TW472328B - Damascene processing for cap layer with low temperature and low power deposition - Google Patents
Damascene processing for cap layer with low temperature and low power deposition Download PDFInfo
- Publication number
- TW472328B TW472328B TW90102283A TW90102283A TW472328B TW 472328 B TW472328 B TW 472328B TW 90102283 A TW90102283 A TW 90102283A TW 90102283 A TW90102283 A TW 90102283A TW 472328 B TW472328 B TW 472328B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- carbon
- low
- semiconductor substrate
- dielectric
- Prior art date
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
472328 五、發明說明g) '一' -- 發明領域: ,本發明與一種半導體製程中製作銅鑲嵌結構的方法有 P特別是一種在應用多孔性(Porous)低介電係數材料層 ”'冗積低溫/低功率遮蓋層於其上,以避免1 ow-k膜層在 >儿積遮蓋層時,於電漿環境下受到損傷,而有空隙產生。 發明背景:472328 V. Description of the invention g) 'One'-Field of the invention: The present invention and a method for making a copper damascene structure in a semiconductor process include P, in particular, a layer of porous low-dielectric constant material in the application of "Porous" "redundant" A low-temperature / low-power covering layer is deposited thereon to prevent the 1 ow-k film layer from being damaged under the plasma environment when there is a > covering layer, and voids are generated. BACKGROUND OF THE INVENTION:
Ik著半導體工業持續的進展,在超大型積體電路 (ULSI)的開發與設計中’為了符合高密度積體電路之設計 趨勢’各式元件之尺寸皆降至次微米以下。並且由於元件 不斷的縮小’許多在傳統技術中可忽略的缺陷或問題,在 ^細微化的製作過程中,皆會產生相對的放大效應,使得 &個製程條件更趨嚴苛,而相關的半導體製程亦更為複 雜。 —般而言,在積體電路中為了有效的隔離導電元件, 往往會應用大量的介電材料,以產生所需的絕緣效果。是 以,,傳統的半導體製程中,大量的使用氧化矽、氮化 矽、氮氧化矽等材料,來構築積體電路中所需的介電層。 然而,隨著製程尺寸不斷的縮小,金屬圖案會以更密集的 方式排列,進而導致整個積體電路中的寄生電容大幅增 加。如此一來,會使所製作元件的操作特性受到不當的影Ik continues the progress of the semiconductor industry. In the development and design of ultra large integrated circuits (ULSI), ‘in order to meet the design trend of high-density integrated circuits’, the size of various components has been reduced to sub-micron. And due to the continuous shrinking of components, 'many defects or problems that can be ignored in traditional technology, in the process of subtle production, there will be relative amplification effects, making the process conditions more stringent, and related Semiconductor processes are also more complex. In general, in order to effectively isolate conductive elements in integrated circuits, a large amount of dielectric materials are often applied to produce the required insulation effect. Therefore, in the traditional semiconductor manufacturing process, a large amount of materials such as silicon oxide, silicon nitride, and silicon oxynitride are used to construct the dielectric layer required in the integrated circuit. However, as process sizes continue to shrink, metal patterns are arranged in a more dense manner, which in turn leads to a significant increase in parasitic capacitance in the entire integrated circuit. As a result, the operating characteristics of the produced components will be affected improperly.
第4頁 472328 五、發明說明(2) 響’而降低了積體電路的使用效能與壽命 為了 米的半導 k)來構成 電係數。 於金屬圖 將面臨更 中,針對 中,可藉 積法進行 介電係數 中時,亦 降低寄生 體製程中 所需的介 然而,對 案將更加 嚴格的要 了多孔性 著使用高 沉積,而 材料。但 遭遇了相 電容的 ,廣泛 電層與 即將到 的密集 求。為 低介電 分子聚 製作出 是,在 當多的 影響, 的應用 絕緣層 來 0. 10 ,是以 此,在 係數材 合物來 介電係 運用這 困難。 在目前 了低介 ,以提 微米以 其間絕 _目前的 料進行 製作、 數約2. 些多孔 最小尺規約0. 13微 電係數的材料(1 〇 w 供約略小於3的介 下的製程而言,由 緣材料的介電係數 半導體相關領域 了大量的研究。其 或是以化學氣相沉 〇〜2. 5的多孔性低 性材料於鑲嵌製程 以目前製作鑲嵌 程為例,往往會先提 上’已事先定義了各 依序在半導體底材上 材料。並使用電漿增 性介電材料上,沉積 遮蓋層。然後,藉著 蝕刻製程,可定義開 化電漿(ashing)程序 後’可藉著使用化學 連線於多孔性低介電係數材 供一半導體底材,並且在半 種材料層與各式功能元件。 沉積银刻停止層與多孔性低 強化學氣相沉積法(pECVD) 諸如氮化石夕、或碳化石夕等材 對遮蓋層與多孔性介電材料 口圖案於其中。一般而言, ’月除位於開口表面的微粒 電鍍(electrical chemical 料中的製 導體底材 接著,可 介電係數 1在多孔 料之CMP 進行微影 在使用灰 或碎屑Page 4 472328 V. Description of the invention (2) The response of the integrated circuit is reduced and the use efficiency and lifetime of the integrated circuit are reduced to form a semiconducting k). The metal map will be more focused, and the dielectric coefficient can be reduced by the product method, which will also reduce the dielectric required in the parasitic process. However, the case will be more stringent, and the use of high deposition is required. material. However, it encountered phase capacitance, extensive electrical layers, and upcoming dense demands. It is produced for the low-dielectric molecular polymerization. The influence of the insulation layer is 0.10. Therefore, it is difficult to apply the dielectric material to the dielectric system. In the current low-media, in order to improve the micron with the current materials to make, the number of about 2. Some porous minimum ruler about 0.1 13 microelectric coefficient of material (10 watts supply process of about less than 3 and In other words, there is a lot of research in the related field of dielectrics of semiconductors based on dielectric materials. It may be a low-porosity material with a chemical vapor deposition of 0 ~ 2.5. The words “the materials on the semiconductor substrate have been defined in advance. A masking layer is deposited on the plasma-enhanced dielectric material. Then, after the etching process, the ashes can be defined” It is possible to supply a semiconductor substrate by using a chemical connection to a porous low-dielectric constant material, and in a half-material layer and various functional elements. Deposition of a silver etch stop layer and porous low-strength chemical vapor deposition ) Materials such as nitrided stone or carbonized stone are used for the masking layer and the porous dielectric material port pattern. Generally speaking, 'except the particle plating (electrical chemical Then the substrate body, the dielectric constant can be 1 in the lithography using the CMP of porous ash or debris
第5頁 472328 五、發明說明(3) plating; ECP)製程,沉積銅層於開口圖案中。隨後,萨 著進行一化學機械研磨(CMP)製程,移除多餘的銅金屬^ 料後’便可定義出位於開口圖案令的銅鑲嵌結構。 值得注意的是,對於多孔性低介電係數材料來說,當 其處於電漿環境中時,很容易受到離子撞擊的傷害,而& 整體結構變得極為脆弱。以上述的銅鑲嵌製程為^,在使 用PECVD製程沉積遮蓋層時,因為整個多孔性介電声曝 露於電漿環境中,是以其材料結構會受到相當程度的傷J 害。如此一來,在後續的化學機械研磨程序中,ς可能因 為施加於此多孔性介電層上的應力不平均,而導致其^生 大ϊ的空隙(voids) ’並使製程良率下降。 請參照第一圖,其中顯示了使用氮化矽材料來作為上 述遮蓋層之相關照片。由於在沉積氮化矽膜層時,往往a 通入流量約4000 sccm的〇3氣體,並在溫度約4〇〇它 疋 頻功率約6 0 0瓦的環境中進行沉積。是以過高的功率以及 大量的氨氣,皆會加重對多孔性低介電係數材料的傷金。 因此,如第—圖中所顯示,纟完成化學機械研磨程序 用來隔離鋼鑲嵌連線2的多孔性低介電係數材料声4 往往會產生許多空隙6,而降低了製程的良率。s — 發明目的及概述:Page 5 472328 V. Description of the invention (3) plating; ECP) process, depositing a copper layer in the opening pattern. Subsequently, a chemical-mechanical polishing (CMP) process was performed in Saskatchewan to remove the excess copper metal material 'to define the copper damascene structure at the opening pattern. It is worth noting that, for porous low dielectric constant materials, when they are in a plasma environment, they are easily damaged by ion impact, and the overall structure becomes extremely fragile. Taking the above copper damascene process as an example, when the PECVD process is used to deposit the cover layer, the entire porous dielectric sound is exposed to the plasma environment, so the material structure will be damaged to a considerable degree. As a result, in the subsequent CMP process, the stress may be unevenly applied to the porous dielectric layer, which may cause voids ′ and reduce the process yield. Please refer to the first picture, which shows a photo related to the use of a silicon nitride material as the covering layer. Because when depositing a silicon nitride film layer, a is often introduced with a gas of about 0,03 sccm, and is deposited in an environment with a temperature of about 400 and a frequency of about 600 watts. Therefore, too high power and a large amount of ammonia gas will aggravate the damage to porous low dielectric constant materials. Therefore, as shown in the first figure, the completion of the CMP process to isolate the porous low-dielectric constant material 4 of the steel damascene connection 2 often results in many voids 6 and reduces the yield of the process. s — purpose and summary of the invention:
472328472328
、本發明=主要目的在提供一種製作銅鑲嵌結構之 法,其中藉著使用PECVD程序在低溫、低功率條件下, 含碳氧化物來作為遮蓋層使用’可達到避免在多孔性低 電係數材料層中產生空隙缺陷之目的。 _ 本發 法。首先 性材料層 率約50至 電漿化學 上,以作 材料層, 中,且曝 保護下方 害。隨後 口圖案中 層上方之 材上製造鑲嵌結構之方 體底材上,且形成多孔 於溫度約ίο至70 t且功 (CxHy)z)氣體,並進行 氧化層於多孔性材料層 刻含石反氧化層與多孔性 ,以形成開口圖案於其 。其中,含碳氧化層可 在CMP程序中受到損 層表面上,且填充於開 序以移除位於含碳氧化 結構於開口圖案中。 明揭露了一種在半導體底 ’形成儀刻停止層於半導 於蝕刻停止層上。然後, 150瓦的環境中,通入(Si 氣相沉積法,而形成含碳 為遮蓋層使用。接著,I虫 直至抵達蝕刻停止層為止 露出部份半導體底材表面 之多孔性材料層,以避免 ’沉積導電層於含碳氧化 。再進行化學機械研磨程 部份導電層,並定義鑲嵌 發明詳細說明 請參照第二圖,首先提供一具<100>晶向之單晶矽底 材10。一般而言,其它種類之半導體材料,諸如坤^匕鎵-(gallium arsenide)、鍺(germanium)或是位於絕緣層上 之矽底材(sUicon on insulator, S0I)皆可作為此&的The present invention = the main purpose is to provide a method of making copper mosaic structures, in which the use of PECVD procedures at low temperatures and low power conditions, using carbon oxides as a masking layer, can be avoided in porous low electrical coefficient materials The purpose of creating void defects in the layer. _ This method. Firstly, the material layer ratio is about 50 to plasma chemistry, which is used as the material layer, and it is exposed to protect the bottom damage. Subsequently, a mosaic substrate is manufactured on the material above the middle layer of the mouth pattern, and a porous gas is formed at a temperature of about ˜70 t and the work (CxHy) z gas is formed, and an oxide layer is etched on the porous material layer to contain a stone reaction. An oxide layer and a porosity to form an opening pattern thereon. Among them, the carbon-containing oxide layer can be damaged on the surface of the CMP process and filled in the sequence to remove the carbon-containing oxide structure in the opening pattern. The invention discloses a method for forming an etch stop layer on a semiconductor substrate on a semiconductor conductive stop layer. Then, in a 150-watt environment, Si vapor deposition was used to form a carbon-containing layer for use as a cover layer. Next, until the etch stop layer was reached, a portion of the porous material layer on the surface of the semiconductor substrate was exposed. Avoid 'depositing the conductive layer with carbon-containing oxidation. Then perform part of the chemical mechanical polishing process on the conductive layer and define the inlay. For detailed descriptions, please refer to the second figure. First, provide a single crystal silicon substrate with <100> crystal orientation. 10 In general, other types of semiconductor materials, such as gallium arsenide, germanium, or sUicon on insulator (S0I) on the insulation layer can be used as this &
第7頁 472328Page 7 472328
性對 可選 :導體底材10使用。另外’由於半導體底材表面的特 本發明而s ’並不會造成特別的影日向,是以其晶 擇<110〉或<111〉。 一般而έ ’、在半導體底材10上往往已事先定義了積 電路所需的各式主動元件、被動元件、與週圍電路等等。 換言之,在此半導體底材10的表面上,已具有各式 功能層與材料層。是以,可先在半導體底材10上形成一蝕 刻停止層1 2,以便保護下方的各式元件或材料層。接著, 可沉積低介電係數材料層1 4於蝕刻停止層1 2上。盆中, 選擇諸如BD、C〇RAL、SiLK、Flare、HSQ、Nan〇gl;ss 等;_ 有低介電,(K值)的材料來製作,並且在較佳實施例中可、 選擇使用高分子或化學氣相沉積製程來形成多孔性材料, 以構成此處的低介電係數材料層1 4。 接著’可使用電漿增強化學氣相沉積(PECVD)程序, 沉積含碳氧化層(carbon-doped oxide)16於低介電係數材 料層14上,以作為遮蓋層使用。其中,可在溫度約1〇'至7〇 °C、且高頻功率約50至150瓦的環境中,通入流量約5〇至 80 0 seem 的(Si(CxHy)z)與 30 至 6 0 0 sccn^5N20 或 〇2 氣體, 而在低介電係數材料層14表面上,沉積厚度約5〇〇至1〇〇〇 埃的含碳氧化層1 6。至於’在較佳實施例中,則可提供溫 度約1 7 °C、且高頻功率約70瓦的環境,並通入三甲基石夕二 (Si(CH3)3)與Μ或A氣體,來進行含碳氧化材料的沉"積。疋Optional: Conductor substrate 10 is used. In addition, 's' does not cause a special shadow direction due to the special invention of the surface of the semiconductor substrate, and its crystal choice is < 110> or < 111>. Generally, various active components, passive components, peripheral circuits, and the like required for integrated circuits are often defined in advance on the semiconductor substrate 10. In other words, on the surface of the semiconductor substrate 10, there are already various functional layers and material layers. Therefore, an etch stop layer 12 may be formed on the semiconductor substrate 10 first, so as to protect various components or material layers below. Then, a low-k material layer 14 may be deposited on the etch stop layer 12. In the pot, choose materials such as BD, CORAL, SiLK, Flare, HSQ, Nanogl; ss, etc .; _ materials with low dielectric, (K value) to make, and in the preferred embodiment, can be selected and used A polymer or chemical vapor deposition process is used to form a porous material to form the low-dielectric-constant material layer 14 here. Next, a plasma enhanced chemical vapor deposition (PECVD) process can be used to deposit a carbon-doped oxide 16 on the low-dielectric-constant material layer 14 for use as a cover layer. Among them, in an environment where the temperature is about 10 ′ to 70 ° C and the high-frequency power is about 50 to 150 watts, (Si (CxHy) z) and 30 to 6 with a flow rate of about 50 to 80 0 seem 0 0 sccn ^ 5N20 or 0 2 gas, and on the surface of the low dielectric constant material layer 14, a carbon-containing oxide layer 16 having a thickness of about 500 to 1,000 angstroms is deposited. As for 'in the preferred embodiment, it can provide an environment with a temperature of about 17 ° C and a high-frequency power of about 70 watts, and pass in trimethylsiloxane (Si (CH3) 3) and M or A gas to Carry out deposition of carbon-containing oxidizing materials. Bolt of cloth
472328 --- 五、發明說明(6) 不施加低頻功率,而可進 料層1 4可能的傷害。 f且,在沉積製程進行時,並 步的降低對下方低介電係^ 接 碳氧化 達蝕刻 般而言 形成光 再利用 數材料 案定義 除殘留 著,請參 層1 6與低 停止層1 2 ’在定義 阻層,並 光阻層作 層1 4進行 完後,可 於開口圖 照第三 介電係 為止, 上述開 轉移光 為钱刻 触刻程 將光阻 案表面 圖,可 數材料 而定義 口圖案 罩上開 罩冪,序,而 層移除 的微粒 藉由傳統的微影技術,對含 層1 4進行蝕刻程序,直至抵 複數個開口圖案於其中。一 時’可先在含碳氧化層16上 口圖案至光阻層中。接著, 對含碳氧化層1 6與低介電係 疋義所需的開口圖案。在圖 ’而進行電漿灰化程序而清 與碎屬_。 口圖案的程序後,接著可沉積導電 ' Λ ^ a 6上,且填充於上述複數個開口圖幸 舨而s ,可藉著使用諸如濺鍍程序等物二 法⑽)、化學氣相沉積法⑽)或是其它合適的=程匕積 序’而形成金屬材料於開口圖案中,並構成此處 ‘ 18。以銅製程為例’則可先形成銅晶種層於開口圖:曰 壁與底部上,再將整個半導體底材1〇沉浸於硫酸鋼側 中,以進行化學電鑛(ECP)反應,而形成戶斤需的鋼材料夜 然後,如第四圖所示 可對半導體底材10進行化學機 472328472328 --- 5. Description of the invention (6) No low-frequency power is applied, but the possible damage of the feed layer 1 4 can be achieved. f. While the deposition process is in progress, the reduction is performed step by step on the low-dielectric system at the bottom. The carbon is used to oxidize the carbon. It is generally used to form a photo-recyclable material. In addition to the remaining materials, please refer to layer 16 and low stop layer 1. 2 'After defining the resist layer and using the photoresist layer as the layer 1 4, the opening pattern can be irradiated with the third dielectric system. The mask pattern is defined by the material and the mask is opened, and the particles removed by the layer are subjected to an etching process on the layer 14 by the traditional lithography technology, until a plurality of opening patterns are in it. At one time, the carbon-containing oxide layer 16 may be first patterned into the photoresist layer. Next, a desired opening pattern is defined for the carbon-containing oxide layer 16 and the low dielectric system. In the figure, the plasma ashing process is performed to clear and break the genus. After the opening pattern procedure, a conductive 'Λ ^ a 6 can be deposited and filled in the above-mentioned plurality of opening patterns. For example, by using a method such as a sputtering process (method 2), chemical vapor deposition method, etc. Ii) or other suitable = process sequence to form a metal material in the opening pattern and form the '18 here. Taking the copper process as an example, a copper seed layer can be formed on the opening diagram: on the wall and the bottom, and then the entire semiconductor substrate 10 is immersed in the sulfuric acid steel side to perform the chemical electricity ore (ECP) reaction, and After forming the steel material required by the household, then, as shown in the fourth figure, the semiconductor substrate 10 can be subjected to a chemical machine 472328.
械研磨程序(CMP),以移除位於含碳氧化層16上方的部份 導電層1 8,並定義鑲嵌結構2〇於開口圖案中。一般而言, 所形成的鑲嵌結構20除了可作為金屬連線圖案外,亦^根 據需要作為介電層間導電連線(via)、或作為導電插塞 (plug)使用。g然,在此化學機械研磨程序中,亦可選擇 性2移除含碳氧化層丨6,直到低介電係數材料層丨4上表面 ,,出來為止。或是,藉著調整研磨程序的時間,而使含 碳氧化層1 6的厚度減少,以符合製程所需。 值知 >主意的,由於在上述沉積含碳氧化層丨6的步驟 中,祇使用了約數十瓦的高頻功率,且低頻功率則控制在 ^瓦。是以,整個沉積過程將不會對下方的多孔性低介電 ,數材料,造成嚴重的傷害。一旦造成了傷害,將會使低 介電係數膜層在CMP程序後產生空隙。更者,由於在此沉 積程序中,是通入N2〇反應氣體且反應溫度僅約10至7〇 C,是以相較於傳統沉積氮化矽、碳化矽膜層時所用的 ΜΙ以及伴隨的高溫製程(約4〇〇它),其對於低介電係數材 料層的傷害將可減至最低。如此一來,在後續的化學機械 二磨程序中’將可減低多孔性低介電係數材料產生空隙二 陷的機會’而達到提昇整體製程良率的目的。 、 故 此外’要特別指出的,使用低溫/低功率沉積的含石炭 氧化材料’其所具有的介電係數僅約2.8〜2.9。是以,^ 較於介電係數約7. 0的氮化矽、或是約4. 5~5. 0的碳化矽來A mechanical polishing process (CMP) to remove a portion of the conductive layer 18 above the carbon-containing oxide layer 16 and define a damascene structure 20 in the opening pattern. In general, the formed damascene structure 20 can be used not only as a metal connection pattern, but also as a conductive via between dielectric layers or a conductive plug as needed. g. In this CMP process, it is also possible to selectively remove the carbon-containing oxide layer 6 until the upper surface of the low-dielectric-constant material layer 4 comes out. Or, by adjusting the time of the grinding process, the thickness of the carbon-containing oxide layer 16 can be reduced to meet the requirements of the manufacturing process. It is worth knowing that, since in the step of depositing the carbon-containing oxide layer described above, only a few tens of watts of high-frequency power is used, and the low-frequency power is controlled at ^ watts. Therefore, the entire deposition process will not cause serious damage to the porous low-dielectric material below. Once the damage is caused, the low-dielectric-constant film layer will be voided after the CMP process. Furthermore, because in this deposition process, a N2O reaction gas is passed in and the reaction temperature is only about 10 to 70C, it is compared with the M1 used in the conventional deposition of silicon nitride and silicon carbide film layers and the accompanying The high temperature process (about 400 times) will minimize the damage to the low dielectric constant material layer. In this way, in the subsequent chemical-mechanical second-milling process, ‘reduced porosity of porosity and low-dielectric constant material ’s void dimples’ will be achieved to achieve the goal of improving overall process yield. Therefore, in addition, 'it should be particularly pointed out that the use of low temperature / low power deposition of carbon-containing oxide materials' has a dielectric constant of only about 2.8 to 2.9. That is, ^ is more than silicon nitride with a dielectric constant of about 7.0, or silicon carbide of about 4.5 to 5.0.
第10頁 472328 五、發明說明(8) ΐίΐΐ?氧化物顯然可更進-步的降低積體電路甲寄生雷 ::題’而可增進多孔性低介電係: 二,由於在進行沉積程序時,僅需大约室溫的 較低的功率消|€ ’是以在利用本發明的方法時,將可 的降低製程的花費,而達到節省成本的目的。 本發明雖以-較佳實例闡明如上,然其並非用以 ί發明精神與發明實體’僅止於此-實施例爾。例如,在 本發明中雖^用含碳氧化材料層於單一鎮嵌製程中q曰 對熟悉此:?二::當可輕易了解此種使用含碳氧化材 料來構成Ί : 法’亦可運用於雙重鑲嵌或其它相關Page 10 472328 V. Description of the invention (8) 氧化物 ίΐΐ? Obviously, the oxide can further reduce the integrated circuit A parasitic mine ::: title and improve the porosity of the low dielectric system: Second, because the deposition process is in progress At this time, only a lower power consumption of about room temperature is needed. When the method of the present invention is used, the cost of the process can be reduced, and the purpose of saving costs is achieved. Although the present invention is exemplified by the above-mentioned preferred examples, it is not used for the purpose of inventing the spirit of the invention and the entity of the invention ', but only to this embodiment. For example, in the present invention, although a carbon-containing oxide material layer is used in a single embedding process, q is familiar with this:? 2 :: When it is easy to understand the use of carbon-containing oxidizing materials to form Ί: Method ’can also be applied to double inlay or other related
製程内。^ ^ / ΊΓ +脫離本發明之精神與範圍内所作之佟 改’均應包含在下述之申請專利範圍内。 LWithin the process. ^ ^ / ΊΓ + Modifications made without departing from the spirit and scope of the present invention should all be included in the scope of patent application described below. L
第11頁 472328 圖式簡單說明 藉由以下詳細之描述結合所附圖示,將可輕易的了解 上述内容及此項發明之諸多優點,其中: 第·一圖為半導體晶片之截面圖’顯不根據傳統技術在 定義鑲嵌結構於多孔性低介電係數材料層中時,可能產生 的空隙缺陷; 第二圖為半導體晶片之截面圖,顯示根據本發明製程 以高溫、高功率條件沉積含碳氧化層於低介電係數材料層 上以作為遮蓋層之步驟; 第三圖為半導體晶片之截面圖,顯示根據本發明製程 沉積導電層於開口圖案中之步驟;及 第四圖為半導體晶片之截面圖,顯示根據本發明使用 化學機械研磨程序定義鑲嵌結構之步驟。Page 472328 Brief description of the drawings The above detailed description and the many advantages of this invention can be easily understood through the following detailed description combined with the attached drawings, of which: The first figure is a cross-sectional view of a semiconductor wafer. According to the conventional technology, void defects may be generated when the mosaic structure is defined in the porous low-dielectric-constant material layer. The second figure is a cross-sectional view of a semiconductor wafer, which shows that the carbon-containing oxide is deposited under high temperature and high power conditions according to the process of the present invention. The third layer is a cross-sectional view of a semiconductor wafer showing a step of depositing a conductive layer in an opening pattern according to the process of the present invention; and the fourth image is a cross-section of a semiconductor wafer Figure showing the steps of defining a mosaic structure using a CMP process according to the present invention.
第12頁Page 12
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90102283A TW472328B (en) | 2001-02-02 | 2001-02-02 | Damascene processing for cap layer with low temperature and low power deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW90102283A TW472328B (en) | 2001-02-02 | 2001-02-02 | Damascene processing for cap layer with low temperature and low power deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
TW472328B true TW472328B (en) | 2002-01-11 |
Family
ID=21677213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90102283A TW472328B (en) | 2001-02-02 | 2001-02-02 | Damascene processing for cap layer with low temperature and low power deposition |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW472328B (en) |
-
2001
- 2001-02-02 TW TW90102283A patent/TW472328B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI269404B (en) | Interconnect structure for semiconductor devices | |
CN100419972C (en) | Post-etch photoresist strip with O2 and NH3 for organosilicate glass low-K dielectric etch applications | |
JP5123924B2 (en) | Manufacturing method of semiconductor integrated circuit device | |
US7871923B2 (en) | Self-aligned air-gap in interconnect structures | |
KR100810788B1 (en) | Method of etching dual damascene structure | |
JP5482881B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP3228183B2 (en) | Insulating film, semiconductor device having the insulating film, and method of manufacturing the same | |
US20090001587A1 (en) | Ta-TaN SELECTIVE REMOVAL PROCESS FOR INTEGRATED DEVICE FABRICATION | |
TW201539652A (en) | Integrated metal spacer and air gap interconnect | |
JP2001223269A (en) | Semiconductor device and manufacturing method therefor | |
KR20150014387A (en) | Dry etching method for metallization pattern profiling | |
JP2006128542A (en) | Method for manufacturing electronic device | |
TW201834183A (en) | Airgaps to isolate metallization features | |
WO2007043634A1 (en) | Method for manufacturing multilayer wiring | |
JP2005260060A (en) | Resist removing apparatus and resist removing method, and semiconductor device manufactured by using the method | |
US6743725B1 (en) | High selectivity SiC etch in integrated circuit fabrication | |
JP4173454B2 (en) | Manufacturing method of semiconductor integrated circuit device | |
TW472328B (en) | Damascene processing for cap layer with low temperature and low power deposition | |
JP2007266291A (en) | Method for manufacturing semiconductor device, plasma treatment device and storage medium | |
US7338897B2 (en) | Method of fabricating a semiconductor device having metal wiring | |
JP2006073612A (en) | Resist removing method | |
JP2005005697A (en) | Manufacturing method of semiconductor device | |
JP2004342873A (en) | Semiconductor device and its manufacturing method | |
TWI254986B (en) | Method for fabricating a dual damascene and polymer removal | |
JP2003209169A (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |