TW392210B - Titsnium sputtering target and method of manufacture - Google Patents

Titsnium sputtering target and method of manufacture Download PDF

Info

Publication number
TW392210B
TW392210B TW87111312A TW87111312A TW392210B TW 392210 B TW392210 B TW 392210B TW 87111312 A TW87111312 A TW 87111312A TW 87111312 A TW87111312 A TW 87111312A TW 392210 B TW392210 B TW 392210B
Authority
TW
Taiwan
Prior art keywords
titanium
patent application
target
scope
deformation
Prior art date
Application number
TW87111312A
Other languages
Chinese (zh)
Inventor
Yinshi Liu
Original Assignee
Johnson Matthey Elect Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey Elect Inc filed Critical Johnson Matthey Elect Inc
Application granted granted Critical
Publication of TW392210B publication Critical patent/TW392210B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Abstract

A titanium sputtering target in which the total intensity of (20-25) plane plus (11-20) plane that are parallel to the target plane is greater than 4.1 times random, and the intensity of (20-25) plane is at least 1.5 times random.

Description

A7 355 丨 pif.doc/〇〇2 ___— B—7_____ 五、發明説明(/ ) 一 發明背景 當電腦晶片變得更爲“快速”及更大容量,對於改良 材料及1製造方法有相對增加之需求。雖然電腦晶片,即半 導體元件,可經由許多方法製造,在製造方法之一基本重 要步驟爲在基材上沉積一薄膜。本發明爲著重於物理氣相 沉積,PVD ’其中一金屬塊,即靶,成形至可使電漿在純 化氣氛中,如氬,於一非常低壓,高速氬原子由靶釋出金 屬原子。由靶釋出之原子因此游離並在基材或晶圓上沉積 一薄膜,即單晶矽,此晶圓已可用於切割爲單一晶片。此 結果晶片在基本電腦中提供多種功用,例如記憶體、邏輯 及應用特殊作用等。 晶片通常包括許多很小直徑的溝渠(trench)、接觸窗 開孔(contact hole)、以及介層洞(via hole;或稱via) 等等設計。當兩層間需要作電性連接’且在高縱橫比 (aspect)的應用中,接觸窗、介層洞和溝渠等底部的薄膜 覆蓋(稱爲”階梯覆蓋”;”step coverage”)需維持在—有用 的程度是非常重要的,如此才能使用較小直徑的孔洞。本 發明提供一種鈦濺鍍鈀,用以改善階梯覆蓋。 發明之槪述 本發明爲提供一種鉢濺鑛祀’其具有在垂直鞭平面上 之<20-23>及111^0^^高度分量的結構。此結構可由 平行靶平面之不同結晶面的強度而定義。在結構?巴之結晶 面的強度値可經由具有無規晶粒定向分佈之Tl試樣中相 同之結晶醜酿倍㈣*。結晶面之強度可由x射線繞 (諳先閱讀背面之注意事項再填寫本頁)A7 355 丨 pif.doc / 〇〇2 ___— B—7 _____ V. Description of the Invention (/) 1. Background of the Invention As computer chips become more “faster” and larger in capacity, there is a relative increase in improved materials and 1 manufacturing method. Demand. Although computer chips, i.e. semiconductor components, can be manufactured by many methods, one of the fundamentally important steps in the manufacturing method is to deposit a thin film on a substrate. The present invention focuses on physical vapor deposition. One of the metal blocks of PVD ', that is, the target, is shaped so that the plasma can be in a purified atmosphere, such as argon, at a very low pressure, and high-speed argon atoms release metal atoms from the target. The atoms released from the target are thus freed and a thin film, ie, single crystal silicon, is deposited on the substrate or wafer. This wafer can be used to cut into a single wafer. As a result, chips provide multiple functions in basic computers, such as memory, logic, and application-specific functions. The chip usually includes many small diameter trenches, contact window openings, via holes; or vias. When two layers need to be electrically connected 'and in applications with high aspect ratios, the thin film coverage at the bottom of contact windows, vias and trenches (called "step coverage"; "step coverage") needs to be maintained at —The degree of usefulness is very important so that smaller diameter holes can be used. A titanium sputtered palladium is provided to improve step coverage. Summary of the Invention The present invention is to provide a bowl-spattering ore offering, which has a structure of < 20-23 > and 111 ^ 0 ^^ height components on a vertical whip plane. This structure can be defined by the strength of different crystal planes parallel to the target plane. In structure? The strength of the crystalline plane of Ba can be doubled by the same crystals in a Tl sample with a random grain orientation distribution *. The intensity of the crystal surface can be surrounded by x-rays (谙 Please read the precautions on the back before filling this page)

丁 -S 經1%‘部中央榡卑局β.τ消於合作社印來 本紙張尺度適用中國國家標埤(rNS ) Λ4规格 210X297公釐) 3551pif.doc/002 3551pif.doc/002 經#-部中次標準局貝工消於合竹社印製 A7 B7 五、發明説明(1) 射分析之四測量點極之定向分佈作用而測定。 此外’本發明有關提供具有所欲定向及結構之鈦濺鍍 靶之方1法’且此鈦漉鑛特別適用於物理氣相沉積以改良 階梯覆蓋。 * 圖式之簡單說明: 第1圖係繪示Ti之結晶結構及定向; 第2圖係繪示濺鑛靶及準直管以嘗試改良階梯覆 蓋,以一插入說明“階梯覆蓋”; 第3圖係繪示經由使用具較高比例之垂直發射之靶 在階梯覆蓋或準直管之改良; 第4圖係繪示(002)-α結構; 第5圖係繪示Euler角之定義; 第6A圖係繪示(20-25)結構; 第6B圖係繪示(11-20)結構; 第7圖係繪示(10-12)、(10-13)及(20-25)平面之關係; 第8A圖係繪示雙晶粒,標示“a”者爲“b”成對之 一,反之亦同,因爲其具有成對之定向關係; 第8B圖係繪示再結晶之晶粒; 第9A圖係具有成對之微結構的靶表面的顯微照片; 第9B圖係繪示具有再結晶晶粒之微結構的顯微照 片; s 第10圖係繪示慣用靶製造方法之流程圖; 第11圖係繪示依本發明如何濺鍍靶之實施例的流程 本紙張尺度適州中國國家椋岑((,NS ) Λ4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁).Ding-S 1% 's Central Bureau of Humble Bureau β.τ disappeared in the printed version of the cooperative. The paper size applies to the Chinese national standard (rNS) Λ4 specification 210X297 mm. 3551pif.doc / 002 3551pif.doc / 002 经 #- The Ministry of Standards and Technology Bureau's shellfish was printed by A7 B7 printed by Hezhusha. 5. Description of the invention (1) The directional distribution of the four measuring point poles in the radio analysis was measured. In addition, the present invention relates to a method for providing a titanium sputtering target having a desired orientation and structure, and the titanite is particularly suitable for physical vapor deposition to improve step coverage. * Brief description of the drawings: Figure 1 shows the crystalline structure and orientation of Ti; Figure 2 shows the splatter target and collimation tube in an attempt to improve the step coverage, with an insertion description of "step coverage"; 3 The figure shows the improvement of the step coverage or collimation tube by using a target with a higher proportion of vertical emission; Figure 4 shows the (002) -α structure; Figure 5 shows the definition of the Euler angle; Figure 6A shows the (20-25) structure; Figure 6B shows the (11-20) structure; Figure 7 shows the (10-12), (10-13), and (20-25) planes. Relationship; Figure 8A shows double grains, the one marked "a" is one of the "b" pairs, and vice versa, because it has a pairwise orientation relationship; Figure 8B shows the recrystallized grains Figure 9A is a photomicrograph of the surface of a target with paired microstructures; Figure 9B is a photomicrograph of a microstructure with recrystallized grains; Figure 10 is a drawing of a conventional target manufacturing method Flowchart; FIG. 11 is a flowchart showing an example of how to sputter a target according to the present invention. The paper size is in the state of China (椋, NS) Λ4 (210X 297 mm). (Please read the notes on the back before filling this page).

355Ipif.doc/002 A7 ——-__— B7 五、發明説明(T~i~~~ 發明之詳細說明 晶片製造之一重要部份爲材料的純度。製造非常高純 度之欽1的方法及裝置,與因此製造之高純度鈦爲揭露於在 1997 年 4 月 30 日以 Harry Rosenberg'Negil Winters 及 Yun355Ipif.doc / 002 A7 ——-__— B7 V. Description of the invention (T ~ i ~~~ Detailed description of the invention An important part of wafer manufacturing is the purity of the material. Method and device for manufacturing very high purity Chin 1 , And the resulting high-purity titanium was disclosed on April 30, 1997 under Harry Rosenberg'Negil Winters and Yun

Xu名義提出申請之“製造鈦結晶及鈦之方法與裝置”,申 請序號08/846,289審查中的申請案,該申請案之揭露內容 於此併入參考。 使用鈦的半導體元件之傳導及晶片速度依鈦的純度 而定,特別是氧含量。降至最低或排除之其他重要的不純 物包括:放射性元素U放射可引起記憶元素改變狀態); 過渡金屬’例Fe、Cr、Ni(此些元素之較低量可改良蝕刻 及元素registry);及鹼金屬,例Na及K,其可移動至電晶 體元素及千擾其作用。因此,鈦靶在金屬態及氣態元素必 需儘可能的純以達最大使用度,而有利的無如氧化物或氮 化物內含物的缺點。然而,濺鍍靶之結構對建立由靶之原 子發射方向爲重要,且其依結晶圖定向而定。第1圖說明 鈦之結晶結構及定向。 爲半導體元件之品質改良,在晶片製造中要求較小線 性幾何及較高孔洞比例之接觸與介層洞。爲了沉積在具有 高孔洞比之接觸及介層洞的薄且均勻膜,必需使由靶射出 之原子流量儘可能與晶圓垂直。在晶圓本沉積膜之厚度理 想上可相同於介層或接觸洞之底部者。此些厚度之比例通 常稱爲“階梯覆蓋”’其在第2圖中說明。 原子之主要部份以不同且較低之角度撞擊晶圓,藉而 ___6 _ (請先閲讀背面之注意事項再填寫本頁) 4衣· 訂 •本紙掁尺度適川中國國家摞中() Λ4規格(2丨0><297公釐) 35Sipif.doc/002 A7 B7 五、發明説明(f ) 塗覆介層或接觸孔洞之表面及側壁。在此狀況下,在表面 及側壁之膜可厚至封住介層或接觸孔洞。然而,藉由如在 第2圖1顯示之準直管’原子可直接至晶圓上,但因在準直 管上的沉積,產量降低。目前濺靶設計具有之結構可導致 較廣之流量分佈,僅有少量原子充分準直至沉積在介層或 接觸孔洞之底部。 雖然機械準直管在改良階梯覆蓋上些微有效但其在 使用上存在數個問題。濺鍍產量歸因於準直管之塗層而降 低,因爲僅有在大約垂直於晶圓表面之方向行進之Ti粒子 可在準直濺鍍時達到晶圓。通常,準直管變成厚重塗層, 其必須被移除且至少在IE壽命期間置換一次。置換準直管 造成大量時間消耗。 濺鍍原子之發射方向較佳沿靶之特定晶向定向。因 此,增加準直作用效率(有效性)或階梯覆蓋之有效方法爲 設定多晶靶之結晶定向分佈,亦即結晶圖像結,以致原子 在垂直晶圓表面在較高比例發射。因爲原子發射較佳沿特 定晶像方向濺鍍性質,如階梯覆蓋及準直作用,爲依靶之 晶像而定。在Ti靶之結構主要由在加工、金屬處理及高純 度Ti之退火狀況前之最初結構決定。 第3圖說明具有適當設計結構之靶可與機械準直管 使用以達到原子流量之準直作用準直管柯由鈦以‘蜂巢’構 形之鈦製成,其具有所欲之階梯覆蓋量而設計之大小。 α -鈦在低於約880°C下具有六角密封式結晶結構’其 結晶定向顯示於第1圖中。由冷軋或锻造超過50%變形並 __ 7 _ (請先閲讀背面之注意事項再填寫本頁)Xu applied for the "Method and Device for Manufacturing Titanium Crystals and Titanium", and applied for the application under serial number 08 / 846,289, the disclosure of which is incorporated herein by reference. The conduction and wafer speed of semiconductor elements using titanium depend on the purity of titanium, and especially the oxygen content. Other important impurities that are minimized or eliminated include: radioactive element U radiation can cause the memory element to change state); transition metals such as Fe, Cr, and Ni (lower amounts of these elements can improve etching and element registry); and Alkali metals, such as Na and K, can move to the transistor element and interfere with its effect. Therefore, the titanium target must be as pure as possible in the metallic and gaseous elements to achieve the maximum use, and the disadvantages are not as good as the oxide or nitride inclusions. However, the structure of the sputtering target is important for establishing the emission direction of the target from the target, and it depends on the orientation of the crystal pattern. Figure 1 illustrates the crystal structure and orientation of titanium. In order to improve the quality of semiconductor devices, contact and via holes with smaller linear geometry and higher hole ratio are required in wafer manufacturing. In order to deposit thin and uniform films with high hole-to-cavity contacts and vias, it is necessary to make the atomic flux emitted from the target as perpendicular to the wafer as possible. The thickness of the deposited film on the wafer may ideally be the same as the bottom of the via or the contact hole. The ratio of these thicknesses is commonly referred to as "step coverage" and it is illustrated in Figure 2. The main part of the atom hits the wafer at different and lower angles, so ___6 _ (Please read the precautions on the back before filling out this page) Λ4 specification (2 丨 0 > < 297 mm) 35Sipif.doc / 002 A7 B7 V. Description of the invention (f) Coating the surface of the interposer or contact hole and the side wall. In this case, the film on the surface and sidewalls can be thick enough to seal the interposer or contact holes. However, with the collimator tube 'atoms as shown in Fig. 2 can be directly on the wafer, but the yield is reduced due to the deposition on the collimator tube. The current sputtering target design has a structure that can lead to a wide flow distribution, with only a few atoms sufficiently aligned until it is deposited on the bottom of the interposer or contact hole. Although mechanical collimators are slightly effective in improving step coverage, there are several problems with their use. Sputtering yield is reduced due to the coating of the collimator tube, because only Ti particles traveling in a direction approximately perpendicular to the wafer surface can reach the wafer during collimation sputtering. Generally, the collimation tube becomes a heavy coating, which must be removed and replaced at least once during the life of the IE. Replacing the collimator tube consumes a lot of time. The emission direction of the sputtered atoms is preferably oriented along a specific crystal direction of the target. Therefore, an effective method to increase the collimation efficiency (effectiveness) or step coverage is to set the crystal orientation distribution of the polycrystalline target, that is, the crystal image junction, so that the atoms are emitted at a higher proportion on the vertical wafer surface. Because atomic emission is preferred to sputter properties in the direction of a specific crystal image, such as step coverage and collimation, depending on the crystal image of the target. The structure of the Ti target is mainly determined by the initial structure before processing, metal processing and annealing conditions of high purity Ti. Figure 3 illustrates that a target with a properly designed structure can be used with a mechanical collimator tube to achieve the collimating effect of atomic flow. Collimator tube is made of titanium in a 'honeycomb' configuration of titanium, which has the desired step coverage. And the size of the design. The α-titanium has a hexagonal sealed crystal structure at a temperature below about 880 ° C, and its crystal orientation is shown in the first figure. Deformed by cold rolling or forging more than 50% and __ 7 _ (Please read the precautions on the back before filling this page)

、1T 經消部中泱摞淖局兵.T消於合竹社印絮 本紙張尺度洎用中國阈家椋埤(rNS)A4規格(2丨0X297公釐) 355!pif.doc/002 355!pif.doc/002 經滴部中央榡準局taiJ.消於合竹社印轚 A7 B7 五、發明説明(f ) 接著退火而製造以再結晶之Ti靶具有(0002)-α(基本上α =20° -34。)之結構,其中α爲在(0002)結晶面及靶面(第4 圖)間之角度。角^爲依最初結構、金屬加工、變形量、 在變形期間之溫度及加熱處理而定。具有(10-13)或(ΙΟ-ΐ 5) 爲 最強部 份之結 構通常 在冷軋 及接著 再結晶 後而獲 得。標記’〇’包括在六角物料之原子面的MUler Bravais 指數。 濺鑛原子較佳沿接近鄰區方向發射在描述”<>”包括 (定義)在六角結晶之Miller Bravais指數。Ti之最近鄰 區方向爲<20-23>’其爲密封結晶層之—至鄰接密封層之 最近鄰區的方向。然而,原子並未持續沿最近鄰區距離方 向排列,但由短及非常長間距排列交替排列,如第1圖所 示。在Ti之第二接近鄰區方向爲<!1_20>,其亦爲具有等 原子距離之密封方向。因此,其可結論<20-23>及<11-20> 爲在濺鏟期間對Ti之較佳發射方向。 預期對具有垂直於晶圓表面之高比例<20_23>及/或 <11-20>定向多晶靶產生最高階梯覆蓋及準直作用效率。 因此較佳具有爲此二定向之一或同時具有二者之結構。本 發明涉及具有高分量之垂直靶面之<2〇-23>、或具有高分 量之垂直靶面之<20-23>及<11-20>二者的高純度Ti靶。 金屬在不同結晶系統下結晶,且純華屬之物理性質依 其測量之方向而定。鈦(及大致之金屬)的物理性質以張量 表示。物理性質包括順磁性及反磁性磁化率、電及熱傳導 性、應力、張力、熱膨脹性、壓電性、彈性、熱電性及光 ------8 本紙张尺度適用中國國家標率(CNS ) Λ4規格(2丨0X297公楚) (請先閱讀背面之注意事項再填寫本頁) 丁 355ipif.doc/002 355ipif.doc/002 經确部中次榡淖局MJ消費合竹社印衆 A7 ___ _ B7 五、發明説明(6) 學性質。可估算此等每一性質。因此,所有金屬顯現之物 理性質由結晶像結構及粒子大小分佈控制及定義,且此些 極少爲1等向性。鈦物理性質皆爲各異向性的。因此方向作 用爲非常明顯,例如鈦之彈性模數可在單一結晶中以三倍 量改變’其係依溫度及測量的方向而定。影響鈦物理性質 之冶金因素包括純度、結構粒子大小、不同種類及分佈的 晶格缺陷及其等之均一性。物理性明顯依此處所述之冶金 特性而定,且完全由其等控制。 不同滑動及雙晶系統可方向及錯置之向量表示。每一 型式之變形具有依測量溫度及方向而定之臨界應力。因 此,機械性質亦由鈦之冶金狀況而控制及定義。流動應 力、延展性及斷裂韌度及其等之作用受測量之溫度而影 響,此爲機械性質之例示。 物理移動性質,如基材之內部擴散及不純度,由在不 同晶格方向跳動之相對自由決定-並非所有跳動方向爲相 等自由且其皆伴隨特定向量。粒子大小及結構爲重要的’ 因爲例如其姐合以形成粒子界線錯置之分佈多少明顯貢 獻’管狀擴散’。此些性質亦明顯依冶金狀況而定。 本發明思量具有特定結構之鈦靶’其提供較高之階梯 覆蓋或較高機械準直作用之效率’及製造此等靶之方法。 較佳之階梯覆蓋-及較高進it作用效率(效益)可經由增加 在濺鍍期間由靶表面垂直之原子發射比例。ft—控制-之I ’射提供較高之階梯覆蓋及準直作用效率,且導致在接觸及 介層孔上具有改良階梯覆蓋的電腦晶片’而不論其縱橫比 ______2__—____ ί從芡成ΐΐ元中國國家標> μ規桔(2丨〇 X 297公釐) " * (請先間讀背面之注意事項再填寫本頁)、 1T Zhonghua Bureau of the Ministry of Economic Affairs. T printed in Hezhushe printed paper size using Chinese threshold furniture (rNS) A4 size (2 丨 0X297 mm) 355! Pif.doc / 002 355 ! pif.doc / 002 The Central Bureau of Standards and Technology of the Ministry of Div. taiJ. Eliminated by Hezhusha Seal A7 B7 V. Description of the Invention (f) The Ti target produced by re-annealing and recrystallized has (0002) -α (basically α = 20 ° -34.), where α is the angle between the (0002) crystal plane and the target plane (Figure 4). The angle ^ depends on the initial structure, metal processing, amount of deformation, temperature during deformation, and heat treatment. Structures with (10-13) or (ΙΟ-ΐ5) as the strongest component are usually obtained after cold rolling and subsequent recrystallization. The notation '〇' includes the MUler Bravais index on the atomic plane of the hexagonal material. Ore-spattering atoms are preferably emitted in a direction close to the adjacent area. The description "< "" includes (defined) the Miller Bravais index in a hexagonal crystal. The direction of the nearest neighbor region of Ti is < 20-23 > 'which is the direction from the seal crystal layer to the nearest neighbor region adjacent to the seal layer. However, the atoms did not continue to be aligned along the distance of the nearest neighbors, but were alternated by short and very long pitch arrangements, as shown in Figure 1. The direction of the second nearest neighbor of Ti is <! 1_20 >, which is also a sealing direction having an equal atomic distance. Therefore, it can be concluded that < 20-23 > and < 11-20 > are better emission directions for Ti during the shovel. It is expected to produce the highest step coverage and collimation efficiency for oriented polycrystalline targets with a high ratio of < 20_23 > and / or < 11-20 > perpendicular to the wafer surface. Therefore, it is preferable to have a structure having one or both of these two orientations. The present invention relates to a high-purity Ti target having both a vertical target surface with a high component < 2〇-23 > or a vertical target surface with a high component < 20-23 > and < 11-20 >. Metals crystallize under different crystallization systems, and the physical properties of pure genus depend on the direction in which they are measured. The physical properties of titanium (and roughly metals) are expressed in tensors. Physical properties include paramagnetic and diamagnetic susceptibility, electrical and thermal conductivity, stress, tension, thermal expansion, piezoelectricity, elasticity, thermoelectricity, and light ----- 8 This paper scale applies to China's national standard (CNS ) Λ4 specification (2 丨 0X297). (Please read the notes on the back before filling in this page.) Ding 355ipif.doc / 002 355ipif.doc / 002 The Ministry of Economic Affairs, MJ Consumers, Hezhu, Yinzhong A7 ___ _ B7 V. Description of invention (6) Nature of study. Each of these properties can be estimated. Therefore, the physical properties exhibited by all metals are controlled and defined by crystal structure and particle size distribution, and these are rarely isotropic. Titanium physical properties are all anisotropic. Therefore, the direction function is very obvious. For example, the elastic modulus of titanium can be changed by three times in a single crystal, and it depends on the temperature and the direction of measurement. The metallurgical factors that affect the physical properties of titanium include purity, structural particle size, lattice defects of different kinds and distributions, and their uniformity. The physical properties obviously depend on and are completely controlled by the metallurgical properties described here. Different sliding and dual crystal systems can be oriented and offset vector representation. Each type of deformation has a critical stress depending on the measurement temperature and direction. Therefore, the mechanical properties are also controlled and defined by the metallurgical conditions of titanium. The effects of flow stress, ductility and fracture toughness and their effects on the measured temperature are examples of mechanical properties. Physical movement properties, such as the internal diffusion and impureness of the substrate, are determined by the relative freedom of bouncing in different lattice directions-not all bouncing directions are equally free and they are accompanied by specific vectors. The particle size and structure are important because, for example, their sisters contribute significantly to the distribution of the particle boundary line dislocations which contribute to the 'tubular diffusion'. These properties also obviously depend on the metallurgical conditions. The present invention contemplates titanium targets with a specific structure ' which provides higher step coverage or higher efficiency of mechanical collimation ' and methods of making such targets. Better step coverage-and higher efficiency (benefit) can be achieved by increasing the ratio of atomic emission perpendicular to the target surface during sputtering. ft—Control-I I shot provides higher step coverage and collimation efficiency, and results in computer chips with improved step coverage on contact and via holes' regardless of their aspect ratio ______2_______ ί 从 芡 成ΐΐYuan China National Standards > μ Regulation Orange (2 丨 〇X 297mm) " * (Please read the precautions on the back before filling this page)

、1T % 3551pif.doc/002 3551pif.doc/002 經濟部t决標缘局負工消合作社印製 A7 ___B7_ 五、發明説明(〇 ) 例。 對可在垂直靶表面之高比例Τι發射的鈦靶的結構要 求爲基於(hkil)結晶面的強度其爲垂直於靶平面,其在此 後稱之爲(hkU)強度。結晶面的強度爲依所有與靶面平行 之晶面而定向的晶粒體積分量成比例。在Τι靶之(hkil) 面的強度値爲以在具有隨機晶粒定向分佈的Ή試樣中相 對強度的倍數(倍·隨機)表示,且基於X射線繞射的四測 量極圖形的定向分佈函數而獲得: dV/ V=I(9 ,Φ )dy, 其中 1(Θ,Φ) = 1/87Γ)$ ί(ω,θ,Φ)(1ω, 且 dy=s i η θ dθ (1Φ 其中ω,θ及Φ爲依第5圖之Euler角;1(Θ,Φ)爲平行 於靶面之(hkU)面的強度;dV爲試樣整體之相對於定向元 素dy的體積元素;V爲試樣之總體積;表示相對於 ω之Οϋ至360° ;且ί(ω ,θ,Φ )爲由實驗極圖式所得之定 向分佈函數。在第5圖中之ND、RD及TD爲附於試樣(試 樣配位系統)之配位系統軸,且分別表示耙之一般方向(垂 直於靶面)、滾軋方向及橫交方向。X’、:/’及ζ,爲接至具有 沿(0 0 0 2)方向之ζ ’的晶體(結晶配位系統)的配位系統 軸’該ζ’爲(0002)平面的極。Euler角ω、Θ及Φ爲由下 列操作定義。結晶配位系統最初與試樣胃g位系統一致,即 X’、y’及z’分別與ND、RD及TD —致。結晶位系統然後先 依z’-軸以ω角旋轉’然後X’-軸以Θ角,最後再依z,_軸 以Φ角(以新的定位方向)。 ---—----1〇__ 本紙张尺度通用中國囤家樣嘩((’奶)八4規格(210'乂297公楚) --- (請先閱讀背面之注^^項再填寫本頁)1T% 3551pif.doc / 002 3551pif.doc / 002 Printed by the Ministry of Economic Affairs and the Bureau of Work and Consumer Cooperatives A7 ___B7_ V. Description of Invention (0) Example. The structure of a titanium target that can emit a high proportion of Ti at the vertical target surface is required to be based on the intensity of the (hkil) crystal plane, which is perpendicular to the target plane, which is hereinafter referred to as (hkU) intensity. The strength of the crystal plane is proportional to the volume component of the crystal grains oriented in all crystal planes parallel to the target plane. The intensity on the (hkil) plane of the Ti target is expressed as a multiple of the relative intensity in a sample with a random grain orientation distribution (times · random) and is based on the directional distribution of four measuring pole patterns based on X-ray diffraction. Function to obtain: dV / V = I (9, Φ) dy, where 1 (Θ, Φ) = 1 / 87Γ) $ ί (ω, θ, Φ) (1ω, and dy = si η θ dθ (1Φ where ω, θ and Φ are Euler angles according to FIG. 5; 1 (Θ, Φ) is the intensity of the (hkU) plane parallel to the target surface; dV is the volume element of the entire sample relative to the orientation element dy; V is The total volume of the sample; expressed as 0 ° to 360 ° relative to ω; and ί (ω, θ, Φ) is the orientation distribution function obtained from the experimental pole figure. ND, RD, and TD in Figure 5 are attached On the axis of the coordination system of the sample (sample coordination system), and indicate the general direction of the rake (perpendicular to the target surface), the rolling direction and the cross direction. X ',: /' and ζ are connected to The axis of the coordination system of a crystal (crystalline coordination system) with ζ 'in the (0 0 0 2) direction is the pole of the (0002) plane. The Euler angles ω, Θ, and Φ are defined by the following operations. Crystalline coordination The system is initially consistent with the sample's g-position system, that is, X ', y', and z 'are consistent with ND, RD, and TD, respectively. The crystallization position system then rotates at an ω angle according to the z'-axis and then the X'-axis At the angle of Θ, and finally according to z, the angle of _ is at the angle of Φ (in the new orientation). ----------- 1〇__ This paper scale is generally used by Chinese storehouses (('奶) 八 4 Specifications (210 '乂 297 Gongchu) --- (Please read the note ^^ on the back before filling this page)

3551pif.doc/002 3551pif.doc/002 經消部中央^|卑局βΗ消先合竹社印¾ A7 B7 五、發明説明u ) (hkil)之倍-隨機表示之強度値可瞭解爲依平行於靶 面之(hkil)對隨機試樣的X-射線繞射強度計算。因爲晶面 的極爲_直此晶面,平行於靶面之(hkil)面強度亦可視爲 垂直於靶面的(hkil)極之強度。例如,<20-23>及<11-20〉 爲(20-25)及(11-20)面的極。因此,(20-25)及(11-20)的 強度亦爲分別表示<20-23>及<11-20>的強度。不同於在立 方晶中之平面及方向的指數(Miller),在六角晶體中之平 面及方向不與相同之指數(Miller-Bravais)共用。僅對於 基本或棱柱,Miller Bravais方向與平面數字一致。當晶 面(20-25)及(11-20)爲分別平行於靶面時(第6圖), <20-23>及<11-20>定向爲垂直於靶面。因此,具垂直於靶 面之<20-23>及<11-20>的結構在此處可分別參考第6A圖 之(20-25)及第6B圖之(11-20)。因爲部份晶面如(20-25) 不具有或具非常弱X-射線繞射峰,晶面的強度係由 (0002)、(10-11)、(10-13)及(11-20)四測量極圖形之定 向分佈功能結構而估算出,而非直接由X射線繞射測得。 強(20-25)結構爲相對於(0002)-36°結構(平均峰強度爲在 由(0002)極圖形之36°)。 (0002)- α表示爲代表一可使(0002)平面具有相對於 被濺鍍之靶平面的平均傾斜α角。其依下列方程式不均 (0002)極圖形的最高五個強度峰之傾斜角而計算: α = Σ I i α , / Σ 11 其中(^及L·分別爲相對第i強度峰的(0002)傾斜角度及 相對X射線強度。 本紙張尺度適州中國囤家標肀((,NS ) Λ4規格(210X297公釐) τ--------------IT------ (請先閲讀背面之注意事項再填寫本頁) 355lpif.doc/002 A7 ____B7 五、發明説明(q ) 下列討論說明晶像結構與包括階梯覆蓋之濺鍍性質 的關係。 爲了獲得在垂直靶表面的高比例Ti發射,如第6A及 6B圖所示,高比例晶粒必須在平行於靶表面的(20-25)及/ 或(11-20)定向。依本發明下列晶像結構較佳。平行於靶 平面之(11-20)的強度爲至少1.5倍隨機爲了使(20-25)強 度最大化相對於靶表面的(0002)平均傾斜角較佳在約32° 至40°間。最希望的α値爲約36° 。(20-25)爲夾層於 (10-12)至(10-13)間(第7圖)。因爲(20-25)僅約此二晶 面5° ,(10-12)及(10-13)之高強度亦對階梯覆蓋改良有 助益。此需要(20-25)、(10-12)及(10-13)的高強度總和。 因爲(0002)對(20-25)爲36度及對(11-20)爲90度遠,Ti 發射明顯遠離垂直於強(0002)結構的靶平面。因此需要具 有非常低之平行於靶面的(0002)強度。本發明提供之靶, 其中平行於靶面的(0002)強度爲1.8倍隨機或更低,較佳 爲低於1.0倍隨機。 經漭部中决梂率局兵T,消费合竹社印繁 (請先閱讀背面之注意事項再填寫本頁) 在本發明之靶中可產生二種型式的微結構,且獲得之 結構爲依微結構而定。第一型式之微結構爲含有均一分佈 雙晶。雙晶分量由試樣橫切面中含有雙晶的晶粒區域分量 所定義。雙晶分量可控制,且可獲得高至100%。第二型 式之微結構爲含有再結晶晶粒。第8A及8B圖繪示說明晶 粒及雙晶,第9A及9B圖爲分別以顯微照片顯示雙晶及晶 粒。平行於靶面的(11-20)較高強度與雙晶微結構較易獲 得,而非與結晶微結構。大於1.5倍隨機之平行於靶面的 本紙張尺度洎用中國國家標卒((,NS ) Λ4現格(210X297公釐) 3551pif.doc/002 3551pif.doc/002 經鴻部中次標準局员工消费合作社印聚 A7 _____B7 五、發明説明(⑺) (11-20)可由雙晶微結構獲得。另一方面,再結晶微結構 附隨較高之平行於靶面之(20-25)、(10-12)及(10-13)的 總強度u平行於靶面之(20-25)強度可大於3倍隨再結晶 微結構。且較低之平行於靶面的(0002)強度與結晶微結構 較易獲得,而非與雙晶微結構。小於0.3倍隨機之平行於 靶面的(0002)可由再結晶微結構獲得。可獲得如ΙΟ^ζιη小 之晶粒大小且希望粒粒大小爲5μιη。 本發明之靶與習知之靶的區別在於(a)本發明之靶在 (0002)-α(α-30° ~40° ’ 其含有強(20-25))及(11-20) 之相鄰處具有高強度;(b)(0002)之結構成份明顯減少; (c)在含有高(11-20)結構成份之微結構中雙晶的均勻分 佈;及(d)本發明之靶與習知靶相較提供較佳之階梯覆蓋 或準直作用產量。 因爲由傳統機械變形,亦即滾軋及鑄造,所產生之結 構由(10-17)分佈至(10-13),其接近(20-25)但遠離(1卜 20)結構,必需使用在第10圖所示之方法而非傳統之方 法。形成所欲結構之方法如下描述,但應瞭解可使用其他 加工Ti之方法以達到相同目的。例如,可使用具有相同 功效之不同型式之鑄造、滾軋、及其他金屬加工,假設使 用之金屬加工程序爲使加工件之活性形變成爲靶之方式 爲形變的滑動及雙晶成份的優點。 、 用於獲得本發明結構之方法之涉及經由在最終形變 步驟中安排雙晶形變程序爲主要形變機制以產生最終結 構,其相反於傳統加工Τι靶旳主要形變機制。可經由具 本紙張尺度遶用中國囷家標枣(CNS ) Λ4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) •1Τ 3551pif.doc/002 3551pif.doc/002 經"-部十次绛局兵工消於合竹社印裝 A7 B7 五、發明説明(丨I ) 有少量形變之雙晶獲得明顯晶粒比例。第10及11圖比較 傳統加工及本發明產生向靶而使階梯覆蓋最大化的加 工。在第11圖之流程圖中說明一製程,但其可能由其他 製程獲得所欲之定向作用。在此處所用之詞“變形”爲指 導致在橫切面面積降低或厚度降低的步驟。 此方法之第一步驟包括機械變形及退火以再結晶。在 第一加工步驟中獲得大部份之機械變形(“主要變 形”)°然而在此步驟中之變形步驟應在任何溫度之^相 進行。冷變形,特別是在冷軋,較佳爲得到一較佳均一性 及較尖銳的結構。在主要或第一變形中,高純度鈦坯料受 到至少50%之厚度降低,較佳爲至少70%。變形坯體然 後熱處理以獲得具有強(0002)-a w結構之再結晶微結構。 下標“Γ表示在第一次加工步驟;後之結果。傾斜角α , 爲依金屬加工製程及熱處理而定。當靶坯體滾軋超過70 %時’其通常爲2〇_34。,典型上爲30。。 在本發明方法之第二加工步驟中,坯體接著再次變 形’如以滾軋或鑄造,以得約5%至3〇%間之厚度降低, 較佳約10%窆20%間。第二變形步驟導致二主要成份之 結構’(0002)、α 2及(11-20)結構之再結晶微結構。下標 “2”表示在第二次變形後觀察得到的傾斜角度α 2。傾斜 角度通常依第二次形變的量及溫度兩比α|高2至6 度。在(2 2與α ,之差爲依第二次形變溫度的降低與第二次 形變星的增加而增加。較佳爲第二變形步驟在凍溫下進 行’雖然在室盥下的變形爲可接受的。 •本紙張尺細中國國家樟:),、娜(210χ297;^-~~ - (請先閱讀背面之注項再填寫本頁) 、?τ 3551pif.doc/002 A7 B7 五、發明説明(丨>) 在凍軋後接著於再結晶溫度下之熱軋可產生在平行 於靶面之(11-20)上相較於在再結晶後僅有凍軋比較具較 高強度1。總厚度降低(相對於凍軋開始之厚度)較佳爲少於 35% ° 以此方法製造之靶可具似變形或復原雙晶、或具低分 量雙晶之部份再結晶微結構、或無雙晶之完全再結晶微結 構。再結晶不會明顯改變似變形之傾斜角2。因再結晶之 結果,具有約(0002)-α2定向之晶粒分量增加但平行於靶 面的(11-20)分量減少。且,獲得相當低之平行於靶面的 (11-20)分量,此爲較佳。在復原熱處理後之靶結構基本 上保有相同於具有雙晶微結構的開始結構。具有雙晶微結 構之晶粒可由特殊定向之晶粒邊界的雙晶邊界界定。若雙 晶微結構終產品中保留微結構,在第一加工步驟之熱處理 後較佳爲低於20ym之晶粒。將產生較低之平行於耙面的 (11-20)分量,此爲較佳階梯覆蓋所欲的。 在本發明中主要變形製程(即第一變形步驟)爲用以 獲得均勻及小晶粒大小,且獲得所預期之總厚度降低的主 要部份。在鑄造一錠塊爲坯料後,主要變形可滾軋及/或 固定鑄造,但未限制爲此些方法。靶坯體在第一變形製程 後應再結晶以使在第二變形期間雙晶的量最大。第二變形 亦即第二次變形爲用以產生顯著量之(〖1-20)及經由雙晶 改變α角。變形方法可爲滾軋及/或任何在雙晶及向(11_ 20)轉動晶粒產生相同效果之方法。變形應在約5%至30 %間,較佳爲在約10%至20°/。間,以使雙晶取代滑動而 本紙張尺朗國國家標卑規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) '裝· --° •g·. 3551pif.doc/002 A7 B7 五、發明説明(0) 爲主要變形機制。當第二變形低於約5%時’變形量太小 以致造成在結構上的明顯改變。當第二變形量超過約30 %時,1可獲得在平行於靶面(0002)之較高分量。雙晶及 (11-20)的量應在第二變形經由不同方式以最大化,包括 低變形溫度,如凍溫變形、較高變形速率及較大晶粒。在 第二變形中以凍溫較佳,’雖然在室溫下之變形亦可產生明 顯雙晶。雙晶在凍溫下比在室溫下較爲主要部份。凍溫變 形亦提供較在室溫變形下。的較均勻雙晶結構。在凍溫變 形前,可將Ti坯體冰凍至合宜之低溫或所欲之低溫。鈦 在凍溫非常脆,特別是高純度時。變形之較佳方法爲滾 軋、鑄造或其他可產生相似結果的方法。在第一製程(第 一變形與熱處理之組合)後小於2〇wm的晶粒大小爲所欲 的以用於第二變形的(0002)之最低強度。在第一製程之較 小晶粒亦可在爲良好膜均勻性的最終產品中導致較小之 晶粒大子。 較佳地,具有α ,爲在30至40度間之(0002)-ct ,結 構應在第一製程(第一變形與熱處理之組合)後獲得’以致 獲得含有(0002)-36°相鄰處之(〇〇〇2)-α2及(11-20)明 顯量的結構。理想上,在第一製程步驟中施用至少70%滾 軋降低’以使在第二變形中之凍溫變形如滾軋或鑄造產生 具有在(0002)-36。及(11-20)皆強之組母。 雙晶在再結晶後之最小晶粒通常大於雙晶化前之晶 粒大小。因此,可經由控制二製程步驟以獲得不同晶粒粒 子大小。在雙重方法後在最終產品中可獲得大於15" m之 本紙張尺度这州中國國家標率((、NS ) ΛΊ規格(210X 297公金.) (請先閲讀背面之注意事項再填寫本頁)3551pif.doc / 002 3551pif.doc / 002 Central of the Ministry of Economic Affairs ^ | Beijing Bureau βΗelimination of Xianhezhusha ¾ A7 B7 V. Description of the invention u) (hkil) multiples-the intensity of random representation can be understood as parallel Calculation of the X-ray diffraction intensity of a random sample on the target surface (hkil). Because the pole of the crystal plane is straight, the intensity of the (hkil) plane parallel to the target plane can also be regarded as the intensity of the (hkil) pole perpendicular to the target plane. For example, < 20-23 > and < 11-20> are the poles of the (20-25) and (11-20) planes. Therefore, the strengths of (20-25) and (11-20) are also the strengths representing < 20-23 > and < 11-20 >, respectively. Unlike the plane and direction index (Miller) in cubic crystals, the plane and direction in hexagonal crystals are not shared with the same index (Miller-Bravais). For basic or prismatic only, the Miller Bravais direction is the same as the flat number. When the crystal planes (20-25) and (11-20) are respectively parallel to the target plane (Fig. 6), < 20-23 > and < 11-20 > are oriented perpendicular to the target plane. Therefore, the structures with < 20-23 > and < 11-20 > perpendicular to the target surface can be referred to here (20-25) in Fig. 6A and (11-20) in Fig. 6B, respectively. Because some crystal planes such as (20-25) do not have or have very weak X-ray diffraction peaks, the intensity of the crystal plane is determined by (0002), (10-11), (10-13), and (11-20) ) It is estimated by the function structure of the directional distribution of the four measuring pole patterns, rather than directly measured by X-ray diffraction. The strong (20-25) structure is relative to the (0002) -36 ° structure (the average peak intensity is 36 ° from the (0002) polar pattern). (0002)-α is represented as representing an average tilt α angle that allows the (0002) plane to have an angle relative to the target plane to be sputtered. It is calculated according to the inclination angle of the highest five intensity peaks of the uneven (0002) polar pattern in the following equation: α = Σ I i α, / Σ 11 where (^ and L · are the (0002) inclination relative to the i-th intensity peak, respectively Angle and relative X-ray intensity. This paper size is suitable for Chinese storehouse standard 适 ((, NS) Λ4 specification (210X297 mm) τ -------------- IT ----- -(Please read the precautions on the back before filling this page) 355lpif.doc / 002 A7 ____B7 V. Description of the Invention (q) The following discussion explains the relationship between the crystal structure and the sputtering properties including step coverage. In order to obtain the vertical target The high proportion of Ti emission on the surface, as shown in Figures 6A and 6B, the high proportion of grains must be oriented parallel to the target surface at (20-25) and / or (11-20). According to the present invention, the following crystal structure The intensity of (11-20) parallel to the target plane is at least 1.5 times random. In order to maximize the intensity of (20-25), the average tilt angle of (0002) relative to the target surface is preferably between about 32 ° and 40 °. The most desirable α 値 is about 36 °. (20-25) is sandwiched between (10-12) and (10-13) (Figure 7). Because (20-25) is only about these two crystal planes 5 °, The high strength of 10-12) and (10-13) is also helpful for the improvement of step coverage. This requires the high strength sum of (20-25), (10-12) and (10-13). Because (0002) For 36 degrees for (20-25) and 90 degrees for (11-20), Ti emission is significantly away from the target plane perpendicular to the strong (0002) structure. Therefore, it is necessary to have a very low (0002) parallel to the target surface Intensity. The target provided by the present invention, wherein the intensity of (0002) parallel to the target surface is 1.8 times random or lower, preferably less than 1.0 times random. The decision rate in the Ministry of Economic Affairs is T, Consumption Hezhusha Yinfan (please read the precautions on the back before filling this page) In the target of the present invention, two types of microstructures can be generated, and the structure obtained depends on the microstructure. The microstructure of the first type contains uniformity Distribution of twin crystals. The twin crystal component is defined by the grain region component containing the twin crystals in the cross section of the sample. The twin crystal component can be controlled and can reach up to 100%. The microstructure of the second type contains recrystallized grains Figures 8A and 8B show the grains and twins, and Figures 9A and 9B show the twins and grains with photomicrographs, respectively. Parallel to The (11-20) higher strength of the surface and the dual crystal microstructure are easier to obtain, rather than the crystalline microstructure. This paper scale, which is more than 1.5 times random and parallel to the target surface, uses the Chinese national standard ((, NS) Λ4 is present (210X297 mm) 3551pif.doc / 002 3551pif.doc / 002 A7 of Consumer Cooperatives of the Ministry of Economic Affairs and Intermediate Standards Bureau, A7 _____B7 V. Description of the invention (⑺) (11-20) can be obtained from the double crystal microstructure . On the other hand, the recrystallized microstructure accompanies higher (20-25), (10-12), and (10-13) total intensity u parallel to the target surface, and (20-25) intensity parallel to the target surface. Can be more than 3 times with recrystallization microstructure. And the lower (0002) intensity parallel to the target surface and the crystalline microstructure are easier to obtain, rather than the twin crystal microstructure. (0002) less than 0.3 times random parallel to the target surface can be obtained from the recrystallized microstructure. A grain size as small as 10 ^ ζιη can be obtained and a grain size of 5 μιη is desired. The difference between the target of the present invention and the conventional target is that (a) the target of the present invention is in the phase of (0002) -α (α-30 ° ~ 40 ° 'which contains strong (20-25)) and (11-20) The neighborhood has high strength; (b) the structural components of (0002) are significantly reduced; (c) the uniform distribution of the twin crystals in the microstructure containing high (11-20) structural components; and (d) the target of the present invention and Conventional targets provide better step coverage or collimation yield compared to conventional targets. Because of the traditional mechanical deformation, that is, rolling and casting, the resulting structure is distributed from (10-17) to (10-13), which is close to (20-25) but far away from (1, 20), and must be used in The method shown in Figure 10 is not the traditional method. The method of forming the desired structure is described below, but it should be understood that other methods of processing Ti can be used to achieve the same purpose. For example, different types of casting, rolling, and other metal working with the same effect can be used, assuming that the metal working program used is to make the active deformation of the workpiece into a target, the advantages of deformation sliding and double crystal composition. The method for obtaining the structure of the present invention involves arranging a dual crystal deformation program as the main deformation mechanism in the final deformation step to generate the final structure, which is the opposite of the traditional deformation mechanism of the traditional processing target. Can use Chinese paper jujube (CNS) Λ4 specification (210X297 mm) via this paper size (please read the precautions on the back before filling this page) • 1Τ 3551pif.doc / 002 3551pif.doc / 002 Warp " -Department of the tenth round of military service disappeared in Hezhushe printed A7 B7 V. Description of the invention (丨 I) Twin crystals with a small amount of deformation obtained a significant proportion of grains. Figures 10 and 11 compare traditional processing and the present invention to processing that maximizes step coverage to the target. One process is illustrated in the flow chart in Fig. 11, but it may obtain the desired orientation effect from other processes. As used herein, the term "deformation" refers to a step that results in a reduction in area or thickness in a cross section. The first step of this method includes mechanical deformation and annealing to recrystallize. Most of the mechanical deformation ("main deformation") is obtained in the first processing step. However, the deformation step in this step should be performed at any temperature. Cold deformation, especially in cold rolling, is preferred to obtain a better uniformity and sharper structure. In the main or first deformation, the high-purity titanium billet suffers a thickness reduction of at least 50%, preferably at least 70%. The deformed body is then heat treated to obtain a recrystallized microstructure with a strong (0002) -aw structure. The subscript "Γ indicates the first processing step; the result after that. The inclination angle α depends on the metal processing process and heat treatment. When the target body is rolled more than 70%, it is usually 20-40. Typically 30. In the second processing step of the method of the present invention, the body is then deformed again, such as by rolling or casting, to obtain a thickness reduction between about 5% and 30%, preferably about 10%. 20%. The second deformation step results in the recrystallization microstructure of the two main component structures' (0002), α 2 and (11-20) structures. The subscript "2" indicates the oblique observed after the second deformation Angle α 2. The angle of inclination is usually 2 to 6 degrees higher than α | depending on the amount of the second deformation and the temperature. The difference between (2 2 and α, is the decrease in the temperature of the second deformation and the second deformation of the star. The increase is increased. It is preferable that the second deformation step is performed under freezing temperature 'although the deformation under the bathroom is acceptable. • This paper ruler is thin Chinese national camphor :) ,, Na (210χ297; ^-~~ -(Please read the note on the back before filling this page),? Τ 3551pif.doc / 002 A7 B7 V. Description of the invention (丨 >) Hot rolling at the recrystallization temperature can produce higher strength on (11-20) parallel to the target surface compared to only cold rolling after recrystallization. 1. Total thickness is reduced (relative to the thickness at the beginning of freezing rolling) ) It is preferably less than 35% ° The target manufactured by this method can have deformed or restored double crystals, or partially recrystallized microstructures with low component twins, or completely recrystallized microstructures without double crystals. Recrystallization Does not significantly change the tilt angle 2 like deformation. As a result of recrystallization, the grain component with an orientation of about (0002) -α2 increases but the (11-20) component parallel to the target surface decreases. And, a relatively low value is obtained (11-20) component parallel to the target surface, which is better. The target structure after the restoration heat treatment basically retains the same starting structure with the twin-crystal microstructure. The grains with the twin-crystal microstructure can be specially oriented The grain boundary is defined by the twin crystal boundary. If the microstructure is retained in the final product of the twin crystal microstructure, it is preferable that the grain is less than 20 μm after the heat treatment in the first processing step. A lower parallel to the rake surface will be generated ( 11-20) component, which is desirable for better step coverage. The main deformation process (ie the first deformation step) in the invention is to obtain a uniform and small grain size, and to obtain the main part of the expected reduction in total thickness. After casting an ingot as a billet, the main deformation can be rolled. And / or fixed casting, but not limited to these methods. The target body should be recrystallized after the first deformation process to maximize the amount of twin crystals during the second deformation. The second deformation is the second deformation. In order to produce a significant amount of (〖1-20) and change the α angle through the twin crystal. The deformation method can be rolling and / or any method that produces the same effect in the twin crystal and rotating the grain (11_ 20). The deformation should be Between about 5% and 30%, preferably between about 10% and 20 ° /. In order to make the double crystal instead of sliding, this paper ruler national standard (210X297 mm) (Please read the precautions on the back before filling this page) 'Installation ·-° • g ·. 3551pif.doc / 002 A7 B7 5. Description of the Invention (0) is the main deformation mechanism. When the second deformation is lower than about 5%, the amount of deformation is too small to cause a significant change in structure. When the second deformation amount exceeds about 30%, 1 can obtain a higher component parallel to the target surface (0002). The amount of double crystals and (11-20) should be maximized in different ways during the second deformation, including low deformation temperature, such as freezing temperature deformation, higher deformation rate, and larger grains. In the second deformation, the freezing temperature is preferred, although the deformation at room temperature can also produce obvious double crystals. Twin crystals are the main part at freezing temperature than at room temperature. Deformation at freezing temperature is also provided compared to deformation at room temperature. More uniform twin structure. Before deformation at freezing temperature, the Ti body can be frozen to a suitable low temperature or a desired low temperature. Titanium is very brittle at freezing temperatures, especially at high purity. The preferred method of deformation is rolling, casting, or other methods that produce similar results. After the first process (combination of the first deformation and heat treatment), the grain size of less than 20 wm is the lowest strength of (0002) desired for the second deformation. Smaller grains in the first process can also lead to smaller grains in the final product with good film uniformity. Preferably, with α, which is (0002) -ct between 30 and 40 degrees, the structure should be obtained after the first process (the combination of the first deformation and heat treatment) so that it contains (0002) -36 ° adjacent The structures of (0022) -α2 and (11-20) are marked. Ideally, at least 70% rolling reduction 'is applied in the first process step so that the freezing temperature deformation such as rolling or casting in the second deformation results in (0002) -36. And (11-20) are strong group mothers. The minimum grain size of the twin crystals after recrystallization is usually larger than the grain size of the twin crystals. Therefore, different grain sizes can be obtained by controlling the two process steps. After the dual method, a paper size greater than 15 " m can be obtained in the final product. This state of the country's national standard ((, NS) ΛΊ specifications (210X 297 public funds.) (Please read the precautions on the back before filling this page)

*1T 3551pif.doc/002 A7 B7_ 五、發明説明(丨/ ) 晶粒粒子,或若欲良好薄膜均句性可獲得較細之晶粒大 小。降低晶粒大子之有效方法爲在第一變形步驟中再精煉 晶粒大,小。5# m或較小之晶粒大小可經由在第一變形(於 一錠塊上)及在第一變形步驟前之坯體上經由嚴格變形而 獲得,以致在最終產品中可獲得5//m至15//m間之之晶 粒大小。小於5/zm之晶粒大小可在具有新結構之靶中獲 得,若晶粒大小在主要變形及熱處理後爲小於2" m。 在主要及第二變形中使用之滾軋方法可爲單向或橫 交滾軋。在單向滾軋中,滾軋沿相同方向通過。在橫交滾 軋中,滾軋沿不同方向通過。理想上,橫交滾軋在滾筒通 過對中進行,且在每對中之通過一滾軋後爲接著以90度 進行第二次通過,以使最初形狀或外形恢復。 下列實施例槪述於表1中,將1號及2號試樣代表的 方法與本發明之3至6號試樣代表的方法比較。表2槪述 此些試樣之純度、晶粒大小及結構。在表2中晶面的値爲 以倍隨機表示的強度。(〇〇〇2)之傾斜角爲在(0002)平面及 以在(0002)極圖形的五個最高強度峰的平均所估算的靶 面間之平均角度。 下列所述之方法由圓柱狀的坯料開始,其由柱狀構造 錠塊在815°C鑄造以沿徑向方向70%變形。 用於實施例之試樣組合物描述於表、3、4、5及6。表 3及4分別說明由1號及2號試樣產生之錠塊的化學性質。 表5說明由3號及4號試樣產生之錠塊的化學性質,及表 6說明由5號及6號試樣產生之錠塊的化學性質。除了 S、 ______17__ $紙张尺度中國國家樣ϋ (挪)八4規格(210'乂297公釐) (請先閲讀背面之注意事項再填寫本頁) 、1Τ 經消部中次標卑局兵J-消fr合作社印掣 3551pif.doc/002 A7 B7__ 五、發明説明(Ο Η、C、Ν及〇以LEC0方法測定外,所有元素的濃度使用 GDMS分析方法以測定。 1號試樣:一坯料塊藉由在相距45〇方向橫交滾軋冷 加工至80%變形,然後在760°C退火75分鐘。在此試樣 中最強之結構成份爲(0002)-110,其在(0002)及(10-17) 具有高強度。在(11-20)具可忽略的強度。 2號試樣:一坯料塊藉由在相距45〇方向橫交滾軋冷 加工至80%變形,然後在510°C退火120分鐘。在此試樣 中最強之結構成份爲(10-13),附隨相較於1號試樣爲高 之(20-25)強度及低之(0002)強度。在此靶中具有如同1 號試樣之可忽略的(11-20)強度。 3號試樣:一坯料塊藉由在相距45〇方向橫交滾軋冷 加工至80%變形,然後在565°C再結晶30分鐘。其接著 凍溫滾軋加工’其包含在_73°C下二垂直方向通過,進一 步15%之減少率(相對於冷乳之最終厚度)。此凍溫滾軋之 粗坯在427°C加熱處理30分鐘’其僅導致回復。熱處理之 試樣在(11-20)及(20-25)具有顯著強度峰,且含有大於 95%之雙晶。此方法亦產生較弱(00〇2)強度。 4號試樣··一坯料塊藉由在相距45。方向橫交滾軋冷 加工至80%變形,然後在621°C再結晶30分鐘。其接著 凍溫滾軋加工,其包含在-73°C下二垂璋方向通過,進一 步15%之減少率(相對於冷軋之最終厚度)。此凍溫滾軋之 粗坯在635°C加熱處理60分鐘’其導致再結晶。熱處理之 試樣具有比3號試樣更強之(20-25)強度。其相較於1號 本紙張尺度ϋϊϋ ®家樣中_(⑽)Λ4規格(21GX297公釐) ;--------------,1T------·" (請先聞讀背面之注意事項再填寫本頁) 經"·部中次榡準局员J消费合竹社印聚 3551pif.doc/002 A7 B7 五、發明説明(((;) 至3號試樣具有較強之(0002)強度。因爲再結晶,在此靶 中比3號試樣具有較低之(11-20)強度。 51號試樣:一坯料塊藉由在相距45°方向橫交滾軋冷 加工至75%變形,然後在593°C再結晶45分鐘。其接著 凍溫滾軋加工’其包含在-48°C下二垂直方向通過,進〜 步14%之減少率(相對於冷軋之最終厚度)。此凍溫滾軋之 粗坯在704°C加熱處理60分鐘,其導致再結晶。此靶具有 中等之(11-20)強度,在靶間具相對強之(20-25)強度。 6號試樣:一坯料塊藉由在相距45°方向橫交滾軋冷 加工至75%變形’然後在565°C再結晶45分鐘。第二變 形步驟括一凍溫橫交滾軋’接著一熱橫交滾軋。凍溫滾軋 包含在-73°C下二垂直方向通過,具14%之減少率(相對於 冷軋之最終厚度)。凍溫滾軋之粗坯在熱軋前於510°C熔爐 中靜置30分鐘。熱軋包含在310°C下二垂直方向通過,具 12.6%之減少率(相對於冷軋之最終厚度)’其造成第二變 形總量爲約26.6%。粗还然後在593°C再結晶60分鐘。此 靶具有相對高之(H-20)強度’但較低之(20_25)強度。 表2亦顯示試樣之純度:“5N5”顯示99.9995wt%Ti ; 5N8”顯示 99.9998wt%Ti ;及 5N”顯示 99.999wt%Ti :所有 百分比排除氣體。* 1T 3551pif.doc / 002 A7 B7_ 5. Description of the invention (丨 /) Grain particles, or if you want a good thin film uniformity, you can get a finer grain size. An effective method to reduce the grain size is to re-refine the grain size in the first deformation step. The grain size of 5 # m or less can be obtained through strict deformation on the first deformation (on an ingot) and the green body before the first deformation step, so that 5 // can be obtained in the final product The grain size between m and 15 // m. A grain size of less than 5 / zm can be obtained in a target with a new structure, if the grain size is less than 2 " m after major deformation and heat treatment. The rolling method used in the main and second deformation may be unidirectional or cross rolling. In one-way rolling, rolling passes in the same direction. In cross rolling, rolling passes in different directions. Ideally, the cross-rolling is performed in the drum by centering, and after one pass in each pair, a second pass is then performed at 90 degrees to restore the original shape or shape. The following examples are described in Table 1. The methods represented by samples Nos. 1 and 2 are compared with the methods represented by samples Nos. 3 to 6 of the present invention. Table 2 describes the purity, grain size and structure of these samples. In Table 2, 値 of the crystal plane is an intensity expressed in random multiples. The inclination angle of (002) is the average angle between the (0002) plane and the target surface estimated by averaging the five highest intensity peaks in the (0002) polar pattern. The method described below starts with a cylindrical billet, which is formed from a columnar structure. The ingot is cast at 815 ° C to deform 70% in the radial direction. The sample compositions used in the examples are described in Tables, 3, 4, 5, and 6. Tables 3 and 4 show the chemical properties of the ingots produced from samples 1 and 2, respectively. Table 5 illustrates the chemical properties of the ingots produced from Samples 3 and 4, and Table 6 illustrates the chemical properties of the ingots produced from Samples 5 and 6. Except for S, ______17__ $ Paper size Chinese national sample (Norway) 8 4 size (210 '乂 297 mm) (Please read the precautions on the back before filling this page), 1T The Ministry of Economic Affairs and the Ministry of Standards, the lowest bidder J- 消 fr 合作社 印 印 3551pif.doc / 002 A7 B7__ 5. Description of the invention (0 Η, C, N and 〇 measured by LEC0 method, the concentration of all elements using GDMS analysis method to determine. Sample No. 1: a The billet was cold-rolled to 80% deformation by cross rolling in a direction of 45 °, and then annealed at 760 ° C for 75 minutes. The strongest structural component in this sample was (0002) -110, which was between (0002) and (10-17) has high strength. It has negligible strength at (11-20). Sample No. 2: A billet is cold-rolled to 80% deformation by cross rolling in a direction of 45 ° and then at 510 ° C annealing for 120 minutes. The strongest structural component in this sample is (10-13), with a higher (20-25) strength and a lower (0002) strength compared to sample No. 1. Here the target It has negligible (11-20) strength as sample No. 1. Sample No. 3: A billet is cold-rolled to 50 ° by cross rolling in the direction of 45 °. 80% deformation, and then recrystallize for 30 minutes at 565 ° C. It is followed by freeze-temperature rolling processing, which includes two vertical passes at _73 ° C, a further 15% reduction rate (relative to the final thickness of cold milk) .The cold-rolled rough billet was heat-treated at 427 ° C for 30 minutes. It only caused recovery. The heat-treated samples had significant intensity peaks at (11-20) and (20-25), and contained more than 95% Double crystal. This method also produces weaker (0000) strength. Sample No. 4 · A block is rolled and cold-worked to 80% deformation at a distance of 45 ° and then recrystallized at 621 ° C for 30 Minutes. It is followed by freezing and rolling, which includes passing at -73 ° C in the vertical direction, and a further 15% reduction (relative to the final thickness of cold rolling). ° C heat treatment for 60 minutes' which results in recrystallization. The heat-treated sample has a stronger (20-25) strength than the sample No. 3. Compared to the No. 1 paper size ϋϊϋ ® in the home sample _ (⑽) Λ4 specification (21GX297 mm); --------------, 1T ------ &" (Please read the precautions on the back before filling this page) " · Middle-time associate member J Consumer Hezhu Society Yinju 3551pif.doc / 002 A7 B7 V. Description of the invention (((;) to No. 3 samples have stronger (0002) strength. Because of recrystallization, this target Medium No. 3 sample has a lower (11-20) strength. Sample No. 51: A block is rolled and cold worked to a 75% deformation by crosswise rolling at a direction of 45 °, and then recrystallized at 593 ° C. 45 minute. It is followed by the freezing temperature rolling process, which includes passing in two vertical directions at -48 ° C, and further reducing the rate by 14% (relative to the final thickness of cold rolling). This freeze-rolled rough stock was heat treated at 704 ° C for 60 minutes, which resulted in recrystallization. This target has a medium (11-20) intensity and a relatively strong (20-25) intensity between targets. Sample No. 6: A block was rolled and cold worked to a 75% deformation by cross rolling in a direction of 45 ° and then recrystallized at 565 ° C for 45 minutes. The second deformation step includes a freezing cross-rolling 'followed by a hot cross-rolling. Freezing rolling includes two vertical passes at -73 ° C, with a 14% reduction (relative to the final thickness of cold rolling). The cold-rolled rough billet was allowed to stand in a furnace at 510 ° C for 30 minutes before hot rolling. Hot rolling involves passing in two vertical directions at 310 ° C with a reduction rate of 12.6% (relative to the final thickness of cold rolling) 'which causes the total amount of the second deformation to be about 26.6%. The crude was then recrystallized at 593 ° C for 60 minutes. This target has a relatively high (H-20) intensity 'but a lower (20-25) intensity. Table 2 also shows the sample purity: "5N5" shows 99.9995wt% Ti; 5N8 "shows 99.9998wt% Ti; and 5N" shows 99.999wt% Ti: all percentages exclude gas.

(請先閲讀背面之注意事項再填寫本頁J -訂· 綵'- 經滴部中决標卑局:3CJ-消灸合作社印袈 i紙張尺度珀;1] ( rNS } Λ4^ ( 210X297^* ) 3551pif.doc/002 A7 B7 五、發明说明(丨1) 表1實施例2中靶處理方法的槪述 實施例 方法 } 1號 坯料塊—冷橫交滾軋80% —在760°C退火75分 鐘 2號 坯料塊—冷橫交滾軋80%->在510°C退火75分 鐘 3號 坯料塊—第一次變形:冷橫交滾軋80%-在565 °C退火30分鐘—第二變形:在-73°C凍溫橫交滾 軋15% —在427°C再結晶退火60分鐘 4號 坯料塊—第一次變形:冷橫交滾軋80% —在621 °C退火30分鐘—第二變形:在-73°C凍溫橫交滾 車L 15%—在635°C再結晶退火60分鐘 5號 坯料塊-第一次變形—冷橫交滾軋75% —在 593°C退火45分鐘—第二變形:在-48°C凍溫橫 交滾軋14%—在704°C再結晶退火60分鐘 6號 坯料塊—第一次變形—冷橫交滾軋75% —在 565°C退火45分鐘—第二變形:在-73°C凍溫橫 交滾軋14% —在510°C再結晶退火30分鐘—在 3HTC橫交滾軋12.6% (第二變甲全部爲26.6%) —在593°C退火60分鐘 -----1 (諳先閲讀背面之注意事項再填寫本頁) ,11 _________20_ 本紙张尺ϋ用中國國家標率(CNS ) Λ4規格(210X 297公釐) 3551pif.doc/002 A7 B7 五、發明説明(1¾ ) 表2純度、粒子大小及結構(倍-隨機) 1號 2號 3號 4號 5號 6號 金屬純1度 5N5 5N8 5N 5N 5N 5N 粒子大小 75 14 <10* 29 73 26 (0002) 傾斜角 11° 34° 37° 37° 28° 30° (10-10) 0.0 0.0 0.0 0.6 0.2 0.4 (0002) 5.5 2.5 1.3 0.4 0.4 1.3 (10-11) 0.0 0.0 0.0 0.0 0.2 0.4 (10-12) 1.4 1.2 1.6 2.3 1.8 1.0 (10-13) 2.7 6.2 2.2 2.9 3.0 2.6 (10-17) 10.0 5.5 1.8 0.8 1.3 2.3 (11-20) 0.0 0.1 1.8 1.4 0.6 0.9 (20-25) 2.3 3.2 2.5 3.5 3.3 2.6 *粒子之95%區域爲雙晶 (請先閲讀背面之注意事項再填寫本頁) 訂 '續. 本紙張尺度通川中國國家標枣((:NS ) Λ4規格(210X297公釐) 3551pif.doc/002 A7 B7 五、發明説明(("]) 經满部中次榡準局兵-T消於合竹社印紫 表3 元素 濃度 (ppm wt·) 元素 濃度 (ppm wt.) 元素 濃度 (ppm wt.) Li 1 <0.005 Ga <0.050 La <0.005 Be <0.005 Ge <0.050 Ce <0.005 B <0.010 As <0.010 Nd <0.005 F <0.050 Se <0.010 Hf <0.050 Na 0.020 Br <0.010 Ta <1.000 M2 <0.010 Rb <5.000 W <0.010 A1 0.230 Sr <3000 Re <0.010 Si 0.130 Y <200 Os <0.010 P <0.010 Zr 0.540 Ir <0.010 S 6.000 Nb <0.200 Pt <0.050 Cl 0.030 Mo <0.050 Au <0.050 K <0.010 Ru <0.010 Ηε 0.100 Ca <0.200 Rh <0.010 Tl <0.010 Se <0.050 Pd <0.010 Pb <0.010 Ti 某材 As <0.050 Bi <0.010 V 1.600 Cd <0.050 Th <0.0005 Cr 0.130 In <0.050 U <0.0005 Mn <0.005 Sn <0.050 H 3.050 Fe 2.000 Sb <0.050 C 7.000 Co <0.005 Te <0.050 (N 3.000 Ni 0.010 I <0.010 〇 70 Cu <0.050 Cs <0.010 Zn <0.100 Ba <0.005 ____22_ 本紙張尺度讳用中國國家標冷((挪)六4規格(210^< 297公釐) (請先閱讀背面之注意事項再填寫本頁) V裝· 訂 3551pif.doc/002 3551pif.doc/002 經满部中决掠^>e;ac.T消於合竹.社印來 A7 B7 元素 濃度 i ( ppm wt.) 元素 濃度 (ppm wt.) 元素 濃度 (ppm wt.) Li <0.005 Ga <0.050 La <0.005 Be <0.005 Ge <0.050 Ce <0.005 B <0.010 As <0.010 Nd <0.005 F <0.050 Se <0.050 Hf <0.010 Na 0.010 Br <0.050 Ta <5.000 Mg <0.050 Rb <5.000 W <0.010 A1 0.100 Sr <3000 Re <0.010 Si 0.100 Y <200 Os <0.010 P <0.010 Zr 0.480 Ir <0.010 S 1.000 Nb <0.200 Pt <0.050 Cl <0.010 Mo <0.050 Au <0.050 K <0.010 Ru <0.010 Hg <0.010 Ca 0.400 Rh <0.050 Tl 0.100 Se <0.050 Pd <0.010 Pb <0.010 Ti 基材 Ag <0.050 Bi <0.020 V 0.550 Cd <0.050 Th <0.0005 Cr 0.068 In <0.050 U <0.0005 Mn <0.005 Sn <0.050 H 1.000 Fe 2.100 Sb <0.050 C 5.000 Co 0.007 Te <0.050 N 2.000 Ni 0.055 I <0.010 0 79 Cu <0.050 Cs <0.010 Zn <0.050 Ba <0.005 (請先閱讀背面之注意事項再填寫本頁) ,ιτ 23 本紙張尺度適州中國國家標卒((’NS ) Λ4規格(210X297公釐) 3551pif.doc/002 3551pif.doc/002 經漪部中决標隼局員-T消炝合竹社印褽 A7 B7 五、發明説明(*z| ) 表5 元素 濃度 * (ppm wt.) 元素 濃度 (ppm wt.) 元素 濃度 (ppm wt.) Li <0.005 Ga <0.050 La <0.005 Be <0.005 Ge <0.050 Ce <0.005 B <0.010 As <0.010 Nd <0.005 F <0.050 Se <0.050 Hf <0.010 Na 0.010 Br <0.050 Ta <5.000 Mg <0.050 Rb <5.000 W <0.010 A1 0.200 Sr <3000 Re <0.010 Si 0.230 Y <200 Os <0.010 P <0.010 Zr 0.370 Ir <0.010 S 4.000 Nb <0.200 Pt <0.050 Cl 0.005 Mo <0.050 Au <0.050 K <0.010 Ru <0.010 Hg 0.100 Ca <0.500 Rh <0.050 Tl <0.010 Se <0.050 Pd <0.010 Pb <0.010 Ti 基材 Ag <0.050 Bi <0.020 V 0.660 Cd <0.050 Th <0.0005 Cr 0.070 In <0.050 U <0.0005 Mn <0.005 Sn <0.050 H 2.000 Fe 8.8000 Sb <0.050 C 19.000 Co <0.005 Te <0.050 N 3.000 Ni 0.010 I <0.010 \ 0 228 Cu <0.050 Cs <0.010 Zn <0.0500 Ba <0.005 (請先閱讀背面之注意事項再填寫本頁) ______24_ 本紙張尺度州中國國家標今((:NS ) Λ4規格(210X297公釐) 3551pif.doc/002 經漪部中央標準局只-1.消汝合作社印製 A7 B7 五、發明説明(2l) 表6 元素 濃度 1 ( ppm wt.) 元素 濃度 (ppm wt.) 元素 濃度 (ppm wt.) Li <0.005 Ge <0.050 Nd <0.005 Be <0.005 As <0.010 Sm <0.005 B <0.010 Se <0.050 Eu <0.005 F <0.050 Br <0.050 Gd <0.005 Na 0.010 Rb <5.000 Tb <0.005 Mg <0.050 Sr <3000 Dy <0.005 A1 1.300 Y <200 Ho <0.005 Si 0.380 Zr 0.420 Er <0.005 P <0.010 Nb <0.200 Tm <0.005 S 0.700 Mo <0.050 Yb <0.005 Cl 0.010 Ru <0.010 Lu <0.005 K <0.010 Rh <0.050 Hf <0.010 Ca 0.400 Pd <0.010 Ta 5.000 Se <0.050 Ag <0.050 W <0.010 Ti 基材 Cd <0.050 Re <0.010 V 0.190 In <0.050 Os <0.010 Cr 0.180 Sn <0.050 Ir <0.010 Mn <0.005 Sb <0.050 Pt <0.050 Fe 3.800 Te <0.050 Au <0.050 Co 0.005 I <0.010 Hg <0.110 Ni 0.030 Cs <0.010 Tl <0.010 Cu 0.170 Ba <0.005 Pb <0.010 Zn <0.050 La <0.005 ! Bi <0.020 Ga <0.050 Ce <0.005 Th <0.0005 Pr <0.005 U <0.0005 ^--------k裝------ΪΤ------$ (請先閲讀背面之注意事項再填寫本頁) _______25 本紙张尺度用中國國家標苹((、叫八4規格(210 '乂297公釐)(Please read the notes on the back before filling in this page J-Order · Cai'-Jingdi Department of Final Bid: 3CJ-Xiao Miao Cooperative Co., Ltd. i Paper Scale Po; 1] (rNS) Λ4 ^ (210X297 ^ *) 3551pif.doc / 002 A7 B7 V. Description of the invention (丨 1) Table 1 Descriptive example method of target processing method in Example 2} No. 1 billet-cold cross rolling 80%-at 760 ° C No. 2 billet annealed for 75 minutes-cold cross rolling 80%-> Annealed No. 3 billets for 75 minutes at 510 ° C-First deformation: 80% cold cross rolled-annealed at 565 ° C for 30 minutes —Second deformation: 15% cross rolling at freezing temperature of -73 ° C — Recrystallization annealing at 427 ° C for 60 minutes No. 4 billet — First deformation: 80% cold cross rolling — at 621 ° C Annealing for 30 minutes—Second deformation: Cross-roller L 15% at -73 ° C freezing temperature—Recrystallization and annealing for 60 minutes at 635 ° C—No. 5 billet—First deformation—75% cold cross-rolling— Annealing at 593 ° C for 45 minutes-second deformation: 14% cross-rolling at -48 ° C freezing temperature-recrystallization annealing at 704 ° C for 60 minutes No. 6 billet-first deformation-cold cross-rolling 75%-45 minutes at 565 ° C-Second change Shape: 14% cross-rolling at freezing temperature of -73 ° C — recrystallization and annealing for 30 minutes at 510 ° C — 12.6% cross-rolling at 3HTC (all second variants are 26.6%) — annealing at 593 ° C 60 minutes ----- 1 (谙 Please read the notes on the back before filling this page), 11 _________20_ This paper size is in Chinese National Standard (CNS) Λ4 size (210X 297 mm) 3551pif.doc / 002 A7 B7 V. Description of the invention (1¾) Table 2 Purity, particle size and structure (times-random) No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 Metal purity 1 degree 5N5 5N8 5N 5N 5N 5N Particle size 75 14 < 10 * 29 73 26 (0002) 11 ° 34 ° 37 ° 37 ° 28 ° 30 ° (10-10) 0.0 0.0 0.0 0.6 0.2 0.4 (0002) 5.5 2.5 1.3 0.4 0.4 1.3 (10-11) 0.0 0.0 0.0 0.0 0.2 0.4 (10-12) 1.4 1.2 1.6 2.3 1.8 1.0 (10-13) 2.7 6.2 2.2 2.9 3.0 2.6 (10-17) 10.0 5.5 1.8 0.8 1.3 2.3 (11-20) 0.0 0.1 1.8 1.4 0.6 0.9 (20-25 ) 2.3 3.2 2.5 3.5 3.3 2.6 * 95% of the particles are double crystals (please read the precautions on the back before filling this page) Order 'continued. This paper size is Tongchuan China National Standard Date ((: NS) Λ4 Specification ( 210X297 mm) 3551pif .doc / 002 A7 B7 V. Description of the Invention (") The Manchurian Order quasi-stationary soldier-T disappeared in Hezhusha Printing Purple Table 3 Element Concentration (ppm wt.) Element Concentration (ppm wt.) Elemental concentration (ppm wt.) Li 1 < 0.005 Ga < 0.050 La < 0.005 Be < 0.005 Ge < 0.050 Ce < 0.005 B < 0.010 As < 0.010 Nd < 0.005 F < 0.050 Se < 0.010 Hf < 0.050 Na 0.020 Br < 0.010 Ta < 1.000 M2 < 0.010 Rb < 5.000 W < 0.010 A1 0.230 Sr < 3000 Re < 0.010 Si 0.130 Y < 200 Os < 0.010 P < 0.010 Zr 0.540 Ir < 0.010 S 6.000 Nb < 0.200 Pt < 0.050 Cl 0.030 Mo < 0.050 Au < 0.050 K < 0.010 Ru < 0.010 Ηε 0.100 Ca < 0.200 Rh < 0.010 Tl < 0.010 Se < 0.050 Pd < 0.010 Pb < 0.010 Ti As < 0.050 Bi < 0.010 V 1.600 Cd < 0.050 Th < 0.0005 Cr 0.130 In < 0.050 U < 0.0005 Mn < 0.005 Sn < 0.050 H 3.050 Fe 2.000 Sb < 0.050 C 7.000 Co < 0.005 Te < 0.050 (N 3.000 Ni 0.010 I < 0.010 〇70 Cu < 0.050 Cs < 0.010 Zn < 0.100 Ba < 0.005 ____22_ This paper is forbidden to use Chinese national standard cold ((Norway) June 4 size (210 ^ < 297 mm)) (Please read the precautions on the back before filling out this page) V Book · Order 3551pif.doc / 002 3551pif. doc / 002 After the Manchu Department ^ >e; ac.T disappeared in Hezhu.Sheyin A7 B7 Elemental concentration i (ppm wt.) Elemental concentration (ppm wt.) Elemental concentration (ppm wt.) Li < 0.005 Ga < 0.050 La < 0.005 Be < 0.005 Ge < 0.050 Ce < 0.005 B < 0.010 As < 0.010 Nd < 0.005 F < 0.050 Se < 0.050 Hf < 0.010 Na 0.010 Br < 0.050 Ta < 5.000 Mg < 0.050 Rb < 5.000 W < 0.010 A1 0.100 Sr < 3000 Re < 0.010 Si 0.100 Y < 200 Os < 0.010 P < 0.010 Zr 0.480 Ir < 0.010 S 1.000 Nb < 0.200 Pt < 0.050 Cl < 0.010 Mo < 0.050 Au < 0.050 K < 0.010 Ru < 0.010 Hg < 0.010 Ca 0.400 Rh < 0.050 Tl 0.100 Se < 0.050 Pd < 0.010 Pb < 0.010 Ti substrate Ag < 0.050 Bi < 0.020 V 0.550 Cd < 0.050 Th < 0.0005 Cr 0.068 In < 0.050 U < 0.0005 Mn < 0.005 Sn < 0.050 H 1.000 Fe 2.100 Sb & l t; 0.050 C 5.000 Co 0.007 Te < 0.050 N 2.000 Ni 0.055 I < 0.010 0 79 Cu < 0.050 Cs < 0.010 Zn < 0.050 Ba < 0.005 (Please read the precautions on the back before filling this page) , ιτ 23 This paper is in Shizhou China National Standards (('NS) Λ4 size (210X297 mm) 3551pif.doc / 002 3551pif.doc / 002 The Ministry of Economic Affairs and the Ministry of Final Approval of the Treasury -T 消 合 合 竹 社 印褽 A7 B7 V. Description of the invention (* z |) Table 5 Element concentration * (ppm wt.) Element concentration (ppm wt.) Element concentration (ppm wt.) Li < 0.005 Ga < 0.050 La < 0.005 Be < 0.005 Ge < 0.050 Ce < 0.005 B < 0.010 As < 0.010 Nd < 0.005 F < 0.050 Se < 0.050 Hf < 0.010 Na 0.010 Br < 0.050 Ta < 5.000 Mg < 0.050 Rb < 5.000 W < 0.010 A1 0.200 Sr < 3000 Re < 0.010 Si 0.230 Y < 200 Os < 0.010 P < 0.010 Zr 0.370 Ir < 0.010 S 4.000 Nb < 0.200 Pt < 0.050 Cl 0.005 Mo < 0.050 Au < 0.050 K < 0.010 Ru < 0.010 Hg 0.100 Ca < 0.500 Rh < 0.050 Tl < 0.010 Se < 0.050 Pd < 0.010 Pb < 0.010 Ti substrate Ag < 0.050 Bi < 0.020 V 0.660 Cd < 0.050 Th < 0.0005 Cr 0.070 In < 0.050 U < 0.0005 Mn < 0.005 Sn < 0.050 H 2.000 Fe 8.8000 Sb < 0.050 C 19.000 Co < 0.005 Te < 0.050 N 3.000 Ni 0.010 I < 0.010 \ 0 228 Cu < 0.050 Cs < 0.010 Zn < 0.0500 Ba < 0.005 (Please read the precautions on the back before filling out this page) ______24_ The size of the paper Present ((: NS) Λ4 specification (210X297 mm) 3551pif.doc / 002 Central Standards Bureau of the Ministry of Economic Affairs only -1. Printed by the Consumer Cooperative A7 B7 V. Description of the invention (2l) Table 6 Element concentration 1 (ppm wt.) Elemental concentration (ppm wt.) Elemental concentration (ppm wt.) Li < 0.005 Ge < 0.050 Nd < 0.005 Be < 0.005 As < 0.010 Sm < 0.005 B < 0.010 Se < 0.050 Eu < 0.005 F < 0.050 Br < 0.050 Gd < 0.005 Na 0.010 Rb < 5.000 Tb < 0.005 Mg < 0.050 Sr < 3000 Dy < 0.005 A1 1.300 Y < 200 Ho < 0.005 Si 0.380 Zr 0.420 Er < 0.005 P < 0.010 Nb < 0.200 Tm < 0.005 S 0.700 Mo < 0.050 Yb < 0.005 Cl 0.010 Ru < 0.010 Lu < 0.005 K < 0.010 Rh < 0.050 Hf < 0.010 Ca 0.400 Pd < 0.010 Ta 5.000 Se < 0.050 Ag < 0.050 W < 0.010 Ti substrate Cd < 0.050 Re < 0.010 V 0.190 In < 0.050 Os < 0.010 Cr 0.180 Sn < 0.050 Ir < 0.010 Mn < 0.005 Sb < 0.050 Pt < 0.050 Fe 3.800 Te < 0.050 Au < 0.050 Co 0.005 I < 0.010 Hg < 0.110 Ni 0.030 Cs < 0.010 Tl < 0.010 Cu 0.170 Ba < 0.005 Pb < 0.010 Zn < 0.050 La < 0.005! Bi < 0.020 Ga < 0.050 Ce < 0.005 Th < 0.0005 Pr < 0.005 U < 0.0005 ^ -------- k pack ------ ΪΤ ------ $ (Please read the precautions on the back before filling this page) _______25 This paper uses the Chinese national standard ((, Calling the 8 4 size (210 '乂 297 mm)

3551pif.doc/002 7 7 A B 經满部中次標準局只J.消贽合竹社印聚 五、發明説明(χ>) 如表7所示,具有最強(0002)強度之1號靶具有最低 之階梯覆蓋。2號靶比1號靶提供稍微較高之階梯覆蓋。 因爲I1號及2號靶二者具有可忽略之(11-20)強度,2號靶 所具有在階梯覆蓋上之稍微改良應爲減少(0002)及增加 相鄰之(20-25)強度的結果。進一步之階梯覆蓋改良可經 由增加(11-20)之強度及如3號靶至6號靶所示之減少 (0002)強度而獲得。統計分析顯示在階梯覆蓋的差異確實 在於結構效益。然而應注意階梯覆蓋爲依濺鍍系統及濺鍍 構形而定。因此,較大或較小之階梯覆蓋改良可在不同濺 鍍系統或不同濺鑛構形上產生。 表 7 縱橫比 1號 2號 3號 4號 5號 6號 1.00 0.235 0.240 0.255 0.256 0.251 0.259 1.39 0.152 0.159 0.168 0.164 0.163 0.168 1.78 0.105 0.108 0.114 0.116 0.111 0.111 2.21 0.073 0.076 0.081 0.078 0.079 0.082 2.56 0.058 0.060 0.065 0.062 0.064 0,068 平均階梯 覆蓋 0.125 0.129 0.137 0.135 0.134 0.138 由前述淸楚可知在未偏離本發明下可完成之不同改 變及修飾。因此,本發明僅可由後述之申請專利範圍限 制0 ___________26 本紙張尺度適用中國gj家標枣((、NS > Λ4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) -*3551pif.doc / 002 7 7 AB Manchuria Intermediate Standards Bureau only J. Xiaohe Hezhusha Yinju 5. Description of the invention (χ >) As shown in Table 7, the No. 1 target with the strongest (0002) intensity has Lowest step coverage. Target 2 provides slightly higher step coverage than target 1. Because both I1 and No.2 targets have negligible (11-20) intensity, the slight improvement on the step coverage of No. 2 target should be to reduce (0002) and increase the adjacent (20-25) intensity. result. Further step coverage improvements can be obtained by increasing the intensity of (11-20) and decreasing the intensity of (0002) as shown by targets 3 to 6. Statistical analysis shows that the difference in step coverage really lies in the structural benefits. It should be noted, however, that step coverage depends on the sputtering system and the sputtering configuration. Therefore, larger or smaller step coverage improvements can be created on different sputtering systems or different sputtering configurations. Table 7 Aspect ratio No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 1.00 0.235 0.240 0.255 0.256 0.251 0.259 1.39 0.152 0.159 0.168 0.164 0.163 0.168 1.78 0.105 0.108 0.114 0.116 0.111 0.111 2.21 0.073 0.076 0.081 0.078 0.079 0.082 2.56 0.058 0.060 0.065 0.062 0.064 0,068 Average step coverage 0.125 0.129 0.137 0.135 0.134 0.138 As can be seen from the foregoing, various changes and modifications can be made without departing from the present invention. Therefore, the present invention can only be limited by the scope of the patent application described below. 0 ___________26 This paper size is applicable to Chinese gj family standard dates ((, NS > Λ4 specifications (210X297 mm)) (Please read the precautions on the back before filling out this page)- *

Claims (1)

經濟部中央標率局貝工消費合作社印¾ 3551pif.doc/002 Βσ C8 D8 六、申請專利範圍 1. 一種鈦濺鍍靶,其在與靶平面垂直之(20-25)面加 上(11-20)面之總強度爲大於4.1倍隨機,且(20·25)面之 強度爲至少1.5倍隨機。 2. 如申請專利範圍第1項之鈦濺鍍靶,其中垂直於紀 平面之(0002)面之強度爲小於1倍隨機。 3. —種具有再結晶微結構之鈦濺鍍靶,其在與靶平面 垂直之(11-20)面之總強度爲等於或大於0.4倍隨機,且 (20-25)面之強度爲至少1.5倍隨機。 4. —種具有再結晶微結構之鈦濺鍍靶,其並具有構造 爲(a)在與靶平面垂直之(11-20)面之總強度爲等於或大 於0.4倍隨機;且(20-25)、(10-13)及(10-12)面的強度 總和爲至少1.5倍隨機。 5. 如申請專利範圍第3項之鈦濺鍍靶,其中垂直於耙 平面之(0002)面之強度爲小於1倍隨機。 6. 如申請專利範圍第4項之鈦濺鍍靶,其中垂直於革巴 平面之(0002)面之強度爲小於1倍隨機。 7. 如申請專利範圍第1項之鈦濺鍍靶,其中平均粒子 大小爲約15 // m或較小。 8. 如申請專利範圍第3項之鈦濺鍍靶,其中平均粒子 大小爲約15 # m或較小。 9. 如申請專利範圍第4項之鈦濺鍍靶,其中平均粒子 大小爲約15 // m或較小。 10. 如申請專利範圍第1項之鈦濺鍍靶,其中平均粒 子大小爲約5 &quot; m或較小。 ___ 27 本紙張尺度適用中國國家標準(CNS &gt; A4規格(210X297公釐) ---------------^------.¾ (請先閲修背面之注意事項再填寫本頁) 3551pif.doc/002 A8 BE C8 D8 六、申請專利範圍 11. 如申請專利範圍第3項之鈦濺鍍靶,其中平均粒 子大小爲約5^111或較小。 12. 如申請專利範圍第4項之鈦濺鍍靶,其中平均粒 子大小爲約5 μ m或較小。 13. —種在微結構中具有至少70%雙晶晶粒之鈦濺鍍 靶,其並具有在與靶平面垂直之(11-20)面之強度爲1倍 隨機。 14. 一種鈦濺鍍靶,其具有結構爲在微結構中具有至 少70%雙晶晶粒,並具有結構爲在與靶平面垂直之(11-20) 面之強度爲1倍隨機,且(20-25)面之強度爲至少1.5倍 隨機。 15. —種鈦濺鍍靶,其具有結構爲在微結構中具有至 少70%雙晶晶粒,並具有結構爲在與靶平面垂直之(11-20) 面之強度爲1倍隨機,且(20-25)、(10-13)及(10-12)面 的強度總和爲至少1.5倍隨機。 16. 如申請專利範圍第13項之鈦濺鍍靶,其部份由雙 晶微結構再結晶。 17. 如申請專利範圍第14項之鈦濺鍍靶,其部份由雙 晶微結構再結晶。 18. 如申請專利範圍第15項之鈦濺鍍靶,其部份由雙 晶微結構再結晶。 19·如申請專利範圍第13項之鈦濺鍍靶,其中雙晶由 再結晶微結構產生,其具有平均粒子大小爲約15/zm或較 小。 28 本紙張尺度逋用中國國家標準(CNS ) A4规格(210X297公着) l---------裝— (請先Ht*'背面之注意事項再填寫本頁) 訂 m- 經濟部中央標率局貝工消费合作社印¾ 3551pif.doc/0C2 經濟部中央標準局貝工消费合作社印製 A8 B8 C8 D8 六、申請專利範圍 20. 如申請專利範圍第15項之鈦濺鍍靶,其中雙晶由 再結晶微結構產生,其具有平均粒子大小爲約15//m或較 小。 21. 如申請專利範圍第13項之鈦濺鍍靶,其中雙晶由 再結晶微結構產生,其具有平均粒子大小爲約5#m或較 小0 22. 如申請專利範圍第15項之鈦濺鍍靶,其中雙晶由 再結晶微結構產生,其具有平均粒子大小爲約或較 小0 23. 如申請專利範圍第1項之靶,其具有含平面 (0002)-«及(11-20)成份的結構,且(0002)-α平面之平 均傾斜角在32°至40°度間。 24. 如申請專利範圍第15項之靶,其具有含平面 (0002)-α及(11-20)成份的結構,且(0002)-α平面之平 均傾斜角在32°至40°度間。 25. —種具有再結晶微結構之鈦濺鍍靶,其粒子大小 小於約100//m,且(11-20)面之強度爲大於0.4倍隨機及 (20-25)面的強度總和爲至少2倍隨機。 26. 如申請專利範圍第25項之靶,其中該粒子大小爲 不大於約50 // m。 27. —種製造鈦濺鍍靶之方法,其中包含提供鈦坯 料,將坯料變形,再結構並在再結晶微結構之第二 次變形期間經由雙晶改變:構。 28. 如申請專利範圍第法,其更包含至少 29 -β (請先閲1*·背面之注意事項再填寫本頁)Printed by the Shell Standard Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs 3551pif.doc / 002 Βσ C8 D8 VI. Application for patent scope 1. A titanium sputtering target, which is added on the (20-25) plane perpendicular to the target plane with (11 The total intensity of the -20) plane is greater than 4.1 times random, and the intensity of the (20 · 25) plane is at least 1.5 times random. 2. For example, the titanium sputtering target of item 1 of the scope of patent application, wherein the intensity of the (0002) plane perpendicular to the chronological plane is less than 1 times random. 3. —A titanium sputtering target with a recrystallized microstructure whose total intensity on the (11-20) plane perpendicular to the target plane is equal to or greater than 0.4 times random, and the intensity of the (20-25) plane is at least 1.5 times random. 4. A titanium sputtering target having a recrystallized microstructure and having a structure such that (a) the total intensity on a (11-20) plane perpendicular to the target plane is equal to or greater than 0.4 times random; and (20- The sum of the intensities of 25), (10-13) and (10-12) planes is at least 1.5 times random. 5. For example, the titanium sputtering target of item 3 of the patent application scope, wherein the intensity of the (0002) plane perpendicular to the harrow plane is less than 1 times random. 6. If the titanium sputtering target of item 4 of the patent application scope, wherein the intensity of the (0002) plane perpendicular to the Geba plane is less than 1 times random. 7. The titanium sputtering target of item 1 of the patent application scope, wherein the average particle size is about 15 // m or less. 8. The titanium sputtering target of item 3 of the patent application, wherein the average particle size is about 15 # m or less. 9. The titanium sputtering target of item 4 of the patent application, wherein the average particle size is about 15 // m or less. 10. The titanium sputtering target of item 1 of the patent application range, wherein the average particle size is about 5 m or less. ___ 27 This paper size applies to Chinese national standards (CNS &gt; A4 size (210X297 mm) --------------- ^ ------. ¾ (Please read the back first Please pay attention to this page and fill in this page again) 3551pif.doc / 002 A8 BE C8 D8 VI. Application scope of patent 11. For example, the titanium sputtering target of item 3 of the patent scope, where the average particle size is about 5 ^ 111 or smaller. 12. If the titanium sputtering target of item 4 of the patent application scope, wherein the average particle size is about 5 μm or smaller. 13.-a titanium sputtering target with at least 70% double crystal grains in the microstructure, It also has a random intensity of 1 times on the (11-20) plane perpendicular to the target plane. 14. A titanium sputtering target having a structure of at least 70% twin crystal grains in a microstructure and having a structure The intensity of the (11-20) plane perpendicular to the target plane is 1 times random, and the intensity of the (20-25) plane is at least 1.5 times random. 15. A titanium sputtering target, which has a structure in the micro The structure has at least 70% twin crystal grains, and has a structure such that the intensity on the (11-20) plane perpendicular to the target plane is 1 times random, and (20-25), (10-13), and (10- 12) The sum of the strengths is at least 1.5 times random. 16. If the titanium sputter target of item 13 of the patent application scope is partially recrystallized from the twin crystal microstructure. 17. If the titanium sputter target of item 14 of the patent application scope, Part of it is recrystallized from the twin-crystal microstructure. 18. For example, the titanium sputtering target of item 15 in the scope of the patent application is recrystallized. Target, in which twin crystals are produced by recrystallized microstructures, which have an average particle size of about 15 / zm or smaller. 28 This paper size uses the Chinese National Standard (CNS) A4 specification (210X297) l ---- ----- Equipment— (Please note the Ht * 's on the back before filling out this page) Order m-Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economy ¾ 3551pif.doc / 0C2 Shellfish Consumption of the Central Standards Bureau of the Ministry of Economic Affairs Cooperative printed A8 B8 C8 D8 6. Application for patent scope 20. For example, the titanium sputtering target of item 15 of the patent application scope, in which the twin crystals are generated by recrystallized microstructures, which have an average particle size of about 15 // m or more 21. For example, the titanium sputtering target of item 13 of the patent application scope, in which Produced by recrystallized microstructure, which has an average particle size of about 5 # m or smaller. 22. As the titanium sputtering target of item 15 of the patent application scope, wherein the twin crystals are produced by the recrystallized microstructure, which has an average particle size. The size is about or smaller. 23. The target according to item 1 of the patent application scope has a structure containing plane (0002)-«and (11-20) components, and the average tilt angle of the (0002) -α plane is between Between 32 ° and 40 ° degrees. 24. For example, the target of the scope of application for patent No. 15 has a structure containing plane (0002) -α and (11-20) components, and the average tilt angle of the (0002) -α plane is between 32 ° and 40 ° . 25. A titanium sputtering target with a recrystallized microstructure, whose particle size is less than about 100 // m, and the intensity of the (11-20) plane is greater than 0.4 times random and the sum of the intensity of the (20-25) plane is At least 2 times random. 26. The target according to item 25 of the patent application scope, wherein the particle size is not greater than about 50 // m. 27. A method of manufacturing a titanium sputtering target, comprising providing a titanium blank, deforming the blank, restructuring it, and changing it through twin crystals during the second deformation of the recrystallized microstructure: texture. 28. If the scope of the patent application law is applied, it also contains at least 29 -β (please read 1 * · Notes on the back before filling this page) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 3551pif.doc/002 B8 C8 - 六、申請專利範圍 50%變形作用以變形坯料,接著經由再結晶作用之退火, 接著約5%-30%之第二次變形,以致在第一次變形作用後無 論有無退火,雙晶爲主要變形模式。 29 .如申請專利範圍第%項之方法,其中變形經由滾 軋及/或鑄造。 30. 如申請專利範圍第28項之方法’其更包含在弟一 變形步驟中於室溫或較低下變形还料。 31. 如申請專利範圍第28項之方法’其中第二變形爲 在凍溫下。 32. 如申請專利範圍第28項之方法,其中變形爲經由 單向及/或橫交滾軋。 33. —種加工鈦以提供具有改良階梯覆蓋之濺鍍祀的 方法,其包含: 機械形變一爲&lt;2相之闻純度欽还料至厚度降低至 大於50% ; 加熱處理以獲得具有強(00〇2) - α平面結構的再 結晶微結構; 形變熱處理過之鈦至厚度減少至約5%至約30%以 產生具有平面(0002) - α及(11-20)主要部份之結 構與具有如下之一的微結構: (1) 經由再加熱處理以獲得似變形或恢復之雙 晶; (2) 經由再加熱處理以獲得具有降低雙晶分量之 部份再結晶微結構;及 30 本紙張尺度逋用中國國家棣丰(CNS ) Α4规格(210X297公釐) (請先Η請背面之注項再填寫本頁) 「裝_ 線 鯉濟部中央標率局貝工消费合作社印裝 355Ipif.doc/002 Α8 B8 C8 D8 六、申請專利範圍 (3)經由再加熱處理以獲得無雙晶之完全再結晶 微結構。 34. 如申請專利範圍第'33項之方法,其中該鈦坯料之 機械形變爲使厚度降低至大於約70%。 35. 如申請專利範圍第33項之方法,其中傾斜角α 2 爲約32°至40°。 36. 如申請專利範圍第33項之方法,其中熱處理鈦之 第二次變形約10%至約20%。 37. 如申請專利範圍第33項之方法,其中傾斜角α 2 在第二次變形後爲高於第一變形後之傾斜角αΐ約2°至 38. 如申請專利範圍第37項之方法,其中傾斜角α 1 爲約31°,傾斜角α 2爲約36°。 39. 如申請專利範圍第37項之方法,其中熱處理過之 鈦的形變在室溫或更低之溫度下進行。 40. 如申請專利範圍第37項之方法,其中熱處理過之 鈦的形變在凍溫下進行。 41. 如申請專利範圍第37項之方法,其中形變熱處理 過的鈦以產生微結構,其中由粒子產生之雙晶具有粒子大 小爲低於約20 // m。 42. 如申請專利範圍第37項之方法,其中第二次變形 包含至少5%厚度之凍溫形變,接著在於再結晶溫度下熱變 形。 参 43. 如申請專利範圍第,其中該鈦純度爲 31 請 先 閱 讀' 背 面 之 注 I 裝 訂 線' 經濟部中央標率局負工消費合作社印装 本紙張尺度適用中國國家揉準(CNS ) A4規格(210X297公釐) 3551pif.doc/002 A8 &amp;8 C8 D8 六'申請專利範圍 至少99.995%,不包括氣體。 44. 如申請專利範圍第4;項泛胃總,其Φ該鈦純度爲 至少99.995%,不包括氣體。 45. 如申請專利範圍第靶,其中該鈦純度爲 至少99.995%,不包括氣體。' 46. 如申請專利範圍第1^^乏_靶,其無如含括氧化 物及/或氮化物之缺陷。 ’ 47. 如申請專利範圍第I;賓之_靶,其無如含括氧化 物及/或氮化物之缺陷。 48. 如申請專利範圍第苡:項·之叛靶,其無無如含括氧 化物及/或氮化物之缺陷。 49. 如申請專利範圍第「ΓΓ填之减靶,其中該鈦純度爲 至少99.9999%,不包括氣體。 50. 如申請專利範圍第;^潭之練靶,其中該鈦純度爲 至少99.9999%,不包括氣體。 51 .如申請專利範圍第15項之鐵靶,其中該鈦純度爲 至少99.9999%,不包括氣體。 52. 如申請專利範圍第:t項之_靶,其中該鈦純度爲 至少99.99999%,不包括氣體。 53. 如申請專利範圍第4項之蘇靶,其中該鈦純度爲 至少99.99999%,不包括氣fe。 54. 如申請專利範圍第1S項之教靶,其中該鈦純度爲 ,. 至少99.99999%,不包括氣體:。 55. 如申請專利範圍第1項之&lt;靶,其中氧爲低於 32 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲仗背面之注意事項再填寫本頁) 裝- 、·ιτ 線 經濟部中央搮率局貝工消費合作社印*. 經濟部中央標率局員工消費合作社印家 3551pif.doc/002 A8 B8 C8 D8 六、申請專利範圍 50ppm ° i V &gt; .1 ' 56 .如申請專利範圍第墳'_靶,其中氧爲低於 30ppm ° 57 .如申請專利範圍第fll:項之:#靶,其中氧爲低於 20ppm ° …' 58. 如申請專利範圍第5£蕴:老秦靶,其;中氧爲低於 50ppm。 59. 如申請專利範圍第52'項;(祀,其中氧爲低於 30ppm ° 二〜 60. 如申請專利範圍第5β:之餐|E,華中氧爲低於 20ppm ° 61. —種藉由濺鍍沉積在基材上鈦膜,其包含至少 99.99 5%欽,不包括氣體。 62. —種藉由濺鍍沉積在基材上鈦膜,其包含至少 99.9998%鈦,不包括氣體。 63. —種藉由濺鍍沉積在基材上鈦膜,其包含至少 99.99995%鈦,不包括氣體。 64. 如申請專利範圍第63項之鈦膜,其中金屬不純物 不超過0.2 ppm。 65. —種藉由濺鍍沉積在基材上鈦膜,其包含至少 99.99999%鈦,不包括氣體。 66. —種藉由濺鍍沉積在基材上鈦膜,其包含低於50 ppm 氧。 67. —種藉由濺鍍沉積在基材上鈦膜,其包含低於30 33 本紙張尺度逋用中國國家標準(CNS )八4規格(210X297公釐) ---------U裝------訂------歉 (請先閲修背面之注意事項再填寫本頁) 3551pif.doc/002 A8 B8 C8 D8 申請專利祀圍 ppm 氧。 68.—種藉由濺鍍沉積在基材上鈦膜,其包含低於20 ppm 氧。 69. 如申請專利範圍第 50ppm ° 70. 如申請專利範圍第 30ppm 〇 71. 如申請專利範圍第 20ppm 0 65項之鈦膜,其中氧爲低於 65項之鈦膜,其中氧爲低於 65項之鈦膜,其中氧爲低於 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央梂率局貝工消费合作社印I 本紙張尺度適用中國國家揉準(CNS ) A4規格(210X297公釐)This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 3551pif.doc / 002 B8 C8-VI. Application for patent scope 50% deformation to deform the blank, then annealing through recrystallization, and then about 5% The second deformation is -30%, so that the twin crystal is the main deformation mode with or without annealing after the first deformation. 29. A method as claimed in item% of the patent application, wherein deformation is by rolling and / or casting. 30. The method according to item 28 of the scope of patent application, which further comprises deforming and returning the material at room temperature or lower in the deforming step. 31. The method according to item 28 of the scope of patent application, wherein the second deformation is under freezing temperature. 32. The method of claim 28, wherein the deformation is by unidirectional and / or cross rolling. 33. A method of processing titanium to provide a sputtering target with improved step coverage, comprising: mechanical deformation of <2 phases, purity, purity reduction to a thickness of less than 50%; heat treatment to obtain a strong -Recrystallized microstructure of alpha planar structure; deformation-treated heat-treated titanium to a thickness reduced to about 5% to about 30% to produce a planar (0002)-alpha and (11-20) major portion Structure and microstructure having one of the following: (1) a recrystallized or recovered double crystal obtained by reheating treatment; (2) a recrystallized microstructure having a reduced bicrystal content obtained by reheating treatment; and 30 This paper uses China National Standards (CNS) Α4 size (210X297 mm) (please fill in this page before filling out this page) "Packing_ Printed by the Central Standards Bureau of the Ministry of Carp, Jilin, China 355Ipif.doc / 002 Α8 B8 C8 D8 VI. Application scope of patent (3) Reheating treatment to obtain complete recrystallized microstructure without double crystals. 34. For example, the method of patent scope No. '33, wherein the titanium billet Mechanical deformation As low as greater than about 70%. 35. The method according to item 33 of the patent application, wherein the inclination angle α 2 is approximately 32 ° to 40 °. 36. The method according to item 33 of the patent application, wherein the second heat-treated titanium The secondary deformation is about 10% to about 20%. 37. The method of claim 33, wherein the inclination angle α 2 after the second deformation is higher than the inclination angle αΐ after the first deformation by about 2 ° to 38. For example, the method of claim 37, wherein the inclination angle α 1 is about 31 °, and the angle of inclination α 2 is about 36 °. 39. The method of claim 37, wherein the deformation of the heat-treated titanium is in the chamber. 40. The method according to item 37 of the patent application, wherein deformation of the heat-treated titanium is performed at freezing temperature. 41. The method according to item 37 of the patent application, wherein the deformation is heat-treated. Titanium is used to produce microstructures, in which the twin crystals produced by the particles have a particle size of less than about 20 // m. 42. The method according to item 37 of the patent application, wherein the second deformation includes a freeze of at least 5% thickness Warm deformation followed by thermal deformation at the recrystallization temperature. 43. If the scope of patent application is the first, and the purity of titanium is 31, please read 'Note on the back I binding line'. The paper size of the printed paper is applicable to the Chinese National Standard (CNS) A4 specification. (210X297 mm) 3551pif.doc / 002 A8 &amp; 8 C8 D8 Six 'patent application scope is at least 99.995%, excluding gas. 44. If the scope of the patent application is No. 4; the total stomach, the purity of this titanium is at least 99.995%, excluding gas. 45. The target of the scope of patent application, wherein the purity of the titanium is at least 99.995%, excluding gas. '46. If the target of the patent application scope 1 ^^ _ is not, it does not include defects such as oxides and / or nitrides. 47. If the scope of application for patent I; Bin's target is free of defects including oxides and / or nitrides. 48. If the target of the patent application scope item 苡 :: · is deficient, it is free from defects such as inclusion of oxides and / or nitrides. 49. For example, if the scope of the patent application is "minimum target filled with ΓΓ", the purity of the titanium is at least 99.9999%, excluding gas. 50. If the scope of the patent is applied for; the target of the training practice, where the purity of the titanium is at least 99.9999%, Does not include gas. 51. If the iron target of the scope of patent application No. 15 wherein the purity of titanium is at least 99.9999%, excluding gas. 52. If the target of the scope of patent application: term t of the invention, wherein the purity of titanium is at least 99.99999%, excluding gas. 53. For example, the so-called target of the scope of patent application No. 4, wherein the purity of titanium is at least 99.99999%, excluding gas. 54. For the teaching target of the scope of patent application No. 1S, where the titanium The purity is at least 99.99999%, excluding gas: 55. If the target of the scope of patent application is the &lt; target, where oxygen is less than 32, this paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back of the page before filling out this page.) Packing-、 · ιτ LINE Printed by the Central Consumers ’Bureau of the Ministry of Economic Affairs of the Bayer Consumer Cooperatives *. Printed by the Consumer ’s Cooperatives of the Central Bureau of Standards of the Ministry of Economy 3551pif.doc / 002 A8 B8 C8 D8 VI, Patent application range 50ppm ° i V &gt; .1 '56. If the patent application scope No. 1' target, where oxygen is less than 30 ppm ° 57. Such as patent application scope fll: Item ##, where oxygen is low At 20ppm °… '58. If the scope of the patent application is 5th: Yun: Lao Qin target, which; the middle oxygen is less than 50ppm. 59. If the scope of the patent application is 52'; (The oxygen is less than 30ppm ° 2 ~ 60. If the scope of application for patent No. 5β: Meal | E, Central China oxygen is less than 20ppm ° 61.-a titanium film deposited on the substrate by sputtering, which contains at least 99.99 5% Chin, excluding gas 62.-A titanium film deposited on the substrate by sputtering, which contains at least 99.9998% titanium, excluding gas. 63.-A titanium film deposited on the substrate by sputtering, which contains at least 99.99995% titanium Excluding gas. 64. For example, the titanium film in the scope of application patent No. 63, in which the metal impurities do not exceed 0.2 ppm. 65.-a titanium film deposited on the substrate by sputtering, which contains at least 99.99999% titanium, without Includes gas. 66. A species of titanium film deposited on the substrate by sputtering, which contains less than 50 ppm oxygen. 67. A species Titanium film deposited on the substrate by sputtering, which contains less than 30 33 paper sizes, using Chinese National Standard (CNS) 8-4 specifications (210X297 mm) --------- U Pack --- --- Order ------ Apologize (please read the notes on the back of the repair first and then fill out this page) 3551pif.doc / 002 A8 B8 C8 D8 Apply for a patent to offer ppm oxygen. 68. A titanium film deposited on a substrate by sputtering, which contains less than 20 ppm oxygen. 69. If the scope of patent application is 50ppm ° 70. If the scope of patent application is 30ppm 〇71. If the scope of patent application is 20ppm 0 65 titanium film, wherein the titanium film is less than 65, and the oxygen is less than 65 The titanium film of the above item, in which the oxygen is lower than (please read the precautions on the back before filling this page) Printed by the Central Laboratories Bureau of the Ministry of Economic Affairs, Pui Gong Consumer Cooperative I This paper size is applicable to China National Standard (CNS) A4 (210X297 Mm)
TW87111312A 1997-07-11 1998-07-13 Titsnium sputtering target and method of manufacture TW392210B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/893,892 US5993621A (en) 1997-07-11 1997-07-11 Titanium sputtering target

Publications (1)

Publication Number Publication Date
TW392210B true TW392210B (en) 2000-06-01

Family

ID=25402306

Family Applications (1)

Application Number Title Priority Date Filing Date
TW87111312A TW392210B (en) 1997-07-11 1998-07-13 Titsnium sputtering target and method of manufacture

Country Status (7)

Country Link
US (3) US5993621A (en)
EP (1) EP1015656A4 (en)
JP (1) JP2001509548A (en)
KR (1) KR20010021760A (en)
AU (1) AU7978698A (en)
TW (1) TW392210B (en)
WO (1) WO1999002750A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI787546B (en) * 2018-09-26 2022-12-21 日商Jx金屬股份有限公司 Sputtering target and manufacturing method thereof

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309595B1 (en) * 1997-04-30 2001-10-30 The Altalgroup, Inc Titanium crystal and titanium
US6569270B2 (en) * 1997-07-11 2003-05-27 Honeywell International Inc. Process for producing a metal article
US5993621A (en) 1997-07-11 1999-11-30 Johnson Matthey Electronics, Inc. Titanium sputtering target
US6001227A (en) * 1997-11-26 1999-12-14 Applied Materials, Inc. Target for use in magnetron sputtering of aluminum for forming metallization films having low defect densities and methods for manufacturing and using such target
US6348139B1 (en) 1998-06-17 2002-02-19 Honeywell International Inc. Tantalum-comprising articles
JP3820787B2 (en) * 1999-01-08 2006-09-13 日鉱金属株式会社 Sputtering target and manufacturing method thereof
AU4026501A (en) * 1999-10-05 2001-05-10 Lasersight Technologies, Inc. Prolate shaped corneal reshaping
US20040072009A1 (en) * 1999-12-16 2004-04-15 Segal Vladimir M. Copper sputtering targets and methods of forming copper sputtering targets
US6878250B1 (en) * 1999-12-16 2005-04-12 Honeywell International Inc. Sputtering targets formed from cast materials
US7517417B2 (en) * 2000-02-02 2009-04-14 Honeywell International Inc. Tantalum PVD component producing methods
US6331233B1 (en) 2000-02-02 2001-12-18 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
US6585870B1 (en) 2000-04-28 2003-07-01 Honeywell International Inc. Physical vapor deposition targets having crystallographic orientations
WO2001094659A2 (en) * 2000-06-02 2001-12-13 Honeywell International Inc. Sputtering target
AU2001265309A1 (en) * 2000-06-02 2001-12-17 Honeywell International, Inc. Fine grain size material, sputtering target, methods of forming, and micro-arc reduction method
US7041204B1 (en) * 2000-10-27 2006-05-09 Honeywell International Inc. Physical vapor deposition components and methods of formation
US6887356B2 (en) * 2000-11-27 2005-05-03 Cabot Corporation Hollow cathode target and methods of making same
CN1285754C (en) * 2001-05-01 2006-11-22 霍尼韦尔国际公司 Physical vapor deposition targets comprising Ti and Zr and using method
US6605199B2 (en) * 2001-11-14 2003-08-12 Praxair S.T. Technology, Inc. Textured-metastable aluminum alloy sputter targets and method of manufacture
WO2003044246A1 (en) * 2001-11-16 2003-05-30 Honeywell International Inc. Anodes for electroplating operations, and methods of forming materials over semiconductor substrates
US6652668B1 (en) * 2002-05-31 2003-11-25 Praxair S.T. Technology, Inc. High-purity ferromagnetic sputter targets and method of manufacture
US6896748B2 (en) * 2002-07-18 2005-05-24 Praxair S.T. Technology, Inc. Ultrafine-grain-copper-base sputter targets
US7235143B2 (en) * 2002-08-08 2007-06-26 Praxair S.T. Technology, Inc. Controlled-grain-precious metal sputter targets
EP1639620A2 (en) * 2003-06-20 2006-03-29 Cabot Corporation Method and design for sputter target attachment to a backing plate
US6988306B2 (en) * 2003-12-01 2006-01-24 Praxair Technology, Inc. High purity ferromagnetic sputter target, assembly and method of manufacturing same
US8061177B2 (en) * 2004-03-26 2011-11-22 H.C. Starck Inc. Refractory metal pots
US7561937B2 (en) * 2005-01-19 2009-07-14 Tosoh Smd, Inc. Automated sputtering target production
US7998287B2 (en) * 2005-02-10 2011-08-16 Cabot Corporation Tantalum sputtering target and method of fabrication
US8115373B2 (en) 2005-07-06 2012-02-14 Rochester Institute Of Technology Self-regenerating particulate trap systems for emissions and methods thereof
US20070084527A1 (en) * 2005-10-19 2007-04-19 Stephane Ferrasse High-strength mechanical and structural components, and methods of making high-strength components
US20070251818A1 (en) * 2006-05-01 2007-11-01 Wuwen Yi Copper physical vapor deposition targets and methods of making copper physical vapor deposition targets
US20080092806A1 (en) * 2006-10-19 2008-04-24 Applied Materials, Inc. Removing residues from substrate processing components
KR20110106787A (en) * 2009-01-22 2011-09-29 토소우 에스엠디, 인크 Monolithic aluminum alloy target and method of manufacturing
JP5144576B2 (en) * 2009-03-31 2013-02-13 Jx日鉱日石金属株式会社 Titanium target for sputtering
JP5420609B2 (en) 2010-08-25 2014-02-19 Jx日鉱日石金属株式会社 Titanium target for sputtering
US8663440B2 (en) 2010-09-28 2014-03-04 Jx Nippon Mining & Metals Corporation Titanium target for sputtering
US9068258B2 (en) 2010-10-25 2015-06-30 Jx Nippon Mining & Metals Corporation Titanium target for sputtering
CN102350439B (en) * 2011-09-23 2014-04-23 宁波江丰电子材料有限公司 Hot rolling method for nickel target billet used for semiconductor
WO2013105283A1 (en) 2012-01-12 2013-07-18 Jx日鉱日石金属株式会社 Titanium target for sputtering
KR101782202B1 (en) 2012-02-14 2017-09-26 제이엑스금속주식회사 High-purity titanium ingots, manufacturing method therefor, and titanium sputtering target
RU2492249C1 (en) * 2012-09-28 2013-09-10 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Method of complex processing amorphous nanocrystalline alloys
JP6077102B2 (en) 2013-03-06 2017-02-08 Jx金属株式会社 Titanium target for sputtering and manufacturing method thereof
JP6595188B2 (en) * 2015-02-06 2019-10-23 株式会社東芝 Manufacturing method of sputtering target
US10612117B2 (en) 2015-03-11 2020-04-07 Sandvik Intellectual Property Ab Process for manufacturing a product of commercially pure titanium
US11062889B2 (en) 2017-06-26 2021-07-13 Tosoh Smd, Inc. Method of production of uniform metal plates and sputtering targets made thereby
JP6871301B2 (en) * 2019-04-26 2021-05-12 株式会社東芝 Sputtering target, titanium nitride film manufacturing method, and semiconductor device manufacturing method
WO2023017667A1 (en) 2021-08-11 2023-02-16 Jx金属株式会社 Sputtering target and method for producing sputtering target
CN113957368B (en) * 2021-09-29 2022-04-15 四川大学 Preparation method of nanocrystalline titanium film

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214521A (en) * 1992-01-30 1993-08-24 Tosoh Corp Titanium sputtering target
US5693203A (en) 1992-09-29 1997-12-02 Japan Energy Corporation Sputtering target assembly having solid-phase bonded interface
US5772860A (en) * 1993-09-27 1998-06-30 Japan Energy Corporation High purity titanium sputtering targets
US5700519A (en) * 1995-01-06 1997-12-23 Sony Corporation Method for producing ultra high purity titanium films
JP2984778B2 (en) * 1995-02-27 1999-11-29 株式会社住友シチックス尼崎 Forging method of high purity titanium material
JP2984783B2 (en) * 1995-03-13 1999-11-29 株式会社住友シチックス尼崎 Titanium target for sputtering and method for producing the same
JPH08269698A (en) * 1995-03-28 1996-10-15 Mitsubishi Materials Corp Ti target for sputtering
JP3413782B2 (en) * 1995-03-31 2003-06-09 日立金属株式会社 Titanium target for sputtering and method for producing the same
JPH0925565A (en) * 1995-07-06 1997-01-28 Japan Energy Corp High purity titanium sputtering target and its production
US5993621A (en) 1997-07-11 1999-11-30 Johnson Matthey Electronics, Inc. Titanium sputtering target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI787546B (en) * 2018-09-26 2022-12-21 日商Jx金屬股份有限公司 Sputtering target and manufacturing method thereof

Also Published As

Publication number Publication date
US5993621A (en) 1999-11-30
EP1015656A4 (en) 2005-03-23
KR20010021760A (en) 2001-03-15
US6509102B1 (en) 2003-01-21
US6302977B1 (en) 2001-10-16
JP2001509548A (en) 2001-07-24
AU7978698A (en) 1999-02-08
WO1999002750A1 (en) 1999-01-21
EP1015656A1 (en) 2000-07-05

Similar Documents

Publication Publication Date Title
TW392210B (en) Titsnium sputtering target and method of manufacture
TW507014B (en) Methods of forming aluminum-comprising physical vapor deposition targets; sputtered films; and target constructions
Tsai et al. Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization
US7618505B2 (en) Target of high-purity nickel or nickel alloy and its producing method
JP4593475B2 (en) Tantalum sputtering target
US20050230013A1 (en) Methods of making nickel/vanadium structures
TW460600B (en) Sputter target
WO2019187311A1 (en) Sputtering target member and method for producing same
TW201040298A (en) Lanthanum target for sputtering
Wu et al. Microstructures and mechanical properties of a CoCrFeNiMn high-entropy alloy obtained by 223 K cryorolling and subsequent annealing
TW200300176A (en) Textured-metastable aluminum alloy sputter targets
Wu et al. Preparation of high-mechanical-property medium-entropy CrCoNi alloy by asymmetric cryorolling
JP4817536B2 (en) Sputter target
TW201915187A (en) Titanium sputtering target, production method therefor, and method for producing titanium-containing thin film
JP2712561B2 (en) Aluminum target for sputtering
JP2901854B2 (en) High purity titanium sputtering target
KR102190707B1 (en) Tantalum sputtering target
JP3177208B2 (en) High purity titanium sputtering target
Zeng et al. Research on grain refinement process and microstructure of ultra-high purity copper used for integrated circuit
JPH0790560A (en) High purity titanium sputtering target
JP2901852B2 (en) High purity titanium sputtering target
JP2948073B2 (en) High purity titanium sputtering target
TW526273B (en) High purity cobalt sputter target and process of manufacturing the same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees