TW405144B - System and method for detecting neutral particles in an ion beam - Google Patents

System and method for detecting neutral particles in an ion beam Download PDF

Info

Publication number
TW405144B
TW405144B TW087110533A TW87110533A TW405144B TW 405144 B TW405144 B TW 405144B TW 087110533 A TW087110533 A TW 087110533A TW 87110533 A TW87110533 A TW 87110533A TW 405144 B TW405144 B TW 405144B
Authority
TW
Taiwan
Prior art keywords
ion beam
deflector
collector
charged ions
deflector plate
Prior art date
Application number
TW087110533A
Other languages
Chinese (zh)
Inventor
Victor M Benveniste
Original Assignee
Axcelis Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axcelis Tech Inc filed Critical Axcelis Tech Inc
Application granted granted Critical
Publication of TW405144B publication Critical patent/TW405144B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • H01J2237/31703Dosimetry

Abstract

An improved neutral particle detector (52) for an ion implantation system (10) is provided for detecting the neutral particle content of an ion beam (28) which is comprised primarily of neutral particles and positively charged ions. The neutral particle detector (52) comprises (i) a deflector plate (78) residing at a negative electrical potential; (ii) a first collecting electrode (82) residing at a positive electrical potential with respect to said deflector plate (78) for collecting secondary electrons emitted by the deflector plate (78) as a result of neutral particles in the ion beam impacting the deflector plate (78); and (iii) a second collecting electrode (84) residing at a positive electrical potential with respect to said deflector plate (78) for collecting secondary electrons emitted by the deflector plate (78) as a result of positively charged ions in the ion beam impacting the deflector plate (78). The deflector plate (78) and the collecting electrodes (82, 84) are separated by a distance through which the ion beam passes. The neutral particle detector (52) determines the neutral particle fraction of the ion beam independent of the composition or pressure of the residual background gas through which the ion beam propagates.

Description

___405144 五、發明説明(/ ) 本發明之領域 本發明係大致上相關於離子注入器的領域,並且更特 定爲經由偵測在離子束中的中性粒子來監視並控制被注入 的基材其摻雜劑濃度的改良系統和方法》 本發明之背景 離子注入已變成工業較偏好的技術,在大規模的積體 電路製造中,將雜質摻入半導體。離子能量與離子劑量是 用來界定注入步驟中二個最重要的變數。在半導體裝置中 ’使用離子能量來控制結合的深度。其構成離子束之離子 的能量等級決定了注入離子的深度等級。離子劑量與所指 定半導體材料的注入離子濃度有關。典型地,高電流注入 器(一般大於10個毫安培(mA)的離子束電流)爲使用於高劑 量的注入,同時中電流注入器(一般可以提高到約爲1 mA 的離子束電流)爲使用於較低的劑量應用。 典型的離子注入器包含有三個部份或是子系統:⑴用 於輸出離子束的終端,(ii)分解質量和調整焦距與離子束能 量等級的離子束線,以及(iii)其含有半導體晶圓或是其他將 注入離子束之基材的目標室。此目標室典型的包含有劑量 的控制,或是功能爲精確地量測並控制其被注入到目標晶 圓中之離子劑量的劑量測定系統。 劑量控制系統通常包含了一個量測離子束電流的裝置 ,因爲摻雜劑的劑量爲直接與離子束電流有關。例如爲法 拉第箱的裝置,典型地使用於量測離子束電流。在封鎖住 從法拉第箱進入或是逃脫出電子的同時,法拉第箱經由捕 —____4__— 本紙張尺度適州中國國家標準(CNS ) A4規格(210X297公釐) ——II : -- - 1---. 11 - - - -- I 士 ml . (請先閲讀背面之注意事項再填寫本頁) A7 ________405144 b7__ 五、發明说明(工) 捉以及量測在離子束中的離子電荷來量測離子束電流。 帶電荷的粒子可以適當地計算,但在離子束中的中性 原子,因爲他們不會被法拉第箱偵測到,因此不會增加量 測離子束電流,而出現一更困難的問題。因此,當計算根 據法拉第箱的量測之總劑量時,不會考慮到在離子束中的 中性原子。然而,因爲中性原子可能具有基本上與離子相 同的能量,它們被注入到晶圓中並且增加了總劑量的濃度 。假如離子束產生明顯的中和,法拉第箱對於基材實際被 注入的劑量將提供一錯誤的量測。 離子束的中和程度部份是取決於範圍離子束線中的壓 力。假如離子束線的真空壓力夠低,則被注入的種類理想 上是經由質量分析磁鐵所選擇之單一正電荷離子的粒子。 然而,假如壓力爲不夠低,則離子束中的離子可以經由與 殘留環境氣體原子的原子碰撞而改變電荷狀態,無須在能 量上進行明顯地的改變。此外,離子束中和的程度亦取決 於離子束傳播所通過的殘留環境氣體成份》當注入半導體 表面例如爲其傾向於除氣或是濺射的光致抗蝕劑,從而改 變殘留環境氣體的成份時,離子束的中和爲特別有問題。 在這二種狀況下,衝擊法拉第箱的離子束可能充分地被中 和以使具有相當多足夠能量的原子之分率能注入到基材中 ,但不會被法拉第箱計算作爲包含了帶電荷離子和中性粒 子二者之總離子束通量的一部分。 監視被注入到基材中之原子劑量的一種方法(即劑量測 定控制),其爲傾向離子束中和的補償,顯示在Farley的美 ___5___ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) I n In > - I n I» 1^1 I - n^i '-1- (請先閲讀背面之注意事項再填寫本頁) 405144 A7 _B7 五、發明説明(3 ) 國專利第4,539,217號中,正如在本文中整個地敘述的一 樣,其一般爲本發明的代理人所擁有並如同在此向前完全 設置的參考合倂。Farley自動地補償其與在飛向被注人晶 圓的路徑中之氣體原子,其經由相互作用已中和之注入的 離子β補償是根據其實際狀況,主要的正電荷離子束與沿 著其路徑的氣體原子碰撞,造成電子有可能可以在科學上 測定之單一正荷電離子中被加入或是被帶走。這種可能性 並且其爲一種功能,取決於離子種類、離子速度(能量)、 以及離子束所通過之殘留環境氣體的成份和壓力。 經由量測這些參數,主要是根據法拉第箱離子束電流 量測之被注入劑量的測定値可以修正以計算出中性粒子。 劑量的量測是根據離子束中和的程度決定値向上地補償(以 避免過度攙入),其不會增加法拉第箱離子束電流量測値, 但其真的增加了劑量。劑量的量測是根據雙電荷離子的範 圍測定値向下地補償(以避免攙入不夠),只有增加像帶單 一電荷離子那樣多的劑量,但其被法拉第箱作爲增加離子 束電流而計算成二倍。___405144 V. Description of the invention (/) Field of the invention The present invention is generally related to the field of ion implanters, and is more specifically to monitor and control the injected substrate by detecting neutral particles in the ion beam. System and method for improving dopant concentration "BACKGROUND OF THE INVENTION Ion implantation has become the industry's preferred technology. In large-scale integrated circuit manufacturing, impurities are doped into semiconductors. Ion energy and ion dose are the two most important variables used to define the implantation step. In a semiconductor device, the ion energy is used to control the depth of bonding. The energy level of the ions that make up the ion beam determines the depth level of the implanted ions. The ion dose is related to the implanted ion concentration of the specified semiconductor material. Typically, a high current implanter (typically greater than 10 milliamps (mA) ion beam current) is used for high dose implantation, while a medium current implanter (which can generally increase the ion beam current to about 1 mA) is For lower dose applications. A typical ion implanter consists of three parts or subsystems: ⑴ the terminal used to output the ion beam, (ii) the ion beam line that decomposes the mass and adjusts the focus and ion beam energy level, and (iii) it contains semiconductor crystals Circle or other target chamber where the ion beam will be implanted. This target chamber typically contains dose control, or a dosimetry system that functions to accurately measure and control the ion dose that is implanted into the target wafer. The dose control system usually includes a device for measuring the ion beam current, because the dose of the dopant is directly related to the ion beam current. A device such as a Faraday box is typically used to measure ion beam current. While blocking the entry or escape of electrons from the Faraday box, the Faraday box was arrested —____ 4 __— This paper size is in accordance with the Chinese National Standard (CNS) A4 specification (210X297 mm) ——II:--1-- -. 11----I 士 ml. (Please read the precautions on the back before filling in this page) A7 ________405144 b7__ 5. Description of the invention (work) Capture and measure the ionic charge in the ion beam to measure ions Beam current. Charged particles can be calculated properly, but the neutral atoms in the ion beam, because they are not detected by the Faraday box, do not increase the measurement of the ion beam current, and a more difficult problem arises. Therefore, when calculating the total dose based on a Faraday box measurement, the neutral atoms in the ion beam are not taken into account. However, because neutral atoms may have substantially the same energy as ions, they are implanted into the wafer and increase the concentration of the total dose. If the ion beam produces significant neutralization, the Faraday box will provide an incorrect measurement of the dose actually injected into the substrate. The degree of neutralization of the ion beam depends in part on the pressure in the range ion beam line. If the vacuum pressure of the ion beam line is low enough, the species to be implanted is ideally a single positively charged ion particle selected by a mass analysis magnet. However, if the pressure is not low enough, the ions in the ion beam can change the state of charge by colliding with the atoms of the residual ambient gas atoms, without the need for a significant change in energy. In addition, the degree of ion beam neutralization also depends on the residual ambient gas composition through which the ion beam propagates. When the semiconductor surface is implanted, for example, it is a photoresist that tends to degas or sputter, thereby changing the residual ambient gas. In the composition, the neutralization of the ion beam is particularly problematic. Under these two conditions, the ion beam impinging on the Faraday box may be sufficiently neutralized so that the fraction of atoms with a sufficient amount of energy can be injected into the substrate, but it will not be calculated by the Faraday box as including charged charges. Part of the total ion beam flux for both ions and neutral particles. A method for monitoring the atomic dose injected into the substrate (ie, dosimetry control), which is a compensation for the tendency to neutralize the ion beam, which is shown in the beauty of Farley ___5___ This paper size applies the Chinese National Standard (CNS) A4 specification ( 210X 297 mm) I n In >-I n I »1 ^ 1 I-n ^ i '-1- (Please read the precautions on the back before filling this page) 405144 A7 _B7 V. Description of the invention (3) In Chinese Patent No. 4,539,217, as described herein in its entirety, it is generally a reference combination owned by the agent of the present invention and fully set forward as here. Farley automatically compensates its gas atoms in the path to the wafer to be implanted. The ions that have been neutralized by the interaction β are compensated according to its actual conditions. The main positively charged ion beam and The collision of gas atoms in the path causes electrons to be added or taken away from a single positively charged ion that is scientifically determined. This possibility is also a function that depends on the type of ion, the ion velocity (energy), and the composition and pressure of the residual ambient gas through which the ion beam passes. By measuring these parameters, it is mainly based on the Faraday box ion beam current measurement of the implanted dose that can be modified to calculate neutral particles. The measurement of the dose is based on the degree of ion beam neutralization to determine the upward compensation (to avoid excessive intrusion), which does not increase the Faraday box ion beam current measurement, but it does increase the dose. The measurement of the dose is based on the range of the double-charged ions. The compensation is downward (to avoid insufficient penetration). Only the dose is increased as much as a single-charged ion. Times.

Farley假設爲在注入裝置的離子束線中超過所遭遇到 一個廣泛範圍的壓力,此函數大致上爲線性。在離子束中 的特定點上進行單點壓力的量測,並且做了關於壓力路徑 爲整體上沿著離子束的假設。根據此假設,可以決定在離 子束中每一個位置的部份壓力之成份。從法拉第箱的離子 束電流比上壓力的量測値,因而輸入到注入器控制系統中 以產生一個修正的訊號,其爲補償在當壓力改變時所偵測 ____6___ 本紙張尺度ϊϋ中國國家標準(CNS ) A4規格(210X297公釐) "~~ (ml —fcn ml In I, ml ^^^1、^^ (請先閱讀背面之注意事項再填寫本頁) 405144 A7 _B7__ 五、發明説明(f ) 到中性粒子的改變。如在習知技術中所熟知的壓力補償, 此過程使得注入的劑量被正確地監測和控制。 然而,使用在劑量控制系統中的壓力補償技術’其缺 點爲有關於壓力和殘留環境氣體成份這二者的假設可能會 在注入過程中改變。例如,殘留環境氣體的成份可能會因 爲真空洩露而改變。此外,用來量測壓力的壓力計之刻度 在離子束中的特定點上可能會跳動不定。再者,沿著離子 束的壓力分佈可能會因爲在真空抽氣的速度不同、或是從 被注入的基材中除氣或濺射速率中的不同而改變。再更進 一步,壓力和殘留環境氣體成份這二者,很難從被注入的 基材上藉由光致抗蝕劑的除氣來量測,其增加進到殘留環 境氣體中的氫氣和水。此外,甚至假如使用壓力補償技術 可以決定正確的壓力和殘留環境氣體的成份,此過程必須 對於每一個被注入的氣體種類和粒子能量重複地進行。 因此,本發明的目的是提出一種在衝擊到目標基材之 前,對其在沿著離子束線傳播期間已經被中和的離子束分 率之更直接的量測。 本發明更進一步的目的是提出一種對其在沿著離子束 線傳播之間,加倍充電的離子束分率之更直接的量測。 本發明再更進一步的目的是使用一種已知的離子束電 流量測機構例如法拉第箱,來量測在離子注入系統中離子 束中和以及加倍充電的程度。 本發明更進一步的目標也是提供一種量測離子束中和 以及加倍充電之程度的系統和方法,其不需要直接作壓力 7 本紙張尺i適丨 1H,國國家標準(CNS ) A4規格(210X297公釐巧 - f —^1 ♦-· - 111 I I--- I - --.-1- .-il· XV . 牙 ,ys (請先閱讀背面之注意事項再填寫本頁) #"'·部中次打卑而h-T"於合竹"卬4,1未 40514¾ 五、發明説明(Jr ) 量測,或是其離子束所傳播經過的殘留環境氣體其成份的 分析。 本發明之槪要 提出一種改良的用於離子注入系統中、用以偵測主要 包含有中性粒子和帶正電荷離子之離子束中性粒子濃度的 中性粒子偵測器。此中性粒子偵測器包含有⑴一個存在有 負電位能的偏導板;(ii)存在有一正電位的第一集電極,其 對於該偏導板是用於收集從偏導板上由於離子束中中性粒 子在衝擊到偏導板所放射的第二電子;以及(iii)存在有一正 電位的第二集電極,其對於該偏導板是用於收集從偏導板 上由於離子束中帶正電荷離子衝擊偏導板所放射的第二電 子。偏導板和集電極以離子束可以通過的一個距離分離著 。·中性粒子偵測器決定離子束的中性粒子分量,其與離子 束傳播所經過殘留環境氣體的成份或壓力是無關的β 附圖之簡略說明 附圖1是根據本發明之原則所建構之一個離子注入系 統與一個劑量測定控制系統實施例合倂的透視圖;以及 附圖2是附圖1的系統中之劑量測定控制系統的剖視 圖。 較佳實施例之詳細說明 現在參考附圖,附圖1揭示了一個以10所表示的離子 注入器,其包含有一個離子供應源12,一個質量分析磁鐵 14,一個離子束線裝置15,以及一個目標或是終點站16 ^ 離子供應源12和質量分析磁鐵14 ’分別沿著它們的能量 __ _8____ 本紙張尺度適用中國國家標準(CNS ) Α4規格1 210X297公釐) — '— ---^---,----裝--;-----訂------旅 (請先閱讀背面之注意事項再填寫本頁) ^^‘妁中^打^/0;">-;"'於合竹^卬欠 405144 at __________B7__ 五、發明説明(έ ) 供應器,朝著作爲終端器17收集。本發明的一個應用是例 如在附圖1中顯示的低能量的注入器,因爲低能量離子束 傾向於在該傳播之間擴大(也就是膨脹),其中的離子束線 裝置15相對爲短。然而,本發明可以應用在具有利用劑量 測定控制的任何注入系統上。 離子供應源12含有一個其界定電漿內室20的外殼18 ’和一個離子分離裝置22。離子束線裝置15包含有(i)— 個其由真空幫浦43來排出,且其含有終端孔徑21、一個 分解的孔徑23、和一個遮光罩法拉第42的分解器外殻19 ,以及(ii)—個其含有電子噴灑頭45的離子束中和器24, 其中沒有一個形成本發明的一個部份。離子束中和器24的 下游爲終點站I6,其包含有一個爲圓盤形狀放置欲處理的 晶圓的晶圓支撐器25。如在本文中所使用的,晶圓應該包 含了其可以被注入之離子束的任何型態基材。晶圓支撐器 25存在於目標板中,其(大致上)爲垂直地朝著注入離子束 的方向定位。 離子供應源12被放置在L形狀的框架26上。其可以 從壓縮氣體的形式中直接地獲得,或是從其已經蒸發的固 體形式中非直接地獲得的可離子化之摻雜氣體,被射入到 電漿室2〇中。典型地供應源元素爲硼(B)、磷(P)、鎵(Ga) 、銦(In)、銻(Sb)和砷(As)。除了硼典型是以氣態的三氟化 硼或是乙硼烷的形式來提供之外,這些供應源成份的大部 分是以固體形式來提供。 能量傳到可離子化摻雜氣體,在電漿室20中產生離子 _9___ 本紙張尺度適州中國^1^^?- ( CNS ) Α4ϋ( 220X297公釐] "Farley hypothesized that this function would be approximately linear over a wide range of pressures encountered in the ion beam line of the implantation device. A single-point pressure measurement is performed at a specific point in the ion beam, and the assumption is made that the pressure path is along the ion beam as a whole. Based on this assumption, the component of the partial pressure at each position in the ion beam can be determined. The ion beam current from the Faraday box is measured from the upper pressure, so it is input into the injector control system to generate a corrected signal that compensates for the detection when the pressure changes __6___ This paper size ϊϋ Chinese national standard (CNS) A4 specification (210X297 mm) " ~~ (ml —fcn ml In I, ml ^^^ 1, ^^ (Please read the precautions on the back before filling this page) 405144 A7 _B7__ 5. Description of the invention (F) Changes to neutral particles. As is well known in the art of pressure compensation, this process allows the injected dose to be properly monitored and controlled. However, the use of pressure compensation technology in dose control systems has its disadvantages Assumptions about both pressure and residual ambient gas composition may change during the injection process. For example, the residual ambient gas composition may change due to vacuum leaks. In addition, the scale of the pressure gauge used to measure pressure is at Ion beams may fluctuate at specific points. In addition, the pressure distribution along the ion beam may be different due to the speed of vacuum extraction or from the implanted substrate. The outgassing or sputtering rate varies. Further, both pressure and residual ambient gas components are difficult to measure from the injected substrate by outgassing the photoresist. Add hydrogen and water to the residual ambient gas. In addition, even if pressure compensation technology can be used to determine the correct pressure and composition of the residual ambient gas, this process must be repeated for each type of gas and particle energy injected. Therefore, the object of the present invention is to propose a more direct measurement of the ion beam fraction that has been neutralized during propagation along the ion beam line before impacting on the target substrate. A further object of the present invention is to A more direct measurement of the fraction of an ion beam that has been recharged between propagation along the ion beam line is proposed. A still further object of the present invention is to use a known ion beam current measurement mechanism such as a Faraday box To measure the degree of ion beam neutralization and double charge in an ion implantation system. A further object of the present invention is to provide a measurement ion beam System and method for neutralizing and doubling the charge, which does not require direct pressure. The paper rule is suitable for 1H, national standard (CNS) A4 specification (210X297 mm)-f — ^ 1 ♦-·-111 I I --- I---.- 1- .-il · XV. Teeth, ys (Please read the notes on the back before filling out this page) # " '· 中 中 次 打 ée and h-T " Yu Hezhu " 卬 4,1 未 40514¾ 5. The invention description (Jr) measurement, or the analysis of the components of the residual ambient gas through which the ion beam propagates. The present invention is to propose an improved method for ion Neutral particle detector injected into the system to detect the concentration of neutral particles mainly containing neutral particles and ion beams with positively charged ions. The neutral particle detector includes: a deflector plate having negative potential energy; (ii) a first collector having a positive potential, which is used to collect the deflector plate from the deflector plate because Neutral particles in the ion beam impinge on the second electrons emitted by the deflector; and (iii) there is a second collector with a positive potential for the deflector to collect ions from the deflector due to ions. The positively charged ions in the beam impact the second electrons emitted by the deflector. The deflector and the collector are separated by a distance through which the ion beam can pass. Neutral particle detector determines the neutral particle component of the ion beam, which is independent of the composition or pressure of the residual ambient gas through which the ion beam propagates. Β Brief description of the drawings. Figure 1 is constructed according to the principles of the present invention. A perspective view of an embodiment of an ion implantation system combined with a dosimetry control system; and FIG. 2 is a cross-sectional view of the dosimetry control system in the system of FIG. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to the drawings, FIG. 1 discloses an ion implanter designated 10, which includes an ion supply source 12, a mass analysis magnet 14, an ion beam line device 15, and A target or terminal station 16 ^ Ion supply source 12 and mass analysis magnet 14 'along their energy __ _8____ This paper size applies the Chinese National Standard (CNS) A4 specification 1 210X297 mm) —' — --- ^ ---, ---- install-; ----- order ------ brigade (please read the notes on the back before filling this page) ^^ '妁 中 ^ 打 ^ / 0; " >-; " 'Yu Hezhu ^ 卬 ow 405144 at __________B7__ V. Description of the Invention ()) The supplier collects works for the terminal 17. One application of the present invention is, for example, a low-energy implanter as shown in Figure 1 because the low-energy ion beam tends to expand (i.e., expand) between the propagations, where the ion beamline device 15 is relatively short. However, the invention can be applied to any injection system with dosimetric control. The ion supply source 12 includes a housing 18 'which defines a plasma inner chamber 20 and an ion separation device 22. The ion beamline device 15 includes (i) a vacuum pump 43 which is discharged, and contains a terminal aperture 21, a disassembled aperture 23, and a resolver housing 19 of a hood Faraday 42 and (ii) ) An ion beam neutralizer 24 containing an electron spray head 45, none of which form part of the present invention. Downstream of the ion beam neutralizer 24 is a terminal station I6, which includes a wafer supporter 25 in the shape of a disc for placing a wafer to be processed. As used herein, a wafer should contain any type of substrate that can be implanted with an ion beam. A wafer supporter 25 is present in the target plate, which is (substantially) positioned vertically toward the direction of the implanted ion beam. The ion supply source 12 is placed on an L-shaped frame 26. It can be obtained directly from the form of compressed gas, or an ionizable doping gas obtained indirectly from its solid form that has been evaporated, and injected into the plasma chamber 20. Typical source elements are boron (B), phosphorus (P), gallium (Ga), indium (In), antimony (Sb), and arsenic (As). Except that boron is typically provided in the form of gaseous boron trifluoride or diborane, most of these supply source components are provided in solid form. The energy is transmitted to the ionizable doping gas, and ions are generated in the plasma chamber 20 _9___ This paper size is suitable for China ^ 1 ^^?-(CNS) Α4ϋ (220X297mm) "

In If— n^— 4H1 In— If — fn mf m fn n (請先閲讀背面之注意事項再填寫本頁) 訂 好浐部中呔«.準XJ;.JJ.T消於合竹#印欠 _____405144 : _ 五、發明説明(q ) 。一般而言,產生了正電離子,雖然本發明爲可應用在此 供應源中產生負電離子的系統。藉由包含數個電極27的離 子分離裝置22,經由在電漿室20中的裂縫,分離出正電 離子。據此,此離子分離裝置功能爲,從電漿室分離出正 電離子的離子束28,並且加速被分離出的離子至由框架26 所支撐的質量分析磁鐵14中。 質量分析磁鐵14功能爲只讓對於離子束線裝置15合 適之電荷對質量比率的離子通過β質量分析磁鐵14包含有 一個由一個鋁的離子束導槽30所界定的曲線的離子束路徑 29,其撤出是由真空幫浦31和43所提供。其沿著此路徑 所傳播的離子束28受到由質量分析磁鐵14所產生之磁場 的影響。此磁場造成了離子束28沿著曲線的離子束路徑 29_從靠近離子供應源12的第一個或是入口的軌跡34移動 到靠近分解外殼19的第二個或是出口的軌跡35。包含具 有不合適的電荷對質量比率之離子的離子束28之28’和 28”部份從曲線軌跡上偏移,並進到鋁的離子束導槽3〇的 牆壁中。在此方法中,磁鐵丨4使得只有在離子束28中具 有所希望之電荷對質量比率的那些離子,可以通過離子束 線裝置15。 在終點站16上的圓盤形狀之晶圓支撐器25是由馬達 46來旋轉^因此當它們在循環的路徑中移動時,離子束衝 擊放置在支撐器上的晶圓。終點站16約有二個軸是可旋轉 軸:一個是法向於在離子束的路徑且一個是橫向於其名義 上目標離子束的相交面。在此方法中,離子注入的角度可 ___10___ 本紙張尺度適州中國國家標準(CNS ) Λ4規格(2丨0Χ297公釐) :-------^.-------1Τ------^ (請先閱讀背面之注意事項寫本頁) { 好沪部中呔"1?'^以工消於合竹0卬5Ϊ 405144 五、發明説明(Η ) 以從法向上稍微地修正。在習知技術中其已知圓盤形狀的 支撐器25藉由馬達47以一定的角速度旋轉,並且支撐器 25藉由馬達49和一個引導螺桿(未顯示出)垂直地移動(進 入和進出附圖1的紙頁)。 其引導螺桿垂直地移動支撐器的速率,是經由計算被 注入的劑量來決定,其劑量⑴經由例如爲法拉第箱50的離 子束電流量測裝置來量測,以及(ii)經由一個使用根據本發 明的原則所建構之中性粒子偵測器52所決定的參數做修正 «在此所發現的實施例中,法拉第箱50和中性粒子偵測器 52 —起組成了一個量測/偵測的裝置54。 附圖2顯示一個劑量測定控制系統60是根據本發明的 原則以及合倂入附圖1的系統10所構成。此劑量測定控制 系統60包含有(i)量測/偵測的裝置54,其包含了法拉第箱 50和被外圔66所環繞的中性粒子偵測器52,(ii)一控制訊 號產生器62,其根據法拉第箱50和中性粒子偵測器52的 輸出來產生修正的馬達控制訊號,以及(iii)一馬達控制器 64,其反應此控制訊號產生器62的輸出以控制馬達49因 而控制圓盤形狀之晶圓支撐器25的垂直位置。 法拉第箱50包含一進入室68、一被磁鐵72環繞之排 出室70、以及一離子束電流偵測平板74。在習知技術中其 了解到,離子束28通過在圓盤形狀晶圓支撐器中的細縫 56進入法拉第箱50中(見附圖1)〇此入射的離子束28其 特徵爲入射電流1+(入射),其包含了由於離子束粒子與其 所傳播通過殘留環境氣體之碰撞造成電子從帶單一正電荷 π 本Μ·張尺度適/1]中國國家標準(CNS) Α4規格(210X297公釐) n r mu 4H1 i 11 11 I —II 1 士^/ I - - ill n s an ^ ^ {請先閲讀背面之注意事項再填寫本頁) A7 405144 五、發明説明(?) 離子被加入或是被帶走而具有不同電荷的成份。因此’ 1+ ( 入射)==Ι°+Γ+Ι++Ι+++其他等等,其中I<J爲每秒鐘中性粒子 的數目,Γ爲帶負電荷離子(多一個電子)的電流,1+爲帶單 一正電荷離子的電流,以及广+爲雙正電荷離子(失去二個 電子)的電流。在決定藉由入射離子束注入晶圓的劑量中’ 其主要重要的是中性粒子和單電荷離子以及對於較少程度 的雙電荷離子β因此,IT=IQ+I++(I++) ’其中lT代表趨近於 重要之被注入離子束的總通量[方程式1]。 假若它們具有足夠的能量,雖然這些所有三種離子束 的成份被注入到晶圓中,被法拉第箱所量測到的只有實際 入射的注入劑量,以它的單一電荷離子1+量測値來表示。 法拉第箱之雙電荷離子的量測是錯誤的,因爲雙電荷離子 劑童只有增加如同單一電荷離子一樣多的劑量,而不是被 法拉第箱作爲增加的離子束電流計算成二倍。此外,中性 粒子不會被法拉第箱量測到,但它們增加如同單一電荷離 子的一樣多的劑量》因此,由法拉第箱50所輸出的離子束 電流訊號75必須計算出雙電荷離子與中性粒子的數量作補 償。(法拉第箱中的磁鐵72提供爲一種抑制機構,其避免 電子從法拉第箱進入或是離開並且錯誤地增加量測到的電 流。) 中性粒子偵測器52其爲提供該補償的機構。雖然爲了 簡化’機構52僅被稱之爲中性粒子偵測器,它同樣也偵測 到單一以及雙電荷離子,其說明如下。中性粒子偵測器54 綜合倂入法拉第箱,並且包含有一與電壓供應源8〇連接的 _ ______ _12__ 本紙張纽m國家標率(CNS ) A4規格(21 OX 297公羡) "" -装------訂 (請先閱讀背面之注意事項再填芮本頁) 405144 ^ 五、發明説明(π ) 能置化偏導板78以及集電極82、84與86,其是用於收集 由目標平板78所放射的典型爲中性粒子、單一電荷離子和 雙電荷離子之第二電子。 離子束的取樣經由在法拉第箱排出室70中的裝置88 進入中性粒子偵測器52。因此,離子束28的小量取樣進 入到中性粒子偵測器52。電壓供應源80,其在約爲離子束 合適位能之二十個百分比(20%)的範圍中操作,它的正電端 爲連接到地以及它的負電端接到偏導板78。因此,以顯示 在附圖2中的箭頭方向(朝向偏導板78),在中性分率偵測 器的內部之中建立了電場Ε。 離子束的取樣部份穿越過由偏導板78所負向偏斜造成 的電場。離子束的離子化成份(單一或是雙電荷的離子)’ 在朝向它們因而衝擊此平板之偏導板78的電場方向中被偏 ,導。因爲帶雙電荷的離子對於電場爲更加易受影響,它們 會在一般設計的面積92中首先衝擊到偏導板。單一電荷的 離子受到電場影響相對爲較少,因而它們衝擊到偏導板一 般在位置94。在離子束中的中性粒子不受電場影響’因而 在它們線性的行程中直接衝擊偏導板一般在位置96。 偏導板78是由石墨所組成,並且當被單一電荷與雙電 荷離子以及中性粒子衝擊到時而放射出第二電子。由偏導 板所放射的第二電子速率與殘留環境氣體壓力和成份無關 。如在習知技術中已熟知’第二電子在位置92、94與96 上,從偏導板78的表面加速朝向集電極86 ' 84與82 ’其 與偏導板78有關的正電位所偏斜。 ____13 _ 尺度適扣中國國家標羊(CNS ) Α4規格(2丨〇,〆297公釐) —^nf In I-I I J-1^1- I tj— m I n fn n (請先閱讀背面之注意事項再填寫本頁) tr Α Λ A7 ____405144_b7 五、發明説明(tl ) 爲了產生訊號100,該訊號是用來補償經由法拉第箱 5〇計算出雙電荷離子與中性粒子所輸出的離子束電流訊號 75,可以因此決定總離子束通量(正電離子和中性粒子)的 部份,該通量經由中性粒子所提供,且該部份是由雙電荷 離子所提供的。由集電極82(IG)與84(1+)與86(1++)(在修正 不相等的第二電子放射產生之後)所收集的第二電子放射電 流的速率,是用來決定全部離子束通量的部份,其根據下 面的公式(方程式2)由單一電荷離子所提供: [方程式2] 里一雷荷齷子東涌鱟 = 1+_ 總離子束通量 r+kd^+kdl—) 其中If =由雷荷離子產牛(修ΤΗ )第二雷子 由中性粒子產生(修正)第二電子· _以及k2 =齑牛1+的篦二放射 產生I++的第二放射 因此,回頭參考上面的方程式1,因而從 上面之方程式2中已知的1+部份,可以決定由中性粒子(I0) 與雙電荷離子(Γ+)所提供的離子束部份。 上面的計算是由在離子束電流中修正參數計算器98所 達成,具有以此決定離子束中和程度的該計算器,對於離 子束電流調整器102提供修正的訊號100。計算器98無論 是作爲邏輯軟體或是硬體都可以進行。離子束電流調整器 調整由法拉第箱50(顯示爲注入劑量)所輸出的離子束 電流訊號75 (i)向上,來計算其不會增加法拉第箱的離子束 ______14_________ 本紙張义ΐ適用中國國家標準(CNS ) A4規格(210X297公釐) 一In If— n ^ — 4H1 In— If — fn mf m fn n (Please read the notes on the back before filling in this page) Order the middle part of the department «. 准 XJ; .JJ.T 消 于 合 竹 # 印Owe _____405144: _ 5. Description of the invention (q). In general, positively charged ions are generated, although the present invention is applicable to a system that generates negatively charged ions in this supply. The ion separation device 22 including a plurality of electrodes 27 separates positively charged ions through a crack in the plasma chamber 20. Accordingly, the ion separation device functions to separate the positive ion beam 28 from the plasma chamber and accelerate the separated ions into the mass analysis magnet 14 supported by the frame 26. The mass analysis magnet 14 functions to pass only ions having an appropriate charge-to-mass ratio for the ion beamline device 15 through the beta mass analysis magnet 14 and includes an ion beam path 29 defined by an aluminum ion beam guide 30, Its withdrawal was provided by vacuum pumps 31 and 43. The ion beam 28 traveling along this path is affected by the magnetic field generated by the mass analysis magnet 14. This magnetic field causes the ion beam 28 to move along the curved ion beam path 29_ from the first or entrance trajectory 34 near the ion supply source 12 to the second or exit trajectory 35 near the decomposition housing 19. The 28 'and 28 "portions of the ion beam 28 containing ions having an inappropriate charge-to-mass ratio are offset from the curved trajectory and enter the wall of the aluminum ion beam guide 30. In this method, the magnet 4 so that only those ions having the desired charge-to-mass ratio in the ion beam 28 can pass through the ion beamline device 15. The disk-shaped wafer holder 25 on the terminal 16 is rotated by a motor 46 ^ So as they move in a circular path, the ion beam impinges on the wafer placed on the support. Terminal 16 has about two axes that are rotatable: one is normal to the path of the ion beam and one is It is transverse to the intersection of its nominal target ion beam. In this method, the angle of ion implantation can be ___10___ This paper size is in accordance with China National Standard (CNS) Λ4 specification (2 丨 0 × 297 mm): ----- -^ .------- 1Τ ------ ^ (Please read the notes on the back to write this page) {好 上海 部 中 呔 " 1? '^ 以 工 消 于 合 竹 0卬 5Ϊ 405144 Fifth, the description of the invention (从) is slightly modified from the normal direction. Its known disc is known in the art. The supporter 25 in the shape is rotated at a certain angular speed by a motor 47, and the supporter 25 is moved vertically (into and out of the paper sheet of FIG. 1) by a motor 49 and a guide screw (not shown). The rate at which the support is moved vertically is determined by calculating the injected dose, the dose of which is measured by an ion beam current measuring device such as a Faraday box 50, and (ii) by using a principle according to the invention Modification of the parameters determined by the constructed neutral particle detector 52 «In the embodiment found here, the Faraday box 50 and the neutral particle detector 52 together constitute a measuring / detecting device 54 Fig. 2 shows a dosimetry control system 60 according to the principles of the present invention and the system 10 incorporated in Fig. 1. The dosimetry control system 60 includes (i) a measurement / detection device 54, It includes a Faraday box 50 and a neutral particle detector 52 surrounded by an outer shell 66. (ii) a control signal generator 62 that generates a correction based on the output of the Faraday box 50 and the neutral particle detector 52. Motor control Signals, and (iii) a motor controller 64, which responds to the output of the control signal generator 62 to control the motor 49 and thus the vertical position of the disc-shaped wafer support 25. The Faraday box 50 contains an access chamber 68, An exhaust chamber 70 surrounded by a magnet 72, and an ion beam current detection plate 74. It is known in the art that the ion beam 28 enters the Faraday box 50 through a slit 56 in a disc-shaped wafer holder. (See Figure 1). The incident ion beam 28 is characterized by an incident current 1+ (incident), which contains a single positive charge from the electron beam due to the collision between the ion beam particles and the residual ambient gas that they propagate. · Zhang Zhishi / 1] Chinese National Standard (CNS) Α4 specification (210X297 mm) nr mu 4H1 i 11 11 I —II 1 person ^ / I--ill ns an ^ ^ {Please read the precautions on the back first Fill out this page) A7 405144 V. Description of the invention (? ) Components with different charges when ions are added or taken away. So '1+ (incident) == Ι ° + Γ + Ι ++ Ι +++ and so on, where I < J is the number of neutral particles per second and Γ is a negatively charged ion (one more electron) , 1+ is the current with a single positively charged ion, and G + is the current with double positively charged ions (losing two electrons). In determining the dose to be implanted into the wafer by the incident ion beam, its main importance is neutral particles and single-charged ions and for a lesser degree of double-charged ions. Therefore, IT = IQ + I ++ (I ++) The total flux approaching the important implanted ion beam [Equation 1]. If they have enough energy, although all three components of the ion beam are implanted into the wafer, only the actual incident implant dose is measured by the Faraday box, which is expressed by its single charge ion 1+ measurement 値. The measurement of the double-charged ions in the Faraday box is wrong because the double-charged ionizers only increase the dose as much as a single charged ion, instead of being doubled by the Faraday box as the increased ion beam current. In addition, neutral particles are not measured by the Faraday box, but they increase the dose as much as a single charged ion. Therefore, the ion beam current signal 75 output from the Faraday box 50 must calculate the double-charged ions and neutral The number of particles is compensated. (The magnet 72 in the Faraday box is provided as a suppression mechanism that prevents electrons from entering or leaving the Faraday box and incorrectly increases the measured current.) The neutral particle detector 52 is a mechanism that provides this compensation. Although the mechanism 52 is simply called a neutral particle detector for simplicity, it also detects single and double-charged ions, as explained below. The neutral particle detector 54 is integrated into the Faraday box and contains a _ ______ _12__ connected to a voltage supply source 80. This paper is a national standard (CNS) A4 specification (21 OX 297 public envy) " " -Install ------ Order (please read the precautions on the back before filling this page) 405144 ^ V. Description of the invention (π) The deflector plate 78 and the collector electrodes 82, 84 and 86 can be placed, which is The second electrons typically collected by the target plate 78 are neutral particles, single-charged ions, and double-charged ions. Sampling of the ion beam enters the neutral particle detector 52 via a device 88 in the Faraday box discharge chamber 70. Therefore, a small amount of the ion beam 28 is sampled into the neutral particle detector 52. The voltage supply source 80, which operates in a range of approximately twenty percent (20%) of the proper potential energy of the ion beam, has its positive electrical terminal connected to ground and its negative electrical terminal connected to the deflector 78. Therefore, in the direction of the arrow shown in FIG. 2 (toward the deflector 78), an electric field E is established in the interior of the neutral fraction detector. The sampling portion of the ion beam passes through the electric field caused by the negative deflection of the deflector 78. The ionized components (single or double-charged ions) of the ion beam are deflected and guided in the direction of the electric field toward the deflector 78 of the flat plate. Because the double-charged ions are more susceptible to the electric field, they will first strike the deflector in the area 92 of the general design. Single-charged ions are relatively less affected by the electric field, so they impinge on the deflector, generally at position 94. Neutral particles in the ion beam are not affected by the electric field ' and therefore directly strike the deflector in their linear stroke at generally position 96. The deflector 78 is composed of graphite and emits a second electron when it is impinged by a single charge and a double charge ion and a neutral particle. The second electron velocity emitted by the deflector is independent of the residual ambient gas pressure and composition. As is well known in the art, 'the second electron is accelerated at the positions 92, 94, and 96 from the surface of the deflector 78 toward the collectors 86' 84 and 82 ', which is biased by the positive potential associated with the deflector 78. oblique. ____13 _ The scale is suitable for China National Standard Sheep (CNS) Α4 size (2 丨 〇, 〆297 mm) — ^ nf In II I J-1 ^ 1- I tj— m I n fn n (Please read the first Note: Please fill in this page again) tr Α Λ A7 ____405144_b7 V. Description of the Invention (tl) In order to generate a signal 100, this signal is used to compensate the ion beam current output by the Faraday box 50 to calculate the double-charged ions and neutral particles. Signal 75 can therefore determine the part of the total ion beam flux (positive ions and neutral particles) that is provided by the neutral particles and that part is provided by the double-charged ions. The rate of the second electron emission current collected by the collectors 82 (IG) and 84 (1+) and 86 (1 ++) (after the correction of the unequal second electron emission) is used to determine all ions The part of the beam flux, which is provided by a single charged ion according to the following formula (Equation 2): [Equation 2] Li-lei charge 龌 子 鲎 鲎 = 1 + _ total ion beam flux r + kd ^ + kdl—) where If = the second electron produced by the neutral particle produced by the thunderbolt ion (repair), and the second electron generated by the neutral particle _ and k2 = the second emission of the yak 1+ produces the second emission of I ++ Therefore, referring back to Equation 1 above, the 1+ part known from Equation 2 above can determine the ion beam portion provided by the neutral particles (I0) and the double-charged ions (Γ +). The above calculation is performed by the parameter correction calculator 98 in the ion beam current, which has the calculator for determining the degree of ion beam neutralization, and provides a correction signal 100 for the ion beam current adjuster 102. The calculator 98 can be used as logic software or hardware. The ion beam current adjuster adjusts the ion beam current signal 75 (i) output from the Faraday box 50 (shown as the implant dose) to calculate that it will not increase the ion beam of the Faraday box. (CNS) A4 specifications (210X297 mm)

In - -- · _ ^1.1 _·» ( - - 1 1 1— - (請先閲讀背面之注意事項再填寫本頁) 訂 405144 A7 B7 五、發明説明(D) 電流量測但其真的會增加劑量之中和的粒子,以及(ii)向下 ,來計算雙電荷的離子,該離子只有增加如同帶單一電荷 離子一樣多的劑量,但其增加的離子束電流被法拉第箱計 算爲二倍並且輸出修正的離子束電流訊號104。馬達控制 器64收到修正的離子束電流訊號104並且輸出驅動的控制 訊號1〇6到馬達49,以控制圓盤形狀之晶圓支撐器25的 垂直位置(回頭參考附圖1)。 因此,已說明一個用於監視與控制被注入基材的摻雜 劑濃度、其系統與方法的較佳實施例。然而,考慮到先前 的說明,其了解到只有以實例的方式作此說明,本發明不 受限於在本文中所說明的此特定實施例,並且對先前的說 明而沒有偏離由下面申請專利範圍以及它們同等物所界定 之本發明的範圍,可以進行各種重新排列、修改和替換。 裝-----、--訂------旅 (請先閱讀背面之注意事項再填寫本頁) ♦ if浐部^"i?-i?-x,J,-^ V-·消贽合竹杉卬妒 15 本紙張尺度適扣中國國家標準(CNS ) A4規格(210X297公釐)In--· _ ^ 1.1 _ · »(--1 1 1—-(Please read the notes on the back before filling out this page) Order 405144 A7 B7 V. Description of the invention (D) Current measurement but its true Particles that will increase dose neutralization, and (ii) downward, to calculate double-charged ions. This ion only increases the dose as much as a single-charged ion, but its increased ion beam current is calculated by the Faraday box as two. Times and outputs the modified ion beam current signal 104. The motor controller 64 receives the modified ion beam current signal 104 and outputs a driving control signal 106 to the motor 49 to control the verticality of the disc-shaped wafer holder 25 Position (refer back to Figure 1). Therefore, a preferred embodiment for monitoring and controlling the dopant concentration of the injected substrate, its system and method has been described. However, considering the previous description, it understands that This description is by way of example only, and the present invention is not limited to this particular embodiment described herein, and does not depart from the previous description without departing from the scope of the present invention as defined by the scope of the following patent applications and their equivalents Can be rearranged, modified and replaced in various ways. Installation -----, --- order ------ brigade (please read the notes on the back before filling this page) ♦ if 浐 部 ^ " i? -i? -x, J,-^ V- · Elimination of combined bamboo fir and jealousy 15 This paper size is suitable for China National Standard (CNS) A4 specification (210X297 mm)

Claims (1)

Α8 Β8 C8 D8 405144 六、申請專利祀圍 1. 一種用於偵測離子束(28)中中性粒子的中性粒子偵測 器(52),該離子束主要包含中性粒子和正電離子,而該中 性粒子偵測器係用於離子束注入系統(1〇)並包括: 一偏導板(78),存在有一負電位能; 一第一集電極(82),其對於該偏導板(78)存在一正電位 ,而其中之該偏導板(78)是用於收集從該偏導板(78)上由於 離子束中之中性粒子衝擊該偏導板(78)所放射的第二電子 :以及 一第二集電極(84),其對於該偏導板(78)存在一正電位 ,而其中之該偏導板(78)用於收集從該偏導板(78)上由於離 子束中之正電離子在衝擊該偏導板(78)所放射的第二電子 ;該偏導板和該集電極(82、84)分離著離子束所通過的一 距離。 2. 申請專利範圍第1項的中性粒子偵測器(52),其中該 偵測器(52)只有收到離子束(28)的取樣部份。 3_申請專利範圍第1項的中性粒子偵測器(52),其中在 該離子束(28)中的正電荷離子包含有單電荷離子與雙電荷 離子,且其中該第二集電極(84)收集從該偏導板(78)上由於 離子束中之單正電荷離子衝擊偏導板(78)所放射的第二電 子,該中性粒子偵測器(52)更包含有一第三集電極(86),其 對於該偏導板(78)存在一正電位,而其中之該偏導板是用 於收集從該偏導板(78)上由於離子束中雙電荷離子衝擊到 偏導板(78)所放射出來的第二電子,該偏導板和該集電極 (82、84、86)相離著—離子束通過的距離。 本紙張纽逋用)國國家梂準(CNS >八4胁(210X297公釐1 " 一 ---------^------tr-------^ (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 A8 B8 C8 D8 405144 六、申請專利範圍 4. 申請專利範圍第1項的中性粒子偵測器(52) ’其更包 含一邏輯(98),此邏輯(P8)是用以在藉由該第一集電極(82) 所收集之第一個第二電子放射電流以及藉由該第二集電極 (84)所收集的第二個第二電子放射電流之間做比較,以輸 出一個含有中性粒子之離子束(28)部份的典型修正訊號 (100)〇 5. 申請專利範圍第3項的中性粒子偵測器(52),其更包 含一邏輯(98),此邏輯(98)是用以(i)比較藉由該第一集電極 (82)所收集之第一個第二電子放射電流、藉由該第二集電 極(84)所收集之第二個第二電子放射電流,與藉由該第三 集電極(86)所收集之第三個第二電子放射電流;以及(ii)輸 出一個根據此比較包含中性粒子和雙電荷離子之離子束 (2&)部份的典型修正訊號(100)。 6. 申請專利範圔第1項的中性粒子偵測器(52),其中該 偏導板(78)是由石墨所構成,而該集電極(82、84)亦由石墨 所構成。 7·申請專利範圍第3項的中性粒子偵測器(52),其中該 偏導板(78)是由石墨所構成,而該集電極(82、84、86)亦由 石墨所構成。 8·—種決定離子束(28)中中性粒子濃度的方法,該離子 束主要包含中性粒子與帶電荷離子,而該方法包括的步驟 & · 爲. 使離子束(28)通過一電場,其中此電場是建立在⑴存 在一負電位的偏導板(78);與(Η)對於該偏導板(78)皆存在 2 本紙张尺度適用中固國家梂準(CNS ) A4规格(210X297公釐) 裝--r--1--訂------旅 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局負工消費合作社印裝 405144 A8 B8 C8 D8Α8 Β8 C8 D8 405144 VI. Application for patent enclosing 1. A neutral particle detector (52) for detecting neutral particles in an ion beam (28), which mainly includes neutral particles and positively charged ions, The neutral particle detector is used in an ion beam implantation system (10) and includes: a deflector plate (78) having a negative potential energy; a first collector electrode (82) for the deflector The plate (78) has a positive potential, and one of the deflector plates (78) is used to collect the radiation emitted from the deflector plate (78) due to the impact of neutral particles in the ion beam on the deflector plate (78). The second electron: and a second collector electrode (84), which has a positive potential for the deflector plate (78), and the deflector plate (78) is used to collect the deflector plate (78) Because the positively charged ions in the ion beam impact the second electrons emitted by the deflector (78); the deflector and the collector (82, 84) separate a distance through which the ion beam passes. 2. The neutral particle detector (52) of the first patent application scope, wherein the detector (52) only receives the sampling portion of the ion beam (28). 3_ The patented neutral particle detector (52), wherein the positively charged ions in the ion beam (28) include single-charged ions and double-charged ions, and wherein the second collector ( 84) Collecting the second electrons emitted from the deflector (78) due to a single positive charge ion in the ion beam impacting the deflector (78), the neutral particle detector (52) further includes a third The collector electrode (86) has a positive potential to the deflector plate (78), and the deflector plate is used to collect the ions from the deflector plate (78) which are impacted to the deflection due to the double charges in the ion beam. The second electrons emitted by the guide plate (78), the deflector plate and the collector electrode (82, 84, 86) are separated from each other by the distance that the ion beam passes. For this paper New Zealand) National Standards (CNS > Ya 4 threats (210X297 mm 1 " 1 --------- ^ ------ tr ------- ^ (Please read the precautions on the back before filling this page) Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs A8 B8 C8 D8 405144 VI. Patent Application Scope 4. Neutral Particle Detector (1) ) 'It further includes a logic (98), this logic (P8) is used for the first second electron emission current collected by the first collector (82) and by the second collector ( 84) Compare the second and second electron emission currents collected to output a typical correction signal (100) of the ion beam (28) portion containing neutral particles. 5. The scope of the patent application No. 3 The neutral particle detector (52) further includes a logic (98), which is used to (i) compare the first second electron collected by the first collector (82) Radiation current, a second second electron emission current collected by the second collector (84), and a third second electron emission current collected by the third collector (86); and ( ii) Output a typical modified signal (100) based on the comparison of the ion beam (2 &) part containing neutral particles and double-charged ions. 6. Neutral particle detector (52) of the first patent application, The deflector (78) is composed of graphite, and the collector (82, 84) is also composed of graphite. 7. The neutral particle detector (52) of the third item in the scope of patent application, where the The deflector (78) is composed of graphite, and the collector (82, 84, 86) is also composed of graphite. 8 · —A method for determining the concentration of neutral particles in the ion beam (28), the ion beam It mainly includes neutral particles and charged ions, and the method includes the steps of: & passing the ion beam (28) through an electric field, wherein the electric field is established in a deflector plate (78) in which a negative potential exists. And (Η) There are 2 paper sizes for the deflector (78). The paper size is applicable to the China Solid State Standard (CNS) A4 specification (210X297 mm). --R--1--order ------ Brigade (Please read the notes on the back before filling out this page) Printed by the Central Standards Bureau of the Ministry of Economic Affairs, Consumer Cooperatives 405144 A8 B8 C8 D8 申請專利範圍 正電位之第一和第二集電極(82、84)之間; (請先閲讀背面之注意事項再填寫本頁) 以該第一集電極(82)收集從該偏導板(78)上由於離子束 中之中性粒子衝擊到該偏導板C78)所放射出來的第二電子 :以及 以該第二集電極(84)收集從該偏導板(78)上由於離子束 中之正電離子衝擊到偏導板(78)所放射出來的第二電子。 9. 申請專利範圍第8項的方法,其更包括在離子束 (28)通過該電場之前先經過裝置(88)的初始步驟。 10. 申請專利範圍第8項的方法,其更包括以下步驟: 在藉由該第一集電極(82)所收集的第一個第二電子方女 射電流以及藉由該第二集電極(84)所收集的第二個第二電 子放射電流之間作比較;以及 輸出一個根據此比較含有中性粒子之離子束(28)部份 的典型修正訊號(1〇〇)。 11_一種決定離子束(28)中中性粒子以及雙正電荷離子 濃度的方法,該離子束主要包含中性粒子、單電荷離子以 及雙正電荷離子,而該方法包括以下的步驟: 經濟部智慧財產局員工消費合作社印製 使離子束(28)通過一電場,其中此電場是建立在⑴存 在一負電位的偏導板(78);與(ii)對於該偏導板(78)皆存在 正電位的第一、第二和第三集電極(82、84、86)之間; 以該第一集電極(82)收集從該偏導板(78)上由於離子束 中之中性粒子衝擊該偏導板(78)所放射出來的第二電子; 以該第二集電極(84)收集從該偏導板(78)上由於離子束 電子; 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) A8 B8 C8 D8 405144 六、申請專利範圍 以及 以該第三集電極(86)收集從該偏導板(78)上由於離子束 中之雙電荷離子在衝擊到偏導板(78)所放射出來的第二電 子。 12. 申請專利範圍第11項的方法,其更包括在離子束 通過該電場之前先經過裝置(88)的初始步驟》 13. 申請專利範圍第11項的方法,其更包括以下步驟 比較藉由該第一集電極(82)所收集之第一個第二電子 放射電流,藉由該第二集電極(84)所收集之第二個第二電 子放射電流、與藉由該第三集電極(86)所收集之第三個第 二電子放射電流;以及 •輸出一個根據此比較含有中性粒子和雙電荷離子之離 子束(28)部份的典型修正訊號(100P 14·一個劑量測定控制系統(60),其中此劑量測定控制 系統是用於產生主要含有中性粒子和正電荷離子之離子束 (28)的離子束注入系統(1〇)中,其並含有: 一個離子束電流量測裝置(50),其用以量測由正電荷 離子所產生的電流’並且輸出一個離子束電流訊號(74); 以及 一個中性粒子偵測器(52),其用於偵測離子束(28)之中 性粒子濃度,其並包含一個存在負電位的偏導板(78); 一 第一集電極(82) ’其對於該偏導板(78)存在一正電位,而其 中之偏導板(78)是用於收集從該偏導板(78)上由於離子束中 f紙張尺度適用中國國家梂準(CNS ) A4规格(210X297公釐) ---1 — —^---^-------1T------^ (請先閲讀背面之注意事項再填寫本頁) ' ' 經濟部中央標準局属工消費合作社印製 A8 B8 C8 D8 405144 六、申請專利範圍 之中性粒子衝擊該偏導板(78)所放射出來的第二電子;以 及一第二集電極(8句,其對於該偏導板(78)存在一正電位, 而其中之偏導板(78)是用於收集從該偏導板(78)上由於離子 束中正電荷離子在衝擊到偏導板(78)所放射出來的第二電 子;該偏導板和該集電極(82、84)分離著離子束所通過的 一距離。 15·申請專利範圍第14項的劑量測定控制系統(60), 其更包含有一個裝置(88),其裝置在該離子束電流量測裝 置(5〇)以及該中性粒子偵測器(52)的中間。 16·申請專利範圍第μ項的劑量測定控制系統(6〇), 其中在該離子束(28)中的該正電荷離子包括單電荷離子與 雙電荷離子’且其中該第二集電極(84)收集從該偏導板(78) 上由於離子束中之正電荷離子衝擊偏導板(78)所放射出來 的第二電子’該中性粒子偵測器(52)更包含一第三集電極 (86),其對於該偏導板(78)存在一正電位,而其中之該偏導 板是用於收集從該偏導板(78)上由於離子束中雙電荷離子 衝擊該偏導板(78)所放射出來的第二電子,該偏導板和該 集電極(82、84、86)相離著一離子束所通過的距離。 17.申請專利範圍第Μ項的劑量測定控制系統(60), 其更包括一邏輯(98),此邏輯(98)是用在藉由該第一集電極 (82)所收集之第一個第二電子放射電流以及藉由該第二個 集電極(84)所收集的第二個第二電子放射電流之間做比較 ,以輸出一個含有中性粒子之離子束(28)部份的典型修正 訊號(1〇〇八 5 裝 , H 訂 線 * '- (請先閲讀背面之注意事項再填寫本頁) 》 經濟部中央榇準局爲工消費合作社印袋 本紙張尺度逋用中國國家樣準(CNS ) A4規格(210X297公釐) A8 B8 C8 D8 六、申請專利範圍 18.申請專利範圍第17項的劑量測定控制系統(60), 其更包括一邏輯(102),此邏輯(1〇2)是用以接收修正訊號 (100)與離子束電流訊號(74),並輸出一個修正的離子束電 流訊號(104)。 19申請專利範圔第14項的劑量測定控制系統(60),其 更包括一邏輯(98),此邏輯(98)是用以⑴比較藉由該第一集 電極(82)所收集的第一個第二電子放射電流、藉由該第二 集電極(84)所收集的第二個第二電子放射電流、與藉由該 第三集電極(86)所收集的第三個第二電子放射電流;以及 (ii)輸出一個含有中性粒子和雙電荷離子之離子束(28)部份 的典型修正訊號(100)。 20.申請專利範圍第19項的劑量測定控制系統(60), 其更包括一邏輯(102),此邏輯(1〇2)是用以接收此修正訊號 (1〇〇)與離子束電流訊號(74),並輸出一個修正的離子束電 流訊號(104) ◊ (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標隼局男工消費合作社印製 6 本紙張尺度逋用中國國家梯準(CNS ) Μ规格(210Χ297公釐)Apply for patent between the first and second collectors (82, 84) with positive potential; (Please read the precautions on the back before filling this page) Collect the first collector (82) from the deflector ( 78) due to the neutral particles in the ion beam impacting the deflector plate C78): and the second collector (84) collected from the deflector plate (78) due to the ion beam The positive positive ion hits the second electrons emitted from the deflector (78). 9. The method of claiming the scope of patent application item 8, which further includes an initial step of passing the device (88) before the ion beam (28) passes through the electric field. 10. The method for applying for item No. 8 of the patent scope, further comprising the following steps: at the first second electron emission current collected by the first collector (82) and by the second collector ( 84) A comparison is made between the collected second and second electron emission currents; and a typical correction signal (100) is output based on the comparison of the ion beam (28) portion containing neutral particles. 11_ A method for determining the concentration of neutral particles and double positively charged ions in an ion beam (28). The ion beam mainly includes neutral particles, single charged ions, and double positively charged ions. The method includes the following steps: Ministry of Economic Affairs The Intellectual Property Bureau employee consumer cooperative prints the ion beam (28) through an electric field, where the electric field is established on the deflector plate (78) where a negative potential exists; and (ii) both the deflector plate (78) There is a positive potential between the first, second, and third collectors (82, 84, 86); the first collector (82) is collected from the deflector (78) due to the neutrality of the ion beam Particles impact the second electrons emitted by the deflector (78); use the second collector (84) to collect electrons from the deflector (78) due to the ion beam; this paper size is applicable to Chinese national standards ( CNS) A4 specification (210X297 mm) A8 B8 C8 D8 405144 6. The scope of patent application and the use of the third collector (86) to collect from the deflector plate (78) due to the double-charged ions in the ion beam impacting to The second electron emitted from the deflector (78). 12. The method of applying for item 11 of the patent scope, which further includes the initial steps of the device (88) before the ion beam passes through the electric field. 13. The method of applying for the item 11 of patent scope, which further includes the following steps. A first second electron emission current collected by the first collector (82), a second second electron emission current collected by the second collector (84), and a third collector (86) The collected third second electron emission current; and • output a typical correction signal (100P 14 · a dosimetric control based on this comparison of the ion beam (28) portion containing neutral particles and double-charged ions) System (60), wherein the dosimetry control system is an ion beam implantation system (10) for generating an ion beam (28) mainly containing neutral particles and positively charged ions, and further comprising: an ion beam current measurement A device (50) for measuring a current generated by positively charged ions and outputting an ion beam current signal (74); and a neutral particle detector (52) for detecting the ion beam ( 28) Neutral particle concentration And it includes a deflector (78) with a negative potential; a first collector (82) 'which has a positive potential for the deflector (78), and one of the deflectors (78) is In collecting from the deflector (78), because of the paper size of f in the ion beam, China National Standard (CNS) A4 (210X297 mm) is applicable. --- 1--^ --- ^ ------ -1T ------ ^ (Please read the precautions on the back before filling this page) '' '' Printed by the Industrial and Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs A8 B8 C8 D8 405144 VI. Patent Application Neutral Particle Impact A second electron emitted from the deflector (78); and a second collector (8 sentences, which has a positive potential for the deflector (78), and the deflector (78) is used Collecting the second electrons emitted from the deflector plate (78) due to the positively charged ions in the ion beam impinging on the deflector plate (78); the deflector plate and the collector electrode (82, 84) separate the ions A distance through which the beam passes. 15. The dosimetry control system (60) of the 14th scope of the patent application, which further includes a device (88), which measures the current of the ion beam Device (50) and the middle of the neutral particle detector (52). 16. The dosimetry control system (6) of the patent application scope item μ, wherein the positive charge in the ion beam (28) The ions include single-charged ions and double-charged ions, and the second collector (84) collects the first radiated from the deflector (78) due to the positively charged ions in the ion beam striking the deflector (78). Two electrons. The neutral particle detector (52) further includes a third collector (86), which has a positive potential for the deflector (78), and the deflector is used to collect The second electrons emitted from the deflector plate (78) are impacted by double-charged ions in the ion beam on the deflector plate (78). The deflector plate and the collector (82, 84, 86) are separated from each other by one. The distance traveled by the ion beam. 17. The dosimetry control system (60) of the scope of application for patent, which further includes a logic (98), which is used for the first one collected by the first collector (82) A comparison is made between the second electron emission current and the second second electron emission current collected by the second collector (84) to output a typical portion of an ion beam (28) portion containing neutral particles Correction signal (1085 pack, H order line * '-(Please read the precautions on the back before filling this page)》 The Central Bureau of Standards of the Ministry of Economic Affairs prints the paper size of the paper for industrial and consumer cooperatives, using the Chinese national sample Standard (CNS) A4 specification (210X297 mm) A8 B8 C8 D8 VI. Patent application scope 18. Dosimetry control system (60) of the 17th patent application scope, which further includes a logic (102), this logic (1 〇2) is used to receive the modified signal (100) and ion beam current signal (74), and output a modified ion beam current signal (104). 19 Dosing Control System (60) , Which also includes a logic (98), which is used to compare the A first second electron emission current collected by a collector (82), a second second electron emission current collected by the second collector (84), and a third collector (86) ) The collected third second electron emission current; and (ii) output a typical correction signal (100) of an ion beam (28) portion containing neutral particles and double-charged ions. 20. Patent Application Scope 19 The item dosimetry control system (60) further includes a logic (102). The logic (102) is used to receive the correction signal (100) and the ion beam current signal (74), and output a Corrected Ion Beam Current Signal (104) 请 (Please read the notes on the back before filling this page) Printed by the Central Standards Bureau of the Ministry of Economic Affairs, Male Workers' Cooperatives, 6 Paper sizes, using China National Standards (CNS) M specifications (210 × 297 mm)
TW087110533A 1997-07-12 1998-06-30 System and method for detecting neutral particles in an ion beam TW405144B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/900,379 US5814823A (en) 1997-07-12 1997-07-12 System and method for setecing neutral particles in an ion bean

Publications (1)

Publication Number Publication Date
TW405144B true TW405144B (en) 2000-09-11

Family

ID=25412416

Family Applications (1)

Application Number Title Priority Date Filing Date
TW087110533A TW405144B (en) 1997-07-12 1998-06-30 System and method for detecting neutral particles in an ion beam

Country Status (7)

Country Link
US (1) US5814823A (en)
EP (1) EP0890975B1 (en)
JP (1) JP4196309B2 (en)
KR (1) KR100397028B1 (en)
CN (1) CN1140816C (en)
DE (1) DE69831702T2 (en)
TW (1) TW405144B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406317B (en) * 2005-02-16 2013-08-21 Varian Semiconductor Equipment Ion beam measurement apparatus and method
TWI419196B (en) * 2010-03-02 2013-12-11 漢民微測科技股份有限公司 Charged particle beam detection unit , specimen inspecting system and specimen imaging method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300643B1 (en) * 1998-08-03 2001-10-09 Varian Semiconductor Equipment Associates, Inc. Dose monitor for plasma doping system
DE19838553B4 (en) * 1998-08-25 2010-08-12 Thermo Fisher Scientific (Bremen) Gmbh Faraday collector for measuring ion currents in mass spectrometers
US6050218A (en) * 1998-09-28 2000-04-18 Eaton Corporation Dosimetry cup charge collection in plasma immersion ion implantation
US6323497B1 (en) * 2000-06-02 2001-11-27 Varian Semiconductor Equipment Assoc. Method and apparatus for controlling ion implantation during vacuum fluctuation
US7309997B1 (en) 2000-09-15 2007-12-18 Varian Semiconductor Equipment Associates, Inc. Monitor system and method for semiconductor processes
US6791097B2 (en) 2001-01-18 2004-09-14 Varian Semiconductor Equipment Associates, Inc. Adjustable conductance limiting aperture for ion implanters
US6891173B2 (en) * 2001-10-26 2005-05-10 Varian Semiconductor Equipment Associates, Inc. Ion implantation systems and methods utilizing a downstream gas source
JP2005005098A (en) * 2003-06-11 2005-01-06 Sumitomo Eaton Noba Kk Ion implanter and its control method
TWI225272B (en) * 2003-11-04 2004-12-11 Promos Technologies Inc Method of controlling implanting dosage and method of controlling pressure compensate factor in-situ
US7250617B2 (en) * 2004-02-12 2007-07-31 Varian Semiconductor Equipment Associates, Inc. Ion beam neutral detection
US6992308B2 (en) * 2004-02-27 2006-01-31 Axcelis Technologies, Inc. Modulating ion beam current
US7132672B2 (en) * 2004-04-02 2006-11-07 Varian Semiconductor Equipment Associates, Inc. Faraday dose and uniformity monitor for plasma based ion implantation
KR100642641B1 (en) * 2005-03-11 2006-11-10 삼성전자주식회사 Apparatus for measuring neutral beam angle distribution
KR100646552B1 (en) 2005-12-28 2006-11-15 동부일렉트로닉스 주식회사 A measuring device of dose shift using faraday cup
US7723706B2 (en) * 2008-06-19 2010-05-25 Varian Semiconductor Equipment Associates, Inc. Horizontal and vertical beam angle measurement technique
US20100019141A1 (en) * 2008-07-25 2010-01-28 Varian Semiconductor Equipment Associates, Inc. Energy contamination monitor with neutral current detection
US20110108058A1 (en) * 2009-11-11 2011-05-12 Axcelis Technologies, Inc. Method and apparatus for cleaning residue from an ion source component
TWI539154B (en) * 2012-12-19 2016-06-21 英福康公司 Dual-detection residual gas analyzer
US9564290B2 (en) 2014-11-18 2017-02-07 Hamilton Sundstrand Corporation Micro machined two dimensional faraday collector grid
CN105005070B (en) * 2015-06-05 2018-02-13 北京大学 The discriminating method and its device of doubtful ion beam after a kind of accelerator analysis magnet
GB2541385B (en) * 2015-08-14 2020-01-01 Thermo Fisher Scient Bremen Gmbh Dynamic range improvement for isotope ratio mass spectrometry
US10553411B2 (en) 2015-09-10 2020-02-04 Taiwan Semiconductor Manufacturing Co., Ltd. Ion collector for use in plasma systems
CN113466921B (en) * 2021-07-01 2023-07-28 兰州空间技术物理研究所 Electrostatic field ion energy analyzer suitable for plume diagnosis of electric thruster

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660655A (en) * 1969-09-08 1972-05-02 Ass Elect Ind Ion probe with means for mass analyzing neutral particles sputtered from a specimen
DE2445711A1 (en) * 1973-10-03 1975-04-10 Hewlett Packard Co ION / ELECTRON CONVERTER
US4587433A (en) * 1984-06-27 1986-05-06 Eaton Corporation Dose control apparatus
US4539217A (en) * 1984-06-27 1985-09-03 Eaton Corporation Dose control method
US4717829A (en) * 1985-03-14 1988-01-05 Varian Associates, Inc. Platen and beam setup flag assembly for ion implanter
US4751393A (en) * 1986-05-16 1988-06-14 Varian Associates, Inc. Dose measurement and uniformity monitoring system for ion implantation
US5631461A (en) * 1987-06-19 1997-05-20 Science Applications International Corporation Apparatus for, and methods of, detecting the direction and focal properties of neutral particle beams
US4929840A (en) * 1989-02-28 1990-05-29 Eaton Corporation Wafer rotation control for an ion implanter
US5136171A (en) * 1990-03-02 1992-08-04 Varian Associates, Inc. Charge neutralization apparatus for ion implantation system
US5572038A (en) * 1993-05-07 1996-11-05 Varian Associates, Inc. Charge monitor for high potential pulse current dose measurement apparatus and method
JP3018880B2 (en) * 1993-12-28 2000-03-13 株式会社日立製作所 Mass spectrometer and mass spectrometry method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406317B (en) * 2005-02-16 2013-08-21 Varian Semiconductor Equipment Ion beam measurement apparatus and method
TWI419196B (en) * 2010-03-02 2013-12-11 漢民微測科技股份有限公司 Charged particle beam detection unit , specimen inspecting system and specimen imaging method

Also Published As

Publication number Publication date
EP0890975B1 (en) 2005-09-28
KR19990013753A (en) 1999-02-25
US5814823A (en) 1998-09-29
JP4196309B2 (en) 2008-12-17
KR100397028B1 (en) 2003-11-28
CN1140816C (en) 2004-03-03
CN1205440A (en) 1999-01-20
JPH1172570A (en) 1999-03-16
DE69831702D1 (en) 2006-02-09
EP0890975A1 (en) 1999-01-13
DE69831702T2 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
TW405144B (en) System and method for detecting neutral particles in an ion beam
USRE40008E1 (en) Method and apparatus for controlling ion implantation during vacuum fluctuation
JP4470127B2 (en) Ion implantation apparatus and ion implantation method
KR100402183B1 (en) Injection quantity control device and method used in ion implanter
JP4962801B2 (en) Dose cup located near the final energy bend of a serial injector for closed-loop dose control
EP1981059B1 (en) Ion implanation apparatus
EP0964426A2 (en) Ion dosage measurement apparatus for an ion beam implanter and method
US6403972B1 (en) Methods and apparatus for alignment of ion beam systems using beam current sensors
US5757018A (en) Zero deflection magnetically-suppressed Faraday for ion implanters
TWI404109B (en) Dose close loop control for ion implantation
US7250617B2 (en) Ion beam neutral detection
US20100155600A1 (en) Method and apparatus for plasma dose measurement
US7586110B1 (en) Techniques for detecting ion beam contamination in an ion implantation system and interlocking same
TW423018B (en) Ion dosage measurement apparatus for an ion beam implanter and method
US20100019141A1 (en) Energy contamination monitor with neutral current detection
US20070221871A1 (en) Determining ion beam parallelism using refraction method
US8049168B2 (en) Time-of-flight segmented Faraday
JPH07272653A (en) Adjusting method for electric field ionizing type gas phase ion source and ion beam device
CN113474867A (en) Method for real-time dose control by inferring beam current at bends in an optical element from upstream and downstream current measurements
JP4009013B2 (en) Ion current detection device and ion implantation device
US8258489B2 (en) Transmission energy contamination detector
JP3001163B2 (en) Ion processing equipment
JPH11154485A (en) Mass spectrograph and ion implantation device equipped with it
JPH049865B2 (en)
KR20070075932A (en) Faraday device of ion implantation system and method for supplying bais voltage of faraday thereof

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees