TW297901B - Floating gate memory array - Google Patents
Floating gate memory array Download PDFInfo
- Publication number
- TW297901B TW297901B TW85106419A TW85106419A TW297901B TW 297901 B TW297901 B TW 297901B TW 85106419 A TW85106419 A TW 85106419A TW 85106419 A TW85106419 A TW 85106419A TW 297901 B TW297901 B TW 297901B
- Authority
- TW
- Taiwan
- Prior art keywords
- type
- line
- source
- source line
- array
- Prior art date
Links
Landscapes
- Non-Volatile Memory (AREA)
- Read Only Memory (AREA)
Abstract
Description
經濟部中央標準局員工消費合作社印製 A7 ______B7_ 五、發明説明(I ) 發明的領域 此發明與半導體記憶體裝置有關,特別地與包 含浮閘極記憶體陣列的半導體記憶體裝置有關。 發明的背景 利用熱電子注入(hot electron injection )加以 燒寫並且利用Fowler-Nordheim隧穿加以抹除的浮 閘極記憶體裝置是大家都熟悉的,並且詳細地描述 於 U.S. Patent Nos. 5,029,13 0及 5,289,41 1。圖 1顯示 揭露於U.S. Patent No. 5,289,411的一個浮閘極記憶 體陣列裝置10。裝置10包含一個由浮閘極記憶單元 42所組成的陣列40。裝置10亦包含一個輸入暫存器 12以接收欲儲存的輸入資料、一個感測放大器16以 放大由陣列40讀出的資料訊號、及一個輸出暫存器 14以接收由感測放大器16輸出的讀出資料訊號。一 個行位址解碼器18接收行位址,並且在行位址線26 上產生一個位址訊號。一個列位址解碼器20接收列 位址,並且在列位址線24上產生一個位址訊號。每 一條列位址線24各別接至一個列解碼電路50,列解 碼電路50也接收由一個列選擇解碼器I9輸出的列選 擇線30 »列解碼電路50的輸出是多個列線36。每一 個列線36及行位址線26的交叉處設置一對浮閘極記 憶單元42。裝置10又包含一個高壓源22以提供用在 燒寫及抹除動作所需的高電壓。高電壓供給多個高 壓解碼器60,每一個高壓解碼器6〇接收由一個高壓 本紙張尺度適用中國國家標準(CNS ) Α4規格(2丨0><297公釐) 裝-------訂η------線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印裝 297301 A7 ___B7_五、發明説明(L) 列選擇解碼器21輸出線34上的三個高壓選擇訊號, 高壓解碼器60的輸出也接至由對應的列解碼電路50 所輸出的列線36。 浮閘極記憶體陣列裝置10的動作如下。要在特 定列上的浮閘極記憶單元42燒寫資料,則在所選的 列位址線24導入Vcc電壓。列解碼電路50輸出臨界 電壓Vt至在此特定列上第一條列線36-1,並經此施 加至此特定列上的浮閘極記憶單元42。源極隔離電 晶體44並不會因電壓Vt而導通。由高壓源22產生一 個約12伏特的電壓經由高壓解碼器60的輸出施加至 第二條列線(或叫做N+源極線)36-2。視欲燒寫的資 料而定,將該行位址線26以及記憶單元42的汲極導 入〇伏特或+5伏特,以燒寫該被致能的特定列上的 記憶單元42。此特定的浮閘極記憶單元42的源極的 熱電子因此得以注入並儲存在該浮閘極記憶單元42 的浮閘極內。在特定列上的浮閘極記憶單元所儲存 的資料可以傳統的方式加以讀取。舉例說明如下: 在欲讀取的浮閘極記憶單元源極導入〇電壓(地端), 汲極導入約2伏特的讀取電壓,閘極導入+5伏特的 電壓。如此將產生一個代表所儲存電荷的訊號,此 訊號經由感測放大器16之放大並施加至輸出暫存器 14 〇 若要抹除儲存在陣列40某一特定列上的浮閘極 記憶單元42中的資料,則致能此列的列位址線24, 列選擇解碼器19輸出訊號至列解碼電路50,使得連 (請先閲讀背面之注意事項再填寫本頁) -裝. ,?! 線 2 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 經濟部中央標準局員工消費合作社印製 A7 —___B7五、發明説明(J ) 接至該列之源極隔離電晶體44的閘極的第一條列線 36-1保持高電壓’而第二條列線36_2及第三條列線 36-3維持0電壓,於是源極隔離電晶體44導通,使得 第二條列線(或稱N+源極線)3ό_2連接至共同接地線 32。於是第一條列線36-1經由列解碼電路50連接至 高壓源22輸出的高電壓,如此將供應一個約i 5伏特 的電壓給該特定列上每一個浮閘極記憶單元42的閘 極。然後與該特定列上每一個浮閘極記憶單元42汲 極連接的行位址線20被拉至0電壓,經由源極隔離電 晶體44(它將N+源極線36-2與共同接地線32連接)該 特定列上每一個浮閘極記憶單元42的源極亦被拉至〇 電壓。因Fowler-Nordheim隧穿效應,加在浮閘極 記憶單元42閘極上的高電壓使得儲存在浮閘極記憶 單元42中的電荷被移除。 圖1先前技術的一個浮閘極記憶體陣列裝置1 0 有多個的問題。例如,陣列40利用多個的源極隔離 電晶體44隔離12伏特(用來燒寫特定之浮閘極記憶單 元42),以免12伏特施加至陣列中其他的浮閘極記憶 單元。雖然利用源極隔離電晶體44作源極隔離可以 減少燒寫中的干擾,但卻也減少通過浮閘極記憶單 元的讀取電流,因此降低陣列裝置10的讀取性能》 並且,由高壓解碼器60輸出的燒寫電流通過N+源 極線36-2(—般是高阻値的N+擴散材料)的全部長 度,燒寫電流使得源極線36-2上產生相當大的電壓 降,因此降低燒寫效率及性能。而且源極隔離電晶 3 (請先閲讀背面之注意事項再填寫本頁) .裝· -一° 線· 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 經濟部中央標準局員工消費合作社印袋 A7 ____B7 五、發明説明(+ ) 體44須佔據晶圓空間,造成記憶體陣列裝置1〇尺寸 之增加。另一個問題是,當在讀取期間,Vcc-Vt的 電壓經由列線36-1及/或列線36-2,直接加在某特定 列上每一個浮閘極記憶單元42的閘極,此特定列上 所有的浮閘極記憶單元42因此受到高Vcc電壓引起 的應力。再且,當在讀取期間,供應電壓的增大或 受干擾而變動時,因Fowler-Nordheim險穿 (tunneling)效應,將造成原已儲存在浮閘極記憶單 元42中的電荷由浮閘極中被移除^ 由以上的敘述,明顯地,要有一個改良型的浮 閘極記憶體陣列,其具有增強的燒寫及讀取性能並 且能免除先前技術中的源極隔離電晶體及其他產生 的問題。 發明的摘要 此發明提供一個增強性能的浮閘極記憶體陣列, 其顯示比先前的技術有較加的燒寫及讀取性能;根 據一個所提出的具體實施例,一個浮閘極記憶體陣 列完全不需要在記憶體陣列的字元線上加源極隔離 電晶體。 依照此發明的一個具體實施例,一個記憶體陣 列用在記憶體裝置內,記憶體陣列內的一個記憶單 元的位置由列位址及行位址解碼器決定,記憶單元 可以是浮閘極記憶單元資料,可以利用熱載體注入 其中,而利用Fowler-Nordheim險穿效應加以抹除。 4 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -----1 J------.^. (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 A7 _____B7_ 五、發明説明(5 ) 此陣列包含與行位址解碼器連接的位元線,字元線 連接至列位址解碼器,且N+擴散源極線連接至列位 址解碼器。每一個記憶單元有一個閘極接至字元 線,一個汲極接至位元線,及一個源極接至N+擴 散源極線。一低阻値的源極線(由金屬Π或是導電 材料作成)被安排靠近每一條N+擴散源極線,並在 多個位置以連接帶作電氣連接。此低阻値的源極線 減少在燒寫期間N+擴散源極線上的壓降,並且在讀 取期間提供一個較小的接地電阻。 此發明另一個特色是有關一個頁的組織,其內 有兩相接近的字元線(在此稱爲偶、奇字元線)組成 一個基本的燒寫單元,在燒寫期間任何單元的干擾 只侷限在連接至兩相接近的字元線的單元。陣列中 其餘非燒寫頁內的單元大體上是不受燒寫影響。連 接至基本燒寫單元內的單元在抹除動作期間一起抹 此發明再一個特色是有關一個字元線箝壓電 路,它可被用來降低讀取干擾(由於讀取期間Vcc電 壓的增加或變動而引起>。字元線箝壓電路限制讀取 動作施加字元線的最高電壓’由於Vcc變動導致閘 極干擾之免除力因此增強。 此發明的這些優點及其他的好處和特色,將由 於以下詳細的說明及伴隨的附圖而更加清楚。 附圖之簡單說明 (請先閱讀背面之注意事項再填寫本頁) -裝· 訂 5 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. A7 ______B7_ V. Description of the Invention (I) Field of Invention This invention relates to semiconductor memory devices, in particular to semiconductor memory devices containing floating gate memory arrays. BACKGROUND OF THE INVENTION Floating gate memory devices that are programmed using hot electron injection and erased using Fowler-Nordheim tunneling are well known to everyone and are described in detail in US Patent Nos. 5,029,13 0 and 5,289,41 1. FIG. 1 shows a floating gate memory array device 10 disclosed in U.S. Patent No. 5,289,411. The device 10 includes an array 40 of floating gate memory cells 42. The device 10 also includes an input register 12 to receive the input data to be stored, a sense amplifier 16 to amplify the data signal read by the array 40, and an output register 14 to receive the output from the sense amplifier 16 Read the data signal. A row address decoder 18 receives the row address and generates an address signal on the row address line 26. A column address decoder 20 receives the column address and generates an address signal on the column address line 24. Each column address line 24 is connected to a column decoding circuit 50. The column decoding circuit 50 also receives the column selection line 30 output by a column selection decoder I9. The output of the column decoding circuit 50 is a plurality of column lines 36. A pair of floating gate memory cells 42 are provided at the intersection of each column line 36 and row address line 26. The device 10 further includes a high voltage source 22 to provide the high voltage required for programming and erasing operations. The high voltage is supplied to multiple high-voltage decoders 60, and each high-voltage decoder 60 is received by a high-voltage paper. The paper standard is applicable to the Chinese National Standard (CNS) Α4 specification (2 丨 0> < 297mm). --Subscribe η ------ line (please read the notes on the back before filling in this page) Printed by the Employees and Consumers Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 297301 A7 ___B7_ V. Description of Invention (L) Column Selection Decoder 21 The three high-voltage selection signals on the output line 34, the output of the high-voltage decoder 60 is also connected to the column line 36 output by the corresponding column decoding circuit 50. The operation of the floating gate memory array device 10 is as follows. To write data to the floating gate memory cell 42 on a specific column, the Vcc voltage is applied to the selected column address line 24. The column decoding circuit 50 outputs the threshold voltage Vt to the first column line 36-1 on this particular column, and is applied to the floating gate memory cell 42 on this particular column. The source isolation transistor 44 does not turn on due to the voltage Vt. A voltage of about 12 volts generated by the high voltage source 22 is applied to the second column line (or N + source line) 36-2 via the output of the high voltage decoder 60. Depending on the data to be programmed, the row address line 26 and the drain of the memory cell 42 are led to 0 volts or +5 volts to program the memory cell 42 on the particular column that is enabled. The hot electrons at the source of the specific floating gate memory cell 42 are thus injected and stored in the floating gate electrode of the floating gate memory cell 42. The data stored in the floating gate memory cell on a specific row can be read in a conventional manner. An example is described as follows: A voltage of 0 (ground) is introduced into the source of the floating gate memory cell to be read, a reading voltage of about 2 volts is introduced into the drain, and a voltage of +5 volts is introduced into the gate. This will generate a signal representing the stored charge, which is amplified by the sense amplifier 16 and applied to the output register 14. To erase the floating gate memory unit 42 stored on a particular row of the array 40 Data, the column address line 24 of this column is enabled, and the column selection decoder 19 outputs a signal to the column decoding circuit 50 so that it is connected (please read the precautions on the back before filling this page)-install.,?! Line 2 This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm) A7 printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs —___ B7 V. Description of invention (J) Connected to the source isolation transistor 44 of this column The first column line 36-1 of the gate maintains a high voltage, while the second column line 36_2 and the third column line 36-3 maintain a voltage of 0, so the source isolation transistor 44 is turned on, so that the second column line (Or N + source line) 3ό_2 is connected to the common ground line 32. Therefore, the first column line 36-1 is connected to the high voltage output by the high voltage source 22 through the column decoding circuit 50, thus supplying a voltage of about 5 volts to the gate of each floating gate memory unit 42 on the specific column . Then the row address line 20 connected to the drain of each floating gate memory cell 42 on that particular column is pulled to a voltage of 0, and the source isolation transistor 44 (which connects the N + source line 36-2 and the common ground line 32) The source of each floating gate memory cell 42 on that particular column is also pulled to zero voltage. Due to the Fowler-Nordheim tunneling effect, the high voltage applied to the gate of the floating gate memory cell 42 causes the charge stored in the floating gate memory cell 42 to be removed. A floating gate memory array device 10 of the prior art in FIG. 1 has multiple problems. For example, the array 40 uses multiple source isolation transistors 44 to isolate 12 volts (used to program a particular floating gate memory cell 42) to prevent 12 volts from being applied to other floating gate memory cells in the array. Although the use of source isolation transistor 44 as source isolation can reduce the interference during programming, it also reduces the reading current through the floating gate memory cell, thus reducing the reading performance of the array device 10 The programming current output by the device 60 passes through the entire length of the N + source line 36-2 (typically a high-resistance N + diffusion material). The programming current causes a considerable voltage drop on the source line 36-2, so Reduce programming efficiency and performance. And the source isolation transistor 3 (please read the precautions on the back before filling in this page). Installation · -1 ° line · This paper standard is applicable to China National Standard (CNS) Α4 specification (210Χ297 mm) Central Bureau of Standards of the Ministry of Economic Affairs Employee Consumer Cooperative Printed Bag A7 ____B7 5. Description of Invention (+) Body 44 must occupy wafer space, resulting in an increase in the size of the memory array device 10. Another problem is that, during reading, the voltage of Vcc-Vt is directly applied to the gate of each floating gate memory cell 42 on a particular column via the column line 36-1 and / or column line 36-2, All floating gate memory cells 42 on this particular row are therefore stressed by the high Vcc voltage. Furthermore, when the supply voltage increases or is disturbed during reading, due to the Fowler-Nordheim tunneling effect, the charge originally stored in the floating gate memory cell 42 will be caused by the floating gate The electrode is removed ^ From the above description, it is obvious that there is an improved floating gate memory array, which has enhanced programming and reading performance and can eliminate the source isolation transistor and the prior art Other problems. SUMMARY OF THE INVENTION This invention provides an enhanced performance floating gate memory array that shows more programming and reading performance than previous technologies; according to a specific embodiment proposed, a floating gate memory array There is no need to add source isolation transistors on the character lines of the memory array. According to an embodiment of the invention, a memory array is used in the memory device. The location of a memory unit in the memory array is determined by the column address and row address decoders. The memory unit may be a floating gate memory The cell data can be injected into it using a heat carrier, and erased using the Fowler-Nordheim dangerous penetration effect. 4 This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm) ----- 1 J ------. ^. (Please read the precautions on the back before filling in this page) Ministry of Economic Affairs A7 _____B7_ printed by the Staff Consumer Cooperative of the Bureau of Standards V. Description of the invention (5) This array contains a bit line connected to the row address decoder, the character line is connected to the column address decoder, and the N + diffusion source line is connected to Column address decoder. Each memory cell has a gate connected to the word line, a drain connected to the bit line, and a source connected to the N + diffused source line. A low-resistance source line (made of metal Π or conductive material) is arranged close to each N + diffused source line, and is electrically connected with a connecting strip at multiple locations. This low-resistance source line reduces the voltage drop on the N + diffusion source line during programming and provides a smaller ground resistance during reading. Another feature of this invention is related to the organization of a page. There are two similar word lines (here even and odd word lines) to form a basic programming unit, and any unit interference during programming It is limited to cells connected to two word lines that are close together. The cells in the remaining non-programmed pages in the array are largely unaffected by the programming. The unit connected to the basic programming unit is erased together during the erase operation. Another feature of this invention is a word line clamp circuit, which can be used to reduce read interference (due to the increase in the Vcc voltage during reading Caused by or changes.> The word line clamp circuit limits the maximum voltage applied to the word line during the reading operation. The immunity of the gate interference due to Vcc changes is therefore enhanced. These and other advantages and features of this invention , Will be more clear due to the following detailed description and accompanying drawings. Brief description of the drawings (please read the precautions on the back before filling in this page)-Binding · Order 5 This paper size is applicable to China National Standard (CNS) A4 Specification (210X297mm)
A7 B7 五、發明説明() 圖1顯示依照先前技術所作包含浮閘極記憶陣列之 記憶體裝置。 圖2顯示依照此發明所作包含浮閘極記憶陣列之記 憶體裝置。 圖3顯示一個適合圖2之記憶體裝置的一個例示的 列解碼器。 圖4顯示一個適合圖2之記憶體裝置的一個例示的 高壓碼器。 圖5顯示一個適合圖2之記憶體裝置的一個例示的 源極接地電路。 圖6顯示一個適合圖2之記憶體裝置的一個例示的 字元線箝壓電路》 圖7揭露一例示電路藉ZSUPPLY訊號產生ZPO及 ZP1訊號》 發明之詳細說明 此發明將同時與一個例示的浮閘極半導體之記 憶體裝置一起說明如下。雖然如此,但必需明白的 一點是:此發明並不限定特定型態的裝置或記憶單 元。相反地,此發明可更廣泛地應用在任何視電阻 爲一重要考量的半導體裝置。而且,雖然此發明適 合應用在浮閘極記憶體裝置,但是也可在其他應用 中提供顯著的益處。 圖2顯示依照此發明所作的一例示的浮閘極記 憶體陣列裝置100。裝置100包含一個由浮閘極記憶 單元42所組成的陣列40。裝置100亦包含一個輸入暫 存器112、一個輸出暫存器114、一個感測放大器 y 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) ^n· i —^n 1^1 ϋ m (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部中央標準局員工消費合作杜印製 297901 經濟部中央標準局員工消費合作社印製 A7 B7 五、發明説明(7 ) 116、一個行位址解碼器118 '列選擇解碼器119、一 個列位址解碼器120、一個高壓列選擇解碼器121、 及一個高壓源122。這些元件依照前述與圖1 一起說 明的方式運作,有關這些元件之運作,其詳細的說明 可以參考 U.S. Patent No. 5,289,41 1 及 5,029,130。 裝置100也包含一個(M+l)x(P+l)浮閘極記憶 體陣列140,其含有多個浮閘極記憶體單元CijA及 CijB,其中1=0,1,2,...,^1代表特定之浮閘極記憶體單 元之列位址,而j = 〇,l,2,...,P代表特定之浮閘極記憶 體單元之行位址。在圖2例示的具體實施例中,陣列 140的任一列Μ包含一條偶字元線WL(M>及一條奇字 元線WL(M+1),必需注意的是奇字元線WL(M+1>和 下一列,(M+1)列,的偶字元線是不同的。列Μ的偶 字元線WL(M)連接至記憶體單元CMjA的閘極,列Μ 的奇字元線WL(M)連接至記憶體單元CMjB的閘極。 陣列140的任一行j包含一條位元線BL(j),BL(j)連接 至行j之浮閘極記憶體單元CijA及CijB的汲極。陣列 140的每一個浮閘極記憶體單元的位置由字元線WL 及位元線BL之交叉點加以指定。 陣列140的任一列Μ又包含一條源極線SL(i)及 一條金屬源極線MSL(i>,源極線SL(i)及金屬源極線 MSL(i)兩者皆水平通過陣列140。歹[ji上的每一個浮 閘極記憶體單元CijA及CijB之源極都連接至源極線 SL(i)。源極線SL⑴可以由N +擴散區來形成。金屬 源極線MSL(i>大體上安排成與處在偶、奇字元線中 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) ---------1衣-- (請先閱讀背面之注意事項再填寫本頁)A7 B7 5. Description of the invention () Figure 1 shows a memory device including a floating gate memory array made in accordance with the prior art. Figure 2 shows a memory device including a floating gate memory array made in accordance with this invention. FIG. 3 shows an exemplary column decoder suitable for the memory device of FIG. 2. FIG. FIG. 4 shows an exemplary high voltage coder suitable for the memory device of FIG. 2. FIG. FIG. 5 shows an exemplary source ground circuit suitable for the memory device of FIG. 2. FIG. FIG. 6 shows an exemplary word line clamping circuit suitable for the memory device of FIG. 2; FIG. 7 discloses an exemplary circuit that generates ZPO and ZP1 signals by the ZSUPPLY signal. Detailed description of the invention This invention will be combined with an exemplary The memory device of the floating gate semiconductor is described as follows. Nevertheless, it must be understood that this invention does not limit a particular type of device or memory unit. On the contrary, this invention can be more widely applied to any semiconductor device whose apparent resistance is an important consideration. Moreover, although this invention is suitable for use in floating gate memory devices, it can also provide significant benefits in other applications. FIG. 2 shows an exemplary floating gate memory array device 100 according to this invention. The device 100 includes an array 40 of floating gate memory cells 42. The device 100 also includes an input register 112, an output register 114, a sense amplifier y This paper standard is applicable to the Chinese National Standard (CNS) Α4 specification (210X297 mm) ^ n · i — ^ n 1 ^ 1 ϋ m (please read the precautions on the back before filling out this page). Ordered by the Ministry of Economic Affairs Central Standards Bureau Employee Consumer Cooperation Du Printed 297901 Printed by the Ministry of Economic Affairs Central Standards Bureau Employee Consumer Cooperative A7 B7 V. Invention Instructions (7) 116 The row address decoder 118 ′ has a column selection decoder 119, a column address decoder 120, a high voltage column selection decoder 121, and a high voltage source 122. These components operate in the manner described above with FIG. 1. For the detailed description of the operation of these components, refer to U.S. Patent Nos. 5,289,411 and 5,029,130. The device 100 also includes a (M + 1) x (P + 1) floating gate memory array 140, which contains a plurality of floating gate memory cells CijA and CijB, where 1 = 0, 1, 2, ... , ^ 1 represents the row address of a specific floating gate memory cell, and j = 〇, 1, 2, ..., P represents the row address of a specific floating gate memory cell. In the specific embodiment illustrated in FIG. 2, any column M of the array 140 includes an even word line WL (M > and an odd word line WL (M + 1), it should be noted that the odd word line WL (M + 1 > and the next column, (M + 1) column, the even word line is different. The even word line WL (M) of the column M is connected to the gate of the memory cell CMjA, the odd character line of the column M The line WL (M) is connected to the gate of the memory cell CMjB. Any row j of the array 140 includes a bit line BL (j) connected to the floating gate memory cells CijA and CijB of row j Drain. The position of each floating gate memory cell of the array 140 is specified by the intersection of the word line WL and the bit line BL. Any column M of the array 140 further includes a source line SL (i) and a The metal source line MSL (i >, both the source line SL (i) and the metal source line MSL (i) pass horizontally through the array 140. Each of the floating gate memory cells CijA and CijB on the ji The source electrodes are all connected to the source line SL (i). The source line SL (1) can be formed by the N + diffusion region. The metal source line MSL (i > is generally arranged to be in even and odd character lines. Scale applies to Chinese countries Standard (CNS) Α4 specifications (210X297mm) --------- 1 clothing-- (Please read the precautions on the back before filling this page)
、1T 線 經濟部中央標準局員工消費合作社印繁 A7 B7 五、發明説明(§:) 間的源極線SL(i)平行,而且可以由陣列140中的金 屬II區域或第二金屬化層構成。MSL(i)與SL(i)利 用導電帶在陣列140中的多個點作連接,導電帶可由 metal II形成並利用,如雙複晶雙金屬(double poly double metal--DPDM)程序,作連接。MSL(i)因此被 用來降低傳統N +擴散源極線SL(i)的壓降。金屬源極 線]\181^〇)的尺寸約爲3.3微米寬9.9微米長。]^81^(〇 可置於N +擴散源極線SL(i)之上,其他較低電阻的導 電材料也可以用作MSL⑴,這些可選用的材料包含 複晶化物(polycide)、砂化物(silicide)、或是異於 metal II的金屬層。 每一個記憶體單元CijA及CijB可以是浮閘極記 憶體單元,他們可利用熱電子注入(hot electron injection >加以燒寫,並且利用Fowler-Nordheim隨穿 效應加以抹除。這些浮閘極記憶體單元的運作乃眾 所周知的技術,並在U.S. Patent Nos. 5,029,130中有 詳細地明。 圖3顯示一個適合圖2之記憶體陣列140的一個 例示的列解碼器1 5〇-i。列位址解碼器120接收一個 列位址當作輸入,並且將列位址解碼產生多個預解碼 列位址訊號XPi,經由124-i每一個預解碼列位址訊 號XPi輸入至對應的列解碼器l5〇-i,經由線130每一 個列解碼器150-i也接收另外三個從列選擇解碼器 119送出的訊號2?0、2?1、及2〇0。訊號2卩0、 ZP1、及ZG0可由列選擇解碼器119產生或是其他, 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐〉 0¾ (請先閲讀背面之注意事項再填寫本頁) r Γ A7 B7 五、發明説明(,) 諸如U.S. Patent No. 5,289,41 1所描述的,適當的電 路產生。利用ZSUPPLY訊號而產生ZPO及ZP1訊號的 一例示電路將與以下的圖7—起說明。一個特定的預 解碼列位址訊號XPi被直接施加至Ml、M3、及M5 的閘極,並輸入至一個反相器INV1。INV1輸出XPi 的反相値加至M2、M4、及M6的閘極。所有的電晶 體可以是P或N通道金屬_氧化物-半導體場效電晶 體。列選擇解碼器119產生的列選擇訊號ZP0、 ZP1、及ZG0被分別施加至Ml、M3、及M5的汲 極。列解碼器150-i的輸出爲偶字元線WL(i)、奇字 元線WL(i+l)及金屬源極線MSL(i)。 在讀取期間,每一個列解碼器150-i的輸出 MSL(i)將被導入地端電位,且只有一個奇或偶字元線 會被XPi選定;例如,若XPi爲邏輯上的高電位,則偶 字元線WL(i)經由Ml與訊號ZP0連結。如圖7顯示 的,訊號ZP0可由ZSUPPLY訊號產生。ZSUPPLY訊 號由將在與圖6—同說明的字元線箝壓電路產生。接 至偶字元線WL(i)上的電壓爲ZP0減去Μ1的臨界電壓 Vt。經由M3接至奇字元線WL(i+l)上的電壓爲 ZP1(在讀取期間是0電位)。在燒寫期間,偶字元線 WL(i)及奇字元線WL(i+l)也是相同的選擇方式,只 是ZSUPPLY電壓改爲+2伏特,以適合儲存電荷於記 憶體單元的浮閘極中。在燒寫期間,若圖3的金屬源 極線MSL(i)被變換成爲邏輯高電位的XPi所選定, 則MSL(i)經由M5被連接至ZGO,此狀況時,訊號 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) .裝. 線 經濟部中央標準局員工消費合作杜印製 經濟部中央標準局貝工消費合作社印製 A7 —— _!Z_ 五、發明説明(丨σ) ZGO可能接至供應電壓Vcc。在抹除期間,XPi爲邏 輯高電位,而WL⑴及Wl(i+1)分經由Ml、M3、及 M5加至ZPO、及ZP1,ZP0' 及ZP1兩者皆爲 ZSUPPLY電壓(在抹除期間等於Vcc)。因此,WL(i) 及Wl(i+1>將約等於Vcc-Vt » MSL(i)經由M5被連接至 ZGO(在抹除期間等於0)。 圖4顯示一個適合圖2之記憶體陣列140的一個 例示的高壓碼器160-i。每一個高壓碼器160-i接至對 應歹!Η的金屬源極線MSL及奇及偶字元線WL,如圖3 的列解碼器150-i之輸出。高壓碼器160-i接收由以下 與圖5說明的源極接地電路205所產生的SG及 SGND。高壓解碼器160-i也接收由高壓選擇解碼器 121所產生的SHV、WLHVO及WLHVE。高壓選擇解 碼器121可利用諸如U.S. Patent No. 5,289,41 1所描 述的技術作成。一個高壓耦合器200將一個由高壓源 122產生的高電壓耦合至所選定的字元線及源極線 (由列解碼器150·ί及高壓選擇解碼器121選擇)。在 讀取期間,Μ10提供另一個電流路徑,因此提高讀取 性能(此點將在以下說明)。 圖5顯示一個適合圖2之記憶體裝置的一個例示 的源極接地電路20 5。電路20 5接收一個輸入訊號 PROG(在燒寫期間爲邏輯高電位)。PROG高電位 時,M16接收反相器INV2輸出的0電位,因此是截止 的。M15接收INV3送出的訊號PROG而導通。經由 M15,訊號SGND因而被導入邏輯高電位,反相器 本紙張尺度適用中國國家標準(CNS〉A4規格(210X:297公釐) 10 裝-----.彳訂-------線 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標隼局員工消費合作社印製 A7 ____B7_ 五、發明説明(丨丨) INV4的輸出SG爲邏輯低電位,輸出訊號SG及SGND 加至圖4的高壓解碼器1 60-i的輸入,並且分別接至解 碼器160-i中的M10之閘極及源極,高壓解碼器160-i 中的M10因此被截止,而且M10之汲極將被導入邏輯 高電位,這種結構也增強M10的破壞電壓(punch-through voltage) »在讀取及抹除動作期間,訊號 PROG爲邏輯低電位,使得M15截止且M16導通,接 著訊號SG變成高電位,且訊號SGND變成低電位,使 得高壓解碼器160-i中的M10導通,金屬源極線MSL(i) 因而經由M10及M16被接至地電位,這種結構提供 在讀取期間之另一個接地路徑,這將增強讀取性能。 圖6顯示一個適合圖2之記憶體裝置的一個例示 的字元線箝壓電路210。電路210接收由一個適當的 記憶體控制電路(未顯示)產生的訊號PROG、 VPWL、及CLAMP0FF,電路210產生一個輸出訊號 ZSUPPLY加至如圖7顯示的Z-解碼器電路(Z_ DEC)215 , Z-DEC電路215利用反相器INV7及電晶體 M2卜M24產生訊號ZP0及ZP1,然後,訊號ZP0及 ZP1被加至圖3的列解碼器150_i當作其輸入。Z-DEC 電路215可以與列選擇解碼器119或字元線箝壓電路 210結合。 以下將對圖6的字元線箝壓電路210的運作作更 詳細的說明。在燒寫期間,訊號PROG及CLAMPOFF 爲邏輯高電位,而訊號VPWL約爲+2伏特,因此M18 因PROG而導通,M19因反相器INV6輸出的 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ^-----.— J------0 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 A7 B7, 1T line, the Ministry of Economic Affairs, Central Standards Bureau, Employee Consumer Cooperative, A7 B7. V. Description of the invention (§ :) The source line SL (i) is parallel, and can be composed of the metal II area or the second metallization layer in the array 140 Pose. MSL (i) and SL (i) use conductive strips to connect at multiple points in the array 140. The conductive strips can be formed and used by metal II, such as the double poly double metal (DPDM) program. connection. MSL (i) is therefore used to reduce the voltage drop of the traditional N + diffused source line SL (i). The size of the metal source line) is approximately 3.3 microns wide and 9.9 microns long. ] ^ 81 ^ (〇 Can be placed on the N + diffusion source line SL (i), other lower resistance conductive materials can also be used as MSL ⑴, these optional materials include polycrystals (polycide), sand (Silicide), or a metal layer different from metal II. Each memory cell CijA and CijB can be a floating gate memory cell, they can use hot electron injection (hot electron injection) to burn, and use Fowler -Nordheim erases with the wear-through effect. The operation of these floating gate memory cells is a well-known technique and is described in detail in US Patent Nos. 5,029,130. FIG. 3 shows a memory array 140 suitable for FIG. 2 The illustrated column decoder 1 50-i. The column address decoder 120 receives a column address as an input, and decodes the column address to generate a plurality of pre-decoded column address signals XPi, each of which is decoded via 124-i The decoded column address signal XPi is input to the corresponding column decoder 150-i, and each column decoder 150-i via line 130 also receives three other signals 2? 0, 2? 1 sent from the column selection decoder 119 , And 2〇0. Signal 2 卩 0, ZP1 ZG0 can be generated by the column selection decoder 119 or other. The paper size is applicable to the Chinese National Standard (CNS) Α4 specification (210Χ297mm> 0¾ (please read the precautions on the back before filling this page) r Γ A7 B7 5. Invention Description (,) As described in US Patent No. 5,289,41, an appropriate circuit is generated. An example circuit for generating ZPO and ZP1 signals using the ZSUPPLY signal will be described with the following FIG. 7. A specific pre-decoding The column address signal XPi is directly applied to the gates of M1, M3, and M5, and is input to an inverter INV1. INV1 outputs the inverted value of XPi to the gates of M2, M4, and M6. The crystal can be a P- or N-channel metal-oxide-semiconductor field effect transistor. The column selection signals ZP0, ZP1, and ZG0 generated by the column selection decoder 119 are applied to the drains of M1, M3, and M5, respectively. The output of the decoder 150-i is the even word line WL (i), the odd word line WL (i + 1) and the metal source line MSL (i). During reading, each column decoder 150-i The output MSL (i) will be led to the ground potential, and only one odd or even word line will be selected by XPi For example, if XPi is logically high, the even word line WL (i) is connected to the signal ZP0 through Ml. As shown in FIG. 7, the signal ZP0 can be generated by the ZSUPPLY signal. The same as the character line clamp circuit described. The voltage connected to the even word line WL (i) is ZP0 minus the critical voltage Vt of M1. The voltage connected to the odd word line WL (i + 1) via M3 is ZP1 (zero potential during reading). During programming, the even word line WL (i) and the odd word line WL (i + l) are also the same selection method, except that the ZSUPPLY voltage is changed to +2 volts, which is suitable for the floating gate that stores charge in the memory cell Extremely. During programming, if the metal source line MSL (i) of Figure 3 is transformed into a logic high potential XPi selected, then MSL (i) is connected to ZGO via M5. In this case, the paper size of the signal is applicable to China National Standard (CNS) A4 specification (210X297mm) (please read the notes on the back before filling in this page). Pack. Printed by the Ministry of Economic Affairs Central Standards Bureau Employee Consumption Cooperation Du Printed by the Ministry of Economic Affairs Central Standards Bureau Beigong Consumer Cooperative Printed System A7-_! Z_ V. Description of the invention (丨 σ) ZGO may be connected to the supply voltage Vcc. During the erasing period, XPi is a logic high level, and WL (1) and Wl (i + 1) are added to ZPO via Ml, M3, and M5, and ZP1, ZP0 ', and ZP1 are both ZSUPPLY voltages (during erasing Equal to Vcc). Therefore, WL (i) and Wl (i + 1> will be approximately equal to Vcc-Vt »MSL (i) connected to ZGO via M5 (equal to 0 during erasing). Figure 4 shows a memory array suitable for Figure 2 An exemplary high-voltage encoder 160-i of 140. Each high-voltage encoder 160-i is connected to the metal source line MSL and odd and even word lines WL corresponding to the corresponding Η, as shown in the column decoder 150 of FIG. The output of i. The high voltage encoder 160-i receives the SG and SGND generated by the source ground circuit 205 described below and FIG. 5. The high voltage decoder 160-i also receives the SHV and WLHVO generated by the high voltage selective decoder 121 And WLHVE. The high voltage selective decoder 121 can be made using techniques such as those described in US Patent No. 5,289,411. A high voltage coupler 200 couples a high voltage generated by the high voltage source 122 to the selected word line and source Polar line (selected by column decoder 150 · ί and high voltage selection decoder 121). During reading, M10 provides another current path, thus improving reading performance (this point will be explained below). Figure 5 shows a suitable diagram 2. An example source ground circuit of the memory device 2 of 5. The circuit 20 5 receives a Input signal PROG (logic high level during programming). When PROG is high level, M16 receives 0 potential output from inverter INV2, so it is off. M15 receives signal PROG sent from INV3 and turns on. Via M15, signal SGND Therefore, the logic high potential is introduced, and the paper standard of the inverter is in accordance with the Chinese National Standard (CNS> A4 specification (210X: 297 mm). 10 packs -----. 彳 定 ------- line (please first Read the precautions on the back and fill in this page) A7 ____B7_ printed by the Employees ’Consumer Cooperative of the Central Standard Falcon Bureau of the Ministry of Economic Affairs 5. Invention Description (丨 丨) The output SG of INV4 is a logic low potential, and the output signals SG and SGND are added to the ones in FIG. 4 High-voltage decoder 1 60-i input, and connected to the gate and source of M10 in decoder 160-i, M10 in high-voltage decoder 160-i is therefore cut off, and the drain of M10 will be imported Logic high level, this structure also enhances the punch-through voltage of M10. During the reading and erasing operations, the signal PROG is a logic low level, which causes M15 to turn off and M16 to turn on, and then the signal SG becomes a high potential. And the signal SGND becomes low potential, making The M10 in the high-voltage decoder 160-i is turned on, and the metal source line MSL (i) is connected to the ground potential through M10 and M16. This structure provides another ground path during reading, which will enhance the reading performance. FIG. 6 shows an exemplary word line clamp circuit 210 suitable for the memory device of FIG. 2. The circuit 210 receives the signals PROG, VPWL, and CLAMP0FF generated by an appropriate memory control circuit (not shown). The circuit 210 generates an output signal ZSUPPLY and adds it to the Z-decoder circuit (Z_DEC) 215 shown in FIG. 7, The Z-DEC circuit 215 uses the inverter INV7 and the transistors M2 and M24 to generate the signals ZP0 and ZP1. Then, the signals ZP0 and ZP1 are added to the column decoder 150_i of FIG. 3 as their inputs. The Z-DEC circuit 215 may be combined with the column selection decoder 119 or the word line clamp circuit 210. The operation of the word line clamp circuit 210 of FIG. 6 will be described in more detail below. During programming, the signals PROG and CLAMPOFF are logic high, and the signal VPWL is about +2 volts, so M18 is turned on by PROG, and M19 is output by the inverter INV6. The paper size is applicable to China National Standard (CNS) A4 specifications (210X297mm) ^ -----.— J ------ 0 (Please read the notes on the back before filling out this page) A7 B7 printed by the Staff Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs
五、發明説明(丨2J CLAMPOFF的反相而截止;輸出訊號ZSUPPLY因此 被接至約爲+2伏特的訊號VPWL,輸出訊號 ZSUPPLY被供給圖7顯示的Z-DEC電路2 1 5,且經此加 至圖3的列解碼器150-i之輸入ZPO及ZP1。在讀取期 間,PROG及CLAMPOFF爲邏輯低電位且Ml 8截止, M19及M20導通,供應電壓Vcc被箝制後成爲訊號 ZSUPPLY。齊納二極體ZD1的崩潰電壓及電阻器R1 的阻値決定輸出訊號ZSUPPLY的箝制電壓,適當的 ZD1的崩潰電壓及R1的阻値分別爲4伏特及lk歐姆。 當然,這些値可以視應用而改變。在抹除期間, PROG爲低電位且CLAMPOFF爲高電位,使得Ml8及 M20截止而M19導通,因此經由M19及R1,未箝制的 供應電壓Vcc成爲輸出訊號ZSUPPLY。 圖2之記憶體陣列裝置的運作將在以下作更詳 細的說明。以下的表1摘錄在抹除、燒寫、及讀取動 作時加在一個例示的記憶單元各端點的電壓,表列 的電壓是針對一個如前述U.S. Patent No. 5,029,130 描述之型態的一個單元,對於這種型態的一個單元 而言,每一個單元C^jA及CijB的汲極接至位元線 BL⑴,每一個單元CijA及CijB之源極都連接至源極 線SL(i),每一個單元Cij A的閘極連接至偶字元線 WL(i),每一個單元CijB的閘極連接至奇字元線 WL(i+l)。每一個單元CijA及CijB之源極也利用導電 帶180連接至金屬源極線MSL(i)。其他型態的記憶單 元可以利用至位元線、字元線、及源極線不同的連 12 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 批衣 1 ^ -------線 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 A7 ____B7 __ 五、發明説明(β ) 接法,也可以在抹除、燒寫 '及讀取動作中加不同的 電壓。 運作 汲極 閘極 源極 燒寫 0.6v/5v Vt + 12V 抹除 0V + 15V 0V 讀取 + 2V + 5V ον 表1 一個抹除動作執行如下。依照此發明的具體實 施例,陣列140的記憶單元Cij A分成多個頁,每一頁 包含一些連接至一條偶字元線WL(i)的單元CijA及一 些連接至一條奇字元線WL(i+l)的單元CijB。最小的 抹除單位是單獨一頁,一特定列的奇及偶字元線上 的全部單元的內容是被一起抹除。當要抹除某一特 定列時,列解碼器150-i接收一個高電位的預解碼位 址訊號XPi,經由圖3的電路致能對應的一對奇及偶 字元線,而對應至其他列解碼器的字元線維持在不 動作狀態。高壓源122產生用於抹除動作所需的+15 伏特電位,高壓選擇解碼器121致能WLHVO及 WLHVE但並不致能SHV,且圖5的源極導地電路205 致能訊號SG成爲邏輯高電位,並且經由Ml 6將SGND 接至地電位,這些訊號接至圖4的高壓解碼器160-i’並且一同運作使得M10、M12及M13導通並使Mil 截止。高壓源122產生的+I5伏特電位因而經由高壓 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ----- —I II - —^1 - - . —II - -- - - - ·- —II I- -- . -.....、一-0JJ! !--1 - -- —ί - ill (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作杜印製 A7 —_______B7_五、發明説明(丨p) 耦合器200及M12、Ml 3加至選定的奇及偶字元線 對。對應的源極線MSL(i)經由圖4的M10及圖5的 M16接至地電位。 經由源極線SL(i)及金屬源極線MSL(i),欲抹除 之頁的單元Cij的源極接至地電位,經由偶字元線 WL(i)及奇字元線WL(i+l)單元Cij的閘極接至+ 15伏 特電位,行位址解碼器118中的位元線BL(j)也接至 地電位,使得單元Cij的汲極接至地電位,加在各端 點的電壓完全符合在表1中的抹除條件,因此被選定 欲抹除之頁的單元Cij因Fowler-Nordheim隧穿效應 而被抹除,使得原先儲存在浮閘極的電荷被移除(如 前所提U.S. Patent No. 5,029,1 3 0所詳細描述的)。未 選到的各頁其字元線及源極線經由其對應的列解碼 器150-i中的M2、M4及M6接至地電位,未選到的各 頁其單元Cij之汲極、源極及閘極將被接至地電位, 這將對原先儲存在其中的電荷不會造成任何的干 擾。 一個燒寫的運作可以依照如下說明的步驟進 行》同樣的,在這個具體實施例中,記憶體陣列140 的記憶單元CijA分成多個頁,每一頁包含一些連接 至一條偶字元線WL(i)的單元Cij A及一些連接至一條 奇字元線WL(i+l)的單元CijB。最小的燒寫單位是單 獨一頁,當要燒寫某一特定頁時,列解碼器15〇-i接 收一個高電位的預解碼位址訊號XPi,經由圖3的電 路致能對應的一對奇及偶字元線及源極線,而對應 14 (請先閱讀背面之注意事項再填寫本頁) -裝· 訂 線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) A7 297901 _____B7 五、發明説明(j7) 至其他列解碼器的字元線及源極線維持在不動作狀 態。偶字元線WL(i>經由Ml接至訊號ZPO,奇字元線 經由M3接至訊號ZP1,且源極線MSL(i)經由M5接至 訊號ZGO。高壓源122產生用於燒寫動作所需的+12 伏特電位,高壓選擇解碼器121致能SHV,但並不致 能WLHVO及WLHVE,且圖5的源極導地電路205驅 使訊號SG成爲邏輯低電位,並且經由Ml5將SGND接 至Vcc,這些訊號接至圖4的高壓解碼器160-i,並且 一同運作使得M10、M12及M13截止並使Mil導通。 高壓源122產生的+ 12伏特電位因而經由高壓耦合器 200及Mil加至選定的源極線MSL(i),偶及奇字元線 對(pair)與圖6的字元線箝壓電路輸出信號 ZSUPPLY相對的ZPO及ZP1訊號連結。如前面所提 到的,燒寫期間的ZSUPPLY對應訊號VPWL,經由 圖3的Ml及M3,造成Vt級數的電位被接至偶及奇字 元線。Vt的電位約爲+2伏特。 欲燒寫之頁的單元Cij的源極經由源極線SL(i) 及金屬源極線MSL(i)接至高壓源輸出的+12伏特電 位,單元Cij的閘極經由偶字元線WL(i>及奇字元線 WL(i+l)接至Vt電位,回應輸入暫存器112送出的燒 寫資料,行位址解碼器118控制位元線BL(j),以便 將所需的資料値燒寫進單元Cij ;如要燒寫邏輯1資 料位元,對應的單元其位元線BL(j)被設定爲5伏 特,如要燒寫邏輯〇資料位元’對應的單元其位元線 BL(j)被設定爲0.6伏特,使得原先因抹除而單元存在 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先鬩讀背面之注意事項再填寫本頁) -裝. -· 經濟部中央橾準局員工消費合作社印製 經濟部中央標準局員工消費合作社印製 A7 ___B7^___ 五、發明説明((L) 邏輯〇値保持不變。加在各端點的電壓完全符合表1 中的燒寫條件,因此被選定欲燒寫之頁的單元Cij因 熱電子注入效應而移入電荷至浮閘極中(如前所提 11.8.?&161^]^〇.5,02 9,13 0所詳細描述的)。未選到的 各頁其字元線及源極線經由其對應的列解碼器15〇-i 中的M2、M4及M6接至地電位。在燒寫期間,陣列 140的記憶單元Cij各種偏壓狀況摘要如下: 1. 選到的頁,字元線及行且燒寫的資料爲〇Fifth, the invention description (丨 2J CLAMPOFF is reversed and ends; the output signal ZSUPPLY is therefore connected to a signal VPWL of approximately +2 volts, and the output signal ZSUPPLY is supplied to the Z-DEC circuit 2 15 shown in FIG. 7 and through this Added to the inputs ZPO and ZP1 of the column decoder 150-i of Fig. 3. During reading, PROG and CLAMPOFF are logic low and M18 is off, M19 and M20 are on, and the supply voltage Vcc is clamped to become the signal ZSUPPLY. The collapse voltage of the nano-diode ZD1 and the resistance of the resistor R1 determine the clamping voltage of the output signal ZSUPPLY. The appropriate breakdown voltage of the ZD1 and the resistance of R1 are 4 volts and lk ohms respectively. Of course, these values can depend on the application. Change. During erasing, PROG is low and CLAMPOFF is high, which causes M18 and M20 to turn off and M19 to turn on. Therefore, through M19 and R1, the unclamped supply voltage Vcc becomes the output signal ZSUPPLY. Memory array device in FIG. 2 The operation will be described in more detail below. Table 1 below excerpts the voltages applied to the terminals of an exemplary memory cell during erase, write, and read operations. The voltages listed are for a US Patent No. 5,029,130 is a cell of the type described. For a cell of this type, the drain of each cell C ^ jA and CijB is connected to the bit line BL (1), the source of each cell CijA and CijB The poles are connected to the source line SL (i), the gate of each cell Cij A is connected to the even word line WL (i), and the gate of each cell CijB is connected to the odd word line WL (i + l) The source of each cell CijA and CijB is also connected to the metal source line MSL (i) by the conductive tape 180. Other types of memory cells can use different connections to the bit line, word line, and source line 12 This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297mm) Approved clothing 1 ^ ------- line (please read the precautions on the back before filling this page) Employee consumption of the Central Standards Bureau of the Ministry of Economic Affairs A7 ____B7 __ printed by the cooperative. V. Description of invention (β) connection, you can also add different voltages during erasing, programming and reading operations. Operation Drain gate source programming 0.6v / 5v Vt + 12V erase 0V + 15V 0V read + 2V + 5V ον Table 1 An erase operation is performed as follows. According to this invention In a specific embodiment, the memory cell Cij A of the array 140 is divided into multiple pages, and each page includes some cells CijA connected to an even word line WL (i) and some connected to an odd word line WL (i + 1) The cell CijB. The smallest erasing unit is a single page, and the contents of all cells on the odd and even character lines of a particular column are erased together. When erasing a specific column, the column decoder 150-i receives a high-level pre-decoded address signal XPi, and enables the corresponding pair of odd and even word lines through the circuit of FIG. 3, and corresponds to the other The word line of the column decoder is maintained in an inactive state. The high voltage source 122 generates the +15 volt potential required for the erase operation. The high voltage selection decoder 121 enables WLHVO and WLHVE but not SHV, and the source ground circuit 205 of FIG. 5 enables the signal SG to be logic high Potential, and connect SGND to ground potential through Ml 6, these signals are connected to the high voltage decoder 160-i 'of FIG. 4 and work together to make M10, M12 and M13 turn on and turn off Mil. The + I5 volt potential generated by the high-voltage source 122 is therefore applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) through the high-voltage paper standard ----- —I II-— ^ 1--. —II--- --·-—II I--. -..... 、 一 -0JJ!!-1---ί-ill (Please read the precautions on the back before filling out this page) Central Standards of the Ministry of Economic Affairs The bureau employee consumer cooperation du printed A7 —_______ B7_ V. Description of invention (丨 p) The coupler 200 and M12, Ml 3 are added to the selected odd and even character line pairs. The corresponding source line MSL (i) is connected to the ground potential through M10 of FIG. 4 and M16 of FIG. 5. Via the source line SL (i) and the metal source line MSL (i), the source of the cell Cij of the page to be erased is connected to the ground potential, via the even word line WL (i) and the odd word line WL ( i + l) The gate of cell Cij is connected to the +15 volt potential, and the bit line BL (j) in row address decoder 118 is also connected to ground potential, so that the drain of cell Cij is connected to ground potential and added at The voltage at each terminal fully meets the erasing conditions in Table 1. Therefore, the cell Cij of the page to be erased is erased due to the Fowler-Nordheim tunneling effect, so that the charge originally stored in the floating gate is shifted. Except (as detailed in US Patent No. 5,029,130 mentioned above). The character lines and source lines of the unselected pages are connected to the ground potential through M2, M4, and M6 in the corresponding column decoder 150-i, and the drain and source of the cell Cij of the unselected pages The pole and gate will be connected to ground potential, which will not cause any interference to the charge originally stored in it. A programming operation can be carried out according to the steps described below. Similarly, in this specific embodiment, the memory cell CijA of the memory array 140 is divided into multiple pages, and each page includes some connected to an even word line WL ( i) Cell Cij A and some cells CijB connected to an odd word line WL (i + 1). The smallest programming unit is a single page. When programming a specific page, the column decoder 15〇-i receives a high potential pre-decoding address signal XPi and enables the corresponding pair through the circuit of FIG. 3 Odd and even character lines and source lines, and corresponding to 14 (please read the notes on the back before filling in this page)-Packing and binding This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) A7 297901 _____B7 V. Description of the invention (j7) The character line and source line to other column decoders are kept in the inoperative state. The even word line WL (i> is connected to the signal ZPO via Ml, the odd word line is connected to the signal ZP1 via M3, and the source line MSL (i) is connected to the signal ZGO via M5. The high voltage source 122 is generated for programming operation The required +12 volt potential, the high-voltage selective decoder 121 enables SHV, but does not enable WLHVO and WLHVE, and the source ground circuit 205 of FIG. 5 drives the signal SG to a logic low level, and connects SGND to MGND via M15 Vcc, these signals are connected to the high voltage decoder 160-i of FIG. 4 and work together to turn off M10, M12, and M13 and turn on Mil. The +12 volt potential generated by the high voltage source 122 is thus applied to the high voltage coupler 200 and Mil The selected source line MSL (i), even and odd word pair (pair) are connected to the ZPO and ZP1 signals relative to the output signal ZSUPPLY of the word line clamp circuit of Figure 6. As mentioned before, burn The ZSUPPLY corresponding signal VPWL during writing, via M1 and M3 in FIG. 3, causes the potential of the Vt series to be connected to the even and odd word lines. The potential of Vt is about +2 volts. The cell Cij of the page to be written The source is connected to the +12 volt potential output by the high voltage source via source line SL (i) and metal source line MSL (i), The gate of cell Cij is connected to the Vt potential through the even word line WL (i > and odd word line WL (i + 1), in response to the programming data sent from the input register 112, the row address decoder 118 controls the bit Element line BL (j), in order to write the required data value into the cell Cij; if you want to program logic 1 data bit, the corresponding cell bit line BL (j) is set to 5 volts, if you want to program The bit line BL (j) of the unit corresponding to the write logic 〇 data bit 'is set to 0.6 volts, so that the unit originally exists due to erasure. This paper standard applies the Chinese National Standard (CNS) Α4 specification (210Χ297 mm) ( Please read the precautions on the back first and then fill out this page)-installed.-· Printed by the Ministry of Economic Affairs, Central Bureau of Standards and Staff Employee Consumer Cooperatives Printed by the Ministry of Economic Affairs, Central Bureau of Standards, Employee Consumer Cooperatives A7 ___ B7 ^ ___ V. Description of Invention ((L ) The logic 0 value remains unchanged. The voltage applied to each terminal fully meets the programming conditions in Table 1, so the cell Cij of the page to be programmed is moved into the charge to the floating gate due to the hot electron injection effect ( As previously mentioned 11.8.? &Amp; 161 ^] ^ 〇.5,02 9,13 0 detailed description). Not selected The word line and source line of the page are connected to the ground potential through M2, M4, and M6 in their corresponding column decoders 15〇-i. During programming, the various bias conditions of the memory cell Cij of the array 140 are summarized as follows: 1. The selected page, character line and line and the burned data is 〇
汲極=〇. 6 VDrain pole = 0.6 V
聞極=2 V 源極=12 V 2. 選到的頁,字元線及行且燒寫的資料爲1Wenji = 2 V Source = 12 V 2. The selected page, character line and line and the data written is 1
汲極=5 V 閘極=2V 源極=12V 3. 選到的頁,字元線及未選到的行Drain = 5 V Gate = 2V Source = 12V 3. Selected page, character line and unselected row
汲極=5V 閘極=2V 源極=12V 4. 選到的頁,其他的字元線及選到的行且燒寫的資 料爲〇Drain = 5V Gate = 2V Source = 12V 4. The selected page, the other character lines and the selected row and the programming data is 〇
汲極=0.6V 閘極=0V 源極=12V 5. 選到的頁,其他的字元線及選到的行且燒寫的資 料爲1Drain = 0.6V Gate = 0V Source = 12V 5. The selected page, other character lines and selected rows and the programming data is 1
汲極二5V 閘極=0V 源極=12V 6. 選到的頁,其他的字元線及未選到的行 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (錆先閲讀背面之ji意事項真填寫本 -装. ir 經濟部中央標準局員工消費合作社印製 Α7 Β7 五、發明説明Ο7) 汲極=5V 閘極=OV 源極=12V 7. 未選到的頁,其他的字元線及選到的行且燒寫的 資料爲〇 汲極=〇. 6 V 閛極=OV 源極=0V 8. 未選到的頁,其他的字元線及選到的行且燒寫的 資料爲I 汲極=5V 閘極=0V 源極=0V 9. 未選到的頁,其他的字元線及未選到的行 極極極 汲閘源 =5V=ον=ον 由以上偏壓的狀況可以看出此發明的記憶體陣 列140中的燒寫干擾大體上侷限在選到的頁內的單元 Cij ;未選到的各頁內的單元Cij偏壓的狀況讓原先儲 存在其中的電荷大體不受被燒寫選頁運作的干擾。 表1指出讀取動作的執行是藉位元線BL(j)加+2 伏特的電壓至選到的頁的單元Cij的汲極,藉偶字元 線WL(i>及奇字元線WL(i+l)加+5伏特的電壓至閘 極,藉源極線SL(i)及金屬源極線MSL⑴加地端電 位至源極。這些電壓的提供是和前面所描述之抹除 及燒寫的動作方式相同的。ZSUPPLY經由圖3的Ml 及M3被接至偶及奇字元線,且如前面所說的,被圖6 < r ^^^1 n^i ^^^^1 v^v— nn ml ^^^^1 fluv 1^1 一OJ1^1^1 In— (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) A7 B7 五、發明説明(丨&) 的字元線箝壓電路210箝制,此發明的記憶體陣列 140在讀取動作因此較不易感受閘極的動盪。前述之 習知記憶體裝置因直接加Vcc-Vt至選到的單元的閘 極,因此當Vcc增加或變動時,極可能造成陣列內閘 極的動邊。 (請先閱讀背面之注意事項再填寫本頁) -β 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ29·;公釐)Drain pole 2 5V gate = 0V source = 12V 6. The selected page, other character lines and unselected line paper size are in accordance with Chinese National Standard (CNS) Α4 specification (210X297mm) Read the contents on the back of the page and fill in the actual copy. Ir Printed by the Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Α7 Β7 5. Invention Description Ο7) Drain = 5V Gate = OV Source = 12V 7. Unselected pages , The other character lines and the selected lines and the burned data is 〇 Drain = 〇. 6 V 閛 极 = OV source = 0V 8. Unselected pages, other character lines and selected The data written and programmed is I Drain = 5V Gate = 0V Source = 0V 9. Unselected pages, other character lines and unselected Row and Pole drain drain = 5V = ον = ον It can be seen from the above bias condition that the programming interference in the memory array 140 of this invention is generally limited to the cell Cij in the selected page; the cell Cij bias condition in the unselected pages makes the original The charge stored in it is generally not disturbed by the operation of page selection by being burned. Table 1 indicates that the read operation is performed by applying a voltage of +2 volts to the drain of the cell Cij of the selected page via the bit line BL (j), and borrowing the even word line WL (i > and the odd word line WL (i + l) Add a voltage of +5 volts to the gate, and add the ground potential to the source via the source line SL (i) and the metal source line MSL (1). These voltages are provided as described above for erasing and burning The writing action is the same. ZSUPPLY is connected to the even and odd character lines via M1 and M3 in Figure 3, and as mentioned before, it is shown in Figure 6 < r ^^^ 1 n ^ i ^^^^ 1 v ^ v— nn ml ^^^^ 1 fluv 1 ^ 1 OJ1 ^ 1 ^ 1 In— (please read the precautions on the back before filling in this page) This paper size is applicable to China National Standard (CNS) Α4 specification (210Χ297 Mm) A7 B7 V. Description of the invention (丨 &) The word line clamp circuit 210 is clamped, and the memory array 140 of this invention is less likely to feel the turbulence of the gate electrode during the reading operation. The body device directly adds Vcc-Vt to the gate of the selected unit, so when Vcc increases or changes, it is likely to cause the moving edge of the gate in the array. (Please read the precautions on the back before filling this page)- β Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs This paper scale applies the Chinese National Standard (CNS) Α4 specification (210Χ29 ·; mm)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW85106419A TW297901B (en) | 1996-05-30 | 1996-05-30 | Floating gate memory array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW85106419A TW297901B (en) | 1996-05-30 | 1996-05-30 | Floating gate memory array |
Publications (1)
Publication Number | Publication Date |
---|---|
TW297901B true TW297901B (en) | 1997-02-11 |
Family
ID=51565453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW85106419A TW297901B (en) | 1996-05-30 | 1996-05-30 | Floating gate memory array |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW297901B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0935254A3 (en) * | 1998-02-06 | 2000-05-03 | Analog DEvices | A memory and a data processor including a memory |
-
1996
- 1996-05-30 TW TW85106419A patent/TW297901B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0935254A3 (en) * | 1998-02-06 | 2000-05-03 | Analog DEvices | A memory and a data processor including a memory |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6222765B1 (en) | Non-volatile flip-flop circuit | |
TW525175B (en) | Bit line setup and discharge circuit for programming non-volatile memory | |
US7800953B2 (en) | Method and system for selectively limiting peak power consumption during programming or erase of non-volatile memory devices | |
KR100453854B1 (en) | Nonvolatile Semiconductor Memory Device With An Improved Program Inhibition Characteristics And Method Of Programming The Same | |
KR950004284A (en) | Semiconductor integrated circuit | |
KR910010526A (en) | Page-Erasable Flash YPIROM Device | |
KR940006611B1 (en) | Automatic erase optimization circuit and method for eeprom | |
EP0586473A4 (en) | ||
WO2002013199A1 (en) | Nonvolatile semiconductor memory and method of reading data | |
JPH0746515B2 (en) | Decoder circuit | |
JP2003109392A (en) | Reference generator circuit and method for nonvolatile memory device | |
KR100308745B1 (en) | Flash memory system having reduced disturb and method | |
JPH07507176A (en) | Floating Gate Memory Array Device with Improved Immunity to Write Disturbances | |
JPH07287986A (en) | Integrated circuit memory with string voltage holding circuit | |
JP2002527849A (en) | Flash electrically erasable programmable read only memory (EEPROM) word line driver | |
TW434553B (en) | Nonvolatile memory semiconductor devices having alternative programming operations | |
TW379328B (en) | Column decoding circuit of flash memory having separated character lines | |
US5862073A (en) | Floating gate memory array device with improved program and read performance | |
TW297901B (en) | Floating gate memory array | |
JPH0314272A (en) | Nonvolatile semiconductor storage device | |
JP2601971B2 (en) | Nonvolatile semiconductor memory device | |
TW409368B (en) | Non-volatile semiconductor storage device | |
JPH1055697A (en) | Non-volatile semiconductor memory | |
KR0170293B1 (en) | Eeprom device | |
JP4484344B2 (en) | Nonvolatile semiconductor memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |