TW469589B - Silicide manufacture process - Google Patents
Silicide manufacture process Download PDFInfo
- Publication number
- TW469589B TW469589B TW89122227A TW89122227A TW469589B TW 469589 B TW469589 B TW 469589B TW 89122227 A TW89122227 A TW 89122227A TW 89122227 A TW89122227 A TW 89122227A TW 469589 B TW469589 B TW 469589B
- Authority
- TW
- Taiwan
- Prior art keywords
- region
- scope
- gate
- patent application
- item
- Prior art date
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
469589 五、發明說明(l) 5 - 1發明領域: 本發明係關於一種半導體元件的製程方法,特別是有 關於一種P型金屬氧化半導體元件之金屬矽化物的形成方 法。 5-2發明背景: 隨著半導體元件的積集度不斷地擴大,例如金屬氧北 半導體(Metal-Oxide-Semiconductor ; MOS)元件,為使 晶片(ch i p)面積保持一樣’甚至縮小,以持續降低電路 之單位成本,唯一的辦法,就是不斷地縮小電路設計規格 (design rule),以符合高科技產業未來發展之趨勢,因 此,元件所佔的空間面積亦隨著電路設計規格(des i gn ru 1 e)而漸趨縮小。隨著半導體技術的發展,積體電路之 元件的尺寸已經縮減到深次微米的範圍β當半導體連續縮 減到深次微米的範圍時,產生了一些在製程微縮上的問題 如第一 Α圖至第一 C圖所示,顯示一習知的Ρ型金屬氧 化半導體(P-tyPe Metal Oxide Semiconductor; PM0S) 元件結構的剖面圖’首先’提供一具有一 N井區之半導體 底材100,在其表面上形成一閘極110。於該半導體底材469589 V. Description of the invention (l) 5-1 Field of the invention: The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a metal silicide of a P-type metal oxide semiconductor device. 5-2 Background of the Invention: With the increasing accumulation of semiconductor devices, such as Metal-Oxide-Semiconductor (MOS) devices, in order to keep the area of the chip (ch ip) the same, or even shrink, to continue The only way to reduce the unit cost of a circuit is to continually reduce the design rule of the circuit in order to comply with the future development trend of the high-tech industry. Therefore, the space area occupied by components also follows the circuit design specification (des ru 1 e) while gradually shrinking. With the development of semiconductor technology, the size of components of integrated circuits has been reduced to the range of deep sub-microns. When the semiconductor is continuously reduced to the range of deep sub-microns, some problems in process scaling have occurred, such as the first A to As shown in FIG. 1C, a cross-sectional view showing a conventional P-tyPe Metal Oxide Semiconductor (PM0S) device structure is provided. First, a semiconductor substrate 100 having an N-well region is provided. A gate electrode 110 is formed on the surface. On the semiconductor substrate
469589 五、發明說明(2) 10 0中進行一 P —型離子植入,以便於形成一輕摻雜汲極(469589 V. Description of the invention (2) A P-type ion implantation is performed in 100 to facilitate the formation of a lightly doped drain (
Lightly Doped Drain; LDD) 120。接著在閘極 11〇的側壁 上形成一間隙壁1 3 0 ’然後於該半導體底材1 〇 〇中再進行一 重摻雜(Heavy Doping)之P+型的離子植入,以便於形成 —源極 /汲極區(Sources/Drain regions) 140,其中上述 之P-型離子與P+型的離子係為一 1〗丨族離子,例如硼離子( boron; B)。然後進行—自行對準金屬矽化物製程ι5〇 ( Self_Aligned Silicide),以便於在半導體底材1〇〇的表 面上與閘極1 1 〇的表面上形成—金屬矽化物層丨6卜最後, 進行一回火(Annealing)的熱製程。 f深次微来元件製程中,對源極/汲極區與閘極加以 石夕化處理為-重要且廣為應用的製程技術。此可藉由自行 對準矽化物製程(Sel卜A1 igned Si i icide)來達成,其中 、,自行對準矽化物製程尚需進行一回火步驟(Annea丨Γηε) ^ ^ 材$結構。&是在上述之傳統的p型金屬氧化半導 體(PM0S)元件之製造方法中,金屬矽化物層16〇常會因為Lightly Doped Drain; LDD) 120. Next, a gap wall 130 ′ is formed on the side wall of the gate electrode 110, and then a heavily doped (P +) type ion implantation is performed in the semiconductor substrate 1000 to facilitate the formation of the source electrode. Sources / Drain regions 140, wherein the P-type ion and the P + -type ion system are a group 1 ion, such as boron ion (boron; B). Then proceed—Self-aligned silicide process ι50 (Self-Aligned Silicide), in order to form on the surface of the semiconductor substrate 100 and the surface of the gate electrode 110—the metal silicide layer A Annealing thermal process. f In the deep sub-micron component manufacturing process, the source / drain region and the gate electrode are treated as an important and widely used process technology. This can be achieved by a self-aligned silicide process (Sel Bu Siignicide), where the self-aligned silicide process still requires a tempering step (Annea Γηε) ^ ^ material structure. & In the conventional manufacturing method of the p-type metal oxide semiconductor (PM0S) device described above, the metal silicide layer 16 is often caused by
回火的熱製程而造成金屬碎化物層i 6 0結成球狀,如第一 C 圖所示此種現象不但造成金屬矽化物層1 6 〇的結構不佳 亦s V致金屬矽化物層的片電阻(sheet 杧加尤其疋閘極1 1 〇上之金屬矽化物層1 6 〇的衰退使得 閘極11 0更易於失效。 針對上述製程之缺陷,傳統上提出另一種P型金屬氧The tempered thermal process causes the metal fragmentation layer i 6 0 to form a spherical shape. As shown in the first figure C, this phenomenon not only causes the poor structure of the metal silicide layer 16 〇 but also results in the s V-induced metal silicide layer. Sheet resistance, especially the decline of the metal silicide layer 16 on the gate 110, makes the gate 110 more prone to failure. In view of the defects of the above process, another P-type metal oxygen is traditionally proposed
469589 五、發明說明(3) 化半導體元件之金屬矽化物製程’如第二A圖至第二C圖所 示’其顯示一習知的P型金屬氧化半導體元件之預先非晶 石夕化製程的剖面圖。首先’提供一具有一 N井區之半導體 底材200’在其表面上形成一閘極210。於該半導體底材 2 0 0中進行一 P—型離子植入’以便於形成一輕摻雜汲極( Lightly Doped Drain; LDD) 220。接著在閘極 21〇的侧壁 上形成一間隙壁2 3 0 ’然後於該半導體底材2 〇 〇中再進行一 重摻雜(Heavy Doping)之P+型的離子植入,以便於形成 一源極 /汲極區(Sources/Dra i n regions) 240,其中上述 之P —型離子與P+型的離子係為一 111族離子,例如硼離子( boron; B)。然後以砷(arsenic)之預先非晶系化植入法 (pre-amorph i za t i on process) 2 5 0形成非晶系區( amorphous r eg i οns ) 2 6 0於源極/没極區24 0與閘極2 1 0上° 最後’進行一自行對準金屬矽化物製程270(Self-Aligned Silicide),以便於在半導體底材20 0的表面上與閘極210 的表面上形成一金屬矽化物層280。最後,進行一回火( Annealing)的熱製程。 積體電路的進展已經牵涉到元件幾何學的規格縮小化 。在深次微米的金屬氧化半導體之技術中,閘極尺寸勢必 隨著製程的進展而微縮,由於通道長度變短,金屬矽化物 之片電阻亦隨之增加。為了能在0. 1 8微米以下的製程中避 免短通道效應(short channel effect)所造成的影響1 因此,在傳統的製程中必需先進行一預先非晶系化製程以469589 V. Description of the invention (3) Metal silicide process of semiconductor device 'as shown in Figures 2A to 2C' shows a conventional amorphous siliconization process of P-type metal oxide semiconductor devices Section view. First, a semiconductor substrate 200 with an N-well region is provided to form a gate 210 on its surface. A P-type ion implantation 'is performed in the semiconductor substrate 200 to form a lightly doped drain (LDD) 220. Next, a gap wall 230 is formed on the side wall of the gate electrode 21, and then a heavy doping (P +) type ion implantation is performed in the semiconductor substrate 2000 in order to form a source. Sources / Dra in regions 240, wherein the P-type ion and the P + -type ion system are a group 111 ion, such as boron (Bron); An arsenic pre-amorph i za ti on process (pre-amorph i za ti on process) 2 5 0 is then used to form an amorphous region (amorphous r eg i οns) 2 6 0 at the source / non-polar region 24 0 and gate 2 1 0 ° Finally, a self-aligned silicide process 270 (Self-Aligned Silicide) is performed, so as to form a metal on the surface of the semiconductor substrate 20 0 and the surface of the gate 210 Silicone layer 280. Finally, an annealing process is performed. Advances in integrated circuits have involved the downsizing of component geometries. In deep sub-micron metal oxide semiconductor technology, the gate size is bound to shrink with the progress of the process. As the channel length becomes shorter, the sheet resistance of the metal silicide also increases. In order to avoid the effects caused by the short channel effect in the process below 0.1 8 microns1, it is necessary to first perform a pre-amorphization process in the traditional process to
469589 五、發明說明(4) 使得金屬矽化物成長得更完善。雖然預先非晶系化植入製 程會在結晶狀的底材中產生一非晶系層(a m 〇 r p h 〇 u s 1 a y e r )。然而,此種設計方法亦有缺陷,即在底材中的非晶系 層/結晶狀底材之分界面仍有空隙,使得後續金屬矽化物 成長不佳。 上述之P梨金屬氧化半導體的預先非晶系化植入製程 通常係以砷離子進行之,因此,若是砷離子之植入太多時 ,其將會抵銷源極/汲極區内的硼離子(boron)而造成P 型金屬氧化半導體之源極/汲極區的損害。有鑑於此,在 傳統的整合製程中,尚須一光罩製程以避免降低P型金屬 氧化半導體之元件的品質,使得製程成本大為增加。 鑒於上述之種種原因,我們更需要一種新的半導體元 件之製造方法,以便於形成P型金屬氧化半導體元件之金 屬矽化物。 5 - 3發明目的及概述: 鑒於上述之發明背景中,傳統製造P型金屬氧化半導 體之金屬矽化物的方法,其所產生的諸多缺點,本發明提 供一方法可用以克服傳統製程上的問題。469589 V. Description of the invention (4) Make the metal silicide grow more perfect. Although the pre-amorphous implantation process will produce an amorphous layer (a m ο r p h 〇 u s 1 a y er) in the crystalline substrate. However, this design method also has defects, that is, there are still voids at the interface between the amorphous layer / crystalline substrate in the substrate, which makes the subsequent growth of the metal silicide poor. The above-mentioned P-metal oxide semiconductor pre-amorphous implantation process is usually performed with arsenic ions, so if too many arsenic ions are implanted, it will offset the boron in the source / drain region. Ions (boron) cause damage to the source / drain region of the P-type metal oxide semiconductor. In view of this, in the traditional integration process, a photomask process is still needed to avoid reducing the quality of the P-type metal oxide semiconductor device, which greatly increases the process cost. In view of the above reasons, we need a new method of manufacturing semiconductor devices in order to form metal silicides of P-type metal oxide semiconductor devices. 5-3 Purpose and Summary of the Invention: In view of the above-mentioned background of the invention, the conventional method for manufacturing metal silicides of P-type metal oxide semiconductors has many disadvantages. The present invention provides a method to overcome the problems in the traditional process.
469589 五、發明說明(5) 本發明的目的是在提供一種P型金屬氧化半導體元件 之金屬矽化物的製程,以便於製造尺寸更小且再現性高的 半導體元件。本方法不但適用於深次微米的技術中,而且 不會增加P型金屬氧化半導體元件之接合面的阻值。 本發明的另一目的是提供一種形成金屬矽化物的方法 ,本發明不但使得金屬矽化物的成長更佳,且可相容於傳 統的P型金屬氧化半導體之製程中。此外,本發明的方法 不需微影製程以形成光罩,此可節省製程成本以符合經濟 上的效益。 本發明的再一目的係提供一種形成金屬矽化物的方法 ,本發明是藉由離子阻障層的形成來替代微影製程,更能 夠藉由此方法來避免砷之預先非晶矽化製程對P型金屬氧 化半導體的源極/汲極之表面造成損害,進而達到僅有閘 極被預先非晶矽化的目的。 根據以上所述之目的,本發明揭示了一種新的半導體 元件之製造方法。在本實施例中,提供一俱有一 N井區域 、一 P井區域與一隔離區之半導體底材,且則分別於N井區 域與P井區域之上形成多晶矽閘極及其源極/汲極區。然後 ,形成一離子阻障層以便於覆蓋源極/汲極區’並顯露出 閘極表面結構。接著,對閘極進行一預先非晶系化製程以 形成一非晶系區於閘極表面上。在去除離子阻障層之後,469589 V. Description of the invention (5) The purpose of the present invention is to provide a metal silicide process for P-type metal oxide semiconductor devices, in order to manufacture semiconductor devices with smaller size and high reproducibility. This method is not only applicable to deep sub-micron technology, but also does not increase the resistance value of the junction surface of the P-type metal oxide semiconductor device. Another object of the present invention is to provide a method for forming a metal silicide. The present invention not only makes the growth of the metal silicide better, but also is compatible with the conventional P-type metal oxide semiconductor manufacturing process. In addition, the method of the present invention does not require a lithography process to form a photomask, which can save the process cost to meet economic benefits. A further object of the present invention is to provide a method for forming a metal silicide. The present invention replaces the lithography process by the formation of an ion barrier layer, and can further avoid the pre-amorphous silicidation process of arsenic against P by this method. The surface of the source / drain of a metal-oxide-type metal oxide semiconductor causes damage, so that only the gate is previously amorphous siliconized. According to the above-mentioned object, the present invention discloses a new method for manufacturing a semiconductor device. In this embodiment, a semiconductor substrate having an N-well region, a P-well region, and an isolation region is provided, and a polycrystalline silicon gate and its source / drain are formed on the N-well region and the P-well region, respectively. Polar region. Then, an ion barrier layer is formed so as to cover the source / drain regions' and expose the gate surface structure. Next, a pre-amorphization process is performed on the gate to form an amorphous region on the gate surface. After removing the ion barrier layer,
469589 五 '發明說明(6) 進行一自行對準金屬矽化物製程,並分別於N井區域與P丼 區域中的多晶矽閘極及其源極/汲極區上形成金屬矽化物 。最後,進行一回火的熱製程。 在另一實施例中,則是提供一倶有一 N井區域、一P井 區域與一隔離區之半導體底材。然後分別於半導體底材之 N井區域與P井區域上形成一多晶矽閘極與輕摻雜汲極區。 接著,形成一離子阻障層於前述之結構上,並回蝕刻以顯 露出多晶矽閘極之表面結構。之後,對'多晶矽閘極進行一 預先非晶系化製程以形成一非晶系區於多晶矽閘極上。利 用非等向性蝕刻對離子阻障層進行蝕刻以形成多晶矽閘極 之間隙壁結構。隨後,進行一重摻雜之離子植入以形成源 極/汲極區。接著進行自行對準金屬矽化物製程,並分別 於N井區與P井區中的多晶矽閘極及其源極/汲極區上形成 金屬矽化物。最後,進行一回火(Annealing)的熱製程。 5-4發明的詳細說明: 本發明在此所探討的方向為一種P型金屬氧化半導體 元件之金屬矽化物的製造方法。為了能徹底地瞭解本發明 ,將在下列的描述中提出詳盡的步驟。顯然地,本發明的 施行並未限定於半導體元件之技藝者所熟習的特殊細節。 另一方面,眾所周知的製程步驟並未描述於細節中,以避469589 V. Description of the invention (6) A self-aligned metal silicide process is performed, and metal silicide is formed on the polycrystalline silicon gate and its source / drain regions in the N-well region and the P 丼 region, respectively. Finally, a tempered thermal process is performed. In another embodiment, a semiconductor substrate having an N-well region, a P-well region, and an isolation region is provided. A polycrystalline silicon gate and a lightly doped drain region are then formed on the N-well region and the P-well region of the semiconductor substrate, respectively. Next, an ion barrier layer is formed on the aforementioned structure and etched back to expose the surface structure of the polycrystalline silicon gate. Then, a pre-amorphization process is performed on the polycrystalline silicon gate to form an amorphous region on the polycrystalline silicon gate. An anisotropic etch is used to etch the ion barrier layer to form the spacer structure of the polycrystalline silicon gate. Subsequently, a heavily doped ion implantation is performed to form the source / drain regions. Then, a self-aligned metal silicide process is performed, and metal silicides are formed on the polycrystalline silicon gates in the N-well region and the P-well region and their source / drain regions, respectively. Finally, an annealing process is performed. 5-4 Detailed Description of the Invention: The present invention is directed to a method for manufacturing a metal silicide of a P-type metal oxide semiconductor device. In order to understand the present invention thoroughly, detailed steps will be proposed in the following description. Obviously, the implementation of the present invention is not limited to the specific details familiar to those skilled in the art of semiconductor devices. On the other hand, well-known process steps are not described in detail to avoid
469589 五、發明說明(7) 免造成本發明不必要之限制。本發明的較佳實施例會詳細 描述如下,然而除了這些詳細描述之外’本發明還可以廣 泛地施行在其他的實施例中,且本發明的範圍不受限定, 其以之後的專利範圍為準。 參考第三A圖所示,在本發明之一實施例中’首先提 供一具有N井區域310、一 P井區域32 0與一隔離區33 0之半 導體底材3 0 0,其上形成一多晶矽閘極340,接著對上述結 構進行一 P-型離子的輕摻雜汲極(Lightly Doped Drain; LDD)之離子植入,以便於在該半導體底材30 0中形成一輕 摻雜汲極區域(LDD) 3 5 0。其中上述之P —型離子係為一 Π I 族離子,例如石朋離子(b〇r〇n ions; B)。其次,在多晶石夕 閘極3 4 0的側壁上形成一間隙壁3 6 0,然後於該半導體底材 300中再進行一重摻雜(Heavy Doping)之P +型的離子植入 ’並執行一離子植入之回火製程,以使得重摻雜植入區延 展形成一源極/没極區(S/D) 3 7 0。其中上述之p : 係為一 in族離子,例如硼離子(b〇r〇n i〇ns;幻。' 上,源=::5:二層,=前述結構 380進行回蝕刻以顯露出多晶石夕間極34〇之表面社η : ’離子阻障層38。之材質可採用—般光阻層之材。質集中 對夕晶:閘極34 0進行一砷之預先非晶系 、以 一非晶系區3 9 0於多晶矽閘極34〇的表面上。後385以形成469589 V. Description of the invention (7) Exempt unnecessary restrictions on the present invention. The preferred embodiments of the present invention will be described in detail as follows. However, in addition to these detailed descriptions, the present invention can also be widely implemented in other embodiments, and the scope of the present invention is not limited. The following patent scope shall prevail . Referring to FIG. 3A, in an embodiment of the present invention, 'a semiconductor substrate 3 0 0 having an N-well region 310, a P-well region 32 0, and an isolation region 33 0 is first provided. Polycrystalline silicon gate 340, and then performing a P-type lightly doped drain (LDD) ion implantation on the above structure, so as to form a lightly doped drain in the semiconductor substrate 300 Area (LDD) 3 5 0. The above-mentioned P-type ion system is a group I ion, such as boron ion (Boronions; B). Secondly, a gap wall 360 is formed on the side wall of the polycrystalline silicon gate 34, and then a heavily doped (P +) type ion implantation in the semiconductor substrate 300 is performed. A tempering process of an ion implantation is performed, so that the heavily doped implanted region is extended to form a source / dead region (S / D) 3 7 0. Wherein p: is an in group ion, for example, boron ion (b0rronion); above, source = :: 5: two-layer, = the aforementioned structure 380 is etched back to reveal the polycrystal The surface society of Shi Xijian pole 34o: 'Ion barrier layer 38. The material can be the same as the material of a photoresist layer. The concentration is concentrated on the Xi crystal: the gate 34 0 is a pre-arsenic system of arsenic. An amorphous region 390 is on the surface of the polycrystalline silicon gate 340. Then 385 is formed
589 五、發明說明(8) 參考第三C圖所示,形成非晶系區3 9 0之後,可去除離 子阻障層3 8 0,並進行一自行對準金屬矽化物製程3 9 1,並 分別於N井區域與P井區域中的多晶矽閘極3 4 0及其源極/汲 極區3 7 0上形成金屬矽化物層3 9 5。最後,進行一回火的熱 製程。 參考第四A圖所示,在本發明之另一實施例中,首先 提供一具有N井區域4 1 0、一 P井區域4 2 0與一隔離區4 3 0之 半導體底材4 0 0。然後,於半導體底材4 0 0上形成一多晶矽 層。分別定義一光阻層於N井區域4 1 0與P井區域4 2 0之多晶 石夕層上,且藉由光阻層當成一钱刻罩幕,對多晶石夕層進行 蝕刻以分別形成一多晶矽閘極4 4 0於N井區域4 1 0與P井區域 4 2 0上。接著對上述結構進行一 P —型離子的輕摻雜汲極( Lightly Doped Drain; LDD)之離子植入,以便於在該半 導體底材4 0 0中形成一輕摻雜汲極區域(LDD) 4 5 0。其中上 述之p-型離子係為一 Π I A族離子,例如蝴離子(boron i ons ; B)。 參考第四B圖,沉積形成一離子阻障層4 6 0 A於前述之 結構上以保護輕摻雜汲極區域4 5 0。對離子阻障層4 6 0 A進 行回蝕刻以顯露出多晶矽閘極4 4 0之表面結構,其中,離 子阻障層4 6 0 A之材質可採用一般間隙壁之材質。之後,對 多晶矽閘極4 4 0進行一砷之預先非晶系化製程4 7 0以形成一589 V. Description of the invention (8) Referring to the third figure C, after forming the amorphous region 3 9 0, the ion barrier layer 3 8 0 can be removed and a self-aligned metal silicide process 3 9 1 can be performed. Metal silicide layers 3 95 are formed on the polysilicon gates 3 4 0 and their source / drain regions 3 7 0 in the N-well region and the P-well region, respectively. Finally, a tempered thermal process is performed. Referring to FIG. 4A, in another embodiment of the present invention, a semiconductor substrate 4 0 with an N-well region 4 1 0, a P-well region 4 2 0, and an isolation region 4 3 0 is first provided. . Then, a polycrystalline silicon layer is formed on the semiconductor substrate 400. A photoresist layer is defined on the polycrystalline layer in the N well region 4 10 and the P well region 4 2 0, and the polycrystalline layer is etched by using the photoresist layer as a mask to etch the polycrystalline layer. A polycrystalline silicon gate 4 40 is formed on the N well region 4 1 0 and the P well region 4 2 0 respectively. Then, a lightly doped drain (LDD) ion implantation of P-type ions is performed on the above structure, so as to form a lightly doped drain region (LDD) in the semiconductor substrate 400. 4 5 0. Among them, the p-type ion system is a group II A ion, such as a butterfly ion (boron i ons; B). Referring to the fourth diagram B, an ion barrier layer 460 A is deposited on the aforementioned structure to protect the lightly doped drain region 450. The ion barrier layer 460 A is etched back to reveal the surface structure of the polycrystalline silicon gate 440. Among them, the material of the ion barrier layer 460 A may be made of a general spacer. After that, a polycrystalline silicon gate 4 4 0 is subjected to a pre-amorphous process of arsenic 4 7 0 to form a
第11頁 五、發明說明(9) 非晶系區4 8 0於多晶矽區4 4 0上。隨後,可利用非等向性蝕 刻對離子阻障層46 0A触刻以形成多晶矽閘極440之間隙壁 46 0B結構。其次,於該半導體底材400中再進行一重摻雜( Heavy Doping)之P+型的離子植入,並執行一離子植入之 回火製程,以使得重摻雜植入區延展形成一源極/汲極區 (S/D) 48 5。其中上述之P +型的離子係為一 I I I族離子,例 如蝴離子(boron ions; B),如第四C圖所示。 參考第四D圖,進行一自行對準金屬矽化物製程4 9 0, 並分別於N井區域與P井區域中的多晶矽閘極4 4 0及其源極/ 汲極區4 8 5上形成金屬石夕化物層4 9 5。最後,進行一回火的 熱製程。 在本發明的實施例中,提供一種P型金屬氧化半導體 元件之金屬矽化物的製程,以便於製造尺寸更小且再現性 高的半導體元件。本方法不但適用於深次微米的技術中* 而且不會增加P型金屬氧化半導體元件之接合面的阻值。 此外,本發明亦可使得金屬矽化物的成長更佳,且相容於 傳統的P型金屬氧化半導體之製程中。同時,本發明的方 法不需微影製程以形成光罩,因此,可節省製程成本以符 合經濟上的效益。本發明可利用離子阻障層的形成來替代 微影製程,更能夠藉此方法來避免砷之預先非晶矽化製程 對P型金屬氧化半導體的源極/汲極之表面造成損害,進而 達到僅有閘極被預先非晶矽化的目的。Page 11 V. Description of the invention (9) The amorphous region 480 is on the polycrystalline silicon region 440. Subsequently, an anisotropic etch can be used to contact the ion barrier layer 460A to form a spacer 460B structure of the polycrystalline silicon gate 440. Second, a heavy doping (P +) type ion implantation is performed in the semiconductor substrate 400, and an ion implantation tempering process is performed, so that the heavily doped implanted region is extended to form a source electrode. / Drain region (S / D) 48 5. The P + -type ion system is an I I I group ion, such as boron ions (B), as shown in Figure 4C. Referring to the fourth D diagram, a self-aligned metal silicide process 490 is performed, and is formed on the polycrystalline silicon gate 440 and its source / drain region 485 in the N-well region and the P-well region, respectively. Metal stone oxide layer 4 9 5. Finally, a tempered thermal process is performed. In an embodiment of the present invention, a process for manufacturing a metal silicide of a P-type metal oxide semiconductor device is provided, so as to manufacture a semiconductor device with a smaller size and high reproducibility. This method is not only suitable for deep sub-micron technology *, but also does not increase the resistance of the junction surface of P-type metal oxide semiconductor devices. In addition, the present invention can also make the growth of metal silicide better, and is compatible with the traditional P-type metal oxide semiconductor manufacturing process. At the same time, the method of the present invention does not require a lithography process to form a photomask, so the process cost can be saved to comply with economic benefits. The invention can use the formation of an ion barrier layer instead of the lithography process, and can also use this method to avoid the pre-amorphous silicidation process of arsenic from causing damage to the source / drain surface of the P-type metal oxide semiconductor, thereby achieving The purpose is to pre-amorphize the gate.
第12頁 469589 五、發明說明(ίο) 顯然地,依照上面實施例中的描述,本發明可能有許 多的修正與差異。因此需要在其附加的權利要求項之範圍 内加以理解,除了上述詳細的描述外,本發明還可以廣泛 地在其他的實施例中施行。 上述僅為本發明之較佳實施例而已,並非用以限定本 發明之申請專利範圍;凡其它未脫離本發明所揭示之精神 下所完成的等效改變或修飾,均應包含在下述申請專利範 圍内。Page 12 469589 V. Description of the Invention (o) Obviously, according to the description in the above embodiment, the present invention may have many modifications and differences. Therefore, it needs to be understood within the scope of the appended claims. In addition to the above detailed description, the present invention can be widely implemented in other embodiments. The above are merely preferred embodiments of the present invention, and are not intended to limit the scope of patent application for the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention should be included in the following application patents Within range.
第13頁 469589 圖式簡單說明 第一 A圖至第一 C圖為習知的P型金屬氧化半導體元件 之金屬矽化物製程的剖面結構示意圖; 第二A圖至第二C圖為習知的P型金屬氧化半導體元件 之含有預先非晶矽化製程的金屬矽化物製程的剖面結構示 意圖, 第三A圖至第三C圖為說明本發明之一較佳實施例中的 P型金屬氧化半導體元件之金屬矽化物製程的剖面結構示 意圖;與 第四A圖至第四D圖為說明本發明之另一較佳實施例中 的P型金屬氧化半導體元件之金屬矽化物製程的剖面結構 示意圖。 主要部分之代表符號: 100 半導體底材。 110 閘極。 12 0 輕掺雜汲極區。 130 間隙壁。 14 0 源極/没極區。 15 0 自行對準金眉破化物製程。 16 0 金屬石夕化物層。 2 0 0 半導體底材。Page 13 469589 Figures briefly explain Figures A to C are cross-sectional structural diagrams of the conventional metal silicide process for P-type metal oxide semiconductor devices; Figures A to C A schematic cross-sectional structure diagram of a metal silicide process including a pre-amorphous silicidation process of a P-type metal oxide semiconductor device, and FIGS. 3A to 3C are P-type metal oxide semiconductor devices illustrating a preferred embodiment of the present invention. A cross-sectional structure diagram of a metal silicide process; and FIGS. 4A to 4D are schematic cross-sectional structure diagrams illustrating a metal silicide process of a P-type metal oxide semiconductor device in another preferred embodiment of the present invention. The main part of the symbol: 100 semiconductor substrate. 110 gate. 12 0 Lightly doped drain region. 130 bulkhead. 14 0 Source / dead area. 15 0 Align the gold eyebrow breaking process by itself. 16 0 metal lithoate layer. 2 0 0 Semiconductor substrate.
第14頁 469589 圖式簡單說明 210 閉極。 220 輕摻雜;及極區 〇 230 間隙壁。 240 源極/没極區。 250 預先非晶系化 製程。 260 非晶系化區。 270 自行對準金屬矽化物製程。 280 金屬矽化物層 〇 300 半導體底材。 310 N井區。 320 P井區。 330 Ρ(?ι離區。 340 閘極。 350 輕摻雜沒極區 〇 360 間隙壁。 370 源極/;及極區c 1 380 離子阻障層。 385 預先非晶系化 製程。 390 非晶糸化區。 391 自行對準金屬矽化物製程。 395 金屬矽化物層 0 400 半導體底材。 410 N井區。 420 P井區。Page 14 469589 Schematic illustration of 210 closed pole. 220 lightly doped; and polar region 〇 230 bulkhead. 240 source / dead area. 250 Pre-amorphous process. 260 Amorphous region. 270 Self-aligned metal silicide process. 280 metal silicide layer 〇 300 semiconductor substrate. 310 N well area. 320 P well area. 330 ρ (? Ι ionization zone. 340 gate. 350 lightly doped non-electrode region 0360 spacer. 370 source /; and electrode region c 1 380 ion barrier layer. 385 pre-amorphization process. 390 non Crystallization area. 391 Self-aligned metal silicide process. 395 Metal silicide layer. 0 400 semiconductor substrate. 410 N well area. 420 P well area.
第15頁 469589 圖式簡單說明 430 440 450 4 60A 4 6 0 B 470 480 485 490 495 隔離區。 閘極。 輕摻雜汲極區。 離子阻障層。 間隙壁。 預先非晶系化製程° 非晶系化區。 源極/汲極區。 自行對準金屬矽化物製程 金屬碎化物層。Page 15 469589 Simple illustration of the drawing 430 440 450 4 60A 4 6 0 B 470 480 485 490 495 Isolated area. Gate. Lightly doped drain region. Ion barrier layer. Gap wall. Pre-amorphization process ° Amorphization region. Source / drain region. Self-aligned metal silicide process.
第16頁Page 16
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW89122227A TW469589B (en) | 2000-10-23 | 2000-10-23 | Silicide manufacture process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW89122227A TW469589B (en) | 2000-10-23 | 2000-10-23 | Silicide manufacture process |
Publications (1)
Publication Number | Publication Date |
---|---|
TW469589B true TW469589B (en) | 2001-12-21 |
Family
ID=21661652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW89122227A TW469589B (en) | 2000-10-23 | 2000-10-23 | Silicide manufacture process |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW469589B (en) |
-
2000
- 2000-10-23 TW TW89122227A patent/TW469589B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7268049B2 (en) | Structure and method for manufacturing MOSFET with super-steep retrograded island | |
US7820518B2 (en) | Transistor fabrication methods and structures thereof | |
US6720630B2 (en) | Structure and method for MOSFET with metallic gate electrode | |
JP4979587B2 (en) | Method for improving the performance of a CMOS transistor by inducing strain in the gate and channel | |
US7122435B2 (en) | Methods, systems and structures for forming improved transistors | |
US20080290370A1 (en) | Semiconductor devices and methods of manufacturing thereof | |
JPH10200109A (en) | Semiconductor device and its manufacturing method, and semiconductor substrate | |
KR20070085699A (en) | Method for forming self-aligned dual fully silicided gates in cmos devies | |
US20050191834A1 (en) | Creating shallow junction transistors | |
US7338910B2 (en) | Method of fabricating semiconductor devices and method of removing a spacer | |
JP2000216386A (en) | Fabrication of semiconductor device having junction | |
JP4846167B2 (en) | Manufacturing method of semiconductor device | |
US20090186457A1 (en) | Anneal sequence integration for cmos devices | |
US6261912B1 (en) | Method of fabricating a transistor | |
TW469589B (en) | Silicide manufacture process | |
JPH1064898A (en) | Manufacturing method of semiconductor device | |
KR100513803B1 (en) | Contact formation method of semiconductor device | |
KR100914973B1 (en) | Method for forming semiconductor device | |
CN113517229B (en) | Method for manufacturing semiconductor element | |
TW558754B (en) | Self-aligned silicide process method | |
KR100685904B1 (en) | Method for fabricating fully silicided gate and semiconductor device having it | |
KR100406591B1 (en) | Manufacturing method of semiconductor device | |
TW323390B (en) | The method for forming lightly doped drain on semiconductor device | |
KR100255136B1 (en) | Gate electrode of semiconductor device and method for manufacturing the same | |
TW466698B (en) | Silicide process to prevent the junction leakage current |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |