TW426979B - Fabrication method of dual damascene copper interconnects - Google Patents

Fabrication method of dual damascene copper interconnects Download PDF

Info

Publication number
TW426979B
TW426979B TW88117950A TW88117950A TW426979B TW 426979 B TW426979 B TW 426979B TW 88117950 A TW88117950 A TW 88117950A TW 88117950 A TW88117950 A TW 88117950A TW 426979 B TW426979 B TW 426979B
Authority
TW
Taiwan
Prior art keywords
layer
copper
resistance material
manufacturing
item
Prior art date
Application number
TW88117950A
Other languages
Chinese (zh)
Inventor
Fu-Sheng Lee
Chien-Chen Chen
Chen-Ting Lin
Albert Lu
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW88117950A priority Critical patent/TW426979B/en
Application granted granted Critical
Publication of TW426979B publication Critical patent/TW426979B/en

Links

Abstract

This invention provides the fabrication method of dual damascene copper interconnects and includes the followings. At first, a dielectric layer and a separation layer are formed globally on top of the semiconductor substrate. The separation layer and the dielectric layer stated above are selectively etched to form a contact via. A layer of copper crystal seed is formed on the sidewall and bottom face of contact via stated above. Then, a layer of high resistance material is globally formed on top of the copper crystal seed layer. The high resistance material layer is selectively etched until the copper crystal seed layer is exposed such that the high resistance material model is remained and the dual damascene structure is defined. The electrochemical deposition method is used to form copper metal inside the model stated above to form dual damascene copper interconnects. Finally, the high resistance material model and the copper crystal seed layer which is under the high resistance material model are stripped off. Based on the fabrication method of this invention, the application of chemical mechanical polishing method to perform the planarization of copper interconnects is not necessary such that the possibility of copper metal contamination is greatly reduced.

Description

(?)0(?) 0

本發明係有關於一種半 別是有關於一種在能夠防止 interconnects)的製造流程 導體積體電路的製造流程,特 銅/亏染的銅金屬内連線(Cu 不論何種電子凡件均少不了用來傳輪電訊的金屬導 線’半導體積體電路凡件亦然,各個元件必藉由適當的内 連線當作電性連接,方得以發揮所欲達成之功能。在今曰 多層内連線製程中,除了製作各層導線圖案之外,更須藉 助接觸孔(contact via)構成,以作為元件接觸區盘導線 之間或是多層導線之間的聯繫通道。在内連線材質方面, 由於銅金屬的高傳導性,高延展性等優點,成為廣受矚目 的材質之一。 以下利用第1A〜第1B圖之雙鑲嵌(dual仏㈣“⑽…銅 内連線的製程剖面圖,以說明習知技術之一。 第1A圖所示的符说10表示形成有電晶體丁 1、Τ2、Τ3等 元件的半導體基底’符號11及16表示介電層,符號I〗、14 表示導通電晶體ΤΙ、Τ2、Τ3元件的銅内連線。符號Μ表示 擴散阻障層’而符號2 0表示例如以電化學沈積法形成的銅 金屬内連線。 請參照第1 Β圖’利用化學機械研磨法(c h e m i c a 1 mechanical polishing ; CMP)對鋼金屬内連線進行平坦 化,以得到表面平坦的雙鑲嵌銅内連線2 〇 a、2 0 b。 利用上述習知技術雖然容易形成銅内連線,然而以 CMP處理銅金屬後’必須進行複雜的清洗步驟否則將造成 嚴重的銅金屬污染。The present invention relates to a manufacturing process for conducting a bulk circuit in a manufacturing process capable of preventing interconnections, and a special copper / defective copper metal interconnect (Cu is indispensable for any electronic component) The same applies to the metal wire 'semiconductor integrated circuit of telecom, and each component must be electrically connected by an appropriate interconnect to achieve the desired function. In today's multi-layer interconnect process In addition to the production of various layers of wire patterns, contact vias must be used as the communication channel between the component contact area disk wires or the multilayer wires. In terms of the material of the interconnect, copper metal The high conductivity, high ductility, and other advantages have become one of the materials that have attracted much attention. The following uses the dual inlay (dual 仏 ㈣ "⑽ ... copper cross-section process cross-section diagram of Figure 1A ~ 1B to illustrate the practice The symbol 10 shown in FIG. 1A indicates a semiconductor substrate on which elements such as transistors T1, T2, and T3 are formed. The symbols 11 and 16 represent dielectric layers, and the symbols I and 14 represent conducting crystals. The copper interconnects of the components T1, T2, and T3. The symbol M represents a diffusion barrier layer and the symbol 20 represents a copper metal interconnect formed, for example, by an electrochemical deposition method. Please refer to FIG. The polishing method (chemica 1 mechanical polishing; CMP) planarizes the steel metal interconnects to obtain a double damascene copper interconnects 20a, 20b with a flat surface. Although the copper interconnects are easily formed using the conventional techniques described above, However, after the copper metal is processed by CMP, a complicated cleaning step must be performed, or serious copper metal pollution will be caused.

426979_______ 五、發明說明(2) 有鑑於上述各習知技術的問題,本發明的目的在於提 供一種雙鑲嵌銅内連線的製造方法,不需利用化學機械研 磨方式進行鋼内連線的平坦化,因此,可大幅降低銅金屬 污染的可能性。 根據上述目的,本發明提供一種雙鑲嵌銅内連線的製 造方法’適用於形成有導電區塊的半導體基底,上述方法 包括下列步驟‘(a)在上述半導體基底上方全面性地形成 一介電層及一阻隔層;(b)選擇性蝕刻上述阻隔層與介電 層以形成一露出上述導電區塊的接觸孔;(c)在上述接觸 孔的側壁及底面形成一銅晶種層’其並延伸於上述阻隔層 表面;(d)在上述鋼晶種層上方全面性形成一高電阻材料 層;(e)選擇性钱刻上述高電阻材料層,直到露出上述銅 晶種層為止’用以留下高電阻材料模型,而定義出雙鑲礙 結構;(f)利用電化學沈積法在上述模型内形成銅金屬, 以構成雙鑲喪銅内連線;以及(g)去除上述高電阻材料模 型及其下方的銅晶種層。 上述雙鑲嵌鋼内連線的製造方法,其中介電層係二 =矽層或低介電常數有機材料層。並且,阻隔層係 =氡石夕化物層。上述導電區塊係銅内連線, : 阳種層係利用化學氣相沈積法形成。 到 再者,上述雙鑲嵌銅内連線的製造方法,其中步驟 钽鋼晶種層之前更包括一形成擴冑阻障層(氮化纽/ ^增)的步驟。 並且’上述高電阻材料層係氧化層,其厚度介於426979_______ 5. Description of the invention (2) In view of the problems of the above-mentioned conventional technologies, an object of the present invention is to provide a method for manufacturing a dual-inlaid copper interconnect, without the need to use chemical mechanical polishing to planarize steel interconnects. Therefore, the possibility of copper metal contamination can be greatly reduced. According to the above object, the present invention provides a method for manufacturing a dual damascene copper interconnect, which is applicable to a semiconductor substrate having conductive blocks formed therein. The method includes the following steps: (a) forming a dielectric layer over the semiconductor substrate Layer and a barrier layer; (b) selectively etching the barrier layer and the dielectric layer to form a contact hole exposing the conductive block; (c) forming a copper seed layer on a side wall and a bottom surface of the contact hole; And extended on the surface of the barrier layer; (d) forming a high-resistance material layer on the steel seed layer; (e) selectively engraving the high-resistance material layer until the copper seed layer is exposed; A double-inlay structure is defined by leaving a high-resistance material model; (f) forming a copper metal in the above model by using an electrochemical deposition method to form a double-inlay copper interconnect; and (g) removing the high-resistance Material model and the copper seed layer below it. In the above-mentioned manufacturing method of the dual damascene steel interconnect, the dielectric layer is a silicon layer or a low dielectric constant organic material layer. In addition, the barrier layer system is a vermiculite layer. The above conductive blocks are copper interconnects. The positive seed layer is formed by chemical vapor deposition. To the above, in the method for manufacturing the dual damascene copper interconnect, the step of forming the seed layer of tantalum steel further includes a step of forming a diffusion barrier layer (nitride). And ’the above-mentioned high-resistance material layer-based oxide layer has a thickness between

第5頁 ^^6979 五、發明說明(3) 6000〜8000埃之間。 為了讓本發明之上述目的、特徵、和優點能更明顯易 懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說 明如下: 圖式之簡單說明: 第1 A〜第1 B圖係習知技術之雙鑲嵌銅内連線的製程剖 面圖。 第2A〜2H圖為根據本發明實施例之雙鑲嵌銅内連線的 製程剖面示意圖。 符號之說明 100〜半導體(矽)基底。 102、104〜導電區塊(銅内連線)。 106~金屬間介電層。 108、122〜阻隔層。 11 0 a、11 0 b、11 0 c 〜接觸孔。 112〜擴散阻障層/銅晶種層。 11 4〜高電阻材料層。 11 4a〜高電阻材料模型。 DD1、DD2〜雙鑲嵌結構。 11 6〜銅内連線。 120〜表面不平坦之金屬間介電層。 120a〜表面平坦之金屬間介電層。 實施例 以下利用第2 A〜2H圖所示的製程剖面示意圖,以更詳Page 5 ^^ 6979 V. Description of the invention (3) Between 6000 and 8000 Angstroms. In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below in conjunction with the accompanying drawings to make a detailed description as follows: Brief description of the drawings: Figure 1B is a cross-sectional view of the manufacturing process of the double-inlaid copper interconnects of the conventional technology. Figures 2A to 2H are schematic cross-sectional views of a manufacturing process of a dual-inlaid copper interconnect according to an embodiment of the present invention. Explanation of symbols 100 to semiconductor (silicon) substrate. 102, 104 ~ conductive block (copper interconnect). 106 ~ Intermetal dielectric layer. 108, 122 ~ barrier layer. 11 0 a, 11 0 b, 11 0 c to contact holes. 112 ~ Diffusion barrier layer / copper seed layer. 11 4 ~ High resistance material layer. 11 4a ~ High resistance material model. DD1, DD2 ~ Dual mosaic structure. 11 6 to copper interconnects. 120 ~ Intermetal dielectric layer with uneven surface. 120a ~ Intermetal dielectric layer with flat surface. Example The following uses the process cross-sectional schematic diagrams shown in Figures 2A to 2H for more details.

五、發明說明(4) 細地說明本發明。 首先,請參照第2 Α圖,該圖顯示例如單晶石夕構成之半 導體基底100 ’其已形成若干半導體元件(電晶體ΤΙ、Τ2、 Τ3 等)、層間介電層(inter-iayer dielectric ; ILD)1 01、例如銅内連線的導電區塊1〇2及1〇4、金屬間介 電層(inter-metal dielectric ; IMD)106、用來防止銅金 屬擴散至其他元件的阻隔層(resist layer)108。上述層 間介電層1 0 1、金屬間介電層1 〇 6例如為二氧化矽層或是低 介電常數有機材料層,其具體例為Schumacher公司所製造 的PAE-2層,另外’亦可使用Allied Signal公司所製造的 FLARE層、HOSP層、LOSP層當作有機低介電常數材料層。 上述阻隔層1 0 8例如為化學氣相沈積法(c h e m i c a 1 vapor deposition ;CVD)形成的氮化矽或是氮氧矽化物層,此兼 具有防反射(anti-reflection)的作用。 接著’請參照第2B圖,利用傳統的微影製程進行一連 串的塗佈光阻、烘烤、曝光、顯影等步驟,以形成光阻圖 案(圖未顯示),再利用此光阻圖案當作蝕刻罩幕,選擇性 蝕刻上述阻隔層108與金屬間介電層106以形成一露出上述 導電區塊102、104的接觸孔110a、110b、110c。其次,去 除上述光阻圖案。 然後,請參照第2C圖,該圖之符號11 2表示依序形成 的擴散阻障層(barrier layer)與銅晶種層(Cu seed layer)112,上述擴散阻障層例如為CVD法形成的氮化钽 (TaN) /鉅層,其形成於上述接觸孔1 l〇a、1 l〇b ' 110c的側V. Description of the invention (4) The invention will be described in detail. First, please refer to FIG. 2A, which shows, for example, a semiconductor substrate 100 'composed of a monocrystalline stone, which has formed several semiconductor elements (transistors Ti, T2, T3, etc.), an inter-layer dielectric layer (inter-iayer dielectric; ILD) 101, such as conductive blocks 102 and 104 of copper interconnects, inter-metal dielectric (IMD) 106, and barrier layers to prevent copper metal from diffusing to other components ( resist layer) 108. The above interlayer dielectric layer 101 and the intermetallic dielectric layer 106 are, for example, a silicon dioxide layer or a low dielectric constant organic material layer. A specific example thereof is a PAE-2 layer manufactured by Schumacher Company. FLARE layer, HOSP layer and LOSP layer manufactured by Allied Signal can be used as the organic low dielectric constant material layer. The above-mentioned barrier layer 108 is, for example, a silicon nitride or oxynitride layer formed by a chemical vapor deposition (CVD) method, which also has an anti-reflection function. Then 'Please refer to FIG. 2B, using a series of steps of coating photoresist, baking, exposure, and development using a traditional lithographic process to form a photoresist pattern (not shown), and then use this photoresist pattern as The mask is etched, and the barrier layer 108 and the intermetal dielectric layer 106 are selectively etched to form a contact hole 110a, 110b, 110c that exposes the conductive blocks 102, 104. Next, remove the photoresist pattern. Then, please refer to FIG. 2C. Symbol 11 in the figure represents a diffusion barrier layer and a copper seed layer 112 which are sequentially formed. The diffusion barrier layer is formed by a CVD method, for example. Tantalum nitride (TaN) / giant layer formed on the side of the above-mentioned contact holes 1 10a, 1 10b '110c

第7頁 五 '發明說明(5) ' — 壁及底面。而鋼晶種層的目的在於建立後續電化學形成銅· 金屬的基本結構。緊接著,利用化學氣相沈積法等方式全 面性地形成例如為二氧化矽構成的高電阻材料層i丨4,此 層又稱為自我對準層(self —aligned layer),|度例如介 於6000〜8000埃之間,其必須為非導電材料以便阻隔後續 電化學沈積(electro-chemical deposition ;ECD)步驟形 成銅等金屬。 再者’請參照第2 D圖’利用傳統的微影製程進行一連 串的塗佈光阻、烘烤、曝光、顯影等步驟,以形成光阻圖 案(圖未顯示),再利用此光阻圖案當作蝕刻罩幕,選擇性 蝕刻上述高電阻材料層丨丨4,直到露出上述擴散阻障層/銅 晶種層11 2為止,用以留下高電阻材料模型〗丨4a,而定義 出雙鑲嵌結構DD1、DD2。 *之後’請參照第2E圖,利用電化學沈積法並且控制適 當的反應條件以在上述模型114a内形成銅金屬,以構成雙 鑲嵌銅内連線116'116。 又 接著’清參照第2 F圖’利用乾或渔蚀刻法以去除上述 尚電阻材料模型;1丨4a ’其次去除位於上述高電阻材料模型 114a下方的擴散阻障層/銅晶種層112。 然後,請參照第2 G及第2 Η圖,此兩圖為形成内連線 116之後續步驟示意圖’其中符號丨2〇表示覆蓋於雙鑲嵌銅 内連線11 6、11 6的金屬間介電層’符號丨2 〇 a表示以化學機 械研磨法進行平坦化之後的金屬間介電層,符號丨2 2表示 用來防止銅金屬擴散至其他元件的阻隔層。Page 7 Five 'Explanation of Invention (5)' — Wall and bottom. The purpose of the steel seed layer is to establish the basic structure for subsequent electrochemical formation of copper and metal. Next, a high-resistance material layer i 丨 4 composed of silicon dioxide is comprehensively formed by using a chemical vapor deposition method or the like. This layer is also referred to as a self-aligned layer. Between 6000 and 8000 angstroms, it must be a non-conductive material in order to prevent subsequent electro-chemical deposition (ECD) steps from forming metals such as copper. Furthermore, please refer to Figure 2D. Use a traditional lithography process to perform a series of steps of coating photoresist, baking, exposure, and development to form a photoresist pattern (not shown), and then use this photoresist pattern. As an etching mask, the above-mentioned high-resistance material layer 丨 4 is selectively etched until the above-mentioned diffusion barrier layer / copper seed layer 11 2 is exposed, so as to leave a high-resistance material model 〖4a, and define double Mosaic structure DD1, DD2. * After ', please refer to FIG. 2E, using the electrochemical deposition method and controlling the appropriate reaction conditions to form copper metal in the above-mentioned model 114a to form a double-inlaid copper interconnect 116'116. Then, referring to FIG. 2F, the dry resist or fish etching method is used to remove the above-mentioned high-resistance material model; 1 丨 4a ', and then the diffusion barrier layer / copper seed layer 112 under the above-mentioned high-resistance material model 114a is removed. Then, please refer to Figure 2G and Figure 2Η. These two diagrams are schematic diagrams of the subsequent steps of forming the interconnect 116. The symbol 丨 2〇 represents the metal interposer covering the double-inlaid copper interconnect 116, 116. The electric layer 'symbol 丨 2 〇a represents an intermetal dielectric layer after planarization by a chemical mechanical polishing method, and the symbol 丨 2 2 represents a barrier layer for preventing copper metal from diffusing to other elements.

發明特徵與效果 本發明的特徵在於藉由离Φ 被城也,士祕nm 田阿電阻材料模型114a以界定出 雙鑲嵌結構DD1、DD2。接著,利 砝1 1 r令% s ^ ^ 利用ECD法電鍍形成銅内連 線116之後,再去除咼電阻材料模型。 五、發明說明(6) 根據本發明之製造方法,^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 進行銅内連線的平坦化,因此”匕學機械研磨方式 可能性D 可大幅降低鋼金屬污染的 雖然本發明已以較佳實施例揭露如上鈇 :定本發明,任何熟習此項技藝者,在不脫::菸:以 當可作更動與潤飾,因此本:::::=: 虽視後附之中請專利範圍所界定者為準。 ,、善乾圍Features and Effects of the Invention The present invention is characterized by being separated from the Φ by the city, and the secret nm nm field resistance material model 114a to define the dual mosaic structure DD1, DD2. Next, the weight 11 1 r%% s ^ ^ After the copper interconnect 116 is formed by electroplating using the ECD method, the plutonium resistor material model is removed. V. Description of the invention (6) According to the manufacturing method of the present invention, ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Although the present invention has been disclosed in a preferred embodiment, the above is the definition of the present invention. Anyone who is familiar with the art will not take off :: smoke: it can be modified and retouched. Therefore: :::: =: Although It is subject to the definition in the appended patent scope.

Claims (1)

4咖“ —--— 六 '申請專#ίΐϊϊ ~ " '—^ 1,一種雙鑲嵌銅内連線的製造方法,適用於形成 電區塊的半導體基底,上述方法包括下列步驟: ,導 (a) 在上述半導體基底上方全面性地形成一介 —阻隔層: 嚐及 (b) 選擇性蝕刻上述阻隔層與介電層以形成一露 述導電區塊的接觸孔; 上 (c) 在上述接觸孔的側壁及底面形成一銅晶種層,发 並延伸於上述阻隔層表面; " (d) 在上述銅晶種層上方全面性形成一高電阻材料 曰(e)選擇性蝕刻上述高電阻材料層’直到露出上述銅 :種層為止,用以留下高電阻材料模型,而定義出雙鑲嵌 結構; X (〇利用電化學沈積法在上述模型内形成鋼金屬,以 構成雙鑲嵌銅内連線;以及 (g)去除上述高電阻材料模型及其下方的鋼晶種層。 、主2.如申請專利範圍第1項所述之雙鑲嵌銅内連線的製 ^方法’其中上述介電層係二氧化矽層。 ^ 3,如申請專利範圍第1項所述之雙鑲嵌銅内連線的製 造方法’其中上述介電層係低介電常數有機材料層。 4.如申請專利範圍第1項所述之雙鑲嵌銅内連線的製 k方/去’其中上述阻隔層係氮化石夕層或氮氧矽化物層。 5 ’如申凊專利範圍第1項所述之雙鑲嵌銅内連線的製 造方法,其中上述導電區塊係銅内連線。"4 coffee" ————— 六 '应用 专 # ίΐϊϊ ~ "'-^ 1, a manufacturing method of dual-inlaid copper interconnects, suitable for forming a semiconductor substrate of an electrical block, the above method includes the following steps: (a) comprehensively forming a dielectric-barrier layer above the semiconductor substrate: (b) selectively etching the barrier layer and the dielectric layer to form a contact hole exposing the conductive block; (c) above the above A copper seed layer is formed on the side wall and the bottom surface of the contact hole and extends on the surface of the barrier layer; (d) A high-resistance material is comprehensively formed above the copper seed layer (e) Selectively etching the high Resistive material layer 'until the above-mentioned copper: seed layer is exposed to leave a model of high-resistance material and define a dual damascene structure; X (0) A steel metal is formed in the above model by electrochemical deposition to form a dual damascene copper And (g) removing the above-mentioned high-resistance material model and the steel seed layer below it. 2. The method for making a double-inlaid copper interconnect as described in the first item of the scope of patent application, wherein Dielectric layer system Silicon dioxide layer. ^ 3, the manufacturing method of the dual damascene copper interconnect as described in item 1 of the scope of the patent application, wherein the above dielectric layer is a low dielectric constant organic material layer. The method of manufacturing / removing the double-inlaid copper interconnects as described in the above item, wherein the above-mentioned barrier layer is a nitrided nitride layer or an oxynitride layer. 5 'The double-inlaid copper as described in item 1 of the patent application scope A method for manufacturing a connection, wherein the conductive block is a copper interconnection. 第i〇頁 4^69 7 9 ' 六、申請專利範圍 6. 如申請專利範圍第1項所述之雙鑲嵌銅内連線的製 _ 造方法,其中上述銅晶種層係利用化學氣相沈積法形成。* 7. 如申請專利範圍第1項所述之雙鑲嵌銅内連線的製 造方法,其中步驟(c)形成銅晶種層之前更包括一形成擴 散阻障層的步驟。 8. 如申請專利範圍第7項所述之雙鑲嵌銅内連線的製 造方法,其中上述擴散阻障層係氮化组/组層。 9. 如申請專利範圍第1項所述之雙鑲嵌銅内連線的製 造方法,其中上述高電阻材料層係氧化層。 1 0.如申請專利範圍第1項所述之雙鑲嵌銅内連線的製 造方法,其中上述高電阻材料的厚度介於6 000~8000埃之 間。Page i〇 4 ^ 69 7 9 'VI. Patent application scope 6. The manufacturing method of the dual-inlaid copper interconnects as described in item 1 of the patent application scope, wherein the above copper seed layer uses a chemical vapor phase Formed by deposition. * 7. The method for manufacturing a dual-inlaid copper interconnect as described in item 1 of the scope of patent application, wherein step (c) further includes a step of forming a diffusion barrier layer before forming the copper seed layer. 8. The manufacturing method of the dual damascene copper interconnects as described in item 7 of the scope of the patent application, wherein the diffusion barrier layer is a nitride group / group layer. 9. The manufacturing method of the dual-inlaid copper interconnects as described in item 1 of the scope of the patent application, wherein the high-resistance material layer is an oxide layer. 10. The method for manufacturing a double-inlaid copper interconnect as described in item 1 of the scope of patent application, wherein the thickness of the high-resistance material is between 6 000 and 8000 Angstroms. 第11頁Page 11
TW88117950A 1999-10-18 1999-10-18 Fabrication method of dual damascene copper interconnects TW426979B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88117950A TW426979B (en) 1999-10-18 1999-10-18 Fabrication method of dual damascene copper interconnects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88117950A TW426979B (en) 1999-10-18 1999-10-18 Fabrication method of dual damascene copper interconnects

Publications (1)

Publication Number Publication Date
TW426979B true TW426979B (en) 2001-03-21

Family

ID=21642658

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88117950A TW426979B (en) 1999-10-18 1999-10-18 Fabrication method of dual damascene copper interconnects

Country Status (1)

Country Link
TW (1) TW426979B (en)

Similar Documents

Publication Publication Date Title
TWI241682B (en) A method for forming dummy structures for improved CMP and reduced capacitance
US6492722B1 (en) Metallized interconnection structure
TWI229412B (en) Method for forming metal interconnect structures
US7193327B2 (en) Barrier structure for semiconductor devices
US6143126A (en) Process and manufacturing tool architecture for use in the manufacture of one or more metallization levels on an integrated circuit
US7285853B2 (en) Multilayer anti-reflective coating for semiconductor lithography and the method for forming the same
US20050247566A1 (en) Process and manufacturing tool architecture for use in the manufacture of one or more protected metallization structures on a workpiece
JP2000106396A (en) Manufacture of semiconductor device
JP2005340808A (en) Barrier structure of semiconductor device
KR20040089580A (en) Semiconductor device and manufacturing method thereof
JP2003179136A (en) Mask layer and interconnection structure for manufacturing dual damascene semiconductor
US6767825B1 (en) Etching process for forming damascene structure of the semiconductor
US6037250A (en) Process for forming multilevel interconnection structure
US7144761B2 (en) Semiconductor device and method for fabricating the same
JP2004228111A (en) Semiconductor device and its manufacturing method
JP2004055781A (en) Method for manufacturing semiconductor device
US6258709B1 (en) Formation of electrical interconnect lines by selective metal etch
JP2002299437A (en) Method of manufacturing semiconductor device
TW426979B (en) Fabrication method of dual damascene copper interconnects
TW507324B (en) Method for forming an electrically conductive interconnection between two semiconductor layers, and multilayer semiconductor device
EP1086485A2 (en) Process and manufacturing tool architecture for use in the manufacture of one or more metallization levels on a workpiece
JP3924501B2 (en) Manufacturing method of integrated circuit device
JP2004363447A (en) Semiconductor device and method of manufacturing the same
US7365025B2 (en) Methods of forming dual-damascene interconnect structures on semiconductor substrates using multiple planarization layers having different porosity characteristics
US20100167531A1 (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent