等コントラスト曲線による視角特性は、サンプル例が比較例に比べて明らかに全方位で視角特性を向上できることを示している。   The viewing angle characteristics based on the isocontrast curves in FIGS. 4C2 and 4E2 clearly show that the viewing angle characteristics of the sample example can be improved in all directions compared to the comparative example.

図4C3,4E3は垂直方向の視角変化に対するカラーシフト、図4C4,4E4は水平方向の視角変化に対するカラーシフトを示す。比較例と較べて明らかにサンプル例のカラーシフトは減少している。   4C3 and 4E3 show a color shift with respect to a change in viewing angle in the vertical direction, and FIGS. 4C4 and 4E4 show a color shift with respect to a change in viewing angle in the horizontal direction. The color shift of the sample example is clearly reduced compared to the comparative example.

両基板をラビングし、カイラル剤を添加しない比較例と比べて、一方の基板のみをラビングし、カイラル剤を添加することにより視角範囲を広くでき、カラーシフトを小さくできることが判る。   It can be seen that the viewing angle range can be widened and the color shift can be reduced by rubbing only one substrate and adding the chiral agent, as compared with the comparative example in which both substrates are rubbed and no chiral agent is added.

なお、駆動条件とセル条件のマッチングも変化する。   Note that the matching between the driving condition and the cell condition also changes.

比較例において、1/4デューティ駆動の場合、セル厚:4.0μm、負の誘電率異方性液晶材料の屈折率異方性:0.091、誘電率異方性:−5.1の液晶材料を用いるのが好ましい。1/2デューティ駆動の場合、セル厚:4.0μm、負の誘電率異方性液晶材料の屈折率異方性:0.092、誘電率異方性:−2.7の液晶材料を用いるのが好ましい。   In the comparative example, in the case of ¼ duty driving, the cell thickness is 4.0 μm, the negative dielectric anisotropy liquid crystal material has a refractive index anisotropy of 0.091, and a dielectric anisotropy of −5.1. It is preferable to use a liquid crystal material. In the case of ½ duty driving, a liquid crystal material having a cell thickness of 4.0 μm, a negative dielectric anisotropy liquid crystal material having a refractive index anisotropy of 0.092, and a dielectric constant anisotropy of −2.7 is used. Is preferred.

実施例においては、1/4デューティ駆動の場合、1/4デューティ駆動比較例と同じ液晶材料を用い、カイラル剤により左方向のねじれを与え、ラビング方向を−45度とするのが好ましい。1/2デューティ駆動の場合、1/4デューティ駆動比較例と同じ液晶材料を用い、カイラル剤により左方向のねじれを与え、ラビング方向を−25度とするのが好ましい。液晶材料、またはスペーサなどの材料又は構成を駆動条件ごとに変更する必要がなくなる。材料汚染の可能性を低減でき、不良発生率の低下にも効果が期待できる。   In the embodiment, in the case of ¼ duty drive, it is preferable to use the same liquid crystal material as in the ¼ duty drive comparison example, to give a leftward twist with a chiral agent, and to set the rubbing direction to −45 degrees. In the case of ½ duty driving, it is preferable to use the same liquid crystal material as in the ¼ duty driving comparative example, to impart a leftward twist with a chiral agent, and to set the rubbing direction to −25 degrees. There is no need to change the material or configuration of the liquid crystal material or the spacer for each driving condition. The possibility of material contamination can be reduced, and an effect can be expected for a reduction in the defect occurrence rate.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、置換、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, substitutions, improvements, combinations, and the like can be made.

図1は、垂直配向型液晶表示装置の代表的構成例を示す断面図である。FIG. 1 is a cross-sectional view showing a typical configuration example of a vertical alignment type liquid crystal display device. 図2A,2Bは、本発明の実施例による垂直配向液晶表示装置電圧無印加時、電圧印加時の構成を概略的に示す断面図である。2A and 2B are cross-sectional views schematically illustrating a configuration when no voltage is applied and when a voltage is applied, according to an embodiment of the present invention. / 図3−1,3−2は、シミュレーションによる比較例及びサンプルの特性をまとめた表である。FIGS. 3A and 3B are tables summarizing characteristics of comparative examples and samples obtained by simulation. 図4は、サンプル10と比較例の特性をより詳細に検討した結果を示すグラフ、ダイアグラムである。FIG. 4 is a graph and diagram showing the results of examining the characteristics of the sample 10 and the comparative example in more detail.

符号の説明Explanation of symbols

1、2 基板
3 液晶層
11、21 偏光板
12、22 視覚補償板
13、23 透明基板
14、24 透明電極
15、25 高分子垂直配向膜
18、28 ラビング方向
19、29 プレティルト角
17 (ラビング処理をしていない)高分子垂直配向膜
1, 2 Substrate 3 Liquid crystal layer 11, 21 Polarizing plate 12, 22 Visual compensation plate 13, 23 Transparent substrate 14, 24 Transparent electrode 15, 25 Polymer vertical alignment film 18, 28 Rubbing direction 19, 29 Pretilt angle 17 (rubbing treatment Polymer vertical alignment film

Claims (5)

電極と該電極上に形成された垂直配向膜とを表面に形成し、間隔dで互いに対向配置された一対の基板であって、前記垂直配向膜の一方のみが配向処理されている一対の基板と、
前記一対の基板間に配置される、カイラル剤を添加した垂直配向液晶層であって、カイラルピッチをpとした時、0<(d/p)≦0.5556である垂直配向液晶層と、
前記液晶セル外側に配置されたクロスニコル配置の1対の偏光子と、
を有する垂直ねじれ配向液晶表示装置。
A pair of substrates formed on the surface with an electrode and a vertical alignment film formed on the electrode and arranged to face each other at a distance d, wherein only one of the vertical alignment films is subjected to an alignment treatment When,
A vertically aligned liquid crystal layer to which a chiral agent is added, disposed between the pair of substrates, wherein 0 <(d / p) ≦ 0.5556 when the chiral pitch is p;
A pair of polarizers arranged in a crossed Nicol arrangement disposed outside the liquid crystal cell;
A vertically twisted alignment liquid crystal display device.
前記d/pが、0<(d/p)≦0.5000である請求項1記載の垂直ねじれ配向液晶表示装置。   The vertical twist-alignment liquid crystal display device according to claim 1, wherein the d / p satisfies 0 <(d / p) ≦ 0.5000. 前記d/pが、0<(d/p)≦0.4167である請求項2記載の垂直ねじれ配向液晶表示装置。   The vertical twist alignment liquid crystal display device according to claim 2, wherein the d / p satisfies 0 <(d / p) ≦ 0.4167. 前記配向処理によるプレティルト角は、基板表面に対して87.0°〜89.7°の範囲である請求項1〜3のいずれか1項記載の垂直ねじれ配向液晶表示装置。   The vertical twist alignment liquid crystal display device according to claim 1, wherein a pretilt angle by the alignment treatment is in a range of 87.0 ° to 89.7 ° with respect to the substrate surface. 前記配向処理によるプレティルト角は、基板表面に対して88.4°〜89.7°の範囲である請求項4記載の垂直ねじれ配向液晶表示装置。   The vertical twist alignment liquid crystal display device according to claim 4, wherein a pretilt angle by the alignment treatment is in a range of 88.4 ° to 89.7 ° with respect to the substrate surface.
JP2008076184A 2008-03-24 2008-03-24 Twisted vertical alignment type liquid crystal display device Withdrawn JP2009229894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076184A JP2009229894A (en) 2008-03-24 2008-03-24 Twisted vertical alignment type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076184A JP2009229894A (en) 2008-03-24 2008-03-24 Twisted vertical alignment type liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2009229894A true JP2009229894A (en) 2009-10-08

Family

ID=41245346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076184A Withdrawn JP2009229894A (en) 2008-03-24 2008-03-24 Twisted vertical alignment type liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2009229894A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114954A1 (en) * 2012-01-31 2013-08-08 日本精機株式会社 Vertical alignment liquid crystal display element
US9256103B2 (en) 2012-10-08 2016-02-09 Samsung Display Co., Ltd. Liquid crystal display including liquid crystal with different pretilt angles and method of manufacturing the same
JP2018173643A (en) * 2018-05-23 2018-11-08 堺ディスプレイプロダクト株式会社 Display device
JP2019095597A (en) * 2017-11-22 2019-06-20 スタンレー電気株式会社 Liquid crystal device
WO2020226008A1 (en) * 2019-05-08 2020-11-12 Jsr株式会社 Liquid crystal display device and manufacturing method therefor
JP2022551234A (en) * 2019-11-04 2022-12-08 エルジー・ケム・リミテッド Method for manufacturing optical modulation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114954A1 (en) * 2012-01-31 2013-08-08 日本精機株式会社 Vertical alignment liquid crystal display element
US9256103B2 (en) 2012-10-08 2016-02-09 Samsung Display Co., Ltd. Liquid crystal display including liquid crystal with different pretilt angles and method of manufacturing the same
JP2019095597A (en) * 2017-11-22 2019-06-20 スタンレー電気株式会社 Liquid crystal device
JP2018173643A (en) * 2018-05-23 2018-11-08 堺ディスプレイプロダクト株式会社 Display device
WO2020226008A1 (en) * 2019-05-08 2020-11-12 Jsr株式会社 Liquid crystal display device and manufacturing method therefor
US11635660B2 (en) 2019-05-08 2023-04-25 Jsr Corporation Liquid crystal display device and manufacturing method therefor
JP2022551234A (en) * 2019-11-04 2022-12-08 エルジー・ケム・リミテッド Method for manufacturing optical modulation device
US11940694B2 (en) 2019-11-04 2024-03-26 Lg Chem, Ltd. Manufacturing method of light modulation device

Similar Documents

Publication Publication Date Title
JP2007264461A (en) Liquid crystal display element
KR20040010395A (en) In-plane switching liquid crystal display with compensation film
JP2009229894A (en) Twisted vertical alignment type liquid crystal display device
JP3684398B2 (en) Optically compensated splay mode liquid crystal display
JP2014095756A (en) Image display device and liquid crystal lens
JP2008020771A (en) Liquid crystal display
JP2006313342A (en) Ocb mode liquid crystal display device
JP2005062724A (en) Optical phase difference plate and liquid crystal display
JP5529709B2 (en) Liquid crystal display
KR20120133927A (en) Display device and method for manufacturing the same
US20040080695A1 (en) VVA mode liquid crystal display
JP2006106434A (en) Liquid crystal display element
JP4632252B2 (en) Vertical alignment type super twist liquid crystal display element and manufacturing method thereof
WO2010098059A1 (en) Liquid crystal display device and manufacturing method therefor
JP4241364B2 (en) Liquid crystal display device and electronic device
JP2010039281A (en) Vertically oriented liquid crystal display
JP2009036890A (en) Liquid crystal display device
JP2006301466A (en) Liquid crystal display device
JP2003057684A (en) Liquid crystal display device having stairs type driving signal
KR100735272B1 (en) Optically compensated bend mode lcd
JP5328246B2 (en) Liquid crystal device and manufacturing method thereof
JP2006208531A (en) Liquid crystal display device
JP2005189476A (en) Liquid crystal display device
JP2006018116A (en) Liquid crystal display device
JP2002116463A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607