TW425705B - Manufacturing method of capacitor structure - Google Patents

Manufacturing method of capacitor structure Download PDF

Info

Publication number
TW425705B
TW425705B TW88112677A TW88112677A TW425705B TW 425705 B TW425705 B TW 425705B TW 88112677 A TW88112677 A TW 88112677A TW 88112677 A TW88112677 A TW 88112677A TW 425705 B TW425705 B TW 425705B
Authority
TW
Taiwan
Prior art keywords
layer
silicon
hsg
thickness
angstroms
Prior art date
Application number
TW88112677A
Other languages
Chinese (zh)
Inventor
Sen-Huan Huang
You-Luen Du
Jin-Dung Chen
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW88112677A priority Critical patent/TW425705B/en
Application granted granted Critical
Publication of TW425705B publication Critical patent/TW425705B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

This invention relates to the manufacturing method of forming capacitor structure for DRAM device. The capacitance value stated above can be increased by using capacitance dielectric layer with high dielectric constant and by using the HSG layer as the top surface of storage node electrode. This invention has the characteristic of using HSG TiN layer as part of the storage node structure such that the surface area of storage node electrode can be increased and the capacitance value can be increased.

Description

_ 4 2 5 7 0 5 ____ 五、發明說明(1) 本發明係有關一種製造半導體元件之方法,特別是有 關於一種應用於動態隨機存取記憶體(Dynami(; Rand()m_ 4 2 5 7 0 5 ____ V. Description of the Invention (1) The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for applying dynamic random access memory (Dynami (; Rand () m

Access Memory, DRAM)元件中形成具有高表面積電容結構 之方法。 半導體元件之微小型化^丨^⑽-““以^“以。。, 或製造具有次微米(Sub-mi cron)特徵之半導體元件的能 力’使得DRAM元件的密度達到或超過256 Mbyte。然而, 隨著臨界DRAM特徵尺寸的縮小,為了容納所需求的密度,, 要達到臨界DRAM參數,例如電容量,之難度也隨之增高。 以DRAM單元(DRAM Cells)為例,使用堆疊電容形式 (Stacked Capacitor Configuration)會受到位在下面的 轉換閘極電日日體(Transfer Gate Transistor)的尺寸限 制。由DRAM元件的堆疊電容結構所供給的電容量係為電容 介電層厚度之函數,也是電容面積的函數。由於減少電容 介電層厚度已是趨勢,因此改進的方向已指向藉由增加電 容面積來增加DRAM的電容量,同時仍將藉由縮小轉換閘極 電晶體的尺寸來加以限制。 在沒有增加堆疊電容結構尺寸下,增加電容表面積的 方法之一為在儲存節點電極結構(St〇rage N〇de Electrode Structure)中使用半球形晶粒(Hemisphericai Grained,HSG)矽層作為頂部表面積。矽層可提供且有 連續凹面與凸面的結構,可増加表面積,因而可增加堆疊 電容結構之電容量。例如,美國專利案第5, 61 8, 747號, 發明人為Lou ’揭露以HSG石夕層形成堆疊電容結構的詳細製 Λ25 7 Ο 5 五、發明說明(2) 程。然而’與矽材料相較,高介電常數的介電層與作為電 極材料’如氮化鈥(Titanium Nitride, TiN),更容易有 相容性,高介電常數的介電層係指與其他材料,如氧化 矽’在相同厚度下能提供更多的電容量,其材質如鈦酸錄 鋇(Barium Strontium T i tana t e, BST) '銼酸鈦酸鉛 (Lead Zirconate Titanate, LZT)、以及氧化钽 (Tantalum Oxide)。 本發明將描述使用T i N作為部分電容結構,以形成電 容結構之製程’此外’在與製造平滑(Smooth)的TiN層之 製程比較,本發明將提供形成HSG ΠΝ層之製程,可增加 表面積’因而可增加電容量。以美國專利第5,612, 558 號’發明人為Harshfield為例’其描述以氮化鈦為下層種 子層(Underlying Seed Layer),以形成半球形晶粒矽層 的製造方法,然而’此種習知技術並不使用HSG TiN層作 為儲存節電電極結構的表面層。 因此,本發明之一目的,在於製造一種應用kDRAM元 件中’可增加表面積之電容結構。 本發明之另一目的,在於形成HSG TiN層,並使用HSG T i N層作為儲存節點電極的頂部表層。 本發明之又一目的,在於使用HSG TiN層作為電容結 構之上電極(UPper Electrode)或單元面板電極(ceu Plate Electrode) 本發明之再一目的,在於當以氧化钽(Ta2〇5)作為電容 介電層時’使用HSG TiN作為電容之電極。Access Memory (DRAM) devices are used to form capacitor structures with high surface area. Micro-miniaturization of semiconductor devices ^ 丨 ^ “-" "^^" ..., or the ability to fabricate semiconductor devices with sub-micron characteristics (sub-mi cron) features' makes DRAM device density reach or exceed 256 Mbyte. However With the shrinking of the critical DRAM feature size, in order to accommodate the required density, it becomes more difficult to achieve critical DRAM parameters, such as electrical capacity. Take DRAM Cells as an example, using stacked capacitors ( Stacked Capacitor Configuration) will be limited by the size of the Transfer Gate Transistor below. The capacitance provided by the stacked capacitor structure of a DRAM device is a function of the thickness of the capacitor dielectric layer and is also the capacitance A function of area. Since reducing the thickness of the capacitor dielectric layer is a trend, the direction of improvement has been to increase the capacity of the DRAM by increasing the area of the capacitor, while still limiting it by reducing the size of the switching gate transistor. Without increasing the size of the stacked capacitor structure, one of the methods to increase the surface area of the capacitor is to store the electrode structure at the storage node. No. Electrode Structure) uses a hemisphericai grained (HSG) silicon layer as the top surface area. The silicon layer can provide a continuous concave and convex structure, which can increase the surface area, thereby increasing the capacitance of the stacked capacitor structure. For example, U.S. Patent No. 5, 61 8, 747, the inventor Lou 'discloses the detailed manufacturing process of forming a stacked capacitor structure with HSG stone layers Λ 25 7 Ο 5 V. Description of the invention (2) process. However, it is related to the silicon material Compared with high dielectric constant dielectric layer and electrode materials such as Titanium Nitride (TiN), it is easier to have compatibility. High dielectric constant dielectric layer refers to other materials such as oxidation Silicon 'can provide more capacitance at the same thickness. Materials such as Barium Strontium T i tana te (BST)' Lead Zirconate Titanate (LZT), and tantalum Oxide). The present invention will describe a process that uses T i N as part of the capacitor structure to form a capacitor structure. In addition, compared with the process of manufacturing a smooth TiN layer, the present invention will provide the formation of HSG Π The process of the layer can increase the surface area and thus increase the capacitance. Taking US Patent No. 5,612, 558 as an example of 'inventor Harshfield', it describes the use of titanium nitride as the Underlying Seed Layer to form a hemispherical crystal A method for manufacturing a granular silicon layer. However, this conventional technique does not use an HSG TiN layer as a surface layer for a storage power-saving electrode structure. Therefore, it is an object of the present invention to manufacture a capacitor structure which can increase the surface area in a kDRAM device. Another object of the present invention is to form an HSG TiN layer and use the HSG T i N layer as a top surface layer of a storage node electrode. Another object of the present invention is to use an HSG TiN layer as a capacitor electrode (UPper Electrode) or a cell panel electrode (ceu Plate Electrode). Another object of the present invention is to use tantalum oxide (Ta205) as a capacitor. For the dielectric layer, HSG TiN is used as the capacitor electrode.

-_Λ257〇5_ 五、發明說明(3) 為達成上述目的’本發明提供一種形成HSG TiN層之 方法,可作為部分DR AM電容之結構,且可增加電容的表 積。首先,在半導體基底上提供位在下面的轉換閘極電= 體’位在下面的轉換閘極電晶體包括位在薄閘極絕緣層: 之複晶矽閘極結構,以及位在半導體基底中的源極與汲 區三接著,沉積一層絕緣層,隨後,在絕緣層中形成二 存節點接觸開口(Storage Node Contact Hole),並露出 源極與汲極區的表面。在絕緣層上沉積第一複晶矽層, 將儲存節點接觸開口完全填滿,隨後,以圖案化程^形成 儲存節點電極結構的底部部分。藉由低壓化學氣相沉積法-_Λ257〇5_ 5. Description of the invention (3) To achieve the above-mentioned object, the present invention provides a method for forming an HSG TiN layer, which can be used as a structure of part of a DR AM capacitor, and can increase the surface area of the capacitor. Firstly, the following conversion gate electrode is provided on a semiconductor substrate. The body of the following conversion gate transistor includes a thin gate insulating layer: a polycrystalline silicon gate structure, and a semiconductor substrate. Next, a source layer and a drain region are deposited, and then an insulating layer is deposited. Then, a storage node contact hole is formed in the insulating layer, and the surfaces of the source and drain regions are exposed. A first polycrystalline silicon layer is deposited on the insulating layer to completely fill the storage node contact opening, and then, a bottom portion of the storage node electrode structure is formed by a patterning process. Low pressure chemical vapor deposition

Pressure Chemical Vapor Deposition, LPCVD)在 ::下面的儲存節點電極結構之底部丨,形成半球形晶粒 ^石夕層(HSG TiN Layer),隨後,形成電容介電層,其 二例,為氧化钽(T七I )、氧化矽、氪化矽 '或氧化層上 匕氮 ^ 矽層(〇XidiZed Silic〇n Nitride on 0xide, 索仆笸接著沉積氮化鈦層,隨後沉積第二複晶矽層。圖 Z ,—複晶矽層與氮化鈦層,以形成DRAM電容結構之上 層,或皁元面板電極。 讓本發明之上述和其他目的、特徵、和優點能更明 &1 μ &下文特舉一較佳實施例,並配合所附圖式,作詳 ?田§兄明如下: 圖示之簡單說明:Pressure Chemical Vapor Deposition (LPCVD) is at the bottom of the storage node electrode structure below: a hemispherical grain ^ HSG TiN layer is formed, and then a capacitor dielectric layer is formed. The second example is tantalum oxide (TVIII), silicon oxide, silicon oxide, or nitrogen on the oxide layer ^ silicon layer (〇XidiZed Silicon Nitride on 0xide), and then deposit a titanium nitride layer, and then deposit a second polycrystalline silicon layer Figure Z—Multi-crystalline silicon layer and titanium nitride layer to form the upper layer of DRAM capacitor structure, or saponin panel electrode. Let the above and other objects, features, and advantages of the present invention become clearer & 1 μ & amp The following is a detailed description of a preferred embodiment, and in conjunction with the attached drawings, detailed description of Tian § brother is as follows: Brief description of the diagram:

ι牛^圖至第5圖係顯示製造具有STC結構的DRAM元件主 ’ 剖面圖’由於具有作為儲存節點部分的HSG T i NFigures 1 through 5 show the main section of the fabrication of a DRAM device with an STC structure.

425705 五、發明說明(4) 層’可增加表面積,HSG TiN層與電容介電層直接接觸。 符號說明: ° 1 : p型半導體基底; _ 2 :場氧化區; 3 .閘極絕緣層; 4 :複晶矽閘極結構; 5 .淡摻雜源極與汲極區; 6 :絕緣間隔物; 7 :濃摻雜源極與汲極區; 8 :第三絕緣層; 9 :儲存節點接觸開口; I 0 ·複晶石夕輪靡; II : HSG TiN 層; 12 :電容介電層; 13 .TiN層、合成層; 14 :儲存節點電容結構;以及 20 :蓋絕緣層。 實施例: 本發明所提出形成DRAM元件的方法將在以下作詳細的 描述,所形成的DRAM元件具有以HSG TiN層作為底電容電 極(Bottom Capacitor Electrode)的部分結構,可增加表 面積’並因此可增加電容量。在本發明之DRW元件中所使 用的轉換閘極電晶體係為N通道元件。然而,本發明具有 增加表面積的電容結構可也應用於P通道轉換閑極電晶體425705 V. Description of the invention (4) The layer ′ can increase the surface area, and the HSG TiN layer is in direct contact with the capacitor dielectric layer. Explanation of symbols: ° 1: p-type semiconductor substrate; _ 2: field oxide region; 3. gate insulating layer; 4: compound silicon gate structure; 5. lightly doped source and drain region; 6: insulation interval Materials; 7: heavily doped source and drain regions; 8: third insulating layer; 9: storage node contact opening; I 0 · polycrystalline stone is popular; II: HSG TiN layer; 12: capacitor dielectric layer 13. TiN layer, composite layer; 14: storage node capacitor structure; and 20: cover insulation layer. Example: The method for forming a DRAM element proposed by the present invention will be described in detail below. The formed DRAM element has a partial structure with a HSG TiN layer as a bottom capacitor electrode (Bottom Capacitor Electrode), which can increase the surface area. Increase electric capacity. The switching gate transistor system used in the DRW element of the present invention is an N-channel element. However, the capacitor structure with increased surface area of the present invention can also be applied to P-channel switching idler transistors.

第7頁 425 7 05 五、發明說明(5) 中 〇 請參閱第1圖,提供具有p型、晶面為<100>、單晶的 半導體基底1。場氧化區(Field Oxide, F0X)2可作為阻艰 之用。簡要的說明場氧化區2的形成:在氧蒸氣環境‘'中/ 以溫度在850至1050 °C下進行熱氧化,所形成的厚度約在 3000至5000埃。為避免場氧化區2在基底表面上的後續元 件區中形成,因此使用氮化矽-氧化矽層作為圖案化的氧 化阻隔罩幕(Oxidation Resistant Mask)。在場氧化區2 形成之後,藉由熱磷酸溶液塗佈在氮化矽層上,而緩衝氫 氟酸溶液(Buffered Hydrofluoric Acid Solution)則用 於氧化矽層上,去除氧化阻隔罩幕。在一連串的濕式清洗 之後’藉由在氡蒸氣環境中’溫度介於85〇至1〇5〇下, 形成以氧化矽為材質的閘極絕緣層3,其厚度約介於5〇至 200埃。接著’使用低壓化學氣相沉積法(LpcvD),在溫度 約在500至700 C下,沉積複晶石夕層4,其厚度約介於15〇〇 至4000埃。此複晶矽層4可由内部形成並以砷或磷離子進 行離子植入而形成’其植入能量約在3〇至8〇]^¥,植入劑 量約在1E13至1E16 at〇ms/cm2 ’或者可利用原地(ιη Situ)摻雜程序,藉由砷或磷與矽甲烷(Silane)混合而形 成。接著,藉由LPCVD或電漿加強化學氣相沉積法(PlasmaPage 7 425 7 05 5. In the description of the invention (5) ○ Please refer to FIG. 1 to provide a semiconductor substrate 1 having a p-type, a crystal plane of < 100 >, and a single crystal. Field Oxide (F0X) 2 can be used as a barrier. The formation of the field oxidation zone 2 is briefly explained: thermal oxidation is performed in an oxygen vapor environment ′ ′ at a temperature of 850 to 1050 ° C, and the thickness formed is about 3000 to 5000 angstroms. In order to prevent the formation of the field oxide region 2 in a subsequent element region on the surface of the substrate, a silicon nitride-silicon oxide layer is used as a patterned oxidation resistant mask. After the field oxide region 2 is formed, the silicon nitride layer is coated with a hot phosphoric acid solution, and a buffered hydrofluoric acid solution is used on the silicon oxide layer to remove the oxidation barrier mask. After a series of wet cleaning, the gate insulation layer 3 made of silicon oxide is formed at a temperature of about 85 to 1050 at a temperature of between 85 and 1050, and the thickness is about 50 to 200. Aye. Next, using a low-pressure chemical vapor deposition (LpcvD) method, a polycrystalline spar layer 4 is deposited at a temperature of about 500 to 700 C, with a thickness of about 15,000 to 4000 angstroms. The polycrystalline silicon layer 4 can be formed from the inside and ion-implanted with arsenic or phosphorus ions. The implantation energy is about 30 to 80] ^ ¥, and the implantation dose is about 1E13 to 1E16 at 0ms / cm2. 'Alternatively, the in-situ doping process can be used to form by mixing arsenic or phosphorus with silane. Then, LPCVD or plasma enhanced chemical vapor deposition (Plasma

Enhanced Chemical Vapor Deposition, PECVD)程序,形 成第一氧化石夕層20 ’作為蓋絕緣層(Cap Insulator Layer)用,其厚度約在6〇〇至15〇〇埃之間。進行習知技術 的微景> 與反應性離子姓刻(ReactiVe i〇n Etching, rie) 425705 五 '發明說明¢6) 程序,以形成具有蓋絕緣層20之複晶矽閘極結構4,如第ι 圖所示。其中’RIE程序係使用CHh作為氧化矽層2〇的蝕 刻劑’而C 12作為複晶石夕層4的钱刻劑接著,以電聚氧灰 化(Plasma Oxygen Ashing)與徹底濕式清洗,將光阻去 除。 然後’以植入能量為20至50KeV,及植入劑量約為 1E13至1E14 at〇ms/cm2 ’進行磷離子植入,以形成淡摻雜 (Lightly Doped)源極與汲極區5。然後,使用LPCVD或 PECVD程序’在溫度為400至700 1下,沉積材質為氧化石夕 的第二絕緣層’厚度約為1 5 0 0至4 0 0 0埃,隨後,以cHF3為 蝕刻劑,在複晶矽閘極結構4上形成絕緣間隔物 (Insulator Spacer)6。接著,以植入能量為30至 lOOKeV ’及植入劑量約為ιΕ14至5Ε16 atoms/cm2 ,進行钟 離子植入’以形成濃摻雜(Heavily Doped)源極與汲極區 7。這些程序形成如第1圖所示的結構。 接著,藉由LPCVD或PECVD程序,在溫度約為700至800 °0下,沉積形成由氧化矽或硼磷矽玻璃 (Boro-phosphosilicate Glass, BPSG)組成的第三絕緣層 8 ’其厚度約在3000至6000埃之間。然後,對第三絕緣層8 進行以化學機械研磨法(Chemical Mechanical Polishing, CMP)的平坦化(Planarization)程序,而形成 較平坦的表面’以利後續沉積與圖案化程序。上述沉積與 平坦化程序也如第1圖所示。 如第2圖所示,藉由習知微影技術,與以CHF3為蝕刻 五、發明說明(7) 劑之R I E程序,在第三絕緣層8中 9,並露出濃摻雜源極與汲極區 成儲存節點接觸開口 灰化與徹底濕式清洗,將光阻去=表面。接著,以電漿氧 序,在溫度約為500至70(rc下,=。f後,藉由LPCVD程 約在1 0 0 0至8000埃。第-递曰^/儿積第二複晶矽層’厚度 或砷離子進行離子植入而形成,I由内邛形成,並以磷 用原地摻雜程序,II由加入磷或U二複晶矽層可利 開Μ,並與位在下面的轉換 二二極區7接觸。藉由習知技術 Γ的非等向性RiE程序,對第二複晶 m ,程序可形成如第2圖所示的複晶石夕 輪廓(Polys 山 C〇n ShaPe)10。接著, 底濕式清洗,將光阻去除。 ^ ^ ^ 接著’如第3圖所示’進行關鍵的半球形晶粒(hsg)氣 化鈦(TiN)層11之沉積。利用LPCVD程序’在溫度為35〇至 700 °C ’壓力介於5至40 t〇rr,沉積時間為3〇至15()秒下, 沉積形成HSG TiN層11 ’厚度約在2〇〇至8〇〇埃。在利用 LPCVD形成HSG ΤιΝ層11之程序中,所使用的成分為流量在 50至100 seem的龍3、流量在1〇至7〇 、以及流 量在2000至4000 seem的Nz。HSG TiN層11具有與習知平滑 的TiN表面積多約兩倍的凹凸不平之表面積。當hsg TiN層 11經由隨後的圖案化後’可形成儲存節點電極,其包括由 HSG T i N層11組成的頂部、以及由複晶矽輪廓1 〇組成的底 部。Enhanced Chemical Vapor Deposition (PECVD) procedure to form a first oxide oxide layer 20 'as a Cap Insulator Layer, with a thickness of about 600 to 15,000 Angstroms. Perform the micro-view of the conventional technology & engraving with reactive ion (ReactiVe inn Etching, rie) 425705 5 'invention description ¢ 6) procedure to form a polycrystalline silicon gate structure 4 with a cover insulating layer 20, As shown in Figure ι. Among them, the RIE process uses CHh as an etchant for the silicon oxide layer 20 and C 12 as the etch agent for the polycrystalline spar layer 4. Then, Plasma Oxygen Ashing and thorough wet cleaning are used. Remove the photoresist. Then, phosphorus ion implantation is performed at an implantation energy of 20 to 50 KeV and an implantation dose of about 1E13 to 1E14 at 0ms / cm2 to form a lightly doped source and drain region 5. Then, using the LPCVD or PECVD process 'at a temperature of 400 to 700 1, a second insulating layer made of oxidized stone' is deposited to a thickness of about 15 0 to 4 0 0 Angstroms, followed by cHF3 as an etchant. Insulator Spacer 6 is formed on the polycrystalline silicon gate structure 4. Next, the implantation energy is 30 to 10 OKeV 'and the implantation dose is about ΙΕ14 to 5Ε16 atoms / cm2, and the clock ion implantation' is performed to form a heavily doped source and drain region 7. These programs are structured as shown in FIG. Then, by a LPCVD or PECVD process, a third insulating layer 8 ′ composed of silicon oxide or borophosphosilicate glass (BPSG) is deposited at a temperature of about 700 to 800 ° 0, and the thickness is about Between 3000 and 6000 Angstroms. Then, the third insulating layer 8 is subjected to a Planarization process using Chemical Mechanical Polishing (CMP) to form a flatter surface ′ to facilitate subsequent deposition and patterning processes. The above-mentioned deposition and planarization procedures are also shown in FIG. As shown in Fig. 2, through the conventional lithography technology and the RIE process using CHF3 as the etching agent (5) and the invention description (7) agent, the third insulating layer 8 is 9 and the heavily doped source and drain are exposed. The polar area becomes ashing of the storage node contact openings and thorough wet cleaning to remove the photoresistance = the surface. Then, in the plasma oxygen sequence, at a temperature of about 500 to 70 (rc, = .f), the LPCVD process is about 100 to 8000 angstroms. The thickness of the silicon layer or arsenic ions is formed by ion implantation. I is formed by intrinsic ions and is doped in situ with phosphorus. II is formed by adding phosphorus or U to the dual-crystal silicon layer. The following conversion dipole region 7 contacts. With the anisotropic RiE program of the conventional technique Γ, the program can form a polycrystalline stone profile as shown in Figure 2 (Polys Mountain C 〇n ShaPe) 10. Next, the bottom is wet-cleaned to remove the photoresist. ^ ^ ^ Next, the key hemispherical grain (hsg) vaporized titanium (TiN) layer 11 is deposited 'as shown in FIG. 3'. Using the LPCVD program 'at a temperature of 35 to 700 ° C' and a pressure of 5 to 40 torr and a deposition time of 30 to 15 () seconds, the HSG TiN layer 11 is formed to a thickness of about 200. To 800 angstroms. In the process of forming HSG TiN layer 11 by LPCVD, the components used are dragon 3 with a flow of 50 to 100 seem, flow of 10 to 70, and Nz of flow of 2000 to 4000 seem The HSG TiN layer 11 has an uneven surface area that is approximately twice as large as the conventional smooth TiN surface area. When the hsg TiN layer 11 is subsequently patterned, a storage node electrode can be formed, which includes an HSG T i N layer 11 The top of the composition and the bottom of the polycrystalline silicon profile 10.

_ 4 25 7 0 5 五、發明說明(8) 接著’如第4圖所示’藉由金屬有機化學氣相沉積法 (Metal Organic Chemical Vapor Deposition, M0CVD)程 序’沉積一層與氧化矽厚度相同的電容介電層12,其材質 為氧化钽(Taj5),厚度約為15至35埃。τ&2〇5層12可直接沉 積在HSG TiN層11上。其他具有4〇至1〇〇埃的相同厚度之介 電材質’如氧化矽、氮化矽、氧化氮(Nitride_〇xide, NO)、以及0N0,也可以直接應用在HSG TiN層11上。 接著’如第4圖至第5圖所示,進行DRAM電容結構的上 電極’或單元面板結構之形成程序。形成上電極結構之其 中之一步驟為利用LPCVD或電漿氣相沉積法(Piasma Vap〇r_ 4 25 7 0 5 V. Description of the invention (8) Then 'as shown in Figure 4', a layer of the same thickness as the silicon oxide is deposited by the Metal Organic Chemical Vapor Deposition (MOCVD) procedure. The capacitor dielectric layer 12 is made of tantalum oxide (Taj5) and has a thickness of about 15 to 35 angstroms. The τ & 205 layer 12 can be directly deposited on the HSG TiN layer 11. Other dielectric materials with the same thickness of 40 to 100 angstroms, such as silicon oxide, silicon nitride, nitrogen oxide (Nitride_xide, NO), and 0N0, can also be directly applied to the HSG TiN layer 11. Next, as shown in FIG. 4 to FIG. 5, the upper electrode of the DRAM capacitor structure or the formation process of the cell panel structure is performed. One of the steps for forming the upper electrode structure is to use LPCVD or plasma vapor deposition (Piasma Vapor).

Deposition,PVD)程序,形成另一層TiN層13,厚度約為 200至1 500埃。此TiN層13可作為HSG形TiN層,或者由於 作為儲存節點電極的HSG TiN層11的表面粗鍵度以滿足電 容的需求’TiN層13可形成較平滑的表面。另一步驟包括 為形成合成層(Composite Layer)作為上電極結構,合成 層13包含位在下面的TiN層,或HSG TiN層,厚度約為2 〇〇 至1000埃’以及覆蓋在上面的複晶矽層,厚度約為5〇〇至 2000埃。如第4圖所示。假若所需求的複晶矽電極之厚度 約在500至2000埃’也可以不使用位在下面的TiN層。接 著,藉由微影與非等向性RIE程序,圖案化上電極層13、 電容介電層12、以及HSG TiN層11,其中,(:12為丁丨1^與複 晶矽的蝕刻劑,同時也是電容介電層1 2的蝕刻劑。藉由電 漿氧氣灰化與徹底濕式清洗程序,將光阻加以去除。儲存 節點電容結構1 4如第5圖所示。Deposition (PVD) procedure to form another TiN layer 13 with a thickness of about 200 to 1,500 angstroms. The TiN layer 13 can be used as an HSG-shaped TiN layer, or the TiN layer 13 can form a smoother surface due to the coarse bond of the surface of the HSG TiN layer 11 as a storage node electrode to meet the demand for capacitance. Another step includes forming a composite layer as the upper electrode structure. The composite layer 13 includes a TiN layer, or HSG TiN layer, with a thickness of about 2000 to 1000 Angstroms' and a polycrystalline layer overlying it. Silicon layer with a thickness of about 500 to 2000 Angstroms. As shown in Figure 4. If the required thickness of the polycrystalline silicon electrode is about 500 to 2000 angstroms', it is not necessary to use the underlying TiN layer. Next, the upper electrode layer 13, the capacitor dielectric layer 12, and the HSG TiN layer 11 are patterned by lithography and anisotropic RIE procedures, where (: 12 is Ding et al. And polycrystalline silicon etchant) At the same time, it is also the etchant of the capacitor dielectric layer 12. The photoresist is removed by the plasma oxygen ashing and thorough wet cleaning procedures. The storage node capacitor structure 14 is shown in FIG. 5.

425705 五、發明說明(9) 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作更動與潤飾,因此本發明之保護範圍當 視後附之申請專利範圍所界定者為準。425705 V. Description of the Invention (9) Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make changes without departing from the spirit and scope of the present invention. And retouching, so the scope of protection of the present invention shall be determined by the scope of the attached patent application.

第12頁Page 12

Claims (1)

a Zb ( y 〇 六'_請專利範圍 — 1 · 一種電容結構之劁 DRAM元件中,上述方法 用於半導體基底之 心々在包括下列步驟: 提供位在下面的轉換閘極電 下面的閘極閘極絕緣声 上边電晶體包括在 述半導體基底中具有有複日日矽閘極結構,並且在上 ' ,,原極與汲極區丨 沉積絕緣層: 、 於上述絕緣層中形成儲存筋K柏 源極與汲極區之頂部表面· ’ 觸開口 ’並露出上述 於上述絕緣層之頂部表面上, 口中形成儲存節點結構 /、上述儲存節點接觸開 存節點接觸開口中的上s =矽輪廓’並與位在上述儲 於上述底複晶矽輪视匕接觸, 晶矽輪廓覆蓋的邻八卜 /、述絕緣層尚未被上述底複 復皿们邵分上沉積HSG τ 从&攸 於上述HSG Τ1Ν層上沉積電容介;層; 於上述電容介電層上沉積上電極芦. 於上述上電極層上形成光阻;θ 以上述光阻為罩幕,圖案化 述電容結構之上電極; 上述上電極層,以形成上 以上述光阻為罩幕,圖荦化 Λ 口系化上述電容介電層丨以及 以上述光阻為罩幕,圖案化上 述儲存節點雷描 上达HSG ΤιΝ層,以在上 廓。 ” 之上述底複日日矽輪廓上形成HSG TiN輪 2b如申請專利範圍第!項所述之製造方法,#中上述 底複阳矽輪廊係以LPCVD程序形成厚度約1〇〇〇至8〇〇〇埃的 第13頁 425705 六'申請專利範圍 複晶矽層,並藉由以C 12為蝕刻劑之非等向性R I E程序形成 上述複晶石夕輪廓。 3.如申請專利範圍第1項所述之製造方法,其中上述 HSG TiN層係使用LPCVD程序,在溫度為350至700 °C,壓力 在5至40 torr,沉積時間為35至150秒下沉積形成,厚度 約在100至800埃之間,上述LPCVD程序係使用流量在50至 150 seem的NH3、流量在10至70 seem的TiCl4、以及流量在 2000 至4000 seem 的N2。 4.如申請專利範圍第1項所述之製造方法,其中上述 電容介電層為Tads層,係使用M0CVD程序,沉積具有15至 35埃的厚度,並與氧化矽厚度相同。 5.如申請專利範圍第1項所述之製造方法,其中上述 電容介電層係從下列材質群組中選出,包括氧化矽、氮化 矽、N0(氧化氮)、或όνο,其中上述電容介電層具有約 至100埃厚度,並與氧化矽厚度相同。 6. 如申請專利範圍第〗項所述之製造方法其中上述 上電極層為HSG TiN層’係使用LpcVD程序,沉積形成具有 ^200至1 5 00埃之厚度,或者上述上電極層為TiN層,係沉 積形成平滑表面,具有約2〇〇至15〇〇埃的厚度。 7. 如申請專利範圍第丨項所述之製造方其中上述 上電極層為複晶發層,係使CVD 約500至2000埃之厚度。 π况檟办風八有a Zb (y 06 '_Please patent scope — 1 · In a DRAM device with a capacitor structure, the above method is used for the heart of a semiconductor substrate, and includes the following steps: Provide a gate electrode below the switching gate electrode The gate insulating sound upper transistor includes a silicon gate structure having a day-to-day silicon gate structure in the semiconductor substrate, and an insulating layer is deposited on the source and drain regions. A storage rib K is formed in the above insulating layer. The top surface of the Bai source and drain regions · 'touch the opening' and expose the above on the top surface of the above-mentioned insulating layer, a storage node structure is formed in the mouth /, and the storage node is in contact with the open node. The upper s = silicon profile in the contact opening 'And in contact with the above-mentioned bottom compound crystal silicon wheels, the insulating layer which is covered by the outline of the crystal silicon has not yet been deposited on the bottom compound plates by HSG τ from & A capacitor dielectric is deposited on the HSG T1N layer; a layer is formed on the capacitor dielectric layer. A photoresist is formed on the above electrode layer; θ is patterned using the photoresist as a mask. The upper electrode layer of the capacitor structure; the upper electrode layer is formed with the above photoresist as a mask, and the capacitor dielectric layer is patterned, and the photoresist is used as a mask to pattern the storage node mine The HSG TiN layer is traced to form the HSG TiN wheel 2b on the silicon profile of the above-mentioned bottom-to-day silicon. The manufacturing method as described in item No. of the scope of patent application, the above-mentioned bottom Fuyang silicon wheel gallery system The LPCVD process is used to form a crystalline silicon layer with a thickness of about 10,000 to 8000 Angstroms on page 13 of 425705. The patented compound silicon layer is formed by an anisotropic RIE process using C 12 as an etchant. Spar profile. 3. The manufacturing method described in item 1 of the scope of patent application, wherein the HSG TiN layer is LPCVD, at a temperature of 350 to 700 ° C, a pressure of 5 to 40 torr, and a deposition time of 35. It is deposited under 150 seconds and has a thickness of about 100 to 800 angstroms. The above LPCVD procedure uses NH3 with a flow of 50 to 150 seem, TiCl4 with a flow of 10 to 70 seem, and N2 with a flow of 2000 to 4000 seem. 4. The system described in item 1 of the scope of patent application The manufacturing method, wherein the capacitor dielectric layer is a Tads layer, is deposited with a thickness of 15 to 35 angstroms using the MOCVD procedure, and has the same thickness as that of silicon oxide. 5. The manufacturing method according to item 1 of the scope of patent application, wherein The capacitor dielectric layer is selected from the following material groups, including silicon oxide, silicon nitride, N0 (nitrogen oxide), or όνο, where the capacitor dielectric layer has a thickness of about 100 Angstroms and is the same thickness as that of silicon oxide . 6. The manufacturing method as described in the item of the scope of the patent application, wherein the upper electrode layer is an HSG TiN layer 'is deposited using a LpcVD process to have a thickness of ^ 200 to 1 500 Angstroms, or the upper electrode layer is a TiN layer The system is deposited to form a smooth surface with a thickness of about 2000 to 15,000 Angstroms. 7. The manufacturer as described in item 丨 of the patent application, wherein the upper electrode layer is a polycrystalline hair layer, and the thickness of the CVD is about 500 to 2000 angstroms. There are many ways 425705 六、申請專利範圍 的HSG TiN,或具有平滑表面的TiN層,以及厚度為5 0 0至 2000埃,位在上面的複晶矽層。 9.如申請專利範圍第1項所述之製造方法,其中上述 上電極結構係以Cl2為上述複晶矽層之蝕刻劑,以Cl2為上 述HSG TiN層之银刻劑,以及以Cl2為上述電容介電層之# 刻劑,進行非等向性RIE程序而形成。425705 6. Patented HSG TiN, or a TiN layer with a smooth surface, and a polycrystalline silicon layer with a thickness of 500 to 2000 Angstroms. 9. The manufacturing method according to item 1 of the scope of the patent application, wherein the upper electrode structure uses Cl2 as an etchant for the above-mentioned polycrystalline silicon layer, Cl2 as the silver etching agent for the above-mentioned HSG TiN layer, and Cl2 as the above The # dielectric of the capacitor dielectric layer is formed by an anisotropic RIE process. 第15頁Page 15
TW88112677A 1999-07-27 1999-07-27 Manufacturing method of capacitor structure TW425705B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88112677A TW425705B (en) 1999-07-27 1999-07-27 Manufacturing method of capacitor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88112677A TW425705B (en) 1999-07-27 1999-07-27 Manufacturing method of capacitor structure

Publications (1)

Publication Number Publication Date
TW425705B true TW425705B (en) 2001-03-11

Family

ID=21641655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88112677A TW425705B (en) 1999-07-27 1999-07-27 Manufacturing method of capacitor structure

Country Status (1)

Country Link
TW (1) TW425705B (en)

Similar Documents

Publication Publication Date Title
US6897508B2 (en) Integrated capacitor with enhanced capacitance density and method of fabricating same
US7029985B2 (en) Method of forming MIS capacitor
US6475855B1 (en) Method of forming integrated circuitry, method of forming a capacitor and method of forming DRAM integrated circuitry
US5656536A (en) Method of manufacturing a crown shaped capacitor with horizontal fins for high density DRAMs
KR100189982B1 (en) High dielectric capacitor fabrication method of semiconductor device
US6150209A (en) Leakage current reduction of a tantalum oxide layer via a nitrous oxide high density annealing procedure
US6010942A (en) Post chemical mechanical polishing, clean procedure, used for fabrication of a crown shaped capacitor structure
US5858838A (en) Method for increasing DRAM capacitance via use of a roughened surface bottom capacitor plate
JPH10209399A (en) Contact wiring method of semiconductor device and manufacture of capacitor by utilizing the method
US5897352A (en) Method of manufacturing hemispherical grained polysilicon with improved adhesion and reduced capacitance depletion
US6831319B2 (en) Cell nitride nucleation on insulative layers and reduced corner leakage of container capacitors
KR100418580B1 (en) Method of forming a capacitor of a semiconductor device
US6392264B2 (en) Semiconductor memory device and method of producing the same
JP4053226B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
US20030029839A1 (en) Method of reducing wet etch rate of silicon nitride
KR20020031283A (en) Integrated Circuit Device And Method For Manufacture The Same
US6114198A (en) Method for forming a high surface area capacitor electrode for DRAM applications
JP3646013B2 (en) Method for manufacturing DRAM capacitor
US6635524B2 (en) Method for fabricating capacitor of semiconductor memory device
TW425705B (en) Manufacturing method of capacitor structure
US5976981A (en) Method for manufacturing a reverse crown capacitor for DRAM memory cell
JP2001210807A (en) Method for manufacturing capacitor of semiconductor element
KR100424715B1 (en) Method of manufacturing capacitor in semiconductor device
US20040126964A1 (en) Method for fabricating capacitor in semiconductor device
TW432640B (en) High density DRAM device for simultaneously forming capacitor electrode board and metal contact structure

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent