TW396457B - Manufacturing method of mixed-mode devices - Google Patents

Manufacturing method of mixed-mode devices Download PDF

Info

Publication number
TW396457B
TW396457B TW87113309A TW87113309A TW396457B TW 396457 B TW396457 B TW 396457B TW 87113309 A TW87113309 A TW 87113309A TW 87113309 A TW87113309 A TW 87113309A TW 396457 B TW396457 B TW 396457B
Authority
TW
Taiwan
Prior art keywords
layer
gate
gate oxide
oxide layer
manufacturing
Prior art date
Application number
TW87113309A
Other languages
Chinese (zh)
Inventor
Ruei-Shiang Pan
Ming-Tzung Dung
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW87113309A priority Critical patent/TW396457B/en
Application granted granted Critical
Publication of TW396457B publication Critical patent/TW396457B/en

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

This is a manufacturing method of mixed-mode devices, which can be applied onto high-voltage devices. The amorphorous growth technology is combined with the growth of gate oxide layer; it is easy to control the thickness of the gate oxide layer to prevent damage on gate oxide layer. In the beginning, the first gate oxide layer, the first poly-silicon layer and the amorphorous layer are formed on a semiconductor substrate in order. The amorphorous layer, the first poly-silicon layer and the first gate oxide layer are defined in turn for structure formation of the first and the second gates. Then, the amorphorous layer of the second gate structure is removed for exposing the poly-silicon layer surface of the second gate structure. The second and the third gate oxide layers are formed to cover the surfaces of the first and the second gate structures, respectively. Finally, the second poly-silicon layer is formed to cover the second and third gate oxide layers.

Description

3542twf.doc/005 A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(丨) 本發明是有關於一種混合元件(Mixed-mode)的製造方 法,且特別是有關於一種可控制閘氧化層之形成厚度’以 改善閘氧化層品質的方法。 隨著積體電路之半導體元件的積集度日益增加,因此 製程的準確度就顯得格外,重要。因爲一旦在製程中發生細 微錯誤(error),即可能就會造成製程的失敗’導致晶片的 毀損或報廢,因而耗費大量成本。 第1A〜1C圖繪示的是習知一種混合元件的製造方法。 首先請參照第1A圖,提供一半導體基底10,在半導 體基底10上依序形成一閘氧化層I2、一多晶矽層14與一 閘氧化層16覆蓋整個基底結構,其中形成閘氧化層16之 厚度將決定後續製程之電性。 接著請參照第1B圖,上光阻覆蓋欲形成元件的地方, 然後進行微影鈾刻製程至暴露出半導體基底10表面,以 形成閘極結構18與20,其中閘極結構1S與20分別係由 閘氧化層12a、多晶矽層14a與閘氧化層16a所組成,並假 設閘氧化層16a之厚度爲A。之後,例如使用硫酸(H2S04) 剝除上述光阻。然後,上光阻22覆蓋閘極結構18.。 再來請參照第1C圖,回蝕刻暴露出之閘極結構20之 閘氧化層16a,直到其厚度由山變爲d2爲止,如圖中所繪 示,以形成閛氧化層16b,其中因閘氧化層16b與閘氧化 層16a的厚度不同,將使得兩元件具有不同之電容値。在 此同時,將因上述回蝕刻製程,而容易造成閘極結構20 之閛氧化層16a遭受到傷害(damage),並且形成閘氧化層 本紙張又度適用中國國家檩準(CNS ) A4規格(210X297公釐) / ^ -8 (請先閱讀背面之注意事項再填寫本頁)3542twf.doc / 005 A7 B7 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the Invention (丨) The present invention relates to a method for manufacturing a mixed-mode, and in particular, to a controllable brake Method for forming the thickness of the oxide layer to improve the quality of the gate oxide layer. With the increasing accumulation of semiconductor components in integrated circuits, the accuracy of the manufacturing process becomes particularly important. Because if a slight error occurs in the process, it may cause the process to fail ', which may cause the wafer to be damaged or scrapped, thus consuming a lot of costs. Figures 1A to 1C show a conventional method for manufacturing a hybrid device. First, referring to FIG. 1A, a semiconductor substrate 10 is provided. A gate oxide layer I2, a polycrystalline silicon layer 14 and a gate oxide layer 16 are sequentially formed on the semiconductor substrate 10 to cover the entire base structure. The thickness of the gate oxide layer 16 is formed therein. Will determine the electrical properties of subsequent processes. Next, please refer to FIG. 1B, a photoresist is used to cover the parts to be formed, and then a lithography lithography process is performed to expose the surface of the semiconductor substrate 10 to form gate structures 18 and 20, where the gate structures 1S and 20 are respectively It is composed of the gate oxide layer 12a, the polycrystalline silicon layer 14a, and the gate oxide layer 16a, and it is assumed that the thickness of the gate oxide layer 16a is A. After that, the photoresist is removed using, for example, sulfuric acid (H2S04). Then, the upper photoresistor 22 covers the gate structure 18. Referring again to FIG. 1C, the gate oxide layer 16a of the exposed gate structure 20 is etched back until its thickness changes from mountain to d2, as shown in the figure, to form a hafnium oxide layer 16b. The thicknesses of the oxide layer 16b and the gate oxide layer 16a are different, so that the two elements have different capacitances. At the same time, due to the etch-back process described above, damage to the oxide layer 16a of the gate structure 20 is likely to occur, and the gate oxide layer is formed. This paper is also applicable to the Chinese National Standard (CNS) A4 specification ( 210X297 mm) / ^ -8 (Please read the notes on the back before filling this page)

3542twf.doc/005 3542twf.doc/005 經濟部中央標準局員工消費合作社印製 B7 五、發明説明(> ) 16a之厚度亦不易掌控。隨後去除光阻22。 接著,例如使用低壓化學氣相沉積法(LPCVD),在閘 氧化層16a與16b上形成一層多晶砂層24,以完成兩個不 同電容値之元件。 之後進行後續的半導體製程,由於此非關本發明,在 此不多做贅言。 有鑒於此,本發明的目的就是在提供一種混合元件的 製造方法,以解決習知回蝕刻閘氧化層,導致閘氧化層遭 受損害的問題。 本發明的另一目的,提出一種混合元件的製造方法, 係利用簡易非晶矽成長技術,配合閘氧化層成長,以易於 控制閘氧化層之形成厚度。 爲達成本發明之上述和其他目的,一種混合元件的製 造方法,包括下列步驟:首先於半導體基底上依序形成第 一閘氧化層、第一多晶矽層與非晶矽層。接著依序定義非 晶矽層、第一多晶矽層與第一閘氧化層,直到暴露出半導 體基底表面爲止,以形成第一閘極結構與第二閘極結構。 之後去除第二閘極結構之非晶矽層,以暴露出第二閘極結 構之多晶矽層表面。再來形成第二閘氧化層與第三閘氧化 層,分別覆蓋第一閘極結構與第二閘極結構表面。最後形 成第二多晶矽層覆蓋第二閘氧化層與第三閘氧化層。 爲讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳 細說明如下: 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) I---------裝-- (請先閱讀背面之注意事項再填寫本頁) 訂 i- 3542twf.doc/005 A7 B7 五、發明説明()) 圖式之簡單說明: 第1A〜1C圖繪示的是習知一種混合元J生的製麗方法; _--------- 以及 : 第2A〜2E圖繪示的是依照本發朋一較隹寞施现的二種 混合元件的製造方贫。 圖式之標號說明: 10、30 :半導體基底 12、12a、16、16a、16b、32、32a、44、46 :闊氧化 層 14、14a、24、34、34a、48 :多晶砂層 18、20、38、40、40a :閘極結構 22、42 :光阻 36、3 6a :非晶Ϊ夕層 實施例 請參照第2A〜2E圖,其繪示的是依照本發明一較佳實 施例的一種混合元件的製造方法。 經濟部中央標準局員工消費合作社印製 (請先閱讀背面之注意事項再填寫本頁) 首先請參照第2A圖,提供一半導體基底30,在半導 體基底30上依序形成一閘氧化層32、一多晶矽層34與一 非晶矽層36覆蓋整個基底結構,其中形成非晶矽層36之 厚度將決定後續之電性。 接著請參照第2B圖,上光阻覆蓋欲形成元件的地方, 然後進行微影蝕刻製程至暴露出半導體基底30表面,以 形成閘極結構38與40,其中閘極結構38與40分別係由 閘氧化層32a、多晶矽層34a與非晶矽層36a所組成。隨後 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 3542twf.doc/005 3542twf.doc/005 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(·/) 去除上述光阻。然後,上光阻42覆蓋閘極結構%。 再來請參照第2C圖,然後使用乾蝕刻法例如反應性離 子蝕刻法(Reactive Ion Etch ; RIE) ’蝕刻去除未被光阻42 覆蓋之閘極結構40之非晶矽層36a,以暴露出閘極結構4〇 之多晶矽層34a表面’分別形成兩種不同的閘極結構38 與40a。隨後,去除光阻42。 之後請參照第2D圖,利用非晶砂(氧化速率快)與多晶 矽(氧化速率慢)之氧化速率的不同,例如使用熱氧化法於 兩蘭極結構38與40a之多晶砂層34a上,分別形成一層鬧 氧化層44與46,其中閘氧化層44與46的材質例如是二 氧化砍。此外,因非晶砂與多晶砂氧化速率之不同,故會 產生不同厚度之閘氧化層44與46 ’如第2D圖所繪示,藉 以使我們可以有效地控制閘氧化層44與46之厚度。換言 之’本發明係利用閘氧化層之成長取代習知利用回蝕刻閘 氧化層的方法,如此不僅可避免閘氧化層遭受傷害,並且 更可有效地掌控閘氧化層之厚度。 接著請參照第2E圖’例如使用低壓化學氣相沉積法, 在閘氧化層44與46上形成一層多晶矽層48,以完成兩個 不同電容値之元件。 之後進行後續的半導體製程’由於此非關本發明,在 此不多做贅言。 綜上所述,本發明的特徵,係利用簡易的非晶矽成長 技術,配合閘氧化層成長,達到易於控制閘氧化層之形成 厚度之目的。 ---------f',裝— (請先閲讀背面之注意事項再填寫本頁)3542twf.doc / 005 3542twf.doc / 005 Printed by the Consumer Cooperatives of the Central Bureau of Standards, Ministry of Economic Affairs B7 V. Description of the Invention (>) The thickness of 16a is not easy to control. The photoresist 22 is subsequently removed. Next, for example, a low-pressure chemical vapor deposition (LPCVD) method is used to form a polycrystalline sand layer 24 on the gate oxide layers 16a and 16b to complete two elements with different capacitances. Subsequent semiconductor processes will be performed thereafter. Since this is not related to the present invention, I will not go into details here. In view of this, an object of the present invention is to provide a method for manufacturing a hybrid device, so as to solve the problem that the conventional gate oxide layer is etched back and the gate oxide layer is damaged. Another object of the present invention is to provide a method for manufacturing a hybrid device, which uses a simple amorphous silicon growth technology in conjunction with the growth of a gate oxide layer to easily control the thickness of the gate oxide layer. In order to achieve the above and other objects of the present invention, a method for manufacturing a hybrid device includes the following steps: First, a first gate oxide layer, a first polycrystalline silicon layer, and an amorphous silicon layer are sequentially formed on a semiconductor substrate. Then, the amorphous silicon layer, the first polycrystalline silicon layer, and the first gate oxide layer are sequentially defined until the semiconductor substrate surface is exposed to form a first gate structure and a second gate structure. Thereafter, the amorphous silicon layer of the second gate structure is removed to expose the surface of the polycrystalline silicon layer of the second gate structure. Then, a second gate oxide layer and a third gate oxide layer are formed to cover the surfaces of the first gate structure and the second gate structure, respectively. Finally, a second polycrystalline silicon layer is formed to cover the second gate oxide layer and the third gate oxide layer. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, a preferred embodiment is given below in conjunction with the accompanying drawings to make a detailed description as follows: This paper size applies to the Chinese National Standard (CNS ) A4 specification (210X297mm) I --------- install-(Please read the precautions on the back before filling this page) Order i- 3542twf.doc / 005 A7 B7 V. Description of the invention () ) Brief description of the drawings: Figures 1A ~ 1C show the method of making a beauty of a hybrid element J; _--------- and: Figures 2A ~ 2E show Ben Fapeng is poorer than the manufacturer of the two hybrid components. Description of the symbols of the drawings: 10, 30: semiconductor substrates 12, 12a, 16, 16a, 16b, 32, 32a, 44, 46: broad oxide layers 14, 14a, 24, 34, 34a, 48: polycrystalline sand layer 18, 20, 38, 40, 40a: Gate structure 22, 42: Photoresistor 36, 36a: Example of amorphous silicon layer Please refer to FIGS. 2A to 2E, which shows a preferred embodiment according to the present invention A method for manufacturing a hybrid element. Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs (please read the precautions on the back before filling this page) First, please refer to Figure 2A, provide a semiconductor substrate 30, and sequentially form a gate oxide layer 32 on the semiconductor substrate 30, A polycrystalline silicon layer 34 and an amorphous silicon layer 36 cover the entire base structure. The thickness of the amorphous silicon layer 36 will determine subsequent electrical properties. Referring to FIG. 2B, a photoresist is used to cover the parts to be formed, and then a lithographic etching process is performed to expose the surface of the semiconductor substrate 30 to form gate structures 38 and 40. The gate structures 38 and 40 are respectively formed by The gate oxide layer 32a, the polycrystalline silicon layer 34a, and the amorphous silicon layer 36a are composed. Subsequently, this paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 3542twf.doc / 005 3542twf.doc / 005 Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (· /) Remove the above Photoresist. Then, the upper photoresistor 42 covers the gate structure%. Please refer to FIG. 2C again, and then use a dry etching method such as a reactive ion etching method (Reactive Ion Etch; RIE) to etch and remove the amorphous silicon layer 36a of the gate structure 40 not covered by the photoresist 42 to expose Two different gate structures 38 and 40a are formed on the surface of the polycrystalline silicon layer 34a of the gate structure 40, respectively. Subsequently, the photoresist 42 is removed. Please refer to Figure 2D afterwards. Use the difference between the oxidation rate of amorphous sand (fast oxidation rate) and polycrystalline silicon (slow oxidation rate). For example, use thermal oxidation method on the polycrystalline sand layer 34a of the two blue pole structures 38 and 40a. A layer of oxide layers 44 and 46 is formed, and the material of the gate oxide layers 44 and 46 is, for example, dicing oxide. In addition, due to the different oxidation rates of amorphous sand and polycrystalline sand, gate oxide layers 44 and 46 of different thicknesses will be generated as shown in Figure 2D, so that we can effectively control the gate oxide layers 44 and 46. thickness. In other words, the present invention replaces the conventional method of etching back the gate oxide layer by using the growth of the gate oxide layer, so that not only the gate oxide layer can be prevented from being damaged, but also the thickness of the gate oxide layer can be effectively controlled. Then referring to FIG. 2E, for example, a low-pressure chemical vapor deposition method is used to form a polycrystalline silicon layer 48 on the gate oxide layers 44 and 46 to complete two elements with different capacitances. Since the subsequent semiconductor process is performed later, since it is not related to the present invention, I will not repeat it here. In summary, the feature of the present invention is to use simple amorphous silicon growth technology in conjunction with the growth of the gate oxide layer to achieve the purpose of easily controlling the formation thickness of the gate oxide layer. --------- f ', equipment — (Please read the notes on the back before filling this page)

、tT 本紙張尺度適用中國國家榡準(CNS ) A4規格(210X 297公釐) 3542twf.doc/005 A7 B7 五、發明説明(7) 雖然本發明已以較佳實施例揭露如上’然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍內,當可作各種之更動與潤飾’因此本發明之保護 範圍當視後附之申請專利範圍所界定者爲準。 (請先閱讀背面之注意事項再填寫本頁) 裝· 訂 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐), TT This paper size is applicable to China National Standards (CNS) A4 specifications (210X 297 mm) 3542twf.doc / 005 A7 B7 V. Description of the invention (7) Although the present invention has been disclosed as above with preferred embodiments, it is not To limit the invention, anyone skilled in the art can make various modifications and retouches without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention shall be defined by the scope of the appended patents as follows: quasi. (Please read the precautions on the back before filling out this page) Binding and printing Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs This paper size applies to China National Standard (CNS) A4 (210X 297 mm)

Claims (1)

ST1 13 309 3542twf.doc/005 ^ ^ 0^5*^ A8 B8 C8 D8 經濟部中央標準局員工消費合作社印製 六、申請專利範圍 1· 一種混合元件的製造方法>,包括下列歡驟: 提供一半導體基底丄該举廛體基底—上―依序—已形成一第 Τ*閘.氧北.層一、-二·!..第—*多晶砍層與一非晶砍麗...; r 依序定蓋該_进_晶1^屢._、.該第一多晶矽層與該第一閘氧 化層,直到暴露出該半導體基底表面爲止,以形成一第一 閘極結搆輿一第二閘極結構; 去除該第二閘極結構之該非晶矽層,以暴露出該第二 閘極棒構之該多晶矽層表面; 形成一第二閱氧化層與一第三閘氧-化層,分別覆蓋該 第二閘極結構與該第二閘極結構表面;以及 形成一第二多晶砍層覆蓋該第二閘氧化層與該第三閘 氧化層。 2. 如申請專利範菌第1項所述之混合元件的製造方 法,其生定義該非晶矽層、該第一多晶矽層與該第一閘氧 化層的方法係徽影蝕刻法 3. 如申請專利範圍第1項所述之混合元件的製造方 法,其中去除該第二閘極結構之該非晶矽層的方法包括乾 蝕刻法。 4. 如申請專利範JS第1項所述之混合元件的製造方 法,其中去除該第二閘極結構之該非晶矽靥的方法包丨舌反' 應性離子蝕刻法。 .' 5. 如申請專利範圍第1項所述之混合元件的製π方 法,其中該第二閘氧化層之厚渡大於該第3閘氣化層=厚 度。 、 (請先閲讀背面之注意事項再填寫本頁) -裝· 、、tT it' 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐〉 396457 A8 3542twf.doc/005 B8 C8 ’ D8 六、申請專利範圍 6. 如申請專利範圍第1項歷述之混合元件的製造方 法,其中形成該第二蘭氧化層與該第三閘氧化層的方法每 括熱氧化錢。 7. 如申請專利範圍第1項所述之混合元件的製造方 法Γ其中該第二閘氧化層與該第三閘氧化層的材質包括二 氧化砂。 8. 如申請專利範圍第1項所述之混合元件的製造方 法,其中形成該第二多晶矽層典方法包括低壓化學氣相沉 稹~&0一 (請先閱讀背面之注意事項再填寫本頁) 裝- 、tT k 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)ST1 13 309 3542twf.doc / 005 ^ ^ 0 ^ 5 * ^ A8 B8 C8 D8 Printed by the Consumer Cooperatives of the Central Bureau of Standards of the Ministry of Economic Affairs 6. Scope of patent application 1. A method of manufacturing a hybrid element >, including the following steps: A semiconductor substrate is provided. The body substrate—upper—sequential—has formed a T * gate. Oxygen north. Layers one, two, two, etc .. The first polycrystalline layer and an amorphous layer. ..; r sequentially covers the _in_crystal 1 ^, .., the first polycrystalline silicon layer and the first gate oxide layer until the surface of the semiconductor substrate is exposed to form a first gate A second gate structure; removing the amorphous silicon layer of the second gate structure to expose the surface of the polycrystalline silicon layer of the second gate rod structure; forming a second oxide layer and a third The gate oxide-forming layer respectively covers the second gate structure and the surface of the second gate structure; and a second polycrystalline layer is formed to cover the second gate oxide layer and the third gate oxide layer. 2. The method for manufacturing a hybrid device according to item 1 of the patent application, wherein the method of defining the amorphous silicon layer, the first polycrystalline silicon layer, and the first gate oxide layer is an emblem etching method 3. The method for manufacturing a hybrid device according to item 1 of the application, wherein the method of removing the amorphous silicon layer of the second gate structure includes a dry etching method. 4. The method of manufacturing a hybrid device according to item 1 of the patent application, wherein the method of removing the amorphous silicon wafer of the second gate structure includes a reactive ion etching method. . '5. The method for making a π of the hybrid element according to item 1 of the scope of patent application, wherein the thickness of the second gate oxide layer is greater than the thickness of the third gate gasification layer = thickness. 、 (Please read the precautions on the back before filling this page)-Installation, 、, tT it 'This paper size applies to Chinese National Standard (CNS) Α4 specification (210 × 297 mm> 396457 A8 3542twf.doc / 005 B8 C8' D8 6. Scope of patent application 6. For the manufacturing method of the hybrid element described in item 1 of the scope of patent application, wherein the method of forming the second blue oxide layer and the third gate oxide layer includes thermal oxidation money. The manufacturing method of the hybrid element according to item 1 of the patent scope, wherein the material of the second gate oxide layer and the third gate oxide layer includes sand dioxide. Manufacturing method, wherein the method for forming the second polycrystalline silicon layer includes low-pressure chemical vapor deposition ~ & 0 (please read the precautions on the back before filling this page) The paper size printed by the consumer cooperative is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm)
TW87113309A 1998-08-13 1998-08-13 Manufacturing method of mixed-mode devices TW396457B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW87113309A TW396457B (en) 1998-08-13 1998-08-13 Manufacturing method of mixed-mode devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW87113309A TW396457B (en) 1998-08-13 1998-08-13 Manufacturing method of mixed-mode devices

Publications (1)

Publication Number Publication Date
TW396457B true TW396457B (en) 2000-07-01

Family

ID=21630988

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87113309A TW396457B (en) 1998-08-13 1998-08-13 Manufacturing method of mixed-mode devices

Country Status (1)

Country Link
TW (1) TW396457B (en)

Similar Documents

Publication Publication Date Title
US20080087639A1 (en) Line end shortening reduction during etch
US8048764B2 (en) Dual etch method of defining active area in semiconductor device
JPH06216085A (en) Method of forming contact hole of semiconductor device
US20030194647A1 (en) Composite photoresist for pattern transferring
TW460617B (en) Method for removing carbon contamination on surface of semiconductor substrate
TW396457B (en) Manufacturing method of mixed-mode devices
TW471111B (en) Manufacturing method for trench
TW563201B (en) Dry developing method
TW525260B (en) Shallow trench isolation pull-back process
TW451314B (en) Manufacture method of semiconductor device
TW471024B (en) Lithography etching method
JP2000173979A (en) Etching mask and method of forming fine pattern
TWI229905B (en) Method for controlling critical dimension by utilizing resist sidewall protection
JPS5840338B2 (en) Manufacturing method for semiconductor devices
TW469581B (en) Line-width reducing method
CN111986983B (en) Semiconductor structure and forming method thereof
TW502378B (en) Process for producing shallow trench isolation (STI) structure opening
CN107658290A (en) The method for forming photoetching alignment mark
JPS63258020A (en) Formation of element isolation pattern
TW396461B (en) Method for forming the gate oxide layer of MOS devices
TW426981B (en) Method of defining conduction wire
TW423099B (en) Manufacturing method of integrated circuit capacitor
TW399294B (en) Process for etching dielectrics
KR0169595B1 (en) Method of manufacturing fine pattern
TW310450B (en) Forming method of polysilicon contact structure of integrated circuit

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees