TW410389B - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device Download PDF

Info

Publication number
TW410389B
TW410389B TW88109258A TW88109258A TW410389B TW 410389 B TW410389 B TW 410389B TW 88109258 A TW88109258 A TW 88109258A TW 88109258 A TW88109258 A TW 88109258A TW 410389 B TW410389 B TW 410389B
Authority
TW
Taiwan
Prior art keywords
patent application
item
layer
titanium
scope
Prior art date
Application number
TW88109258A
Other languages
Chinese (zh)
Inventor
Li-Ye Chen
Shiau-Ling Liu
Wen-Yi Shie
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW88109258A priority Critical patent/TW410389B/en
Application granted granted Critical
Publication of TW410389B publication Critical patent/TW410389B/en

Links

Abstract

The present invention discloses a method of manufacturing a semiconductor device using a titanium nitride/titanium capping layer (Ti/TiN) to form a gate electrode, a source region and a drain region which are made of cobalt silicide. A substrate has a gate electrode, a source region and a drain region formed thereon. A cobalt layer is then formed on such semiconductor structure and covers the exposed surface of the gate electrode, the source region and the drain region. A titanium layer is deposited on the cobalt layer and a titanium nitride layer is thereafter formed on the titanium layer. A first annealing step is performed on the cobalt layer with a first temperature to form a cobalt silicide (CoSix) on the gate electrode, the source electrode and the drain electrode. A second annealing step is performed after the titanium nitride layer, the titanium and the unreacted cobalt layer are removed. The later annealing step is used to transform CoSix into CoSi2, which is a thin film with low resistance.

Description

410388 五、發明說明(1) " · 5 ~ 1發明領域: 本發明係有關於一種半導體元件的製造方法,其包含 形成鈷金屬矽化物,本發明特別是關係到在RTp製程前覆 蓋氮化鈦/鈦於敍金屬層上的製造方法。 5-2發明背景 物’其係指由耐高溫金 與矽反應形成的物質, 有多晶矽閘極電極結構 多晶矽閘極電極和在矽 ,加上金屬矽化物或接 導體元件製程中。用以 連,的相互連接。舉例 技術中,鈷金屬矽化物 、源極、和汲極材質的 半導體元件製程中’金屬石夕化 屬或近貴金屬(n e a r - η 〇 b 1 e m e t a 1) 被使用在多種應用上。特別是當含 的金屬氧化半導體元件形成時,在 半導體基底的源極/汲極區域上方 觸窗的形式,已經廣泛地使用在半 在電性和治金上,提供矽到金屬内 來說,在超大型積體電路(ULSI)的 (CoS込)被廣泛地使用在降低閘極 片電阻(sheet resistance)上。 第一A圖顯示傳統製造半導體元件的方法,此 凡件包含矽半導體基底1〇 ’隔離區域12,閘氧化層14等 =電極16,源極區域18,和汲極區域20。鈷金屬層μ 二 全面地沉積在矽半導體基底丨〇的多晶矽閘極電極丨6,源=410388 V. Description of the invention (1) " 5 ~ 1 Field of the invention: The present invention relates to a method for manufacturing a semiconductor device, which includes the formation of a cobalt metal silicide. The present invention is particularly related to covering nitride before the RTp process. Manufacturing method of titanium / titanium on a metal layer. 5-2 Background of the Invention A substance 'refers to a substance formed by the reaction of high-temperature resistant gold with silicon. It has a polycrystalline silicon gate electrode structure and a polycrystalline silicon gate electrode and a silicon silicide or conductive element manufacturing process. Used to connect to each other. For example, cobalt metal silicide, source, and drain materials are used in the process of semiconductor elements' metal petrochemicals or near precious metals (n e a r-η 0 b 1 e m e t a 1) to be used in a variety of applications. In particular, when a metal-oxide semiconductor element is formed, the form of a touch window over the source / drain region of a semiconductor substrate has been widely used in electrical and metallographic applications to provide silicon to the metal. (CoS 込) in ultra large integrated circuits (ULSI) is widely used to reduce gate sheet resistance. FIG. 1A shows a conventional method for manufacturing a semiconductor device. This device includes a silicon semiconductor substrate 10 ', an isolation region 12, a gate oxide layer 14 and the like = an electrode 16, a source region 18, and a drain region 20. Cobalt metal layer μ 2 A polycrystalline silicon gate electrode that is fully deposited on a silicon semiconductor substrate 丨 0, source =

4105 £ ο____ 五、發明說明(2) 區域1 8,和汲極區域20,和隔絕區域丨2的上方。為了要避 免姑金屬層22在RTP製程之前氧化,一適當的蓋層μ,其 用以隔離钻金屬層22是必要的。此蓋層24直接在鈷金屬層 2 2的上方形成。然後,再將此結構加熱,以使鈷金屬與矽 接觸的地方充份地反應,藉此形成鈷金屬矽化物。然而, 在目前的製造環境下,要形成厚又均勻的鈷金屬矽化物, 且同時避免姑金屬石夕化物不必要的過度成長,是一件不容 易達成的工作。第一 Β圖顯示一因過度成長而具有不規則 鈷金屬矽化物區域的半導體元件。 我們可藉由在RTP程序之前,濺鍍一氮化鈦蓋層在鈷 金屬層上方’以解決鈷金屬矽化物過度成長的問題。此氮 化欽蓋層的使用可有效地避免鈷金屬的氧化和改善閘極片 電阻和閘極長度的關係。然而,使用氮化鈦蓋層仍有一些 缺點存在。因為氮化鈦是具有壓縮性的薄膜,所以,在晶 =上所形成的金屬矽化物和矽之間的界面,其可看出是粗 k的。此外’氮化欽蓋層也具有非均勻結合面電流洩漏的 特性。4,105 £ ο ____ 5. Description of the invention (2) Region 1 8 and drain region 20, and above the isolation region 丨 2. In order to prevent the metal layer 22 from being oxidized before the RTP process, an appropriate cap layer µ is necessary to isolate the drilled metal layer 22. This cap layer 24 is formed directly above the cobalt metal layer 22. This structure is then heated to fully react where the cobalt metal contacts the silicon, thereby forming a cobalt metal silicide. However, in the current manufacturing environment, it is an difficult task to form a thick and uniform cobalt metal silicide, and at the same time to avoid unnecessary excessive growth of the metal metal silicide. Figure 1B shows a semiconductor device with an irregular cobalt metal silicide region due to excessive growth. We can solve the problem of excessive growth of cobalt silicide by sputtering a titanium nitride capping layer over the cobalt metal layer before the RTP process. The use of this nitrided capping layer can effectively avoid the oxidation of cobalt metal and improve the relationship between the resistance of the gate sheet and the gate length. However, there are still some disadvantages to using a titanium nitride cap layer. Because titanium nitride is a compressive thin film, the interface between the metal silicide and silicon formed on the crystal can be seen to be coarse k. In addition, the 'nitride capping layer' also has a characteristic of current leakage at a non-uniform bonding surface.

^ 傳統上’蓋層24(第一 A圖顯示)通常為氮化鈦層,如 別面所述。但是最近鈦蓋層也開始被使用。使用鈦來覆蓋 在銘金眉層上,其係加熱後藉以形成鈷金屬矽化物的結構 ’ 1金屬矽化物和多晶矽之間所形成的介面會比使用氮化 ‘太4更加平滑。但是鈦的使用雖能改善使用氮化鈦的缺點^ Traditionally, the cap layer 24 (shown in Figure A) is usually a titanium nitride layer, as described elsewhere. But recently titanium caps have also been used. Titanium is used to cover the gold eyebrow layer, which is a structure formed by heating to form a cobalt metal silicide. The interface formed between the metal silicide and polycrystalline silicon is smoother than the nitride ‘too 4’. But the use of titanium can improve the disadvantages of using titanium nitride

第6頁 五、發明說明(3) ,然而在RTP製程後’其將會形成TiCo或TiCoSi的混合物 。而在第一次RTP製程後,這些混合物容易被濕式清潔法 触刻。因此’對需要寬度較寬的接觸窗製程,必須小心地 以避免太薄的鈷金屬矽化物形成。 結果,不管是氣化缺或鈦都不適合用以形成好的姑金 屬矽化物的蓋層。所以,另一種用以形成半導體表面上的 鈷金屬矽化物的技術之需求更顯得迫切。 5 - 3發明目的及概述: 鑒於上述之發明背景中,傳統的鈦蓋層或氮化鈦蓋層 所產生的諸多缺點,本發明係提供一種形成鈷金屬矽化物 的方法,其包含—氮化鈦/鈦/鈷/多晶矽(TiN/Ti/Co/poly )#狀薄膜。此方法可預防鈷金屬氧化於RTp製程前❶本發 明的較佳實施例提議出一含有氮化鈦及鈦的蓋層來替代傳 統的單一鈦蓋層或單一氮化鈦蓋層。本實施例不單可克服 傳統所產生的諸多缺點,並可保存傳統蓋層必備的優點。 為了達到上述之目的及配合本發明的宗旨,在此將大 2的敛述及具體表現出本發明的較佳實施例:本實施例包 含:種以TiN/Ti為覆蓋於鈷金屬層上之蓋層之半導體元件 的製造方法。此方法至少包括:首先,提供一具有矽基底Page 6 5. Description of the invention (3) However, after the RTP process, it will form a mixture of TiCo or TiCoSi. After the first RTP process, these mixtures were easily etched by wet cleaning. Therefore, for processes that require wider contact windows, care must be taken to avoid the formation of too thin cobalt metal silicides. As a result, neither vaporization nor titanium is suitable for forming a good cap layer of metal silicide. Therefore, the need for another technology for forming cobalt metal silicides on semiconductor surfaces is even more urgent. 5-3 Purpose and Summary of the Invention: In view of the above-mentioned backgrounds of the invention, the traditional titanium capping layer or titanium nitride capping layer has many shortcomings. The present invention provides a method for forming a cobalt metal silicide, which includes -nitriding. Titanium / titanium / cobalt / polycrystalline silicon (TiN / Ti / Co / poly) # thin film. This method can prevent the oxidation of cobalt metal before the RTp process. The preferred embodiment of the present invention proposes a cap layer containing titanium nitride and titanium instead of the traditional single titanium cap layer or single titanium nitride cap layer. This embodiment can not only overcome many disadvantages caused by the tradition, but also save the necessary advantages of the traditional cover layer. In order to achieve the above-mentioned purpose and to cooperate with the purpose of the present invention, a condensed description of the big 2 and a specific embodiment of the present invention are described here: This embodiment includes: a TiN / Ti coating on a cobalt metal layer Manufacturing method of capping semiconductor element. The method includes at least: first, providing a silicon substrate

410388 五、發明說明⑷ ' ’閘極電極,源極區域,及汲極區域於離子植入程序之後 的半導體結構。預清洗已形成於晶圓上之上述半導體元件 於濺鍍沉積鈷金屬層之前。 再者,姑金屬層形成於半導體結構之上,且覆蓋於閑 極電極’源極區域,及汲極區域之裸露表面上。隨後,覆 蓋一蓋層於鈷金屬層之上,其中上述之蓋層包括一鈦薄膜 及一氮化鈦層〇此鈦薄膜位於鈷金屬層的正上方,其用以 提昇金屬矽化物的均勻性,而氮化鈦層則位於鈦薄膜的表 面上,其用以預防鈷金屬層進行氧化。 其後’對結金屬層執行第一回火步驟於第一溫度,藉 以形成敍金屬石夕化物(coba 11 s i 1 i c i de,CoS ix )於閘極電 極,源極區域’及汲極區域之上方《然後,利用濕蝕刻移 除氮化鈦層’鈦薄膜,及未起反應之鈷金屬《最後,執行 第二回火步驟於較第一溫度高的第二溫度,藉以用來轉變 CoSix iC〇Si2组織’既一較低阻質的薄膜結構。 5 - 4圖式簡單說明: 第一 A圖顯示一具有一傳統鈦或氮化鈦蓋層(capping layer)之半導體結構的戴面圖;410388 V. Description of the Invention The semiconductor structure of the gate electrode, source region, and drain region after the ion implantation process. The above-mentioned semiconductor elements, which have been pre-cleaned, are formed on the wafer before the cobalt metal layer is deposited by sputtering. Furthermore, a metal layer is formed on the semiconductor structure and covers the exposed surface of the source electrode's source region and the drain region. Subsequently, a capping layer is covered on the cobalt metal layer, wherein the capping layer includes a titanium film and a titanium nitride layer. The titanium film is located directly above the cobalt metal layer, which is used to improve the uniformity of the metal silicide. The titanium nitride layer is located on the surface of the titanium thin film, which is used to prevent the cobalt metal layer from oxidizing. Thereafter, 'the first tempering step is performed on the junction metal layer at the first temperature to form a coba 11 si 1 ici de (CoS ix) on the gate electrode, the source region' and the drain region. Above "then, remove the titanium nitride layer 'titanium film and unreacted cobalt metal by wet etching" Finally, perform the second tempering step at a second temperature higher than the first temperature, so as to transform CoSix iC 〇Si2 structure 'is a thin film structure with lower resistance. Schematic illustrations of 5-4 diagrams: The first diagram A shows a wearing view of a semiconductor structure having a conventional titanium or titanium nitride capping layer;

410388 五、發明說明(5) 第一 B圖顯示一傳統具有不規則銘金屬砂化物區域之 半導體結構的截面圖; 第二A圖顯示一具有一閘極電極,一源極區域,及一 汲極區域之半導體結構的截面圖;及 第二B圖至第二G圖敘述本發明的一實施例之流程的主 要步驟之截面圖。 主要部分之代表符號: 10 半導體基底 12 隔離區域 14 閘氧化層 16 閘極電極 18 源極區域 20 汲極區域 2 2 始金屬層 24 蓋層(capping layer) 3 0 ·不規則鈷金屬矽化物區域; 2 0 0半導體基底 202多晶矽閘極電極 2 0 4 源極區域 2 0 6 汲極區域410388 V. Description of the invention (5) The first diagram B shows a cross-sectional view of a conventional semiconductor structure with an irregular metal sanding region; the second diagram A shows a gate electrode, a source region, and a drain electrode. A cross-sectional view of a semiconductor structure in a polar region; and FIGS. 2B to 2G are cross-sectional views illustrating main steps of a process according to an embodiment of the present invention. Representative symbols of the main parts: 10 semiconductor substrate 12 isolation region 14 gate oxide layer 16 gate electrode 18 source region 20 drain region 2 2 starting metal layer 24 capping layer 3 0 · irregular cobalt metal silicide region 2 0 0 semiconductor substrate 202 polycrystalline silicon gate electrode 2 0 4 source region 2 6 drain region

_£ΐ〇3δδ 五、發明說明(6) 2 08隔離區域 21〇間隙壁 2 1 2閘氧化層 2 1 4 (鈷)金屬層 21 6欽薄膜 21 8氮化鈦層 220低溫鈷金屬矽化物(c〇six) 230高溫鈷金屬矽化物(c〇Si2) 5-5發明詳細說明: 第一A圖至第二g圖關係到本發明之較佳實施例之流程 的截面圖,這些圖示僅描述接至而來的製程之主要步驟。 首先’起始於第二A圖,顯示一典型的半導體元件, 其包含一半導體基底200,一多晶矽閘極電極2〇2,—源 區域204,及一沒極區域2〇β形成於離子植入程序之後、 半導體元件更包含一隔離區域208,一間隙壁21〇, 。此 氧化層21.2。隨後,預清洗已形成於晶圓上之上述半一閉 元件於濺鍍沉積鈷金屬層之前。 體 在預清洗步驟之後,如第二Β圖所描述,形成—_ £ ΐ〇3δδ V. Description of the invention (6) 2 08 Isolation area 21 ° Spacer 2 1 2 Gate oxide layer 2 1 4 (Cobalt) metal layer 21 6 Thin film 21 8 Titanium nitride layer 220 Low temperature cobalt metal silicide (C〇six) 230 high temperature cobalt metal silicide (c〇Si2) 5-5 Detailed description of the invention: The first A to the second g diagrams are cross-sectional views related to the process of the preferred embodiment of the present invention. Only the main steps of the incoming process are described. First, starting from the second A diagram, a typical semiconductor device is shown, which includes a semiconductor substrate 200, a polycrystalline silicon gate electrode 202, a source region 204, and an electrodeless region 20β formed in an ion implant. After entering the procedure, the semiconductor device further includes an isolation region 208 and a gap wall 210. This oxide layer is 21.2. Subsequently, the half-closed element that has been formed on the wafer is pre-cleaned before the cobalt metal layer is deposited by sputtering. After the pre-cleaning step, as described in the second B diagram, a body is formed—

214於該半導體結構之上,特別是覆蓋於多晶石夕^ ^ ^214 on the semiconductor structure, especially covered with polycrystalline stone ^ ^ ^

第10 I _Jina^c__ ____ 五、發明說明(7) 極202 ’源極區域204,及汲極區域206之全部裸露表面上 。金屬層214的形成係採用濺鍍沉積法,其厚度約在5〇和 3 0 0埃之間。此外,所使用的金屬係選自於由鈷,鎢,鈷 合金’鈦’鎳,及鉑所組成的族群中的元素。而其中上述 之銘及姑合金是在ULSi製程中最常使用的金屬材質。 現在’引用第二C圖’沉積一鈦薄膜21 6於鈷金屬層 214之上’其厚度約在1〇和200埃之間。此鈦薄膜216 —定 要相當的溥’以便提高鈷金屬矽化物之均勻性及改良金屬 石夕化物/多晶矽之疊狀結構的熱穩定度。隨之而來地,如 第二D圖所示,形成一氮化鈦層218於鈦薄膜216的表面上 ’其厚度較銥薄膜216厚,且約在50和500埃之間。此氮化 欽層218的主要作用係預防鈷金屬層進行氧化於RTp製程之 前。 上述欽薄膜及氮化鈦層的形成扮演著一蓋層(capping layer)=角色,即一TiN/Ti蓋層,於鈷金屬層之上。其後 ’對始金屬層214執行一溫度介於約4〇〇乞和680 °C之間的 第決速回火步驟’藉以形成一钻金屬石夕化物(c 〇 b a 11 si 11'ide’ c〇Six ) 220於閘極電極202 ’源極區域204,及 及铋區域2 〇 6之上方。而此時所完成的半導體元件之整體 結構係顯示於第二E圖中。之後,如第圖所示,利用濕 移除氮化鈦層,鈦薄膜,未起反應之姑金屬,及録金 夕物以外之所有的始金屬反應物。最後,對钻金屬石夕Article 10 I _Jina ^ c__ ____ V. Description of the Invention (7) All exposed surfaces of the source region 202 and the drain region 206 of the electrode 202. The metal layer 214 is formed by a sputtering deposition method and has a thickness between about 50 and 300 angstroms. In addition, the metal used is an element selected from the group consisting of cobalt, tungsten, cobalt alloy 'titanium' nickel, and platinum. Among them, the above-mentioned inscriptions and alloys are the most commonly used metal materials in the ULSi process. Now, "citing the second C figure", a titanium thin film 21 6 is deposited on the cobalt metal layer 214 ', and its thickness is between about 10 and 200 angstroms. This titanium thin film 216 must be substantially equal to 溥 'in order to improve the homogeneity of the cobalt metal silicide and improve the thermal stability of the metallized silicon / polycrystalline silicon stack structure. Subsequently, as shown in FIG. 2D, a titanium nitride layer 218 is formed on the surface of the titanium thin film 216, and its thickness is thicker than that of the iridium thin film 216 and is between about 50 and 500 angstroms. The main function of the nitride layer 218 is to prevent the cobalt metal layer from being oxidized before the RTp process. The formation of the above-mentioned thin film and titanium nitride layer plays a role of a capping layer = a TiN / Ti capping layer on top of the cobalt metal layer. Thereafter, a first-rate tempering step is performed on the starting metal layer 214 at a temperature between about 400 ° C and 680 ° C, thereby forming a diamond metal oxide compound (c oba 11 si 11 'ide' CoSix) 220 is above the gate electrode 202 'source region 204 and the bismuth region 206. The overall structure of the completed semiconductor device at this time is shown in the second E diagram. After that, as shown in the figure, the titanium nitride layer, the titanium film, the unreacted unreacted metal, and all the starting metal reactants except the gold oxide are removed by wet removal. Finally, on the diamond metal eve

第11頁Page 11

41038S 五、發明說明(8) 化物執行一溫度較該第—溫度高,I介於約7〇〇 I和95〇它 之間的第二快速回火步驟。後者的快速回火步驟係用來轉 變CoS ix至CoS iz組織230,一較低阻質的薄膜結構,如第二 G圖所示。 以上所述僅為本發明之較佳實施例而已,並祚用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。41038S V. Description of the invention (8) The compound performs a second rapid tempering step at a temperature higher than the first temperature, with I between about 700 and 95. The latter rapid tempering step is used to transform the CoS ix to CoS iz structure 230, a lower-resistance film structure, as shown in the second G diagram. The above are only the preferred embodiments of the present invention, and are not used to limit the scope of patent application of the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention should be included in the following Within the scope of the patent application.

第12頁Page 12

Claims (1)

41038S 一.- - - — 六、申請專利範圍 1 _ 一種製造元件的方法’其至少包含: 提供一具有一基底,一閘極區,及一雙電極之半導體 結構; 形成一金屬層於該半導體結構的上廣表面; 沉積一鈦薄膜於該金屬層之上; 形成一氮化鈦層於該鈦薄膜的表面上; 對該金屬層執行一第一回火步驟於一第一溫度,藉以 形成一金屬石夕化物(metal silicide, MS ix); 移除該氛化鈦(titanium nitride)層,該欽薄膜,未 起反應之金屬,及金屬石夕化物以外之所有的金屬反應物; 及 對該金屬矽化物執行一第二回火步驟於一第二溫度。 2.如申請專利範圍第1項之方法,其中上述之半導體結構 更包含一隔離區域,一閘氧化層,及一間隙壁。 3,如申請專利範圍第1項之方法,其中上述之閘極區至少 包含多晶矽。 4·如申請專利範圍第1項之方法,其中上述之雙電極至少 包含一源極區域及一汲極區域。 5. ^申請專利範圍第1項之方法,其中上述之金屬層係、弯 自方、由結’鎢’銘合金,鈦,鎳,及鉑所組成的族中' & Y的41038S I.----VI. Scope of Patent Application 1 _ A method for manufacturing a component 'which at least includes: providing a semiconductor structure having a substrate, a gate region, and a double electrode; forming a metal layer on the semiconductor The upper surface of the structure; depositing a titanium film on the metal layer; forming a titanium nitride layer on the surface of the titanium film; performing a first tempering step on the metal layer at a first temperature to form A metal silicide (MS ix); removing the titanium nitride layer, the thin film, unreacted metal, and all metal reactants other than the metal silicide; and The metal silicide performs a second tempering step at a second temperature. 2. The method according to item 1 of the patent application range, wherein the semiconductor structure described above further includes an isolation region, a gate oxide layer, and a spacer. 3. The method according to item 1 of the patent application range, wherein the above gate region contains at least polycrystalline silicon. 4. The method according to item 1 of the patent application range, wherein the above-mentioned double electrode includes at least a source region and a drain region. 5. ^ The method of applying for item 1 of the patent scope, wherein the above-mentioned metal layer system, bent from the square, consisting of a junction 'tungsten' alloy, titanium, nickel, and platinum '& Y's 41038S 六、申請專利範圍 元素。 6. 如申請專利範圍第5項之方法,其中上述之金屬層的形 成係採用濺鍍沉積法,其厚度約在5 0和.3 0 0埃之間。 7. 如申請專利範圍第1項之方法,其中上述之沉積一鈦薄 膜更包含沉積厚約1 0到200埃的鈦金屬於該金屬層之上。 8. 如申請專利範圍第7項之方法,其中上述之鈦薄膜具有 捉聚層(getter layer)的作用,並可提昇金屬石夕化物之均 勻性。 9. 如申請專利範圍第1項之方法,其中上述之氮化鈦層厚 約5 0到5 0 0埃。 1 0.如申請專利範圍第9項之方法,其中上述之氮化鈦層扮 演一保護層以防止該金屬層氧化。 11,如申請專利範圍第1項之方法,其中上述之第一溫度約 在40 0 °C和680 °C之間。 1 2.如申請專利範圍第1項之方法,其中上述之第二溫度約 在70 0 °C和950 °C之間。41038S VI. Scope of Patent Application Elements. 6. The method according to item 5 of the scope of patent application, wherein the formation of the above metal layer is a sputtering deposition method, and its thickness is between about 50 and .300 angstroms. 7. The method of claim 1, wherein the depositing a titanium film further comprises depositing titanium metal having a thickness of about 10 to 200 angstroms on the metal layer. 8. The method according to item 7 of the patent application, wherein the titanium thin film described above has the function of a getter layer and can improve the homogeneity of the metal oxide. 9. The method of claim 1 in which the above-mentioned titanium nitride layer is about 50 to 500 angstroms thick. 10. The method according to item 9 of the scope of patent application, wherein the titanium nitride layer described above acts as a protective layer to prevent the metal layer from oxidizing. 11. The method according to item 1 of the patent application range, wherein the first temperature is about 40 ° C to 680 ° C. 1 2. The method according to item 1 of the scope of patent application, wherein the above-mentioned second temperature is between about 70 ° C and 950 ° C. 第14頁 41038S 六、申請專利範圍 1 3 ·如申請專利範圍第1項之方法,其中上述之金屬矽化物 (metal si I icide,MSix ),其Μ係選自於由鈷,鎢,及鈷 合金所組成的族群中的元素,且其X係選自於由1,2,3, 及4所組成的族群中的整數。 1 4.如申請專利範圍第1項之方法,其中上述之第二回火步 驟係用以轉變MSix IMSi2,一低阻質薄膜結構。 15. —種具有氮化鈦/鈦(TiN/Ti)層之半導體元件的製造_方 法’其至少包含: 提供一具有一基底,一閘極電極,一源極區域,及一 汲極區域之半導體結構; 形成一鈷金屬層於該半導體結構之上,且覆蓋於該閘 極電極,該源極區域,及該汲極區域之裸露表面上; 沉積一鈦薄膜於該鈷金屬層之上以提昇一金屬矽化物 之均勻性; 形成一氮化鈦層於該鈦薄膜的表面上,以預防該鈷金 屬層進行氧化; 對該鈷金屬層執行一第一回火步驟於一第一溫度,藉 以形成一鈷金屬矽化物(cobalt silicide, CoSix)於該閘 極電極,該源極區域,及該汲極區域之上方; 移除談氣化欽(titanium nitride)層,該鈦薄膜,未 起反應之鈷金屬,及鈷金屬矽化物以外之所有的鈷金屬反 應物;及Page 14 41038S VI. Application for Patent Scope 1 3 · As in the method for applying for the scope of patent application item 1, wherein the aforementioned metal silicide (MSix) is selected from the group consisting of cobalt, tungsten, and cobalt An element in a group consisting of alloys, and X is an integer selected from the group consisting of 1, 2, 3, and 4. 14. The method according to item 1 of the scope of patent application, wherein the second tempering step is used to transform MSix IMSi2, a low-resistance thin film structure. 15. —A method of manufacturing a semiconductor device having a titanium nitride / titanium (TiN / Ti) layer_ which includes at least: providing a substrate, a gate electrode, a source region, and a drain region; A semiconductor structure; forming a cobalt metal layer on the semiconductor structure and covering the gate electrode, the source region, and the exposed surface of the drain region; depositing a titanium thin film on the cobalt metal layer to Improving the uniformity of a metal silicide; forming a titanium nitride layer on the surface of the titanium thin film to prevent the cobalt metal layer from being oxidized; performing a first tempering step on the cobalt metal layer at a first temperature, A cobalt silicide (CoSix) is formed on the gate electrode, the source region, and the drain region; the titanium nitride layer is removed, and the titanium film is not raised. Reacted cobalt metal, and all cobalt metal reactants other than cobalt metal silicides; and 41038S 六、申請專利範圍 對該鈷金屬矽化物執行一第二回火步驟於一較該第一 溫度高的第二溫度。 16. 如申請專利範圍第1 5項之方'法,其中上述之半導體結 構更包含一隔離區域,一閘氧化層,及一間隙壁。 17. 如申請專利範圍第1 5項之方法,其中上述之閘極區至 少包含多晶矽。 18. 如申請專利範圍第1 5項之方法,其中上述之鈷金屬層 的形成係採用濺鍍沉積法,其厚度約在50和300埃之間。 19. 如申請專利範圍第1 5項之方法,其中上述之沉積一鈦 薄膜更包含沉積厚約1 0到20 0埃的鈦金屬於該鈷金屬層之 上。 20. 如申請專利範圍第1 5項之方法,其中上述之氮化鈦層 厚約5 0到5 0 0埃。 21. 如申請專利範圍第1 5項之方法,其中上述之第一溫度 約在400 °C和680 °C之間。 22.如申請專利範圍第1 5項之'方法,其中上述之第二溫度 約在700 °C和950 °C之間。41038S 6. Scope of patent application A second tempering step is performed on the cobalt metal silicide at a second temperature higher than the first temperature. 16. The method according to item 15 of the scope of patent application, wherein the above-mentioned semiconductor structure further includes an isolation region, a gate oxide layer, and a spacer. 17. The method according to item 15 of the scope of patent application, wherein the above gate region contains at least polycrystalline silicon. 18. The method according to item 15 of the scope of patent application, wherein the formation of the above-mentioned cobalt metal layer is by a sputtering deposition method, and its thickness is between about 50 and 300 angstroms. 19. The method according to item 15 of the scope of patent application, wherein the above-mentioned deposition of a titanium film further comprises depositing titanium metal having a thickness of about 10 to 200 angstroms on the cobalt metal layer. 20. The method according to item 15 of the scope of patent application, wherein the above-mentioned titanium nitride layer is about 50 to 50 angstroms thick. 21. The method according to item 15 of the patent application, wherein the first temperature mentioned above is between 400 ° C and 680 ° C. 22. The method according to item 15 of the patent application range, wherein the second temperature is between about 700 ° C and 950 ° C. 第16頁 410389 六、申請專利範圍 23.如申請專利範圍第1 5項之方法,其中上述之鈷金屬矽 化物(cobalt silicide,CoSix),其X 係選自於由1,2, 3,及4所組成的族群中的整數。 2 4.如申請專利範圍第1 5項之方法,其中上述之第二回火 步驟係用來轉變CoS ix至CoS i2,一低阻質薄膜結構。Page 16 410389 6. Application scope of patent 23. The method according to item 15 of the scope of patent application, wherein the above-mentioned cobalt silicide (CoSix), whose X is selected from 1, 2, 3, and An integer in the group of 4. 24. The method according to item 15 of the scope of patent application, wherein the second tempering step is used to transform CoS ix to CoS i2, a low-resistance thin film structure. 第17頁Page 17
TW88109258A 1999-06-04 1999-06-04 Manufacture of semiconductor device TW410389B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88109258A TW410389B (en) 1999-06-04 1999-06-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88109258A TW410389B (en) 1999-06-04 1999-06-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
TW410389B true TW410389B (en) 2000-11-01

Family

ID=21640964

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88109258A TW410389B (en) 1999-06-04 1999-06-04 Manufacture of semiconductor device

Country Status (1)

Country Link
TW (1) TW410389B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329604B2 (en) 2004-12-10 2008-02-12 Fujtisu Limited Semiconductor device and method for fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329604B2 (en) 2004-12-10 2008-02-12 Fujtisu Limited Semiconductor device and method for fabricating the same

Similar Documents

Publication Publication Date Title
TW569322B (en) Semiconductor device having a low-resistance gate electrode
TWI260777B (en) Method of forming silicided gate structure
JPH0736403B2 (en) How to attach refractory metal
JPS62101049A (en) Formation of silicide
TWI242289B (en) Fabrication method of thin film transistor
TW463309B (en) A titanium-cap/nickel (platinum) salicide process
WO2005086567A2 (en) Silicide formed from ternary metal alloy films
US6339021B1 (en) Methods for effective nickel silicide formation
KR100679224B1 (en) The semiconductor device and the manufacturing method thereof
TW410389B (en) Manufacture of semiconductor device
TW447049B (en) Method of manufacturing a semiconductor device
US20150228778A1 (en) Semiconductor device having structure capable of suppressing oxygen diffusion and method of manufacturing the same
WO2006003579A1 (en) Field effect transistor method and device
TWI609415B (en) Method for manufacturing a semiconductor device electrode
JPH02114641A (en) Manufacture of semiconductor device
TW469569B (en) Method for manufacturing low-resistance polysilicon/metal gate structure
TWI222141B (en) Semiconductor devices having a metal silicide bi-layer and the method for fabricating the same
US6602786B2 (en) One-step process for forming titanium silicide layer on polysilicon
JPS62188222A (en) Manufacture of semiconductor compound
TW466693B (en) Manufacture method of metal salicide
TW502318B (en) Method for preventing leakage of current on source/drain
JPS586172A (en) Semiconductor device
TW442858B (en) Process to form gate
TW434714B (en) Method for making silicide
JP2555754B2 (en) Thin film formation method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent