TW442858B - Process to form gate - Google Patents

Process to form gate Download PDF

Info

Publication number
TW442858B
TW442858B TW89108445A TW89108445A TW442858B TW 442858 B TW442858 B TW 442858B TW 89108445 A TW89108445 A TW 89108445A TW 89108445 A TW89108445 A TW 89108445A TW 442858 B TW442858 B TW 442858B
Authority
TW
Taiwan
Prior art keywords
layer
quasi
polycrystalline silicon
metal
side wall
Prior art date
Application number
TW89108445A
Other languages
Chinese (zh)
Inventor
Hsi-Mao Hsiao
Shih-Lung Lee
Chun-Lung Chen
Chia-Fu Yeh
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW89108445A priority Critical patent/TW442858B/en
Application granted granted Critical
Publication of TW442858B publication Critical patent/TW442858B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

This invention provides a process to form gates on a semiconductor chip, which can avoid circuit short resulting from residual conductive matter on the gate side wall surface. A quasi-gate structure is formed on the substrate surface, which contains, from bottom to top, a gate dielectric layer, a polysilicon layer and a transition layer. The transition layer is removed after a side wall is formed around the quasi-gate structure. Finally, a silicide layer is formed on the polysilicon layer and the silicon substrate around the side wall. The side wall will be protruded out from the both sides of the polysilicon layer, after the removal of the transition layer, to prevent circuit short due to the electric conduction between silicides on the polysilicon layer and silicon substrate caused by the residual conductive matter on the side wall surface.

Description

44285a 五、發明說明(i) 發明之領域 本發明提供一種於一半導體晶片上製作閘極之方法, 尤指一種可避免閘極周圍側壁子表面殘留導電物造成短路 之製作方法。 背景說明 金屬氧化半導艘(metal-〇xide-semiconductor,JJOS) 電晶想是半導艘積體電路中非常重要的的元件。M0S電晶 體係由一閘極(gate)、一源極(source)、一沒極(drain) 以及一底材電極所構成的四接點(1;6]:]11111313)的電子元 件。而閘極之主要結構是由閘極氧化層(gate oxide)以及 閘極導電層所組成,然後在閘極結構的周園則係以側壁子 來當作絕緣的保護層。 請參考圖一至圖四,囷一至圖四為習知於一半導體晶 片10上製作M0S電晶體40之方法示意圖〇如圈一所示,半 導趙晶片1 0上包含有一石夕基底(silicon substrate) 12。習知方法是先利用一熱氧化(thermal oxidation)法 於矽基底12表面生成一二氧化矽(silicon dioxide,44285a V. Description of the invention (i) Field of the invention The present invention provides a method for fabricating a gate electrode on a semiconductor wafer, and more particularly, a method for avoiding short circuit caused by conductive substances remaining on the surface of the side wall around the gate electrode. Background Description Metal-oxide semiconductor (JJOS) transistors are thought to be very important components in semiconductor integrated circuits. The MOS transistor system is an electronic component with four contacts (1; 6]:] 11111313) composed of a gate, a source, a drain, and a substrate electrode. The main structure of the gate electrode is composed of a gate oxide layer and a gate conductive layer. Then, in the periphery of the gate structure, a side wall is used as an insulating protection layer. Please refer to FIG. 1 to FIG. 4. FIG. 1 to FIG. 4 are schematic diagrams of a conventional method for fabricating a MOS transistor 40 on a semiconductor wafer 10. As shown in circle 1, a semiconductor substrate 10 includes a silicon substrate. ) 12. A conventional method is to first use a thermal oxidation method to generate silicon dioxide (silicon dioxide,

Si02)層ΙΟ接著再利用化學氣相沈積法(CVD)於二氡化矽 層1 4表面上沈積一多晶矽層1 6,並對多晶矽層1 6進行摻 雜。然後於多晶矽層1 6上塗佈(coating)—光阻 五、發明說明(2) (photoresist),並進行一黃光製程來定義閘極之圈案, 最後再去除多餘部份的光阻,僅留下如囷一中光阻18之部 分作為後續蝕刻(etching)製程中的硬罩幕(hard mask)。 如闽二所示,接著進行一乾蚀刻製程,向下去除未被 光阻18所保護的部分,形成閘極20。然後將光阻18剝除 (strip)。閘極20包含有一閘極氧化層22以及一摻雜多晶 矽層24。然後利用一低壓CVD法於矽基底12表面與閘極20 表面形成一矽氧層26。隨後利用一離子佈植(ion implantation)製程,分別於閘極2 0兩侧梦基底12内形成 摻雜區28,用來作為後續完成之M0S電晶艘的輕摻雜·及極 (lightly doped drain,LDD)» 然後進行一 CVD製程,於 矽氧層26表面上沈積一層氮化矽層30來均勻覆蓋閘極20。 如圖三所示,進行一非等向性乾蝕刻製程,向下去除 氮化矽層30,使殘留於閘極20周圍的氮化矽層30形成側壁 子32。接著進行一離子佈植製程,分別於閘極2 0兩側矽基 底12内形成一摻雜區34,用來作為JJ0S電晶體的源極與汲 極。隨後於矽基底12表面均勻沈積一氮化矽層(未顯示 ),並以一清洗製程將矽基底12表面殘留的矽氧層2 6完全 去除。然後利用濺鍍方式’依序於半導體晶片1〇表面均勻 形成一鈷(c〇bal t)金屬層36,以及一氮化鈦層38。 如圓四所示’進行一快速加熱製程(rap i(1 thermalSi02) layer 10 is then deposited by chemical vapor deposition (CVD) on the surface of the silicon dioxide layer 14 with a polycrystalline silicon layer 16 and doped with the polycrystalline silicon layer 16. Then coating on the polycrystalline silicon layer 16-photoresist V. Description of the invention (2) (photoresist), and a yellow light process to define the gate circle, and finally remove the excess photoresist, Only the part of the photoresist 18 in the first one is left as a hard mask in the subsequent etching process. As shown in Min Er, a dry etching process is then performed to remove the portion not protected by the photoresist 18 downward to form the gate electrode 20. The photoresist 18 is then stripped. The gate electrode 20 includes a gate oxide layer 22 and a doped polycrystalline silicon layer 24. Then, a low-pressure CVD method is used to form a silicon oxide layer 26 on the surface of the silicon substrate 12 and the surface of the gate electrode 20. Subsequently, an ion implantation process is used to form doped regions 28 in the dream substrate 12 on both sides of the gate 20, which are used as lightly doped and lightly doped MOS transistors. drain, LDD) »Then a CVD process is performed to deposit a silicon nitride layer 30 on the surface of the silicon oxide layer 26 to uniformly cover the gate electrode 20. As shown in FIG. 3, a non-isotropic dry etching process is performed to remove the silicon nitride layer 30 downward, so that the silicon nitride layer 30 remaining around the gate electrode 20 forms a sidewall 32. Next, an ion implantation process is performed to form a doped region 34 in the silicon substrate 12 on both sides of the gate electrode 20, which is used as a source and a drain of the JJ0S transistor. Subsequently, a silicon nitride layer (not shown) is uniformly deposited on the surface of the silicon substrate 12, and the residual silicon oxide layer 26 on the surface of the silicon substrate 12 is completely removed by a cleaning process. Then, a Cobalt metal layer 36 and a titanium nitride layer 38 are formed uniformly on the surface of the semiconductor wafer 10 by sputtering method. As shown in circle four ’, a rapid heating process (rap i (1 thermal

442858 五、發明說明(3) process,RTP) ’使鈷金屬層36分別與矽基底1 2以及掺雜 多晶矽層24表面的矽原子相反應,生成鈷自行對準矽化物 42。然後將未反應的鈷金屬層36以及氮化鈦層38去除,完 成M0S電晶體40的製作。 然而隨著半導體製程越來越精密,習知方法在形成自 行對準矽化物42之後、去除未反應部份之金屬層36、38 時,常因金屬層36' 3 8未能完全地被清除乾淨,而使得有 部分之金屬層44殘留於側壁子32表面,如圖四中所示。這 些殘留之金屬層44可能會導通摻雜多晶矽層24上之金屬矽 化物以及矽基底12上之金屬矽化物層42,進而造成短路, 影響M0S電晶體40之電性。 發明概述 因此本發明之主要目的在提供一種可避免一半導體晶 片上之閘極周圍侧壁子表面殘留導電物的方法,以解決上 述習知技術之問題。 在本發明之最佳實施例中,該方法是首先於該半導體 晶片之基底表面形成一準閛極結構,而該準閘極結構由下 而上依序包含有一閘極介電層、一多晶矽層以及一過渡 層。接著再於該準閘極結構周圍形成一側壁子’然後去除 該過渡層’最後再於該多晶矽層上及該側壁子周圍之矽基442858 V. Description of the invention (3) process (RTP) ′ causes the cobalt metal layer 36 to react with silicon atoms on the silicon substrate 12 and the surface of the doped polycrystalline silicon layer 24 to generate cobalt self-aligned silicide 42. Then, the unreacted cobalt metal layer 36 and the titanium nitride layer 38 are removed to complete the fabrication of the MOS transistor 40. However, as the semiconductor process becomes more and more precise, conventional methods, after forming the self-aligned silicide 42 and removing the unreacted metal layers 36 and 38, often fail to completely remove the metal layer 36'38. It is clean, so that a part of the metal layer 44 remains on the surface of the side wall 32, as shown in FIG. These remaining metal layers 44 may conduct the metal silicide on the doped polycrystalline silicon layer 24 and the metal silicide layer 42 on the silicon substrate 12, which may cause a short circuit and affect the electrical properties of the MOS transistor 40. SUMMARY OF THE INVENTION Therefore, the main object of the present invention is to provide a method for avoiding the residual conductive material on the surface of the side wall around the gate electrode on a semiconductor wafer to solve the problems of the conventional technology. In a preferred embodiment of the present invention, the method is to first form a quasi-electrode structure on the substrate surface of the semiconductor wafer, and the quasi-gate structure includes a gate dielectric layer and a polycrystalline silicon in order from bottom to top. Layer and a transition layer. Then, a side wall ’is formed around the quasi-gate structure, and then the transition layer is removed. Finally, a silicon base is formed on the polycrystalline silicon layer and around the side wall.

第6頁 442858 五、發明說明(4) 底上分別形成一金屬矽化物層。其中在去除該過渡層後, 該側壁子的頂端將突出於該多晶矽層的頂面之上,以避免 殘留於該側壁子表面之導電物導通該多晶妙層上之金屬妙 化物層及該梦基底上之金屬梦化物層。 本發明利用突出於閘極兩側之側壁子陡Λ肖頂端形狀, 使鈷金屬層或氮化鈦層在經過後續之蝕刻或清洗製程之 後’不易殘留於該側壁子表面。即使有殘留之導電物質, 亦不易以連續狀態殘留於側壁子表面,因此可以避免導通 #雜多晶梦層上之金屬發化物層及發基底上之金屬發化物 層,造成短路。 發明之詳細說明 請參考®五至囷八’圖五至圖八為本發明於一半導想 晶片50上製作MOS電晶體80方法之示意圈。如圖五所示, 半導體晶片50上包含有一矽基底52»本發明方法首先利用 一熱氧化法於矽基底5 2表面生成一厚度約為33埃(&)的二 氧化矽層54。接著利用一化學氣相沈積法(CVD)於二氧化 矽層54表面上沈積一厚度約為2000&的多晶矽層56。此 外,為了降低多晶梦層5 6的電阻率(resistivity),於沈 積多晶矽層56之後,需再對其進行摻雜:利用高溫擴散'的 方式或離子植入的方式將摻質趨入(drive in)或植入多^ 矽層56中,或是一開始便隨著該多晶矽的沈積反應進行$ 442858 五、發明說明(5) 雜(i n-s i tu)。 隨後以約為800 〇C的溫度進行一回火(annealing),使 矽基底52内之原子排列重新整理。接著利用一濺鍍製程, 於多晶碎層5 6表面形成一厚度約為5〇〇么至1〇〇〇&的過渡 層57。本發明係選擇以矽化鎢(tungsteri filicide)作為 過渡層5 7的材質,而且在後續蝕刻多晶矽層5 6以及蝕刻矽 化鎢之過渡層57的製程可於同一爐管内進行。然後再於過 渡層57上塗佈一光阻,並利用一黃光製程來定義閘極之圖 案’最後再去除多餘部份的光阻’僅留下如圖五中光阻58 之部分作為後續蝕刻製程中的硬軍幕。 如圖六所示,接著進行一乾蝕刻製程,向下去除未被 光阻5 8保護之部分,於矽基底52表面形成一準閘極結構 (pre-gate structure) 60。然後將光阻58剝除。準閘極 結構60係由一閘極氧化層62、一摻雜多晶矽層64以及一過 渡層65堆疊而成《然後利用一低壓CVD法於矽基底52表面 以及準閘極結構60表面形成一矽氧層66。 接著進行一離子佈植製程’分別於準閘極結構6〇兩側 石夕基底52内形成摻雜區68,用來作為後續完成之M〇s電晶 體的輕摻雜汲極(LDD)。然後利用一 CVD製程於矽氧層66表 面上沈積一層氮化矽層70,均勻覆蓋準閘極結構其中 石夕氧層6 6主要係用來作為離子佈植製程中之犧牲層 、Page 6 442858 V. Description of the invention (4) A metal silicide layer is formed on the bottom. After the transition layer is removed, the top of the sidewall will protrude above the top surface of the polycrystalline silicon layer, so as to prevent conductive substances remaining on the surface of the sidewall from conducting the metal oxide layer on the polycrystalline layer and the polycrystalline silicon layer. A metal dream layer on a dream substrate. According to the present invention, the shape of the tops of the sidewalls protruding from both sides of the gate electrode is used to prevent the cobalt metal layer or the titanium nitride layer from remaining on the surface of the sidewalls after the subsequent etching or cleaning process. Even if there is a residual conductive substance, it is not easy to remain on the side surface of the side wall in a continuous state, so it is possible to avoid the short circuit caused by conducting the metal hairpin layer on the #heteropolycrystalline dream layer and the metal hairpin layer on the hair substrate. For a detailed description of the invention, please refer to ®Five to Twenty-eight's. Figures five to eight are schematic circles of a method for manufacturing a MOS transistor 80 on a half-concept wafer 50 according to the present invention. As shown in FIG. 5, the semiconductor wafer 50 includes a silicon substrate 52. The method of the present invention first uses a thermal oxidation method to form a silicon dioxide layer 54 on the surface of the silicon substrate 52 with a thickness of about 33 angstroms. Then, a chemical vapor deposition (CVD) method is used to deposit a polycrystalline silicon layer 56 on the surface of the silicon dioxide layer 54 to a thickness of about 2000 & In addition, in order to reduce the resistivity of the polycrystalline dream layer 56, after the polycrystalline silicon layer 56 is deposited, it needs to be doped again: the dopant tends to be doped by means of high-temperature diffusion or ion implantation ( drive in) or implanted in the polysilicon layer 56, or proceed to $ 442858 with the deposition reaction of the polycrystalline silicon from the beginning. 5. Description of the Invention (5) I n s i tu. An annealing is then performed at a temperature of about 800 ° C to rearrange the atomic arrangement in the silicon substrate 52. Then, a sputtering process is used to form a transition layer 57 on the surface of the polycrystalline debris layer 56 with a thickness of about 5000 to 1000. In the present invention, tungsten silicide (tungsteri filicide) is selected as the material of the transition layer 57, and the subsequent process of etching the polycrystalline silicon layer 56 and the tungsten silicide transition layer 57 can be performed in the same furnace tube. Then, a photoresist is coated on the transition layer 57 and a yellow light process is used to define the gate pattern 'finally remove the excess photoresist' and leave only the part of photoresist 58 in Figure 5 as a follow-up Hard military curtain in etching process. As shown in FIG. 6, a dry etching process is performed next to remove the portion not protected by the photoresist 5 8 to form a pre-gate structure 60 on the surface of the silicon substrate 52. The photoresist 58 is then stripped. Quasi-gate structure 60 is formed by stacking a gate oxide layer 62, a doped polycrystalline silicon layer 64, and a transition layer 65. Then, a low-pressure CVD method is used to form a silicon on the surface of silicon substrate 52 and the surface of quasi-gate structure 60. Oxygen layer 66. Next, an ion implantation process is performed to form doped regions 68 in the stone susceptor 52 on both sides of the quasi-gate structure 60, which are used as lightly doped drains (LDDs) of the Mos crystals to be completed later. Then a CVD process is used to deposit a silicon nitride layer 70 on the surface of the silicon oxide layer 66 to uniformly cover the quasi-gate structure. The silicon oxide layer 66 is mainly used as a sacrificial layer in the ion implantation process.

第8頁 4428 5 8 五、發明說 ~~~~~ ' — (sacrificial oxide),以避免隧穿效應(channeUng)之 發生,並可作為增加後續氮矽層附著力的襯氧化層 oxide)» 如圖七所示’進行一非等向性乾蝕刻製程,向下去除 氮化矽層70,並使殘留於準閘極結構6〇周圍的氮化矽層7〇 形成側壁子72。接著利用一離子佈植製程,分別於準閘極 結構90周圍矽基底52内形成一摻雜區74,用來作為m〇S電 晶體的源極與汲極。隨後再利用RCA清洗溶液來去除準閘 極結構90中由矽化鎢組成的過渡層65,同時矽氧層66亦可 能有部份的損耗。此時,形成於半導體晶片5〇上之閘極69 將僅包含有閘極氡化層62,以及其上方的摻雜多晶矽層 6 4° 接著利用一清洗製程將矽基底52表面殘留的矽氧層66 完全去除。然後以濺鍍之方式,於半導體晶片5〇表面均勻 形成一銘金屬層76以及一氩化鈦層78。氮化鈦層78除了可 以避免銘金屬層11 6表面與氧反應,亦可使後續生成之鈷 自行對準石夕化物(Co salicide)均勻化》 如圓八所示’進行一快迷加熱製程(RTP),使鈷金屬 層7 6與矽基底5 2表面以及摻雜多晶矽層6 4表面的矽原子相 反應’生成鈷金屬矽化物層82,完成該自行對準矽化物製 程。然後將未反應的鈷金屬層7 6以及氮化鈦層7 8加以去Page 8 4428 5 8 V. Invention ~~~~~ '— (sacrificial oxide) to avoid the occurrence of tunneling effect (channeUng), and can be used as a lining oxide layer to increase the adhesion of the subsequent nitrogen silicon layer) » As shown in FIG. 7 ′, an anisotropic dry etching process is performed, the silicon nitride layer 70 is removed downward, and the silicon nitride layer 70 remaining around the quasi-gate structure 60 is formed as a side wall 72. Next, an ion implantation process is used to form a doped region 74 in the silicon substrate 52 around the quasi-gate structure 90, which is used as a source and a drain of the MOS transistor. Subsequently, the RCA cleaning solution is used to remove the transition layer 65 composed of tungsten silicide in the quasi-gate structure 90. At the same time, the silicon oxide layer 66 may be partially lost. At this time, the gate 69 formed on the semiconductor wafer 50 will only include the gate halide layer 62 and the doped polycrystalline silicon layer 64 above it, and then a silicon oxide remaining on the surface of the silicon substrate 52 by a cleaning process. Layer 66 is completely removed. Then, a metal layer 76 and a titanium argon layer 78 are uniformly formed on the surface of the semiconductor wafer 50 by sputtering. In addition to avoiding the reaction of the surface of the metal layer 116 with oxygen, the titanium nitride layer 78 can also homogenize the subsequently generated cobalt to align itself with the Co salicide. "As shown in circle eight, 'a fast heating process is performed. (RTP), reacting the cobalt metal layer 76 with the silicon atoms on the surface of the silicon substrate 52 and the surface of the doped polycrystalline silicon layer 64 to form a cobalt metal silicide layer 82, and complete the self-aligned silicide process. Then remove the unreacted cobalt metal layer 76 and titanium nitride layer 78.

五、發明說明(7) 除。其中該快速加熱製程係為 一階段的溫度約為6 0 0。(:至6 4 0 7 7 0 °C。最後再以約為8 2 5 °C之i 基底5 2内原子排列重新整理, 本發明主要先於準閘極結 形成一過渡層65,然後再於準 子72,使得在去除過渡層65之 摻雜多晶矽層64,而突出於摻 七所示。由於突出於閘極69兩 峭,所以在完成蝕刻製程以及 或氮化鈦層7 8不易殘留於側壁 子72之特殊形狀構造,即使有 質,亦不易以連續狀態殘留於 免導通摻雜多晶矽層64上之金 之金屬矽化物層82而造成短路 相較於習知方法,本發明 壁子陡峭的頂端形狀,使得鈷 於側壁子表面,即使有殘留之 態殘留於側壁子表面,因此可 層上之金屬石夕化物層及矽基底 路。 一兩段式昇溫加熱製程,第 °C ’第二階段約為730。(:至 ί度進行一回火製程,使矽 完成MOS電晶體80的製作。 構9 0之摻雜多晶梦層6 4上方 閘極結構9 0周圍形成_側壁 後,側壁子72的頂端會高於 雜多晶矽層64之周圍,如固 側之側壁子72頂端形狀較陡 清洗製程之後,鈷金屬層76 子7 2表面。此外,由於側壁 蝕刻或清洗殘留之導電物 側壁子72表面,因此可以避 屬矽化物層82及矽基底52上 係利用突出於閘極周面之側 金屬層或氮化鈦層不易殘留 導電物質,亦無法以連續狀 以有效避免導通換雜多晶梦 上之金屬石夕化物層而造成短V. Description of Invention (7) Division. The rapid heating process involves a stage temperature of about 600 ° C. (: To 6 4 7 7 0 ° C. Finally, rearrange the atomic arrangement in the i substrate 5 2 at about 8 2 5 ° C. The present invention mainly forms a transition layer 65 before the quasi-gate junction, and then In the quasi electron 72, the doped polycrystalline silicon layer 64 of the transition layer 65 is removed, and the protrusion is shown as shown in the doped VII. Since it protrudes from the gate 69, the etching process and the titanium nitride layer 78 are not easy to remain on The special shape structure of the side wall 72, even if it is qualitative, is not easy to remain in a continuous state on the metal silicide layer 82 of the non-conducting doped polycrystalline silicon layer 64 and cause a short circuit. Compared with the conventional method, the wall of the present invention is steeper. The shape of the top end makes cobalt on the surface of the side wall, even if there is a residual state on the surface of the side wall, so it can be layered on the metal stone oxide layer and the silicon substrate. One or two-stage heating and heating process, ° C ' The second stage is about 730. (: A tempering process is performed to make the silicon complete the production of MOS transistor 80. Structure 90 is doped with a polycrystalline dream layer 6 4 and a gate structure 9 is formed around the sidewall. , The top of the side wall 72 will be higher than that of the heteropolycrystalline silicon layer 64 Around, if the top side of the solid side wall 72 is steeply shaped, after the cleaning process, the surface of the cobalt metal layer 76 is 72. In addition, because the surface of the side wall 72 is etched or cleaned by the remaining conductive material, the silicide layer 82 can be avoided. And the silicon substrate 52 is formed by using a side metal layer or a titanium nitride layer protruding from the peripheral surface of the gate electrode so that conductive materials are not easy to remain, and it cannot be continuous to effectively prevent the metal oxide layer on the polycrystalline dream from being turned on. short

442858 五、發明說明(8) 以上所述僅為本發明之較佳實施例,凡依本發明申請 專利範圍所做之均等變化與修飾,皆應屬本發明專利之涵 蓋範圍。442858 V. Description of the invention (8) The above description is only a preferred embodiment of the present invention. Any equivalent changes and modifications made in accordance with the scope of the patent application for the present invention shall fall within the scope of the invention patent.

442858 圈式簡單說明 圖示之簡單說明 圖一 至圖 四 為 習 知 於一 半導 體 晶片 上製 作 MOS電晶體 方 法 之示 意圓 0 圖五 至圖 八 為 本 發 明於 一半 導 體晶 片上 製 作 MOS電晶 體 方 法之 示意 圓 0 圖 示 之符 號說 明 10' 50 半 導 體 晶 12' 52 矽 基 底 14、 54 m 氧 化 矽 層 16' 56 多 晶 矽層 18、 38 光 阻 層 20' 69 閘 極 22> 64 閘 極 氧 化 層 24、 64 摻 雜 多晶矽層 26' 66 矽 氧 層 30、 70 氮 化 矽層 32' 72 側 壁 子 36、 76 鈷 金 屬層 38' 78 氮 化 鈇 層 40、 80 MOS電晶體 42' 82 鈦 自 行 對 準矽 化物 57' 65 過 渡 層 60 準 閘 極 結 構 28、34、68、74 摻雜區442858 Simple description of the circle type diagrams. Figures 1 to 4 are schematic diagrams of the conventional method for making MOS transistors on a semiconductor wafer. Figures 5 to 8 show the method of making MOS transistors on a semiconductor wafer according to the present invention. The symbol of the circle 0 indicates the 10 '50 semiconductor crystal 12' 52 silicon substrate 14, 54 m silicon oxide layer 16 '56 polycrystalline silicon layer 18, 38 photoresist layer 20' 69 gate 22> 64 gate oxide layer 24, 64 doped polycrystalline silicon layer 26 '66 silicon oxide layer 30, 70 silicon nitride layer 32' 72 sidewall 36, 76 cobalt metal layer 38 '78 hafnium nitride layer 40, 80 MOS transistor 42' 82 titanium self-aligned silicide 57 '65 Transition layer 60 Quasi-gate structure 28, 34, 68, 74 Doped regions

第12頁Page 12

Claims (1)

4 428 5 8 六、申請專利範圍 1. 一種於一半導體晶片上製作一閘極之方法,該方法包 含有下列步驟: 於該半導趙晶片表面形成一準閘極結構(pre_gate structure),且該準閘極結構由下而上依序包含有一閘極 介電層、一多晶矽層以及一過渡層; 於該準閘極結構周圍形成一側壁子; 去除該過渡層;以及 於該多晶矽層表面及該側壁子周圍之基底上分別形成 一金屬矽化物層,完成該閘極之製作。 2· 如申請專利範圍第1項之方法,其中形成該準閘極結 構的方法包含有: 於該半導艘晶片表面形成一氧化層; 於該氧化層上形成一該多晶矽層; 於該多晶矽層上形成該過渡層; 進行一黃光製程,定義該準閘極結構之圖案;以及 進行一蝕刻製程,去除該過渡層、該多晶矽層以及該氧化 層多餘之部分,形成該準閘極結構。 3. 如申請專利範圍第2項之方法,其中該多晶矽層係為 一已摻雜多晶梦(doped silicon)房。 4·如申請專利範圍第2項之方法,其中該過渡層係為一 妙化鎮(tungsten silicide)層,且該多晶梦層以及該過4 428 5 8 6. Scope of patent application 1. A method for fabricating a gate on a semiconductor wafer, the method includes the following steps: forming a pre-gate structure on the surface of the semiconductor wafer, and The quasi-gate structure includes a gate dielectric layer, a polycrystalline silicon layer, and a transition layer in order from bottom to top; forming a sidewall around the quasi-gate structure; removing the transition layer; and a surface of the polycrystalline silicon layer A metal silicide layer is formed on the substrate around the side wall to complete the fabrication of the gate. 2. The method of claim 1 in the patent application method, wherein the method for forming the quasi-gate structure includes: forming an oxide layer on the surface of the semiconductor wafer; forming a polycrystalline silicon layer on the oxide layer; and forming the polycrystalline silicon Forming the transition layer on the layer; performing a yellow light process to define the pattern of the quasi-gate structure; and performing an etching process to remove the transition layer, the polycrystalline silicon layer, and the excess portion of the oxide layer to form the quasi-gate structure . 3. The method according to item 2 of the patent application, wherein the polycrystalline silicon layer is a doped silicon room. 4. The method according to item 2 of the scope of patent application, wherein the transition layer is a tungsten silicide layer, and the polycrystalline dream layer and the transition layer are 第13頁 ^ 42 85 ο 六、申請專利範圍 渡層可於同一爐管内進行蝕刻。 5·如申請專利範圍第i項之方法,其中形成該側壁子之 方法包含有: 於該半導體晶>ί表面均勻地形成一氮化矽層,並復蓋於該 準閘極結構之上;以及 蝕刻該氮化矽層,使殘留於該準閘極結構周圍之部分氮化 矽層形成該側壁子。 6. 如申請專利範圍第1項之方法,其中去除該過渡層的 方法係為一清洗製程。 7. 如申請專利範圍第1項之方法,其中該半導體晶片表 面係包含有一發基底,且該金屬梦化物層係利用一自行對 準方法所形成,該自行對準方法包含有: 於該矽基底表面以及該準閘極結構表面均勻沈積一金屬 層; 進行一高溫製程,使該金屬層與該側壁子周圍之矽基底、 該多晶矽層反應生成該金屬矽化物層;以及 去除該矽基底表面以及該側壁子表面未反應部份之該金屬 層。 8. 如申請專利範圍第1項之方法,其中在去除該過渡層 之後1該側壁子的頂端係高於該多晶矽層,以避免殘留於Page 13 ^ 42 85 ο 6. Scope of patent application The crossing layer can be etched in the same furnace tube. 5. The method of claim i in the scope of patent application, wherein the method of forming the sidewall includes: uniformly forming a silicon nitride layer on the surface of the semiconductor crystal, and covering the quasi-gate structure And etching the silicon nitride layer, so that a portion of the silicon nitride layer remaining around the quasi-gate structure forms the sidewall. 6. The method of claim 1 in which the method of removing the transition layer is a cleaning process. 7. The method of claim 1, wherein the surface of the semiconductor wafer includes a substrate, and the metal dream layer is formed by a self-alignment method, the self-alignment method includes: on the silicon A metal layer is uniformly deposited on the substrate surface and the quasi-gate structure surface; a high temperature process is performed to make the metal layer react with the silicon substrate around the sidewall and the polycrystalline silicon layer to form the metal silicide layer; and remove the surface of the silicon substrate And the metal layer of the unreacted portion of the sidewall sub-surface. 8. The method according to item 1 of the patent application, wherein the top of the side wall is higher than the polycrystalline silicon layer after removing the transition layer to avoid remaining on the polycrystalline silicon layer. 第U頁 4 42858 六、申請專利範面 〜—一^— --- 該側壁子表面之金屬層導通該多晶矽層上之金屬 及該基底上之金屬矽化物層。 有導電 基底, 於 由下而 渡層; 於 去 於 屬層; 進 底、該 去 屬層; 其 多晶矽 份金屬 之金屬 一種避免一半導體晶片 路的方法, 含有下列步 物造成短 該方法包 該梦基底 上依序包 該準閘極 除該過渡 該梦基底 表面形成一 含有一閘極 結構周圍形 層; 表面以及該 行一高溫製程,使該 相作用*生 底表面以及 多晶梦層 除該矽基 中在去除 層之頂面 層導通該 碎化物層 該過渡層之 ,以避免殘 多晶碎層上 ,造成短路 it55極周圍側壁子表面 該半導體晶片表面包含有 驟: 準閑極結構,且該準閘極 介電屠、一多晶矽層以及 成一側壁子· 準閉極結構表面均勻沈積 金屬層與該側壁子周圍之 成該金屬矽化物層;以及 該側壁子表面未反應部份 後’該侧壁子的頂端會高 留於該側壁子表面之未反 之金屬梦化物層及該梦基 10.如申請專利範圍第9項之方法,其中形成該準閉名 構的方法包含有: 物層 殘留 一矽 結構 —過 一金 矽基 之金 於該 應部 底上 色結Page U 4 42858 VI. Patent application area ~~~ ^ ~ --- The metal layer on the side surface of the side wall conducts the metal on the polycrystalline silicon layer and the metal silicide layer on the substrate. There is a conductive substrate for crossing the layer from below; for removing the metal layer; entering the bottom and removing the metal layer; its polycrystalline silicon metal metal is a method to avoid a semiconductor wafer path, which contains the following steps and causes the method to be short The dream substrate is sequentially covered with the quasi-gate in addition to the transition. The surface of the dream substrate forms a surrounding layer containing a gate structure; the surface and the row are subjected to a high-temperature process to make the phase act on the bottom surface and the polycrystalline dream layer. The top layer of the silicon-based layer removes the debris layer and the transition layer to prevent the residual polycrystalline debris layer from causing a short circuit around the sub-surface of the side wall around the it55 pole. And the quasi-gate dielectric layer, a polycrystalline silicon layer, and a side wall. A metal layer is uniformly deposited on the surface of the quasi-closed pole structure and the metal silicide layer is formed around the side wall; and the unreacted part of the surface of the side wall 'The top of the side wall will remain on the surface of the side wall of the non-reversing metal dream material layer and the dream base 10. If the method of the scope of patent application item 9, The method of forming the quasi-closed structure includes: physical layer residual a silicon structure—over one gold silicon-based gold on the bottom of the application part W2858 -------- --------- 六、申琦專利範圍 一~ 一 於該妙基底表面形成一氧化層; 於該氡化層上形成該多晶矽層; 於該多晶矽層上形成該過渡層; 進行一黃光製程,定義該準閘極結構之圖案;以及 進行一蝕刻製程,去除該過渡層、該多晶矽層以及該氧化 層多餘之部分,形成該準閘極結構。 11·如申請專利範圍第9項之方法,其中該多晶矽層係為 一已摻雜多晶矽層》 12.如申請專利範圍第9項之方法,其中該過渡層係為一 矽化鎢(tungsten silicide)層,且蝕刻該多晶發層以及 蝕刻該過渡層的製程,可於同一爐管内進行。W2858 -------- --------- 6. Scope of Shen Qi's patents 1 ~ One forms an oxide layer on the surface of the wonderful substrate; forms the polycrystalline silicon layer on the halogenated layer; Forming the transition layer on the polycrystalline silicon layer; performing a yellow light process to define a pattern of the quasi-gate structure; and performing an etching process to remove the transition layer, the polycrystalline silicon layer, and an excess portion of the oxide layer to form the quasi-gate structure. 11. The method according to item 9 of the patent application, wherein the polycrystalline silicon layer is a doped polycrystalline silicon layer "12. The method according to item 9 of the patent application, wherein the transition layer is a tungsten silicide Layers, and the process of etching the polycrystalline hair layer and etching the transition layer can be performed in the same furnace tube.
TW89108445A 2000-05-03 2000-05-03 Process to form gate TW442858B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89108445A TW442858B (en) 2000-05-03 2000-05-03 Process to form gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89108445A TW442858B (en) 2000-05-03 2000-05-03 Process to form gate

Publications (1)

Publication Number Publication Date
TW442858B true TW442858B (en) 2001-06-23

Family

ID=21659589

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89108445A TW442858B (en) 2000-05-03 2000-05-03 Process to form gate

Country Status (1)

Country Link
TW (1) TW442858B (en)

Similar Documents

Publication Publication Date Title
TWI288432B (en) Semiconductor device and method for manufacturing the same
KR100966384B1 (en) Nickel silicide method and structure
JP3488236B2 (en) MOS transistor with composite gate electrode
JP4854245B2 (en) Manufacturing method of semiconductor device
US6365516B1 (en) Advanced cobalt silicidation with in-situ hydrogen plasma clean
JP3209164B2 (en) Method for manufacturing semiconductor device
JP2005123626A (en) Method of reducing contact resistance at semiconductor connection region
KR100978647B1 (en) Method of forming different silicide portions on different silicon-containing regions in a semiconductor device
TW201515113A (en) Gate encapsulation achieved by single-step deposition
JP2006508548A (en) Field effect transistor drain / source extension structure with doped high-k sidewall spacers
TW442858B (en) Process to form gate
KR100395776B1 (en) Method for manufacturing a silicide layer of semiconductor device
TW200303587A (en) Method of forming different silicide portions on different silicon-containing regions in a semiconductor device
KR100628225B1 (en) method for manufacturing of semiconductor device
KR100678318B1 (en) Method of fabricating fully silicided gate
KR100630769B1 (en) Semiconductor device and method of fabricating the same device
JP2950244B2 (en) Method for manufacturing semiconductor device
US20050164460A1 (en) Salicide process for metal gate CMOS devices
JP3334692B2 (en) Method for manufacturing semiconductor device
KR20030013882A (en) Method for manufacturing a silicide layer of semiconductor device
KR100580770B1 (en) Method of manufacturing a transistor in a semiconductor device
KR100613098B1 (en) Method for fabricating the gate oxide of semiconductor device
TWI222141B (en) Semiconductor devices having a metal silicide bi-layer and the method for fabricating the same
TW466767B (en) Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor
KR100573648B1 (en) Method for fabricating silicide

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent