TW409452B - Spontaneously frequency generating circuit - Google Patents

Spontaneously frequency generating circuit Download PDF

Info

Publication number
TW409452B
TW409452B TW87105783A TW87105783A TW409452B TW 409452 B TW409452 B TW 409452B TW 87105783 A TW87105783 A TW 87105783A TW 87105783 A TW87105783 A TW 87105783A TW 409452 B TW409452 B TW 409452B
Authority
TW
Taiwan
Prior art keywords
voltage
temperature
item
patent application
aforementioned
Prior art date
Application number
TW87105783A
Other languages
Chinese (zh)
Inventor
Hung-Bin Liu
Original Assignee
Utron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utron Technology Inc filed Critical Utron Technology Inc
Priority to TW87105783A priority Critical patent/TW409452B/en
Application granted granted Critical
Publication of TW409452B publication Critical patent/TW409452B/en

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

The frequency of the integrated circuit oscillator can be maintained without being influenced by the temperature change, because it is achieved by the temperature compensation design. One voltage-controlled oscillator having temperature-sensitive devices must have one temperature-related voltage-controlled device as the temperature compensation. When the operation current is maintained constant, the frequency of many kinds of oscillators such as relax oscillator and ring type oscillator could be maintained constant. The operational current is usually generated by the current source and is the voltage-current converter which generates one current equal to the ratio of voltage to resistance. Since the semiconductor resistor has one positive temperature coefficient, one control voltage having positive temperature coefficient is usually being used in generating one current source which will not change with the temperature change. Positive temperature coefficient could take from the difference between the pn junction voltage of two positive bias whereas the quantity is depending upon the size of pn junction; this value could be further amplified or decreased.

Description

409452 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(1 ) 自主式頻率產生電路 1. 摘要 積體電路振盪器的頻率得以維持固定而不受溫度變化之影響,乃係藉著溫度補 償的設計而達成。一個具有對溫度敏感的元件之電壓控制的振盪器,必須具有 一個溫度相關的電壓控制元件以作爲溫度補償。當操作電流維持一定時,許多 種類的振盪器例如鬆弛振盪器以及環狀振盪器等的頻率可以保持一定。操作電 流通常是由電流源所產生,且是一個電壓對電流之轉換器,產生一個電流其大 小等於電壓對電阻的比率。因爲半導體電阻具有一個主的溫度係數,一個具有 正的溫度係數的控制電壓通常被使用於產生一個不隨溫度改變的電流源。正的 溫度係數可以取自於兩個正向偏壓的pn接合電壓之差別,數値的大小則取決於 Pn接面的大小,這個數値也可以進一步被放大或衰減。 2·背景說明 本發明係有關於頻率產生器,特別是指積體電路的時鐘產生器。多頻處理系統 在最近的VLSI系統應用中愈來愈流行,在這些應用當中,通常使用一個外部 的時鐘源,用以產生所需的信號頻率產生源。一個外部的時鐘源需要一個石英 振盪器,這會增加積體電路的包裝腳數,也會增加印刷電路板的佈局面積,以 提供該外部時鐘源所佔用之空間。從一個系統產品的角度觀之,一個外部時鐘 源由於雜散電容的增加,將會降低了時鐘信號的整體性以及高頻運作的特性。 同時•所增加的電路也會增加高頻電磁輻射以及信號間之交錯干擾。因此,外 部時鐘源的使用不但增加系統成本,同時也降低產品功能例如速度減慢以及電' 磁干擾增加...等。 過去幾年來’個人電腦的功能提昇許多,這是由於PC母板(mother board)提高 了處理速度以及準確度的緣故。傳統的母板所使用的時鐘計時源多是採用「相 位鎖定迴路」【phase-locked loop, PLL】、以及時鐘產生器積體電路。典型的是, 該時鐘源採用14.318 MHz石英振盪器作爲計時參考。因爲石英振盪器必須緊靠 著「相位鎖定迴路」晶片的關係,所以必須佔用印刷電路板上的一塊面積,而 且它也會輻射電磁波而增加信號處理的干擾以及交錯雜訊。 一般設計都是希望使用鬆弛振盪器或是環狀振盪器整合於系統產品的積體電路 中< 然而,此一設計很困難獲得一個對溫度變化不敏感的穩定頻率,這是因爲 溫度改變時,元件的値以及操作電流會改變。雖然,使用一個能帶間隙參考電 壓【energy band-gap voltage reference, Vref】以便獲得一個不受溫度變化影響的 定電壓是可能的,但是電路元件,特別是半導體電阻不可能做到不受溫度變化 影響的。 3.本發明的主要目的 本發明的目的之一是:不使用外部的石英,以便節省積體電路的面積’也節省 印刷電路板的面積。本發明的目的之二是:對於積體電路中的元件値的溫度變 化作補償。本發明的目的之三是:減低PC系統中的電磁干擾,並且增加母板 的整體性。本發明的目的之四是:提高PC系統的穩定度以及可靠度。 本紙張尺度通用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再ίΛ寫本頁) 經濟部中央標爭局8工福利委員會印製 409452 ____H3 i — '~ ~ 這些目的可以藉著一個存在於積體電路內部的自主式頻率產生電路而達成,一 個隨溫度之改變而改變輸出電壓的電壓供應器被用來作爲電壓控制的振盪器, 以便獲得一個穩定的頻率。電源供應器連接一個正溫度係數電壓與串聯一個倉 溫度係數電壓。負溫度係數電壓係來自於PN接面的正向偏壓,正溫度係數^ 壓則是係來自於操作於不同電流密度的兩個正向偏壓介面電壓差。當正^度係 數電壓超過負溫度係數電壓時,控制電壓具有正溫度係數,反之亦然。 ' —個可程式控制之電壓緩衝器(或是單一增益裏壓緩衝器)提供了參考電壓的一 個可調式控制,一個「電壓控制的振盪器」【voltage-controlledoscillator VCO】, 依據控制電壓的輸出,可以產生一個對映的頻率輸出。 ’ 本發明所使用的振盪器可以是鬆弛振盪器、環狀振盪器、或是其他適用於積體 電路中的振盪器。使用在一個具有相同的溫度係數的電壓控制電流源的電阻, 可以藉著彌補其正溫度係數,而使得操作電流可以保持一定。 4. 圖示說明 圖la.是本發明之自主式頻率產生電路的方塊圖,使用可程式控制之電壓緩衝器。 圖lb.是本發明使用固定增益電壓緩衝器的方塊圖。 圖2.是具有可變溫度係數的電源供應器。 圖3.是電壓對電流轉換器以作爲電流源。 圖4.是一個電壓控制的鬆驰振盪器。 圖5.是一個環狀振邊器。 圖6a.是電壓控制的環狀振盪器。 圖6b.是環狀振盪器的電流源。 5. 本發明的詳細說明 圖la.是本發明之自主式頻率產生電路的方塊圖,使用可程式控制之電壓緩衝 器;圖lb.是本發明使用固定增益電壓緩衝器的方塊圖。一個電壓控制振盪器 是藉著一個具有事先決定的溫度係數的參考電壓的控制,而獲得一個對於溫度 變化不敏感的頻率。 圖2.是具有可變溫度係數的電源供應器。兩個相同的MOSFET Q3以及Q4, /其源極連接到一個負的電源供應器Vss,其閘極連接到「運算放大器」 【叩erational amp丨ifier,0P】的輸出端。Q3的汲極,藉著電阻汜,連接到運算 放大器的反向輸入端A、以及一個「雙載子電晶體」【bipolar transistor, BJT】的 射極Qb Q4的汲極,藉著電阻R2,連接到運算放大器的非反向輸入端B,又 藉著電阻R1,連接到雙載子電晶體的射極Q2。Q1以及Q2的基極連接到共極, 集極則連接到正電源供應器VDD。 Q4充當反向器是以(R2+RHQ2的射極接面作爲負載’在非反向輸入端B會產 生一個負的回饋電壓,由於運算放大器的虛擬接地的特性,A,B兩點的電壓必 須相同,Q3以及Q4的汲極電流必須相同而且等於I。Q2的射極區Ae2是A 倍於Q1的射極區Ael。當Q1以及Q2的基底射極接面電壓降分別是Vbe〗以 本紙張尺度逋用中國國家標準(CNS)A4規格(210X297公釐) 經濟部中央標準局*5工福利委員會印製 409452 H3 —~ ^ 及Vbe2時,IR1的壓降會是Vbel-Vbe2,也就是: I=(Vbel-Vbe2)/Rl (1) 同時,輸出電壓Vref會是: Vref=-Vbel-(Vbel-Vbe2)R2/RI. (2) BJT的射極電流是: V Ie=Ae J〇[exp. (q Vbe/kT)-1 ] (3) 其中的Jo是飽和電流密度,且正比於Γ2 3qVg/kT. q是電荷=1.6*1〇_19庫倫 k是波茲曼常數=1.38*10_23J/°K T是絕對溫度。K。 在不同的溫度下,爲了維持Q1射極電流的恆定,將方程式(3)對溫度微分並且 設定爲零,可以得到溫度變化(ΔΤ)下所需要的變化(AVljel): △Vbel/Z\T=-2mV/°K (4) 當任意溫度T高於參考溫度T。時,相對的VbelCD會是: Vbel(T) = Vbel(T0)-0.002(T-T〇) (5) 因此,Vbe〗有一個負的溫度係數。 另外,由方程式(1)和(2)可以獲得如下的演算結果: IRI =(Vbe 1 - Vbe2) =(kT/q)[ln(I/Ae 1 )-ln(I/Ae2)] =(kT/q)lnA ⑹ 電流H(kT/q)lnA]Rl正比於T。 R2的壓降有正的溫度係數。 IR2=(R2/Rl)(kT/q)lnA (7) 參考電壓變成: Vref(T)=-[Vbel(To)-0.002(T-To)]-[(R2/Rl)(k/q)(lnA)(T-To)] (8) 因爲右手邊第一個括號內的項目具有一個負的溫度係數,右手邊第二個括號內 的項目具有一個正的溫度係數,因此,藉著調整電阻比率(R2/R1)、或是調整射 極面積比A '或是同時調整兩者,可以控制參考電壓Vref(T)使其具有正的溫度 {i數' 或是負的溫度係數。 本紙張疋度適用中国國家標準(CNS)A4規格(210X297公釐) 烴濟部中央標苹局員工福利妾®ί會印製 409452 _ _ H3_ 多數的振盪器,其頻率都是隨著操作電流而改變,對於鬆弛振盪器而言,頻率 是與電容器的充放電流有關。而對於環狀振盪器而言,頻率是與反向器的延遲 時間有關,且延遲時間又與反向器的直流工作電流有關《對於這樣的振盪器, 當溫度改變時,其工作電流必須維持恆定以保持穩定的輸出頻率。如果這些電 流是由一個電流源所產生的,則在操作溫度區間,電流源輸出的電流穩定性是 非常重要的。 圖3.是以電壓對電流轉換器作爲電流源,一個控制電壓Vin施加到運算放大器 OP1的非反向輸入端,OP1的輸出端連接到一涸MOSFET M3的閘極、以及OP1 的反向輸出端;OP1的反向輸出端係藉著一個電阻Rm連接至接地,因爲兩個 輸入端的虛擬接地電位是相等的,所以,通過Rin的電流會是Vm/Rin,且等於 M3的汲極電流;此一汲極電流構成一個電流源。 圖4.是一個典型的電壓控制的鬆驰振盪器VC〇 ’運算放大器OP2具有來自於 電壓分壓器R2與R1的正回饋,如此,構成一個史密特觸發器,藉著在反向輸 出端的電容器C之充電與放電過程,得以產生方波。這個充放電流是由一個包 含有運算放大器ΟΠ、電阻Rin、以及一個MOSFET M3所構成電壓對電流轉換 器之電流源I所鏡像形成,如圖三所示。當VI是高電位時、傳輸閘M9以及Ml 1 是導通的、且傳輸閘M8以及M10是斷路的時候,汲極電流I藉著鏡電流源M4 以及M5鏡像到MOSFHT Ml而對電容器C充電。汲極電流I藉著鏡電流源M7而 鏡像到M0SFET M2,以將電容器C放電之。[MOSFET M6使用於鉗住M3以及M4 的汲極使其汲極工作電流操作於飽和區]。當輸出電壓VI是正的時候,且當電 容器的跨電壓Vc達到史密特觸動器的臨界電壓時,VI會切換狀態。充電時間 以及放電時間構成振盪器的振遷週期且反比於電流I。若要獲得固定頻率,則 電流I就必須保持恆定。 電流1等於Vin/Rin,在一個積體電路中’電阻Rin是由半導體所製作的,而半 導體材料是具有正溫度係數的。假設Rin在溫度T時有下述關係: Rin(T) = Rin (T〇)[l+ «(Τ-Το)] (9) 當方程式(8)所表示的參考電壓等於: Vref(T) = Vbe(To)[l+α (Τ-Το)] (10) 由方程式(9)與〇0)可以衍生出維持定電流Ι(Τ) = Vref (T)/Rin(T)的條件。 a = [(k/q)(R2/Rl)(lnA).0.002]/Vbel(To) ⑴) 藉著調整電阻比値R2/R1、A、或是Vbel(To) ’也可以同時調整,可以獲得不 受溫度影響的恆定電流。 Vref可以放大或是衰減,以便在VC0中獲得適當的控制電壓。 本紙張尺度適用中團S家標準(CNS)A4規格(210X297公釐) 經濟部中夬標準局員工福利委员會印氣 409452 H3 5 圖5.是一個環狀振盪器基本結構,用以在vco中獲得適當的控制電壓,其具有 N倍奇數個反向器串聯在一起。振盪器頻率等於: fosc = 1/(2Ν τ inv) 其中的Γ inv是每一級的延遲時間,其反比於電晶體的跨導脚·而gm正比於反 向器的直流汲極電流之平方根。因此,若是反向器經由一個定電流源輸入定電 流時,振盪頻i可以保持一定。如圖3所示 圖6a.是一個電壓控制的環狀振盪器,其使^差動式的反向器。圖6b.是具有 電流源IB的差動式反向器。電流源在不同的溫度中1可以被控制並且維持 恆定,猶如在前面所述之電壓控制的鬆弛振盪器使用的溫度補償。 使用可程式控制電壓緩衝器或是單一增益電壓緩衝器的輸出電壓來產生一個控 制電壓,以便控制電壓控制振盪器VC0,分別如圖la以及圖lb所示。VC0依據 控制電壓的輸出,產生相關的頻率輸出。可程式電壓緩衝器容許系統重新調整 內部的操作頻率至最佳狀況。在一個PC系統中,主要的工作是在中央處理單元 (central processing unit, CPU)、以及快取隨機存取自己憶體(Cache RAM)中執 行。基本輸出入系統(Basic Input Output System, BIOS)可以控制可程式電壓 緩衝器使其增加操作頻率’以達到PC系統中最佳工作狀況。另一方面,如果PC 系統執行較多數的週邊輸出以及輸入的工作,則BIOS藉著可程式控制電壓緩 衝器,而可以降低CPU系統頻率,如此,可以達到較佳的穩定度以及可靠度。 否則,CPU可能過熱。降低CPU的操作速度,可以冷卻CPU也提高系統的可靠 度。 本發明也可以進一步地利用熔絲修正技術修改R2/R1的比値,而達到較高的準 確度。VCO可以是傳統的環狀振盪器、鬆驰振盪器...等,端視系統的需要而 定。 前述描述雖僅是應用於環狀振盪器、以及鬆弛振盪器,然而’本發明所揭露的 溫度補償技巧的運用,並不限制於這兩種振盪器。技巧就是,可以用於:凡是 需要正的溫度係數以及負的溫度係數作爲溫度補償的電路,以便獲得一個不隨 改變的恆定電流源。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)409452 A7 B7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (1) Autonomous frequency generation circuit 1. Abstract The frequency of the integrated circuit oscillator can be maintained fixed without being affected by temperature changes. Achieved by temperature compensation design. A voltage-controlled oscillator with temperature-sensitive elements must have a temperature-dependent voltage control element for temperature compensation. When the operating current is kept constant, the frequency of many types of oscillators such as relaxation oscillators and ring oscillators can be kept constant. The operating current is usually generated by a current source and is a voltage-to-current converter that generates a current whose magnitude is equal to the voltage to resistance ratio. Because semiconductor resistors have a primary temperature coefficient, a control voltage with a positive temperature coefficient is usually used to generate a current source that does not change with temperature. The positive temperature coefficient can be taken from the difference between the two forward biased pn junction voltages. The magnitude of the number depends on the size of the Pn junction. This number can also be further amplified or attenuated. 2. Background Description The present invention relates to a frequency generator, and particularly to a clock generator of an integrated circuit. Multi-frequency processing systems are becoming more and more popular in recent VLSI system applications. In these applications, an external clock source is usually used to generate the required signal frequency generation source. An external clock source requires a quartz oscillator. This will increase the package pin count of the integrated circuit and increase the layout area of the printed circuit board to provide the space occupied by the external clock source. From the perspective of a system product, the increase in stray capacitance of an external clock source will reduce the integrity of the clock signal and the characteristics of high-frequency operation. At the same time, the added circuit will also increase the high-frequency electromagnetic radiation and interleaving interference between signals. Therefore, the use of an external clock source not only increases system cost, but also reduces product features such as slower speeds and increased electrical and magnetic interference ... In the past few years, the functionality of personal computers has improved a lot due to the increased processing speed and accuracy of PC mother boards. Most of the clock timing sources used by traditional motherboards use a "phase-locked loop" (PLL) and a clock generator integrated circuit. Typically, this clock source uses a 14.318 MHz quartz oscillator as the timing reference. Because the quartz oscillator must be close to the “phase-locked loop” chip, it must occupy an area on the printed circuit board, and it will also radiate electromagnetic waves to increase signal processing interference and interleaved noise. The general design is to integrate a relaxation oscillator or ring oscillator into the integrated circuit of the system product. However, this design is difficult to obtain a stable frequency that is not sensitive to temperature changes. This is because when the temperature changes, The component's 値 and operating current will change. Although it is possible to use an energy band-gap voltage reference (Vref) in order to obtain a constant voltage that is not affected by temperature changes, circuit components, especially semiconductor resistors, cannot be immune to temperature changes. Affected. 3. Main object of the present invention One of the objects of the present invention is to not use external quartz so as to save the area of the integrated circuit 'and the area of the printed circuit board. Another object of the present invention is to compensate for the temperature change of the element 値 in the integrated circuit. The third object of the present invention is to reduce electromagnetic interference in a PC system and increase the integrity of the motherboard. The fourth object of the present invention is to improve the stability and reliability of the PC system. The size of this paper is in accordance with the Chinese National Standard (CNS) A4 (210X297 mm) (Please read the precautions on the back before writing this page) Printed by the 8 Welfare Committee of the Central Bureau of Competition of the Ministry of Economy 409452 ____H3 i — '~ ~ These objectives can be achieved by an autonomous frequency generation circuit inside the integrated circuit. A voltage supply that changes the output voltage with temperature changes is used as a voltage-controlled oscillator in order to obtain a stable frequency. . The power supply is connected with a positive temperature coefficient voltage and a bin temperature coefficient voltage in series. The negative temperature coefficient voltage is derived from the forward bias of the PN junction, and the positive temperature coefficient voltage is derived from the voltage difference between two forward biased interfaces operating at different current densities. When the positive coefficient voltage exceeds the negative temperature coefficient voltage, the control voltage has a positive temperature coefficient, and vice versa. '— A programmable voltage buffer (or single gain buffer buffer) provides an adjustable control of the reference voltage, a "voltage-controlled oscillator" [voltage-controlled oscillators VCO], according to the output of the control voltage , Can produce a mapped frequency output. The oscillator used in the present invention may be a slack oscillator, a ring oscillator, or other oscillators suitable for use in integrated circuits. Using the resistance of a voltage-controlled current source with the same temperature coefficient, the operating current can be kept constant by making up for its positive temperature coefficient. 4. Graphical illustration Figure la. Is a block diagram of the autonomous frequency generating circuit of the present invention, using a programmable voltage buffer. Figure lb. is a block diagram of the present invention using a fixed gain voltage buffer. Figure 2. Power supply with variable temperature coefficient. Figure 3. A voltage-to-current converter as a current source. Figure 4. A voltage controlled slack oscillator. Figure 5. A ring shaper. Figure 6a. Is a voltage controlled ring oscillator. Figure 6b. Current source for a ring oscillator. 5. Detailed description of the present invention Fig. La. Is a block diagram of an autonomous frequency generating circuit of the present invention using a programmable voltage buffer; Fig. Lb. is a block diagram of a fixed gain voltage buffer of the present invention. A voltage controlled oscillator obtains a frequency that is insensitive to temperature changes by controlling a reference voltage with a predetermined temperature coefficient. Figure 2. Power supply with variable temperature coefficient. Two identical MOSFETs Q3 and Q4, whose source is connected to a negative power supply Vss, and whose gate is connected to the output terminal of the “operational amplifier” (0P). The drain of Q3 is connected to the inverting input A of the operational amplifier through a resistor 汜 and the emitter of a bipolar transistor (BJT) Qb. The drain of Q4 is connected to a resistor R2, Connected to the non-inverting input terminal B of the operational amplifier, and connected to the emitter Q2 of the bipolar transistor through the resistor R1. The bases of Q1 and Q2 are connected to the common pole, and the collector is connected to the positive power supply VDD. Q4 acts as a reverser and uses the emitter interface of R2 + RHQ2 as a load '. At the non-inverting input terminal B, a negative feedback voltage will be generated. Due to the characteristics of the virtual ground of the operational amplifier, the voltages at points A and B Must be the same, the drain current of Q3 and Q4 must be the same and equal to I. The emitter region Ae2 of Q2 is A times the emitter region Ael of Q1. When the base-emitter junction voltage drops of Q1 and Q2 are For this paper size, the Chinese National Standard (CNS) A4 specification (210X297 mm) is printed by the Central Bureau of Standards of the Ministry of Economic Affairs * 5 and printed by 409452 H3 — ~ ^ and Vbe2, the pressure drop of IR1 will be Vbel-Vbe2, also That is: I = (Vbel-Vbe2) / Rl (1) At the same time, the output voltage Vref will be: Vref = -Vbel- (Vbel-Vbe2) R2 / RI. (2) The emitter current of BJT is: V Ie = Ae J〇 [exp. (Q Vbe / kT) -1] (3) where Jo is the saturation current density and is proportional to Γ2 3qVg / kT. Q is the charge = 1.6 * 1〇_19 Coulomb k is the Bozman constant = 1.38 * 10_23J / ° KT is the absolute temperature. K. In order to maintain the constant Q1 emitter current at different temperatures, the equation (3) is differentiated and set to zero to obtain the temperature change (Δ (Tl) The required change (AVljel): △ Vbel / Z \ T = -2mV / ° K (4) When any temperature T is higher than the reference temperature T, the relative VbelCD will be: Vbel (T) = Vbel (T0) -0.002 (TT〇) (5) Therefore, Vbe has a negative temperature coefficient. In addition, the following calculation results can be obtained from equations (1) and (2): IRI = (Vbe 1-Vbe2) = (kT / q) [ln (I / Ae 1) -ln (I / Ae2)] = (kT / q) lnA ⑹ The current H (kT / q) lnA] Rl is proportional to T. The voltage drop of R2 is positive Temperature coefficient IR2 = (R2 / Rl) (kT / q) lnA (7) The reference voltage becomes: Vref (T) =-[Vbel (To) -0.002 (T-To)]-[(R2 / Rl) ( k / q) (lnA) (T-To)] (8) Because the item in the first bracket on the right-hand side has a negative temperature coefficient, and the item in the second bracket on the right-hand side has a positive temperature coefficient, so By adjusting the resistance ratio (R2 / R1), or adjusting the emitter area ratio A ', or adjusting both, the reference voltage Vref (T) can be controlled to have a positive temperature {i number' or negative Temperature coefficient. This paper is compliant with China National Standard (CNS) A4 specification (210X297 mm) Employee Benefits of the Central Bureau of Standards of the Ministry of Hydrocarbons, and will be printed 409452 _ _ H3_ more The oscillator frequency is varied with the operating current for the relaxation oscillator, the frequency is related to charge and discharge current of the capacitor. For a ring oscillator, the frequency is related to the delay time of the inverter, and the delay time is related to the DC operating current of the inverter. "For such an oscillator, when the temperature changes, its operating current must be maintained. Constant to maintain a stable output frequency. If these currents are generated by a current source, the current stability of the current source output is very important during the operating temperature range. Figure 3. A voltage-to-current converter is used as the current source. A control voltage Vin is applied to the non-inverting input of the operational amplifier OP1. The output of OP1 is connected to the gate of a MOSFET M3 and the reverse output of OP1. The reverse output of OP1 is connected to ground through a resistor Rm. Because the virtual ground potentials of the two inputs are equal, the current through Rin will be Vm / Rin and equal to the drain current of M3; This sink current constitutes a current source. Figure 4. A typical voltage-controlled slack oscillator VC0 'op amp OP2 has positive feedback from voltage dividers R2 and R1. In this way, a Schmitt trigger is formed, which is During the charging and discharging process of the capacitor C at the terminal, a square wave can be generated. This charging and discharging current is formed by a current source I including a voltage-to-current converter consisting of an operational amplifier 0Π, a resistor Rin, and a MOSFET M3, as shown in Figure 3. When VI is high, transmission gates M9 and Ml 1 are on, and transmission gates M8 and M10 are open, the drain current I is charged to capacitor C by mirror current sources M4 and M5 mirrored to MOSFHT M1. The sink current I is mirrored to M0SFET M2 by the mirror current source M7 to discharge the capacitor C. [MOSFET M6 is used to clamp the drains of M3 and M4 so that their drain operating current operates in the saturation region]. When the output voltage VI is positive, and when the capacitor's trans-voltage Vc reaches the critical voltage of the Schmitt actuator, VI switches state. The charging time and the discharging time constitute the oscillation period of the oscillator and are inversely proportional to the current I. To obtain a fixed frequency, the current I must be kept constant. The current 1 is equal to Vin / Rin. In an integrated circuit, the 'resistance Rin is made of a semiconductor, and the semiconductor material has a positive temperature coefficient. Assume that Rin has the following relationship at temperature T: Rin (T) = Rin (T〇) [l + «(Τ-Το)] (9) When the reference voltage represented by equation (8) is equal to: Vref (T) = Vbe (To) [l + α (Τ-Το)] (10) The conditions for maintaining a constant current I (T) = Vref (T) / Rin (T) can be derived from equations (9) and 0). a = [(k / q) (R2 / Rl) (lnA) .0.002] / Vbel (To) ⑴) By adjusting the resistance ratio 値 R2 / R1, A, or Vbel (To) ', it can also be adjusted at the same time, It is possible to obtain a constant current independent of temperature. Vref can be amplified or attenuated to obtain the proper control voltage in VC0. This paper size is applicable to the China National Standard (CNS) A4 specification (210X297 mm). The Employee Welfare Committee of the China Standards Bureau of the Ministry of Economic Affairs, India Gas 409452 H3 5 Figure 5. The basic structure of a ring oscillator, used in vco An appropriate control voltage is obtained, which has N times an odd number of inverters connected in series. The oscillator frequency is equal to: fosc = 1 / (2N τ inv) where Γ inv is the delay time of each stage, which is inversely proportional to the transconductance pin of the transistor, and gm is proportional to the square root of the DC drain current of the inverter. Therefore, if the inverter inputs constant current through a constant current source, the oscillation frequency i can be kept constant. As shown in Figure 3 Figure 6a. Is a voltage-controlled ring oscillator, which uses a differential inverter. Figure 6b. Differential inverter with current source IB. The current source 1 can be controlled and maintained constant at different temperatures, just like the temperature compensation used in the voltage controlled relaxation oscillator described above. The output voltage of a programmable voltage buffer or a single gain voltage buffer is used to generate a control voltage in order to control the voltage-controlled oscillator VC0, as shown in Figures 1a and 1b, respectively. VC0 generates the relevant frequency output based on the output of the control voltage. Programmable voltage buffers allow the system to readjust the internal operating frequency to optimal conditions. In a PC system, the main work is performed in the central processing unit (CPU) and cache random access cache memory. The Basic Input Output System (BIOS) can control a programmable voltage buffer to increase its operating frequency ’to achieve the best working conditions in a PC system. On the other hand, if the PC system performs a large number of peripheral output and input tasks, the BIOS can reduce the CPU system frequency by programmably controlling the voltage buffer. In this way, better stability and reliability can be achieved. Otherwise, the CPU may overheat. Reducing the operating speed of the CPU can cool the CPU and increase the reliability of the system. The present invention can further use the fuse correction technology to modify the ratio R2 / R1 to achieve a higher accuracy. VCOs can be traditional ring oscillators, relaxation oscillators, etc., depending on the needs of the system. Although the foregoing description is only applied to ring oscillators and relaxation oscillators, the application of the temperature compensation technique disclosed in the present invention is not limited to these two oscillators. The trick is that it can be used for any circuit that requires a positive temperature coefficient and a negative temperature coefficient as temperature compensation in order to obtain a constant current source that does not change. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

409452 I 〒- ~、申請專利範圍 (諳先閲讀背面之注意事項再填寫本頁) 22.如申請專利範圍第21.項所述之一種溫度補償式恆定電流源,其屮所述之横 跨於前述之第二電阻所產生的電壓1以較高密度端與BIT的射極接而電壓相逆 接1以獲得前述之控制電壓。 23如申請專利範圍第21.項所述之一·種溫度補償式恆定電流源,其中所述之.lK 的溫度係數,隨著第二電阻對第一電阻之比値的增加而增加。 24. 如申請專利範圍第18.項所述之一種溫度補償式恆定電流源,其中所述之正 的溫度係數的數値係大於負的溫度係數|以獲得-個溫度補償淨値爲E的溫度 係數。 25. 如申請專利範圍第18.項所述之一種溫度補償式恆定電流源,其中所述之正 的溫度係數的數値 > 係藉著前述之兩個正向偏壓pn接面之不同的接面面積加以 調整。 26. 如申請專利範圍第].項所述之一種具有溫度補償的恆定頻率產牛器,更包 含可程式控制電壓緩衝器作爲前述之VCO的供應電壓,且係可調式控制電壓。 27. 如申請專利範圍第26.項所述之一種具有溫度補償的恆定頻率產生器,其 中,所述之可程式電壓具有溫度補償。 28. 如申請專利範圍第U頁所述之一種具有溫度補償的恆定頻率產生器1吏包 含固定增益電壓緩衝器作爲前述之VCO的供應電壓,提供固定頻率之需求。 29. 如申請專利範圍第28.項所述之一種具有溫度補償的恆定頻率產生器,K 中| 述之供應電壓具有溫度補償。 30. 如申請專利範圍第28.項所述之一種具有溫度補償的恆定頻率產生器,其 中,所述之固定增益係指增益爲壹者。 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐) 409452 as Β8 C8 D8 經濟部中央標準局負工消费合作社印笨 六、申請專利範圍 l 一種具有溫度補償的恆定頻率產生器,包含: 電壓控制振盪器,產生一個隨溫度改變的頻率; 控制電壓’隨著溫度而改變用以補償前述之電壓控制振盪器的頻率相關性’而 獲得一個與溫度無關的恆定頻率。 2. 如申請專利範圍第1.項所述之一種具有溫度ί新賞的恆定頻率產生器’ 述之控制電壓係藉著連接一個具有負的溫度係數的正向偏壓pn接面電歷串接於 —個產生於兩個具有正的溫度係數的正向偏壓pn接面的電壓差而獲得° 3. 如申請專利範圍第2.項所述之一種具有溫度補償的恆定頻率產生器* 所 述之正的溫度係數的數値係大於負的溫度係數,以獲得一個溫度補償淨値爲正 的溫度係數。 4. 如申請專利範圍第2.項所述之一種具有溫度補償的恆定頻率產生器’ g中所 述之正的溫度係數的數値,係藉著前述之兩個正向偏壓pn接面之不同的接面面 積加以調整。 5. 如申請專利範圍第1.項所述之一種具有溫度補償的恆定頻率產生器’其中所 述之頻率產生器是指鬆驰振盪器。 6. 如申請專利範圍第5.項所述之一種具有溫度補償的恆定頻率產生器’其中所 述之產生器頻率,係由電容器的充電以及放電時間所決定。 7-如申請專利範圍第6.項所述之一種具有溫度補償的恆定頻率產生器’其中所 述之電容器的充電以及放電的電流保持恆定,不隨溫度之改變而改變。 8. 如申請專利範圍第7.項所述之一種具有溫度補償的恆定頻率產生器,其中所 述之電流,係由具有溫度補償的電流源所產生的。 9. 如申請專利範圍第8.項所述之一種具有溫度補償的恆定頻率產生器,其中所 够之電流源,是指電壓對電流轉換器,前述轉換器包含有運算放大器用以驅動 MOSFET的閘極; 前述之運算放大器,其反向輸入端連接於前述之M0SFET的源極,且藉著具有正 溫度係數的半導體電阻而接地;以及 非反向輸入端連接至前述之控制電壓,且具有正的溫度係數,以便前述之MOSFET 的汲極可以在不同的溫度時產生恆定電流。 10. 如申請專利範圍第2.項所述之一種具有溫度補償的恆定頻率產生器,其中 所述之pn接面,係指共基極連接到一個固定電位的兩個雙載子電晶體的射極接 面,且前述之兩個接面的電壓差,係產生於一個來自於第一電阻所產生的電壓; 前述之第一電阻,係橫跨連接於兩個雙載子電晶體之一且具有較低電流密度的 射極、與橫跨連接於兩個雙載子電晶體之—且具有較高電流密度的射極。 私紙張尺度適用中國固家標準(CNS ) Α4说格(21〇><297公釐) (請先Μ讀背面之注意事項再填寫本頁) 裝· ---訂 線 409452 H3 1〗·如申請專利範圍第10.項所述之一種具有溫度補償的恆定頻率產生器,其中 通過前述之第一電阻的電流,也流過第二電阻,以產生一個電壓橫跨於前述之 第二電阻,且正比於前述之電壓差,同時,具有前述之正的溫度係數" I2.如申請專利範圍第11.項所述之一種具有溫度補償的g定頻率產生器,其中 所述之橫跨於前述之第二電阻所產生的電壓,以較高密度端與BIT的射極接面. 電壓相連接,以獲得前述之控制電壓。 Π.如申請專利範圍第Π.項所述之一種具有^度補償的恆定頻率產生器,其中 所述之正的溫度係數,隨著第二電阻對第一電阻之比値的增加而增加。 14. 如申請專利範圍第7.項所述之一種具有溫度補償的恆定頻率產生器,其中 所述之產生器,係指環狀振盪器且具有奇數個反向器串聯成爲環狀,前述之每 一個反向器皆由前述之電流源輸入電流。 15. 如申請專利範圍第14.項所述之一種具有溫度補償的恆定頻率產生器,其中 所述之反向器,係指差動式反向器。 16. 如申請專利範圍第M.項所述之一種具有溫度補償的恆定頻率產生器,其中 每一個所述之反向器,係指一對互補的MOSFET串聯一起所構成的。 17. 如申請專利範圍第1.項所述之一種具有溫度補償的恆定頻率產生器,其中, 可程式控制電壓緩衝器被使用提供前述控制電壓的彈性控制。 18. —種溫度補償式恆定電流源,包含: 運算放大器’具有輸出端連接於MOSFET的閘極,反向輸出端連接到前述之 MOSFET的源極,藉著具有正的溫度係數的半導體電阻連接到地,非反向輸入 連接到具有與前述之半導體電阻相同的正的溫度係數之控制電壓,以便前述之 MOSFET的汲極電流可以恆定,不受溫度變化之影響。 烴濟部中央標準局目工福利委β會印製 19. 如申請專利範圍第18.項所述之一種溫度補償式恆定電流源,其中所述之控 /制電壓係取自於連接具有負溫度係數的正向偏壓pn接面電壓串接一個具有正溫 度係數電壓差的兩個正向偏壓pn接面。 20. 如申請專利範圍第19_項所述之一種溫度補償式恆定電流源,其中所述之pn 接面,係指具有共基極連接到一個固定電位的兩個雙載子電晶體的射極接面, 且前述之兩個正向偏壓接面電壓差,係產生於一個來自於第一電阻所產生的電 壓:前述之第一電阻1係橫跨連接於兩個雙載子電晶體之一且具有較低電流密 度的射極、與橫跨連接於兩個雙載子電晶體之一且具有較高電流密度的射極。 21. 如申請專利範圍第20.項所述之一種溫度補償式'垣定電流源,其中通過前述 之第一電阻的電流,也流過第二電阻,以產生一個電壓横跨於前述之第二電阻, 且正比於前述之電壓差,同時,具有前述之正的溫度係數。 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐)409452 I 〒- ~, scope of patent application (阅读 Please read the notes on the back before filling this page) 22. A temperature-compensated constant current source as described in item 21. The voltage 1 generated by the aforementioned second resistor is connected to the emitter of the BIT at a higher density end and the voltage is reversely connected to 1 to obtain the aforementioned control voltage. 23. A temperature-compensated constant current source as described in item 21. of the patent application range, wherein the temperature coefficient of .1K increases as the ratio 第二 of the second resistor to the first resistor increases. 24. A temperature-compensated constant current source according to item 18. in the scope of patent application, wherein the number of the positive temperature coefficient is greater than the negative temperature coefficient | to obtain a temperature compensation net E of Temperature Coefficient. 25. A temperature-compensated constant current source as described in item 18. of the patent application range, wherein the number of the positive temperature coefficient 値 > is based on the difference between the two forward biased pn junctions The junction area is adjusted. 26. A constant-frequency cattle generator with temperature compensation as described in item [] of the scope of patent application, further comprising a programmable control voltage buffer as the aforementioned VCO supply voltage, and an adjustable control voltage. 27. A constant frequency generator with temperature compensation as described in item 26 of the scope of patent application, wherein the programmable voltage has temperature compensation. 28. A constant frequency generator with temperature compensation, as described on page U of the patent application scope, includes a fixed gain voltage buffer as the aforementioned VCO supply voltage to provide a fixed frequency requirement. 29. A constant frequency generator with temperature compensation as described in item 28 of the scope of patent application, and the supply voltage described in K | has temperature compensation. 30. A constant frequency generator with temperature compensation as described in item 28 of the scope of patent application, wherein the fixed gain refers to a gain of one. Printed by the Consumer Standards Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs. The paper size is applicable to the Chinese National Standard (CNS) A4 (210X297 mm) 409452 as Β8 C8 D8. A constant frequency generator with temperature compensation includes: a voltage-controlled oscillator that generates a frequency that changes with temperature; a control voltage that changes with temperature to compensate for the frequency dependency of the aforementioned voltage-controlled oscillator to obtain an Constant temperature independent temperature. 2. A constant frequency generator with a temperature as described in item 1. of the scope of the patent application, said control voltage is by connecting a forward biased pn junction calendar with a negative temperature coefficient. Connected to a voltage difference between two forward-biased pn junctions with positive temperature coefficients to obtain ° 3. A constant frequency generator with temperature compensation as described in item 2. The number of the positive temperature coefficient is greater than the negative temperature coefficient, so as to obtain a temperature coefficient with a positive temperature compensation net. 4. The number of positive temperature coefficients as described in item 2. of the patent application scope for a constant frequency generator with temperature compensation, g, is obtained by the aforementioned two forward biased pn junctions. The different joint areas are adjusted. 5. A constant frequency generator with temperature compensation as described in item 1. of the patent application scope, wherein the frequency generator is a relaxation oscillator. 6. The constant frequency generator with temperature compensation according to item 5. of the scope of patent application, wherein the generator frequency is determined by the charging and discharging time of the capacitor. 7- A constant frequency generator with temperature compensation as described in item 6. of the scope of patent application, wherein the current for charging and discharging the capacitor is kept constant and does not change with temperature. 8. A constant frequency generator with temperature compensation as described in item 7 of the scope of patent application, wherein the current is generated by a current source with temperature compensation. 9. A constant frequency generator with temperature compensation as described in item 8. of the scope of patent application, wherein the sufficient current source refers to a voltage-to-current converter. The foregoing converter includes an operational amplifier for driving a MOSFET. The gate; the inverting input of the aforementioned operational amplifier is connected to the source of the aforementioned MOSFET and grounded by a semiconductor resistor having a positive temperature coefficient; and the non-inverting input is connected to the aforementioned control voltage and has Positive temperature coefficient so that the drain of the aforementioned MOSFET can generate a constant current at different temperatures. 10. A constant frequency generator with temperature compensation as described in item 2. of the scope of patent application, wherein the pn junction refers to the connection of two bipolar transistors with a common base connected to a fixed potential. Emitter junction, and the voltage difference between the two junctions is generated by a voltage from a first resistor; the first resistor is connected across one of the two bipolar transistors And an emitter with a lower current density, and an emitter with a higher current density connected across the two bipolar transistors. The private paper standard applies the Chinese Goods Standard (CNS) Α4 grid (21〇 > < 297 mm) (please read the precautions on the back before filling in this page). Installation ----- 409452 H3 1〗 A constant frequency generator with temperature compensation as described in item 10. of the patent application scope, wherein the current through the aforementioned first resistor also flows through the second resistor to generate a voltage across the aforementioned second Resistance, which is proportional to the aforementioned voltage difference, and at the same time, has the aforementioned positive temperature coefficient " I2. A constant-frequency generator with temperature compensation as described in item 11. of the patent application range, wherein the horizontal The voltage generated across the aforementioned second resistor is connected to the emitter junction voltage of the BIT at a higher density end to obtain the aforementioned control voltage. Π. A constant frequency generator with a degree compensation as described in item Π. Of the patent application range, wherein the positive temperature coefficient increases as the ratio 値 of the second resistor to the first resistor increases. 14. A constant frequency generator with temperature compensation as described in item 7 of the scope of patent application, wherein the generator refers to a ring oscillator and has an odd number of inverters connected in series to form a ring. Each inverter receives current from the aforementioned current source. 15. A constant frequency generator with temperature compensation according to item 14. in the scope of patent application, wherein the inverter refers to a differential inverter. 16. A constant frequency generator with temperature compensation as described in item M. of the scope of patent application, wherein each of the inverters refers to a pair of complementary MOSFETs connected in series. 17. A constant frequency generator with temperature compensation as described in item 1. of the patent application scope, wherein a programmable voltage buffer is used to provide flexible control of the aforementioned control voltage. 18. —A temperature-compensated constant current source comprising: an operational amplifier having an output terminal connected to the gate of a MOSFET, an inverting output terminal connected to the source of the aforementioned MOSFET, and connected via a semiconductor resistor having a positive temperature coefficient To ground, the non-inverting input is connected to a control voltage with the same positive temperature coefficient as the aforementioned semiconductor resistor, so that the drain current of the aforementioned MOSFET can be constant and not affected by temperature changes. The Ministry of Hydrocarbons, Central Standards Bureau, Project and Welfare Committee β will print 19. A temperature-compensated constant current source as described in item 18. of the patent application scope, wherein the control / control voltage is taken from the The forward bias pn junction voltage of the temperature coefficient is connected in series with two forward bias pn junctions having a positive temperature coefficient voltage difference. 20. A temperature-compensated constant current source according to item 19_ in the scope of the patent application, wherein the pn junction refers to the radiation of two bipolar transistors with a common base connected to a fixed potential. Pole junction, and the voltage difference between the two forward-biased junctions is generated by a voltage from a first resistor: the aforementioned first resistor 1 is connected across two bipolar transistors One of the emitters has a lower current density, and the emitter has a higher current density connected across one of the two bipolar transistors. 21. A temperature-compensated 'instant current source' as described in item 20. of the patent application, wherein the current through the first resistor also flows through the second resistor to generate a voltage across the aforementioned first resistor. Two resistors, which are proportional to the aforementioned voltage difference and have the aforementioned positive temperature coefficient. This paper size applies to China National Standard (CNS) A4 (210X297 mm) 409452 I 〒- ~、申請專利範圍 (諳先閲讀背面之注意事項再填寫本頁) 22.如申請專利範圍第21.項所述之一種溫度補償式恆定電流源,其屮所述之横 跨於前述之第二電阻所產生的電壓1以較高密度端與BIT的射極接而電壓相逆 接1以獲得前述之控制電壓。 23如申請專利範圍第21.項所述之一·種溫度補償式恆定電流源,其中所述之.lK 的溫度係數,隨著第二電阻對第一電阻之比値的增加而增加。 24. 如申請專利範圍第18.項所述之一種溫度補償式恆定電流源,其中所述之正 的溫度係數的數値係大於負的溫度係數|以獲得-個溫度補償淨値爲E的溫度 係數。 25. 如申請專利範圍第18.項所述之一種溫度補償式恆定電流源,其中所述之正 的溫度係數的數値 > 係藉著前述之兩個正向偏壓pn接面之不同的接面面積加以 調整。 26. 如申請專利範圍第].項所述之一種具有溫度補償的恆定頻率產牛器,更包 含可程式控制電壓緩衝器作爲前述之VCO的供應電壓,且係可調式控制電壓。 27. 如申請專利範圍第26.項所述之一種具有溫度補償的恆定頻率產生器,其 中,所述之可程式電壓具有溫度補償。 28. 如申請專利範圍第U頁所述之一種具有溫度補償的恆定頻率產生器1吏包 含固定增益電壓緩衝器作爲前述之VCO的供應電壓,提供固定頻率之需求。 29. 如申請專利範圍第28.項所述之一種具有溫度補償的恆定頻率產生器,K 中| 述之供應電壓具有溫度補償。 30. 如申請專利範圍第28.項所述之一種具有溫度補償的恆定頻率產生器,其 中,所述之固定增益係指增益爲壹者。 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐)409452 I 〒- ~, scope of patent application (阅读 Please read the notes on the back before filling this page) 22. A temperature-compensated constant current source as described in item 21. The voltage 1 generated by the aforementioned second resistor is connected to the emitter of the BIT at a higher density end and the voltage is reversely connected to 1 to obtain the aforementioned control voltage. 23. A temperature-compensated constant current source as described in item 21. of the patent application range, wherein the temperature coefficient of .1K increases as the ratio 第二 of the second resistor to the first resistor increases. 24. A temperature-compensated constant current source according to item 18. in the scope of patent application, wherein the number of the positive temperature coefficient is greater than the negative temperature coefficient | to obtain a temperature compensation net E of Temperature Coefficient. 25. A temperature-compensated constant current source according to item 18. in the scope of the patent application, wherein the number of the positive temperature coefficient 値 > is based on the difference between the two forward-biased pn junctions. The junction area is adjusted. 26. A constant-frequency cattle generator with temperature compensation as described in item [] of the scope of patent application, further comprising a programmable control voltage buffer as the aforementioned VCO supply voltage, and an adjustable control voltage. 27. A constant frequency generator with temperature compensation as described in item 26 of the scope of patent application, wherein the programmable voltage has temperature compensation. 28. A constant frequency generator with temperature compensation, as described on page U of the patent application scope, includes a fixed gain voltage buffer as the aforementioned VCO supply voltage to provide a fixed frequency requirement. 29. A constant frequency generator with temperature compensation as described in item 28 of the scope of patent application, and the supply voltage described in K | has temperature compensation. 30. A constant frequency generator with temperature compensation as described in item 28 of the scope of patent application, wherein the fixed gain refers to a gain of one. Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs This paper is sized for the Chinese National Standard (CNS) A4 (210X297 mm)
TW87105783A 1998-04-14 1998-04-14 Spontaneously frequency generating circuit TW409452B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW87105783A TW409452B (en) 1998-04-14 1998-04-14 Spontaneously frequency generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW87105783A TW409452B (en) 1998-04-14 1998-04-14 Spontaneously frequency generating circuit

Publications (1)

Publication Number Publication Date
TW409452B true TW409452B (en) 2000-10-21

Family

ID=21629884

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87105783A TW409452B (en) 1998-04-14 1998-04-14 Spontaneously frequency generating circuit

Country Status (1)

Country Link
TW (1) TW409452B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795344A (en) * 2014-01-21 2014-05-14 深圳市芯海科技有限公司 Oscillator circuit with temperature compensation function
CN104764914A (en) * 2014-01-03 2015-07-08 致茂电子股份有限公司 Error compensation method and automatic testing device using same
TWI806388B (en) * 2021-11-09 2023-06-21 瑞昱半導體股份有限公司 Temperature compensated voltage-controlled oscillator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764914A (en) * 2014-01-03 2015-07-08 致茂电子股份有限公司 Error compensation method and automatic testing device using same
CN103795344A (en) * 2014-01-21 2014-05-14 深圳市芯海科技有限公司 Oscillator circuit with temperature compensation function
TWI806388B (en) * 2021-11-09 2023-06-21 瑞昱半導體股份有限公司 Temperature compensated voltage-controlled oscillator

Similar Documents

Publication Publication Date Title
US5870004A (en) Temperature compensated frequency generating circuit
US7176765B1 (en) Programmable temperature-compensated RC oscillator
US7598822B2 (en) Process, supply, and temperature insensitive integrated time reference circuit
Young et al. A PLL clock generator with 5 to 110 MHz of lock range for microprocessors
Farjad-Rad et al. A low-power multiplying DLL for low-jitter multigigahertz clock generation in highly integrated digital chips
Lee et al. A 10MHz 80μW 67 ppm/° C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18 μm CMOS
von Kaenel A high-speed, low-power clock generator for a microprocessor application
US5463353A (en) Resistorless VCO including current source and sink controlling a current controlled oscillator
US20090051443A1 (en) Oscillator Stabilized for Temperature and Power Supply Variations
Kukielka et al. A high-frequency temperature-stable monolithic VCO
JP2003529227A (en) Precision buffered oscillator with temperature compensation and various operating modes
Shyu et al. A process and temperature compensated ring oscillator
Abbasizadeh et al. A fully on-chip 25MHz PVT-compensation CMOS Relaxation Oscillator
TW409452B (en) Spontaneously frequency generating circuit
US8258815B2 (en) Clock generator circuits for generating clock signals
O'Shaughnessy A CMOS, self calibrating, 100 MHz RC-oscillator for ASIC applications
US7295079B2 (en) Current-controlled oscillator
US6121848A (en) Integrated accurate thermal frequency reference
Meng et al. A low-power relaxation oscillator with switched-capacitor frequency-locked loop for wireless sensor node applications
Sundaresan et al. A 7-MHz process, temperature and supply compensated clock oscillator in 0.25/spl mu/m CMOS
Shin et al. A clock distribution scheme insensitive to supply voltage drift with self-adjustment of clock buffer delay
US4831343A (en) Crystal clock generator having fifty percent duty cycle
Lu et al. A 46μW, 8.2 MHz self-threshold-tracking differential relaxation oscillator with 7.66 psrms period jitter and 1.56 ppm allan deviation floor
TW201208249A (en) Low power relaxation oscillator
KR100520269B1 (en) Voltage-current converter and self-oscillator using the same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees