TW472150B - Improved test method of test apparatus - Google Patents

Improved test method of test apparatus Download PDF

Info

Publication number
TW472150B
TW472150B TW89112670A TW89112670A TW472150B TW 472150 B TW472150 B TW 472150B TW 89112670 A TW89112670 A TW 89112670A TW 89112670 A TW89112670 A TW 89112670A TW 472150 B TW472150 B TW 472150B
Authority
TW
Taiwan
Prior art keywords
measurement
test
signal
effect
signal transmission
Prior art date
Application number
TW89112670A
Other languages
Chinese (zh)
Inventor
Jau-Chin Su
Yu-Tsang Chen
Yi-Shr Tzeng
Original Assignee
Jau-Chin Su
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jau-Chin Su filed Critical Jau-Chin Su
Priority to TW89112670A priority Critical patent/TW472150B/en
Application granted granted Critical
Publication of TW472150B publication Critical patent/TW472150B/en

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)

Abstract

The present application is an improved test method of test apparatus. Because the test machine is expensive due to the high precision of the test machine, the present application provides a test method capable of calibrating the automatic test equipment (ATE) interface. By using the digital signal skill, the parasitic effect on the test path and the tiny variation of the signal source are completely removed, thereby obtaining the intrinsic response of the object under test. Because the quality of the device can be easily distinguished by using this intrinsic response, the conventional test equipment with a very high precision can be replaced with test equipment with a relative low precision. In addition, because the interface is automatically calibrated, the time required for setting the machine is decreased, thereby reducing the test cost.

Description

472150 五、發明說明(1) 月ϋ吕· 本案為一種改良量測設備測量方法,使用於一量測設 備上係利用數位信號上的數學處理技巧,排除量測過程 中的寄生效應、信號源的變化等誤差源,it而提高該量測 設備的準確性,降低量測成本。 背景: 、自動貝| 儀具(Ate,Aut〇matic Test Equipment)是 2代超大型積體電路封裝測試時不可缺少的量測設備。為 月^了 2其基本特性請參考圖一之習用ATE架構示意圖,其 係包3測疋單device)14,信號源16等元 件、。由此圖中可以看出量測信號在自動測試儀具上基本會 經過(l)pogo Pln n_ 連接待測元件 15 (DUT,device under test )的接觸裝置;(2)由卩叫〇 pin連接到ATE設 備外接端子的信號傳輸線13 ; (3) ATE設備的外接端子 到1测或仏號源1 6間的信號傳輸線等元件。 由以上彳§说所必須經過的路徑可以發現,由於在信號 所經過的路徑上有寄生效應產生,因此在儀表上所觀察到 的結果因為這些寄生效應的影響,而與不連接自動測 試儀具、直接量測被測元件兩端的結果有些差距。由於這 些寄生效應僅對交流信號產生影冑,因此在直流信號的量 測亡不需特別的處理。除此以外,另一個問題是測試資料 的官理。因為當ate在實際測試時通常會是許多ATE同時測 試相同的產品,但是由於每個ATE所造成的寄生效應不472150 V. Description of the invention (1) Yuelu Lu · This case is an improved measurement device measurement method. It is used on a measurement device to use mathematical processing techniques on digital signals to eliminate parasitic effects and signal sources in the measurement process. And other error sources, it improves the accuracy of the measurement equipment and reduces measurement costs. Background: Automated test equipment (Ate, Automatic Test Equipment) is an indispensable measurement equipment for the second generation of ultra-large integrated circuit package testing. For the month 2 please refer to the schematic diagram of the conventional ATE architecture in Figure 1 for its basic characteristics. It consists of 3 components (test device 1), signal source 16 and other components. It can be seen from this figure that the measurement signal on the automatic test instrument basically passes through (l) pogo Pln n_ connected to the contact device of the device under test 15 (DUT, device under test); (2) connected by howling 〇pin Signal transmission line 13 to the external terminal of the ATE device; (3) Signal transmission line between the external terminal of the ATE device and the 1 or 16 source signal transmission line and other components. From the above 彳 § said that the path that must be passed, it can be found that because of the parasitic effect on the path that the signal passes, the results observed on the instrument are not connected to the automatic test equipment because of these parasitic effects. 2. The results of direct measurement of the two ends of the tested component are somewhat different. Since these parasitic effects only affect the AC signal, no special treatment is required for DC signal measurement. In addition, another issue is the official nature of the test data. Because when ate is actually tested, many ATEs usually test the same product at the same time, but the parasitic effects caused by each ATE are not

472150 五、發明說明(2) 同’因此每個ATE所量測的結果均會有些差距,而且每個 機台的信號源也不盡相同’如此一來會造成量測時如何判 斷好壞上的困擾。 為能簡單的說明圖一在量測時所產生的影響,我們用 圖二的等效方塊圖上的測試信號X (t) 21,輸入響應 wl (t)22 ’被測元件響應h(t)23,輸出響應¥2( t)24及輸出 響應y(t)25觀察結果來說明。由圖二:習用ATE功能方塊 圖所示的測試環境可以看出’能被觀察的輸出響應觀察結 果y (t)會受到寄生效應的影響而產生失真。其在時間領域 及s領域的關係如下。 .y(〇 = x(t) * (/) * h(t) Y(S) = X(S)-Wl(S)-H(S)-W2(S)...⑴ 如果我們直接用這個方法來進行量測,則先要利用一 個標準的被測元件進行測試,由於被測元件的響應是已知 的’因此為能獲得相同的結果,我們必須適當的調整輸入 信號使輸出的響應能與已知的結果相同,然後再進行實際 的測試。在使用這種方法進行測試時,我們必須面對的 是’必須要能精確的調整信號源來彌補寄生效應所造成的 差距’而這種細微的調整對一般便宜的設備來說是不可能 達成的,所以必須採用非常昂貴的設備來進行調整。 為能解決這些困擾現行的ATE均採用非常昂貴的p i η472150 V. Description of the invention (2) Same as 'Therefore, there will be some gaps in the measurement results of each ATE, and the signal sources of each machine are not the same'. This will cause how to judge the quality of the measurement. Trouble. In order to briefly explain the impact of Figure 1 during measurement, we use the test signal X (t) 21 on the equivalent block diagram of Figure 2 and enter the response wl (t) 22 'the response of the device under test h (t ) 23, the output response ¥ 2 (t) 24 and the output response y (t) 25 are described as observation results. From the test environment shown in Figure 2: The conventional ATE functional block diagram, we can see that the observed output response y (t) will be affected by parasitic effects and cause distortion. The relationship between the time domain and the s domain is as follows. .y (〇 = x (t) * (/) * h (t) Y (S) = X (S) -Wl (S) -H (S) -W2 (S) ... ⑴ If we use To measure using this method, you must first use a standard DUT to perform the test. Because the DUT's response is known, so in order to obtain the same result, we must appropriately adjust the input signal to make the output respond It can be the same as the known result, and then perform the actual test. When using this method for testing, we must face the problem that “the signal source must be accurately adjusted to compensate for the gap caused by parasitic effects” and this This kind of fine adjustment is impossible for generally cheap equipment, so it must be adjusted with very expensive equipment. To solve these problems, the current ATE uses very expensive pi η

D:\A\case\c60蘇朝琴\p6〇-〇〇3.ptd 第 5 頁 仍150 五、發明說明(3) driver(p〇g0)裝置(如在 在輸入端加上波形重整電路),使衝器放大器, 能降到最低,再加上使用正確 ;^ :產生的寄生效應 號源校正,使量測的結果能落二行週期性的信 產品測試。然而採用此種方法基本上有j内然後進行 信號源可能因某種因素發生改變而 項風險,那就是 效’因此-般的做法均採用如果產品:判為失 每次校正需花費許多時間1此為妒灯扠正。由於 會採用非吊叩貴的信號源來減少:勺 如果想要免除前項=== 寄生效岸所產生的的成本,則最大的挑戰是如何能將 ”有2 獲得的結果中剔除以及如何在 ^唬有楗1的變化下仍能將信號經適當的處理 本已知的被測作f卢紝里.,,.„ 交U设為原 製造成本 此一來即可大幅的降低ATE的 職是之故,本創作鑑於習知技術之缺失, 驗與研究’並一本鐵而不捨之精神,終創作出:;:改2 里測設備測量方法。以下為本案之簡要說明。 本案之目的 本案為種改良量測設備測量方法’係使用於一信號 傳輸系統,尤指一量測設備上的該信號傳輸系統,以達到 D:\A\case\c60 蘇朝琴\p60-003. ptd 472150 五、發明說明(4) 改善該信號傳輸系統量測準確度之目的。其包含下列步 驟:提供一信號傳輸系統,該信號傳輸系統上係具一待測 位置;提供一單位元件,置於該待測位置,以得到一第一 測里效應’提供一待測元件,置於該待測位置|以得到一 第二測量效應;以及對該第一測量結果與該第二測量結果 做一標準化運算,以得到一第三測量效應,並根據該第三 測量效應’以決定該待測元件之測量結果。 如上所述,其中該量測設備係為一自動量測儀具ate (A u t 〇 m a t i c T e s t E q u i p m e n t )。 如上所述,其中該量測設備係提供一測試信號進入該 信號傳輸系統,而使得—輸人信號進人該 該待出;號,以作為測量的觀察結果。 述其中5亥單位元件之增益為1。 如上所述,其中該標準 ....^ 除以該第-測量效應,㈣運亥第二測量效應 /第二里測效應即為其商數。 圖不說明: 本案得藉由下列圖示;5 1 Λ & 解: 及5羊細說明,俾得一更深入之了 圖一:習用ΑΤΕ架構示意圖。 "省用A Τ Ε功能方塊圖。 本案較佳實施例之去除 本案較佳實施例m 法不思圖 太安— 之彳s唬重整功能方塊圖。 本案較佳貫施例夕丁门^ J之不同輸入信號下的純淨脈衝 Η D:\A\case\c60 蘇朝琴\p60-〇〇3. ptd 472150 五、發明說明(5) 響應(Intrinsic Response)。 圖六:本案較佳實施例之純淨脈衝響應萃取 (Intrinsic Response Extraction)實施例一。 圖七:本案較佳實施例之純淨脈衝響應萃取 (Intrinsic Response Extraction)實施例二。 圖示中各代號代表的意義: 11 : pogo pin 12 :輸出信號傳輸線 1 3 :輸入信號傳輸線1 4 :測定單元 1 5 :待測元件1 6 :信號源 21 :測試信號x(t)22 :輸入響應wl(t) 23 :被測元件響應 24 :輸出響應w2(t)25 :輸出響應觀察結果 3 1 :單位元件3 2 :第一測量效應 33 :第二測量效應41 :校正記憶體 42 :反旋積(Deconvolution) 43 :標準信號源 44 :標準待測元件響應(DUT Gold Copy response) 45 :被側元件(DUT ’device under test) 46 :旋積(Convolution) 47 :純淨脈衝響應(Intrinsic Response) 詳細說明: 本案為一種改良量測設備測量方法,係用以改善—f 測設備上,一信號傳輸系統的傳輸效果。為達到如此的目D: \ A \ case \ c60 苏朝琴 \ p6〇-〇〇3.ptd page 5 still 150 5. Description of the invention (3) driver (p〇g0) device (such as adding a waveform reforming circuit at the input end) , So that the amplifier amplifier can be minimized, plus the correct use; ^: the parasitic effect of the source correction, so that the measurement results can fall to two lines of periodic product testing. However, using this method basically has j and then the signal source may be subject to a risk due to a change in some factors, which is effective. Therefore, the general approach is adopted if the product: it is judged that it takes a lot of time for each correction1 This is jealous. Because non-expensive signal sources will be used to reduce: If you want to avoid the cost of parasitic effect === parasitic effect, the biggest challenge is how to eliminate "2" results and how to eliminate ^ Under the change of 楗 1, the signal can still be properly processed. This known test is measured as f 纴. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, and, `,` `,,,, and ATE, ATE For this reason, in view of the lack of know-how, the author created the spirit of perseverance and research, and finally created:; The following is a brief description of the case. Purpose of this case This case is an improved measurement method for measuring equipment. It is used in a signal transmission system, especially the signal transmission system on a measurement device, to achieve D: \ A \ case \ c60 苏朝琴 \ p60-003. ptd 472150 V. Description of the invention (4) The purpose of improving the measurement accuracy of the signal transmission system. It includes the following steps: providing a signal transmission system with a position to be tested on the signal transmission system; providing a unit element to be placed in the position to be tested to obtain a first measurement effect; Placed in the position to be measured to obtain a second measurement effect; and performing a normalized operation on the first measurement result and the second measurement result to obtain a third measurement effect, and according to the third measurement effect 'to Determine the measurement result of the DUT. As described above, the measuring device is an automatic measuring instrument ate (A u t o m a t i c T e s t E q u i p m e n t). As described above, the measurement device provides a test signal to enter the signal transmission system, so that the input signal should be input to the person and should be output; the number is used as the observation result of the measurement. It is stated that the gain of the unit of 5 Hai unit is 1. As mentioned above, where the standard .... ^ is divided by the first measurement effect, the second measurement effect / second measurement effect of Yunyunhai is its quotient. The picture does not explain: This case can be illustrated by the following diagrams; 5 1 Λ & Solution: and 5 sheep detailed explanations, we can get a deeper picture. Figure 1: Schematic diagram of the conventional ΑΕΕ. " Functional block diagram of provincial A Τ E. Removal of the preferred embodiment of the present case The preferred embodiment of the present case m method is not considered. This case better implements the example of a pure pulse under different input signals at the gate ^ J: D: \ A \ case \ c60 Su Chaoqin \ p60-〇〇3. Ptd 472150 V. Description of the invention (5) Intrinsic Response . Figure 6: Intrinsic Response Extraction Example 1 of the preferred embodiment of this case. Figure 7: Intrinsic Response Extraction Embodiment 2 of the preferred embodiment of the present case. The meaning of each code in the picture: 11: pogo pin 12: output signal transmission line 1 3: input signal transmission line 1 4: measurement unit 1 5: device under test 1 6: signal source 21: test signal x (t) 22: Input response wl (t) 23: DUT response 24: Output response w2 (t) 25: Output response observation result 3 1: Unit element 3 2: First measurement effect 33: Second measurement effect 41: Calibration memory 42 : Deconvolution 43: Standard signal source 44: DUT Gold Copy response 45: DUT 'device under test 46: Convolution 47: Pure impulse response ( Intrinsic Response) Detailed description: This case is an improved measurement equipment measurement method, which is used to improve the transmission effect of a signal transmission system on the -f measurement equipment. To achieve such a goal

D:\A\case\c60蘇朝琴\p60-003. ptd 第 8 頁 472150 五、發明說明(6) =,吾人採用三步驟的量測方法。第一步驟,量測 輸路徑上的寄生效應(稱為校正量測“丨丨計以丨⑽ Measurement)。第二步驟,量測被測元件的響應(稱 兀件量測Test Measurement)。第三步驟,利用稱為為 Iterative Deconv〇iution的信號處理的技巧,將寄生 應所造成的影響從被測元件的響應中移除,而恢復成為& 想不受干擾的原始元件響應。再此值得—提的是,如果疒 號源在不同被測體間有微量的變化時,由於在這處理過^ 中,會因為在校正量測及元件量測時有相同的變化,因此 可以將此變化相互抵銷而恢復為原來的響應。在校正量測 及元件量測間的信號變化,則由於時間過短,因此可以忽 略。 為能清楚的說明以上的步驟,吾人可參考圖三:去除 寄生效應方法示意圖,並利用數學來說明這個過程。在校 正測试日’利用增益為一的放大器,即單位元件3 1所量測 的寄生效應如下: p(t) = x(i) * (ί) * b(t) * w2 (t) P(S) = X(S) Wx (S) B(S) W2 {S) 得到一第一測量效應32,即p(t)或P(S)。接著我們用相同 的信號對被測體進行測試,所得的結果如下:D: \ A \ case \ c60 苏朝琴 \ p60-003. Ptd page 8 472150 V. Description of the invention (6) =, I use a three-step measurement method. The first step is to measure the parasitic effect on the transmission path (referred to as “Measurement”). The second step is to measure the response of the component under test (called “Measure Measurement”). A three-step process that uses a signal processing technique called Iterative Deconvution to remove the effects of parasitics from the response of the device under test and restore it to the original component response that you want to be undisturbed. Here again It is worth mentioning that if there is a slight change in the source of 疒, between different subjects, because in this process ^, the same changes will occur in the calibration measurement and component measurement, so this can be changed. The changes cancel each other out and return to the original response. The signal change between the calibration measurement and the component measurement can be ignored because the time is too short. To clearly explain the above steps, I can refer to Figure 3: Remove A schematic diagram of the parasitic effect method and use mathematics to explain this process. On the calibration test day, the parasitic effect measured by the gain one amplifier, that is, the unit element 31, is as follows: p (t) = x ( i) * (ί) * b (t) * w2 (t) P (S) = X (S) Wx (S) B (S) W2 {S) get a first measurement effect 32, which is p (t) Or P (S). Then we use the same signal to test the test object, the results are as follows:

D:\A\case\c60蘇朝琴\p6〇-〇〇3. ptd 第9頁 ^15〇 五、發明說明(7) y(t) = x(t) * Wj (i) * h(t) * w2 (t) Y(S) = X(S)-W{ (S)-H(S)W2(S) 知到一第二測量效應3 3,即y (t)或Y (S)。如此一來被測體 的轉換函數可由下列方式獲得: κο= Μ ρ(0 H(S) = ns)ns) x(t) * (/) * h(t) * w2 (/) x(t) * w{ (/) * b(t) * w2 (/) _ XOS)·,#) 耶)_ΡΓ20) 當我們獲得轉換函數h (t),我們可以利用理想的測試結 果hg(t) 及以下的方法來驗證所獲得的答案。 y0(t) = h(t)^u(t) A⑺〜⑺ 由以上的數學推導,我們可以知道如果增益為一的單 位元件3 1在量測的頻率範圍内能保持非常平穩的響應,則 輪出響應yo(t)與寄生效應的輸入響應幻“)22及輸出 響應w2( t )24無關。基於以上的分析,我們將測量的系統 建立成如圖四所示的量測架構’其中標準信號源u (t) 4 3與 標準待測元件響應hg ( t ) 44經迴旋積4 6產生y g ( t ),而純淨 脈衝響應h( t )47與標準信號源u( t) 43經迴旋積產生D: \ A \ case \ c60 苏朝琴 \ p6〇-〇〇3. Ptd page 9 ^ 15〇 5. Description of the invention * w2 (t) Y (S) = X (S) -W {(S) -H (S) W2 (S) knows a second measurement effect 3 3, which is y (t) or Y (S). In this way, the transfer function of the test object can be obtained in the following ways: κο = Μ ρ (0 H (S) = ns) ns) x (t) * (/) * h (t) * w2 (/) x (t ) * w {(/) * b (t) * w2 (/) _ XOS) ·, #))) _ ΡΓ20) When we obtain the conversion function h (t), we can use the ideal test result hg (t) and The following method to verify the obtained answer. y0 (t) = h (t) ^ u (t) A⑺ ~ ⑺ From the above mathematical derivation, we can know that if the unit element 3 1 with a gain of 1 can maintain a very stable response within the measured frequency range, then The turn-out response yo (t) has nothing to do with the input response phantom 22) and output response w2 (t) 24 of the parasitic effect. Based on the above analysis, we built the measurement system into a measurement architecture as shown in Figure 4. The standard signal source u (t) 4 3 and the standard DUT respond to hg (t) 44 via the convolution product 4 6 to produce yg (t). Convolution product

D: \A\case\c60 蘇朝琴\p60-003. ptd 第10頁 472150 五、發明說明(8) y〇(t)。 在圖四:信號重整功能方塊圖中,校正 二正測量時的結果P(s),由於此量测的::用 際置測時所用的信號路徑,因此所量測到用實 際測量時所造成的影響相同。當進入實際^生f應輿實 時,我們利用儲存在校正記憶體内的資料p(i ^ ^45量挪 Y⑻進行反旋積deconvolution。利用此反^里^結果 寄生效應及輸入信號源的微量變化消除, π去將 淨脈衝響應h(t)47 (Intrinsic Resp〇nse)而獲仔—個純 證前述方法,因此先用改變信號源 试疋否旎獲得相同的結果。在這實驗中分別改變作測 上昇與下降時間。實驗結果如圖i :不同輸入心;的 淨脈衝響應(Intrinsic Response )所示。。,下的純 圖五的第一攔為輸入的信號源,此信號源除原 想方波外,還包括因信號產生器的關係所產生由丨%湘理 2M週期等不同的上昇/下降斜率及不同延遲時間的^穿到 第二攔為在校正測量時所獲得的輸出結果,此結果^ =在 校正記憶體中。第三欄為實際量測被測元件所^得的結 果。第四攔為利用反旋積方法所獲得的結果。由這些^果 :以發現,利用此方法進行寄生效應的移除,效果非常顯 著。除了以上的輸入波形本身所發生的改變,另一個需考 慮的條件是在不同的機台上,是否能獲得相同的純淨脈衝 響應。為能證明此項觀點,圖6圖7分別顯示在不同的 上所獲得的結果。 口D: \ A \ case \ c60 Su Chaoqin \ p60-003. Ptd page 10 472150 V. Description of the invention (8) y〇 (t). In the block diagram of Figure 4: Signal Reconstruction function, the result P (s) of the second positive measurement is corrected. Because of this measurement :: the signal path used in the interposition measurement, the measured time is measured with the actual measurement. The effect is the same. When it enters the real world, we use the data stored in the calibration memory p (i ^ ^ 45 to move Y 反 to perform the convolution product deconvolution. Using this inverse ^ results parasitic effects and traces of the input signal source The change is eliminated, and π is used to get the net impulse response h (t) 47 (Intrinsic RespOnse) to obtain a pure proof of the aforementioned method, so first change the signal source to test whether to obtain the same results. In this experiment Change the measured rise and fall times. The experimental results are shown in Figure i: Different input cores; Net impulse response (Intrinsic Response). The first block in the pure figure 5 below is the input signal source. This signal source is divided by In addition to the original square wave, it also includes the different rise / fall slopes and different delay times generated by 丨% Xiangli 2M cycles due to the relationship of the signal generator. The output is obtained during the calibration measurement. As a result, this result is ^ = in the calibration memory. The third column is the result obtained by actually measuring the device under test. The fourth column is the result obtained by using the inverse convolution method. From these results: to find that, Parasitic using this method The removal should be very effective. In addition to the changes in the input waveform itself, another condition to consider is whether the same pure impulse response can be obtained on different machines. In order to prove this view, Figures 6 and 7 show the results obtained on different sources.

D:\A\case\c60 蘇朝琴\p6〇-〇〇3. ptd 第11頁 47215ο 五、發明說明(9) 參考圖六:本 Response Extract 脈衝響應萃取實施 號及利用增益為一 別為理想情況下及 二攔為利用純淨脈 個圖中的第一攔可 相同信號經由不同 直接觀察第二欄的 的輸出比較起來略 很多而需調整。不 有因運算(反旋積 出與無寄生效應的 結果來做判斷。 除此以外,圖 此所獲得的信號除 雜訊,因此所得的 即如果輸入的信號 的方式將雜訊降低 測量方法,因此在 由已上的結果 的變化,可以利用 因此利用此自動校 幅的降低且用來分 案純淨脈衝響應萃取(I n t r i ο η )實施例一,以及圖七 例一。該二圖第一搁顯示的 的緩衝器所 實際信號受 衝響應萃取 以明顯的看 的機台所產 輸出結果, 有一些不同 過兩者經純 )誤差造成 輪出大致相 測量出 寄生效 方法所 出,由 生的結 則會發 ,但圖 淨脈衝 的雜訊 同,因 來的訊號 應造成得 獲得的結 於寄生效 果有顯著 現圖六的 七的則會 響應萃取 外,有寄 此很容易 1 ns i c :本案純淨 為輸入的信 ,第二欄分 測結果。第 果。由這兩 應的作用, 的不同;若 輸出與理想 因結果相差 後其結果除 生效應的輸 從所獲得的 六與圖七 本身的信 結果均採 為週期訊 為原來的 此省略此 可知,對 純淨脈衝 正的量測 析結果是 的結果是實際訊號的量測,因 號外均含有量測環境所造成的 用一般降低量測雜訊的技巧, 號,則雜訊可利用Μ週期平均 ,由於此種技巧常見於各類 技巧的證明。 於信號源的微量變化及機台間 響應萃取的技巧將訊號還原, 方法,能使測試環境的條件大 否正確的資料庫會變為唯—。D: \ A \ case \ c60 Su Chaoqin \ p6〇-〇〇3. Ptd page 11 47215ο 5. Description of the invention (9) Refer to Figure 6: The implementation number of this Response Extract impulse response extraction and the use of gain are ideal for different situations The lower and second bars use the first bar in the pure pulse. In the figure, the output of the same signal can be slightly different compared to the output of the second column. It needs to be adjusted. There is no cause calculation (inverse product and no parasitic effect to make a judgment. In addition, the signal obtained in this figure is noise-free, so the result is that if the input signal is used to reduce the noise, the measurement method, Therefore, the change in the results from the above can be used to reduce the auto-amplification and use it to separate the pure impulse response extraction (Intri ο η) of the first embodiment, as well as the first example of Figure 7. The two figures first The actual response of the buffer signal displayed on the display is extracted from the impulse response. Obviously, the output produced by the machine is different. The difference is that the two are pure.) The error causes the rotation to be roughly measured. The parasitic effect is produced by the method. The result will be sent, but the noise of the net pulse is the same, because the incoming signal should result in a significant parasitic effect. The ones in Figure 6 and 7 will respond to the extraction. It is easy to send this 1 ns ic: The case is purely an input letter, and the test results are divided in the second column. No. The effects of these two responses are different; if the output is different from the ideal cause result, the results of the elimination effect of the result are obtained from the letter 6 and figure 7 themselves. The results are taken as periodic news. The original is omitted here. The result of pure pulse positive measurement analysis is that the result is the measurement of the actual signal. Because the signal outside contains the measurement environment, the general noise reduction technique is used. No., the noise can be averaged by the M period. Because this technique is common in the proof of various techniques. Based on the signal source's minor changes and the technique of response extraction between machines, the signal can be restored. This method can make the test environment conditions correct. The database will become unique.

472150 五、發明說明(10) 基本上 上已盛行了 行的方法, 取intrinsi 器本身的些 化所造成的 方法不但可 測結果的正 本案的 因機台各介 成本能降低 線路,我們 而就貫用面 本,以減緩 因此利用一生匕 來修正量 高頻的處 詳述了如 的方法, 的高頻量 了此方法 所需的精 究如何利 生效應所 已知的 ~套能處 低測試機 越來越高 利用補償概念 很多年,但在 故在本文中, -extraction 微差距所造成 影響,並證明 以減少校正時 確性。 主要目的在研 面間不同的寄 模擬並驗證了 來講,更可降 目前測試成本 測的結果已在直流量測 理上仍缺少一個具體可 何利用純淨脈衝響應萃 來解決因為ATE測量機 測誤差及微量的信號變 的可行性’因此藉由此 確度,而且也提高了量 用量測的技巧,來消除 產生的差異,使ATE的 模擬模組及實際的測試 理寄生效應移除方法, 台製造及產品量測的成 的趨勢。 綜上所述,我們可得以 之量測設備,可以降低量二T結論:T、應用了本案 還可能提高其量測精確度。= ,但是卻不但不降低, 在運作時可以自動地進行一、應用了本案之量測設備, 的繁複。因此,本案係i ^精確的校正,可簡化人為控制 專利性具足,爰依法提出極具有市場競爭力之發明,其 不足以涵蓋本案之全部,θ利之申請,惟上述之實施例尚 ° ’疋以申請專利範圍如附。472150 V. Description of the invention (10) Basically, the method has prevailed. The method caused by the modification of the intrinsic device is not only the original result of the measurable result. Because the cost of the machine can reduce the line, we will The use of face books to slow down the use of a lifetime dagger to correct the amount of high-frequency details of the method, such as the high-frequency amount of the method required to study how to benefit the known effects ~ set of low test Machines have increasingly used the concept of compensation for many years, but in this article, -extraction caused by micro-gap has been proven to reduce the accuracy of calibration. The main purpose is to send different simulations between the research surfaces and verify it. In addition, the current test cost can be reduced. The result of DC measurement is still lacking a specific method. How can pure pulse response extraction be used to solve the problem? The feasibility of error and trace signal change 'Therefore, by this accuracy, but also improved the measurement and measurement techniques to eliminate the difference, so that the ATE analog module and the actual test theory parasitic effect removal method, Taiwanese manufacturing and product measurement trends. In summary, the available measurement equipment can reduce the quantity T. Conclusion: T, the application of this case may also improve its measurement accuracy. =, But it is not only not reduced, it can be performed automatically during operation. 1. The measurement equipment applied in this case is complicated. Therefore, this case is an accurate correction, which can simplify the artificial control of patentability, and propose a highly competitive invention according to law, which is not enough to cover all the cases and applications of θ. However, the above-mentioned embodiment is still ° 疋The scope of patent application is attached as attached.

472150 五、發明說明(11) 參考資料: [1 ] Chauchin Su, Yue-Tsang Chen, Shyh-Jye Jou and Yuan-Τζυ Ting, "Metrology for Analog Module Testing Using Analog Testability Bus", 1996 Infl Conf. On Computer Aided Design, San Jose, CA, Nov. 1996, pp. 594-599.472150 V. Description of the invention (11) References: [1] Chauchin Su, Yue-Tsang Chen, Shyh-Jye Jou and Yuan-Τζυ Ting, " Metrology for Analog Module Testing Using Analog Testability Bus ", 1996 Infl Conf. On Computer Aided Design, San Jose, CA, Nov. 1996, pp. 594-599.

[2] Chauchin Su, Yue-Tsang Chen and Shyh-Jye Jou, "Parasitic Effect Removal for Analog Measurement in P1149.4 Environment," Proc. 1997 Infl Test Conference, Washington DC, Nov. 1997, pp. 499-508.[2] Chauchin Su, Yue-Tsang Chen and Shyh-Jye Jou, " Parasitic Effect Removal for Analog Measurement in P1149.4 Environment, " Proc. 1997 Infl Test Conference, Washington DC, Nov. 1997, pp. 499- 508.

[3] Chauchin Su and Yue-Tsang Chen and Shyh-Jye Jou, "Intrinsic Response for Analog Module Testing Using Analog Testability Bus", 1st revision by ACM TODAES.[3] Chauchin Su and Yue-Tsang Chen and Shyh-Jye Jou, " Intrinsic Response for Analog Module Testing Using Analog Testability Bus ", 1st revision by ACM TODAES.

[4] Yue-Tsang Chen and Chauchin Su, "Analog Module Metrology Using MNABST-1 P1149.4 Test Chip", 7th Asia Test Symposium, Singapore, Dec. 1998.[4] Yue-Tsang Chen and Chauchin Su, " Analog Module Metrology Using MNABST-1 P1149.4 Test Chip ", 7th Asia Test Symposium, Singapore, Dec. 1998.

D:\A\case\c60蘇朝琴\p60-003.ptd 第 14 頁D: \ A \ case \ c60 苏朝琴 \ p60-003.ptd page 14

Claims (1)

472150 六、申請專利範圍 測 1. 一種改良量測設備測量方法,係使用於一信號傳輸系 統,尤指一量測設備上的該信號傳輸系統,用以改善 量準確度,其包含下列步驟: 提供一信號傳輸系統,該信號傳輸系統上係具一待測 位置; 測 提供一單位元件,置於該待測位置,以得到一第一 量效應; 測 提供一待測元件,置於該待測位置,以得到一第二 量效應;以及 對^第一測量結果與該第二測量結果做一標準化運 以 * 一二::到—第三測量效應’並根據該第三測量效應, 決疋该待測元件之測量結果。 φV ;fa # #,J ^ ^ ^ ^ > 其中S亥H:測設備係戽一白氣i T t F 、為 自動里測儀具ATE (Automatic i es t tqulpment ) 〇 3. 如申請專利範圍篦9 &、, 其中該量測設備係提供::,改良量測設備測量方法’ 而使得一輸入信號進兮=忒仏號進入該信號傳輸系統, 一輸出信號,以作A $,丨Γ二測位置,並由該待測位置輪出 , 丄 為,則1的觀致έ士里 4. 如申請專利範圍第1項所 $、、σ 其中該單位元件之增益為丨所述之改良量測設備測量方法, 5 _如申5青專利範圍第1項舶、、 其中該標準化運算,在脸▲述之改良量測設備測量方法’ 效應。 ,、夺該第二测量效應除以該第一測量472150 VI. Application for Patent Scope Measurement 1. An improved measuring device measurement method is used in a signal transmission system, especially the signal transmission system on a measurement device, to improve the measurement accuracy, which includes the following steps: A signal transmission system is provided, and the signal transmission system is provided with a position to be tested; a unit element is provided at the test position to obtain a first quantity effect; a test element is provided at the test position Measure the position to obtain a second measurement effect; and standardize the first measurement result and the second measurement result to determine the first measurement result and the second measurement result.测量 The measurement result of the DUT. φV ; fa # # , J ^ ^ ^ ^ > Among them, HH: the measuring equipment is a white gas i T t F, which is an automatic measuring instrument ATE (Automatic i es t tlplpment) 〇 3. If applying for a patent The range is 篦 9 &, where the measurement equipment provides ::, Improve the measurement method of the measurement equipment so that an input signal enters the signal transmission system, and an output signal is used as A $,丨 Γ the second measurement position, and the position to be tested is rotated out, 丄 is, then the view of 1 is 4. As described in the scope of patent application No. 1, $ ,, σ, where the gain of the unit element is described in 丨The improved measuring device measurement method, such as the first item in the scope of the patent application of the 5th Patent, where the standardized operation is described in the face of the improved measuring device measurement method 'effect. , And divide the second measurement effect by the first measurement 472150472150 D:\A\case\c60蘇朝琴\p60-003. ptd 第16頁D: \ A \ case \ c60 苏朝琴 \ p60-003. Ptd page 16
TW89112670A 2000-06-28 2000-06-28 Improved test method of test apparatus TW472150B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89112670A TW472150B (en) 2000-06-28 2000-06-28 Improved test method of test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89112670A TW472150B (en) 2000-06-28 2000-06-28 Improved test method of test apparatus

Publications (1)

Publication Number Publication Date
TW472150B true TW472150B (en) 2002-01-11

Family

ID=21660214

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89112670A TW472150B (en) 2000-06-28 2000-06-28 Improved test method of test apparatus

Country Status (1)

Country Link
TW (1) TW472150B (en)

Similar Documents

Publication Publication Date Title
TWI322497B (en) Improved calibration technique for measuring gate resistance of power mos gate device at wafer level
US8862426B2 (en) Method and test system for fast determination of parameter variation statistics
US7954080B2 (en) Method and apparatus for de-embedding on-wafer devices
DE102005055836B4 (en) Performance test plate
CN113985244B (en) De-embedding method and system based on transmission line piece and open circuit piece
Bhattacharya et al. A DFT approach for testing embedded systems using DC sensors
Shvetsov-Shilovskiy et al. Automated I–V measurement system for CMOS SOI transistor test structures
TW472150B (en) Improved test method of test apparatus
Reiman et al. Practical methodology for the extraction of SEED models
CN105527596B (en) A kind of wafer acceptance testing board pressurization calibration method
Van Heijningen et al. A design experiment for measurement of the spectral content of substrate noise in mixed-signal integrated circuits
US20030234658A1 (en) System and method for testing integrated circuits by transient signal analysis
Bhunia et al. Defect oriented testing of analog circuits using wavelet analysis of dynamic supply current
JP5533063B2 (en) Semiconductor integrated circuit
CN213210440U (en) Small current measurement calibration framework for automatic integrated circuit tester
CN110780178B (en) Alternating current reliability test circuit and test method for broadband device
US6175246B1 (en) Method of increasing AC testing accuracy through linear extrapolation
JP2009156580A (en) Input capacitance measuring circuit
JPWO2005064586A1 (en) Display device drive device, display device, drive device or display device inspection method
TWI381175B (en) Device for measuring an electric component and method therefor is related to the method for measuring the electric component
Owens et al. Strategies for simulation, measurement and suppression of digital noise in mixed-signal circuits
US8421474B2 (en) Circuit test apparatus
Righter et al. A Look at the New ANSI/ESDA/JEDEC JS-002 CDM Test Standard
US20230341447A1 (en) Method, device and system for measuring frequency domain characteristics, and storage medium
Nouet et al. A new test structure for interconnect capacitance monitoring

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees