TW268166B - CMOS inverter of base-source electrode forward bias - Google Patents
CMOS inverter of base-source electrode forward bias Download PDFInfo
- Publication number
- TW268166B TW268166B TW84107404A TW84107404A TW268166B TW 268166 B TW268166 B TW 268166B TW 84107404 A TW84107404 A TW 84107404A TW 84107404 A TW84107404 A TW 84107404A TW 268166 B TW268166 B TW 268166B
- Authority
- TW
- Taiwan
- Prior art keywords
- base
- type
- transistor
- inverter
- source
- Prior art date
Links
Landscapes
- Logic Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
A7 268166 B7 五、發明説明() 本發明係關於一種基-源極順向偏壓之互補式金氧半 反相器,其包含:複數互補式金氧半電晶體,與複數基極 偏壓裝置(接於互補式金氧半電晶體之基極)。基極偏壓 裝置施於基極之偏壓形態為順向偏壓,以此,可Μ適時產 生基極順偏電壓來降低臨界電壓值進而增加驅動電流之大 小*且電路中的電晶體之原始臨界電壓值不需事先藉由製 程參數調低,故截止漏電流得Μ保持在非常低的準位,達 至低電壓操作、維持高操作速度、與降低靜候功率消耗之 功效。 近來,配合著個人可攜式電子設備(如掌上型電腦、 智慧型介面卡、無線通話機等等)的發展需求,操作電壓 降壓1 · 5V (或Κ下)Μ利使用乾電池電源者,漸成未 來1C電路必然之趨勢。 由於元件製程技術的發展,每個晶Η上單位面積的元 件數目不斷地增加,因此單位面積的消耗功率也相對地增 加。因為總消耗功率係與操作電壓呈正比函數關係,於是 乎降低操作電壓成為減少電路功率消耗的最有效方法。 然而傳統的CMO S電路之操作速度卻因操作電壓的 降低而下降,此乃因為電晶體的驅動罨流随著操作電壓的 降低而降低之故。欲解決這個問題·可利用製程參數來調 低電晶體的臨界電壓值(Threshold Voltage Value ), Μ便增加驅動電流的大小。然而相對地電晶體的截止漏電 流(Cutoff Leakage Current)將因臨界電壓值的降低而 呈指數闞係增加。因而電路之靜候功率消耗(Standby Po 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) ------^-------叫裝-If _ (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部中央標準局員工消費合作社印製 A7 B7 268166 五、發明説明() wer Dissipation )也將變大。 請參照第一圖,係一習用反相器的電路结構圖。該電 路由一對互補式金氧半電晶體所組成,其一為P型金氧半 電晶體而另一為N型金氣半電晶體。輸入端與互補式電晶 體的閘極相連接,而輸出端則連接至互補式電晶體的汲極 。P型金氧半電晶體之源極連接至電壓源,N型金氧半電 晶體之源極則接地。電晶體的N型基體和電晶體的P型基 體則分別連接至其源極,亦即,基極與源極為零偏壓。負 載電容為該反相器所欲推動的負載。 習用反相器的工作原理如下:當輸入端的輸入電壓為 0V時,P型電晶體導通而N型電晶體闞閉,所K負載電 容被充電至電源電壓VDD;反之,當輸入端的輸入電壓為 V DD時,則P型電晶體關閉而N型電晶體導通,於是負載 電容被放電至0V。負載電容的充放電的速度(亦即,反 向器的操作速度)則視充放電電流的大小而定。當操作電 源電壓V DD降低至接近電晶體的臨界電壓值時,充放電電 流亦随之減小,於是操作速度變慢。 為解決這個問題,從已知的文獻中可歸納出兩種方法 K增加充放電電流大小,進而改善操作速度,亦即: (I )利用製程參數調降電晶體的臨界電壓值; (I I)利用基極偏壓調降電晶體的臨界電壓值。A7 268166 B7 5. Description of the invention () The present invention relates to a base-source forward biased complementary metal-oxygen semi-inverter, which includes: a complex complementary metal-oxygen semi-transistor, and a complex base-bias bias Device (connected to the base of complementary metal oxide semi-transistor). The base bias device applies a forward bias to the base. In this way, the base forward bias voltage can be generated in time to reduce the threshold voltage value and increase the size of the drive current * and the transistor in the circuit The original threshold voltage value does not need to be adjusted through the process parameters in advance, so the cut-off leakage current M is kept at a very low level to achieve the effects of low voltage operation, maintaining high operation speed, and reducing static power consumption. Recently, in accordance with the development needs of personal portable electronic devices (such as palmtop computers, smart interface cards, wireless telephones, etc.), the operating voltage is reduced to 1.5V (or under K), and those who use dry battery power, Gradually become the inevitable trend of the future 1C circuit. Due to the development of element manufacturing technology, the number of elements per unit area on each crystal H is continuously increasing, so the power consumption per unit area is also relatively increasing. Because the total power consumption is directly proportional to the operating voltage, reducing the operating voltage becomes the most effective way to reduce the power consumption of the circuit. However, the operating speed of the conventional CMOS circuit decreases due to the decrease of the operating voltage. This is because the driving current of the transistor decreases as the operating voltage decreases. To solve this problem, process parameters can be used to lower the threshold voltage value (Threshold Voltage Value) of the transistor, so the driving current is increased. However, the cutoff leakage current (Cutoff Leakage Current) of the ground transistor will increase exponentially as the threshold voltage decreases. Therefore, the standby power consumption of the circuit (Standby Po This paper standard is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) ------ ^ ------- 叫 装 -If _ (please first Read the precautions on the back and then fill out this page) A7 B7 268166 printed by the Staff Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economy V. Invention Instructions (wer Dissipation) will also become larger. Please refer to the first figure for a circuit diagram of a conventional inverter. The circuit is composed of a pair of complementary metal oxide semi-transistors, one of which is a P-type metal oxide semi-transistor and the other is an N-type metal oxide semi-transistor. The input is connected to the gate of the complementary transistor, and the output is connected to the drain of the complementary transistor. The source of the P-type metal oxide semi-transistor is connected to the voltage source, and the source of the N-type metal oxide semi-transistor is grounded. The N-type base of the transistor and the P-type base of the transistor are connected to their sources respectively, that is, the base and the source are at zero bias. The load capacitance is the load that the inverter wants to drive. The working principle of the conventional inverter is as follows: when the input voltage of the input terminal is 0V, the P-type transistor is turned on and the N-type transistor is closed, and the K load capacitor is charged to the power supply voltage VDD; otherwise, when the input voltage of the input terminal is At V DD, the P-type transistor is turned off and the N-type transistor is turned on, so the load capacitance is discharged to 0V. The charging and discharging speed of the load capacitor (that is, the operating speed of the inverter) depends on the magnitude of the charging and discharging current. When the operating power supply voltage V DD decreases to a value close to the threshold voltage of the transistor, the charging and discharging current also decreases, and the operating speed becomes slower. To solve this problem, two methods K can be summarized from the known literature to increase the charge and discharge current, thereby improving the operating speed, that is: (I) using the process parameters to adjust the critical voltage of the transistor; (II) The base voltage is used to adjust the critical voltage of the transistor.
當利用製程參數來調降電晶體的臨界電壓值時,將使 得電晶體的截止漏電流變大。這是因為截止漏電流的大小 與臨界電壓值的大小成指數及比。當操作電源電壓在2V 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) I--『裝-- (請先閱讀背面之注意事項再填寫本頁) 、?τ 經濟部中央標準局員工消費合作社印製 A7 B7 26Sl66 五、發明説明() Μ上時,一般電晶體的臨界電壓值大於0 · 5V ;然而, 為了滿足1 V Μ下的操作條件,電晶體的臨界電壓值需降 低至0 · 2V。是以兩者之截止漏電流大小將近約十萬倍 之差異。藉由製程參數調降臨界電壓值的方式,雖加快了 操作速度,卻將使得反相器處於靜候模式(Standby mode )時其靜候功率消耗變大。此乃利用上述第一種方法的缺 點0 改善因V DD的降低而操作速度變慢的第二種方式,則 是利用基極順偏的技巧Μ降低電晶體的臨界電壓值。如第 二圖所示,係習用之直接耦合基極順偏技巧的反相器電路 。圖中Ρ型和Ν型金氧半電晶體的基極連接至輸入端。其 工作原理如下:當输入電壓為0V時,因Ρ型電晶體的基 棰亦為0V,則此時Ρ型電晶體的基-源極為順偏,故其 臨界電壓值變降低。但此刻Ν型電晶體的基一源極為零僑 壓,故其臨界電壓值不變。由於Ρ型電晶體的臨界電壓值 降低之故,故汲極電流變大,因而充電電流變大且操作速 度可變快。另一方面,當輸入電壓為V DD時,因Ν型電晶 體的基-源極為順偏,故其臨界電壓值降低且汲極電流變 大。也因此放電電流變大且操作速度可變快。然而我們要 特別注意到的是當基源極順偏電懕太大時,基一源接面之 漏電流(相當於基源二極體順向電流)便變得非常大。故 如第二圖所示之電路僅遘用於非常低的VDD (SO . 6V )下,否則,輸入端會需要額外的大量驅動電流,造成操 作功率消耗過大。 Λ — 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝· 訂 經濟部中央標準局員工消費合作社印裝 經濟部中央標準局員工消費合作社印製 268166 A7 B7 五、發明説明() 本發明之主要目的,在提供一種基一源極順向偏壓之 互補式金氧半反相器,可於低電壓電源(S1 · 5 V )下操作; 本發明之次一目的,在提供一種基一源極順向偏壓之 互補式金氧半反相器,於低電壓電源操作時仍未 減低其操作速度; 本發明之又一目的*在提供一種基一源極順向偏壓之 互補式金氧半反相器,於低電懕電源操作時,保 持甚低之靜候功率消耗; 本發明之再一目的,在提供一種基-源極順向偏壓之 互補式金氧半反相器,Μ其操作於低電壓電源* 使鎖定現象(latch-up)不易發生。 本發明之另一目的,在提供一種基一源極順向偏壓之 互補式金氧半反相器,其簡併化之電路佈局结構 可降低電路面積之消耗。 為使 貴審查委員對本發明之結構、特激與功效有一 詳盡之瞭解,21配合圖式,將本發明具體實施例詳细說明 如下: 請參閱第三圖,係為本發明之具體實施例(一)之電 路圖。定電壓源(VBP) 3 1和(VBN) 32分別連接於 P型金氧半電晶體91和N型金氧半電晶體92的基極與 源掻之間。利用定電壓源(VBP) 3 1和(VBH) 32K 使P型金氧半電晶體91和N型金氧半電晶體92的基一 源槿順偏。臨界電壓的調降值則可依下列公式估算之: 本紙張尺度適用中國國家橾準(CNS ) A4規格(210X297公釐) n^i In ^^^1 1^1 n^— ll· 1^1 In ^^^1 —LI 0 (請先閱讀背面之注意事項再填寫本頁)When the process parameters are used to lower the threshold voltage of the transistor, the cut-off leakage current of the transistor will become larger. This is because the magnitude of the cut-off leakage current is exponential and proportional to the magnitude of the critical voltage value. When the operating power supply voltage is 2V, the paper standard is applicable to the Chinese National Standard (CNS) Α4 specification (210X 297mm) I-- "installed" (please read the precautions on the back before filling out this page),? Τ Central Ministry of Economic Affairs A7 B7 26Sl66 printed by the Staff Consumer Cooperative of the Bureau of Standards V. Description of the invention () At Μ, the critical voltage value of the general transistor is greater than 0. 5V; however, in order to meet the operating conditions at 1 V Μ, the critical voltage value of the transistor Need to reduce to 0 · 2V. The difference between the cut-off leakage currents of the two is approximately 100,000 times. By reducing the critical voltage value through the process parameters, although the operation speed is accelerated, the static power consumption of the inverter when it is in the standby mode (Standby mode) will be increased. This is the second way to improve the speed of operation due to the decrease of V DD by using the defect 0 of the first method mentioned above, which is to reduce the critical voltage value of the transistor by using the technique of base forward bias. As shown in the second figure, it is the conventional inverter circuit that directly couples the base forward bias technique. In the figure, the bases of P-type and N-type metal oxide semi-transistors are connected to the input terminal. Its working principle is as follows: when the input voltage is 0V, because the base of the P-type transistor is also 0V, then the base-source of the P-type transistor is extremely forward biased, so its critical voltage value becomes lower. However, at this moment, the base source of the N-type transistor is extremely zero, so its critical voltage value remains unchanged. Since the threshold voltage of the P-type transistor is lowered, the drain current becomes larger, so the charging current becomes larger and the operation speed can become faster. On the other hand, when the input voltage is V DD, since the base-source of the N-type transistor is extremely forward-biased, the threshold voltage value decreases and the drain current becomes larger. Therefore, the discharge current becomes larger and the operation speed becomes faster. However, we should pay special attention to the fact that when the base-source forward bias voltage is too large, the base-source junction leakage current (equivalent to the base-source diode forward current) becomes very large. Therefore, the circuit shown in the second figure is only used at very low VDD (SO. 6V), otherwise, the input terminal will require a large amount of additional drive current, resulting in excessive operating power consumption. Λ — This paper standard applies to China National Standard (CNS) Α4 specification (210Χ297mm) (please read the precautions on the back before filling in this page) Printed by staff consumer cooperatives 268166 A7 B7 V. Description of the invention () The main purpose of the present invention is to provide a complementary oxymetallic semi-inverter based on a source-forward bias, which can be used in a low-voltage power supply (S1 · 5 V) operation; the next object of the present invention is to provide a base-source forward biased complementary metal-oxygen semi-inverter, which has not reduced its operating speed when operating at a low voltage power supply; An objective * To provide a complementary oxygen-oxygen semi-inverter based on a source-source forward bias to maintain very low stand-by power consumption when operating with a low power supply; Another object of the present invention is to provide A base-source forward-biased complementary metal-oxygen semi-inverter, which operates on a low-voltage power supply * makes latch-up difficult to occur. Another object of the present invention is to provide a complementary source metal-oxygen semi-inverter with a base-source forward bias, and its simplified circuit layout structure can reduce the circuit area consumption. In order for your reviewing committee to have a detailed understanding of the structure, excitement and efficacy of the present invention, 21 in conjunction with the drawings, the specific embodiments of the present invention are described in detail as follows: Please refer to the third figure, which is a specific embodiment of the present invention ( A) The circuit diagram. The constant voltage sources (VBP) 31 and (VBN) 32 are connected between the base of the P-type metal oxide semi-transistor 91 and the N-type metal oxide semi-transistor 92 and the source switch, respectively. Using constant voltage sources (VBP) 31 and (VBH) 32K, the base sources of P-type metal oxide semi-transistor 91 and N-type metal oxide semi-transistor 92 are biased. The cut-off value of the critical voltage can be estimated according to the following formula: This paper scale is applicable to China National Standard (CNS) A4 (210X297mm) n ^ i In ^^^ 1 1 ^ 1 n ^ — ll · 1 ^ 1 In ^^^ 1 —LI 0 (Please read the notes on the back before filling this page)
、tT, TT
A 268166 A1 B7 五、發明説明()A 268166 A1 B7 V. Description of invention ()
V ΤΗ , N =al+a2.Ja3-VBNV ΤΗ, N = al + a2.Ja3-VBN
VTH,P = a 1 + a 2 · J a 3 — V BP 其中VTH,N和VTH,P分別表示N型或P型電晶體的臨界電 壓值,VBN與VBP分別表示N型或P型電晶體的基一源僑 壓值。而參數a 1 ,a2和a3為元件特性參數,僅随元 件结構變動,不随操作電壓而改變。由於基-源極順僑的 結果,由上述公式,可Μ得知電晶體的基一源偏壓VBN與 VBP增加,參數a 1 ,a 2和a 3不變,則根號内之數值 變小,因此臨界電壓V ΤΗ,N和V ΤΗ , P必會随之調降。 第四圖係為本發明之具體實施例(一)之臨界電壓對 基極順向偏壓函數闞係之理論值與實験值’横軸為基極順 向偏壓值,縱軸為臨界電壓值。觀察第四圖,我們可Μ得 知随著基掻順向偏壓值的增大,臨界電壓值随之下降,與 前節公式之推論相符。由於臨界電壓值的下降導致汲極電 流驅動能力上升,我們可知具髓實施例(一)之正反器的 操作速度增快。 經濟部中央標準局員工消費合作社印製 (請先閱讀背面之注意事項再填寫本頁) 參閲第五圖,係為本發明之具體實施例(一)與習用 之反相器電路(一)之暫態響應比較。我們比較了在操作 電源電壓分別為1 · 0V、0 . 8V和0 . 6V下,本發 明之具體實施例(一)與習用之反相器電路(一)在輸出 上升響應和輸出下降響應结果。觀察第五圖,本發明之具 本紙張尺度適用中國國家標準(CNS ) Α4規格(2丨0Χ297公釐) 268166 A7 B7 五、發明説明() n- ^—^1— Jm in Hr— I nn v n ^^1 (請先閱讀背面之注意事項再填寫本頁) 體實施例(一)之输出上升響應曲線和輸出下降響應曲線 均較習用之反相器電路(一)之輸出上升響應曲線和輸出 下降響廯曲線來得陡峭,由此實驗结果證明,具體實施例 (一)的輸出響應的確優於習用之反相器電路(一)。 第六圖係為本發明之具體實施例(一)與習用之反相 器電路(一)之延遲時間對電源電壓闞係之比較。如第六 圖所示,係針對第五圖的實驗所得的延遲時間對電源電壓 的结果比較,其中,延遅時間的定義為上升時間與下降時 間之和的一半,上升時間與下降時間依一般之定義。從第 六圖,我們可以得知本發明之具體實施例(一)的延遅時 間較習用之反相器電路(一)小,且受電源電壓的影響趨 勢較為鍰和。 - 經濟部中央標準局員工消費合作社印製 請參閲第七圖,係為本發明之具體實施例(二)之電 路圖,此電路係由六個電晶體所組成,其乃利用一與輸入 訊號同步之基極偏壓裝置來產生基極順向偏壓。其中p型 金氧半電晶體91和N型金氧半電晶體92構成反相器之 主體。電晶體93、94與電晶體95、96係基極偏壓 電路,以分別提供電晶體9 1和9 2之基極所需的順向偏 壓。輸入端97連接至電晶體9 1、92之閘極,輸出端 9 8則連接至電晶體94和9 5之汲極。負載電容9 9連 接至輸出端9 8。 上述反相器電路工作原理如下: 令電晶體9 3和9 6的閘極分別為接地和電源電壓,使其 為恆常導通狀態。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) Α7 Β7 268166 五、發明説明() 當輸入端97的輸入電壓為0V時,電晶體9 1和94導 通,而電晶體92和95關閉。由於電晶體94導通之 故,節點A934的電壓值就由電晶髓93之電源電壓 值和輸出端9 8電壓值來決定。假設在充電過程褢_出 端98的電壓初始值為〇乂,則節點八934的電壓將 小於電源電壓VDD,於是造成電晶體9 1基極順偏。同 時,由於電晶體95關閉之故,節點B956之電位因 電晶髖9 6的恆常導通狀態而保持接地。是K電晶體9 2在輸入端9 7的輸入電壓為0V時係為基極和源極零 偏懕的截止Μ閉狀態。 當輸入端97的輸入電壓為VDD時,電晶體92和95導 通而電晶體9 1和94關閉。根據上述類似的推理,節 點Α9 34的電壓值保持於VDD,而節點Β9 5 6的電 壓值由輸出端9 8電壓經由電晶體9 5和9 6分壓結果 而定。是Κ電晶體9 2為基極順偏的導通狀態,而電晶 髖9 1為基極和源極零偏壓的截止關閉狀態。 藉由電晶體93、94與電晶體95、96之分壓作用, 使電晶體9 1和9 2導通時,其基-源偏壓值保持約為電 源電壓值V DD—半之低準位,降低基一源接面之漏電流。 本發明之具體實施例(二)因具有上述之基極偏壓電 路之設計*故有下列特色: (I )電晶體之基極順偏操作,使得充放電電流比傳 統操作下的電晶體來得大,故可於低電壓電源 (S1 · 5V)下操作,且未減低操作速度; 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) i 1— - Ί— - IT--「--r (請先閱讀背面之注意事項再填寫本頁)VTH, P = a 1 + a 2 · J a 3 — V BP where VTH, N and VTH, P represent the critical voltage value of N-type or P-type transistors respectively, VBN and VBP represent N-type or P-type transistors respectively The value of Ji Yiyuan's overseas Chinese pressure. The parameters a 1, a2 and a3 are the device characteristic parameters, which only change with the structure of the device and not with the operating voltage. As a result of the base-source shunqiao, from the above formula, it can be known that the base-source bias voltages VBN and VBP of the transistor increase, the parameters a 1, a 2 and a 3 do not change, then the value in the root sign changes The threshold voltages VTH, N and VTH, P must be lowered accordingly. The fourth graph is the theoretical value and real value of the threshold voltage versus base forward bias function for the specific embodiment (1) of the present invention. The horizontal axis is the base forward bias voltage and the vertical axis is the critical value. Voltage value. Observing the fourth graph, we can know that as the forward bias value of the base phoenix increases, the critical voltage value decreases accordingly, which is consistent with the inference of the formula in the previous section. Due to the decrease of the threshold voltage value, the driving capability of the drain current is increased. We can know that the operation speed of the flip-flop in the embodiment (1) is faster. Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs (please read the precautions on the back before filling in this page). Refer to the fifth figure, which is a specific embodiment of the invention (1) and a conventional inverter circuit (1) Comparison of transient response. We compared the results of the specific embodiment of the present invention (a) and the conventional inverter circuit (a) in the output rise response and output fall response at operating power supply voltages of 1.0V, 0.8V, and 0.6V, respectively. . Observe the fifth figure, the paper size of the present invention is applicable to the Chinese National Standard (CNS) Α4 specification (2 丨 0Χ297mm) 268166 A7 B7 V. Description of the invention () n- ^ — ^ 1— Jm in Hr- I nn vn ^^ 1 (Please read the precautions on the back before filling in this page) The output rise response curve and output fall response curve of the embodiment (1) are better than those of the conventional inverter circuit (1). The output drop curve is steep, and the experimental results prove that the output response of the specific embodiment (1) is indeed better than the conventional inverter circuit (1). The sixth diagram is a comparison of the delay time of the specific embodiment (1) of the present invention and the conventional inverter circuit (1) versus the power supply voltage threshold. As shown in the sixth figure, it is the comparison of the delay time obtained from the experiment in the fifth figure to the power supply voltage. The delay time is defined as half the sum of the rise time and the fall time, and the rise time and the fall time are generally Definition. From the sixth figure, we can know that the specific embodiment (1) of the present invention has a shorter delay time than the conventional inverter circuit (1), and the trend of being influenced by the power supply voltage is more harmonious. -Printed by the employee consumer cooperative of the Central Bureau of Standards of the Ministry of Economics, please refer to the seventh figure, which is the circuit diagram of the specific embodiment (2) of the present invention. Synchronous base bias device to generate base forward bias. The p-type metal oxide semi-transistor 91 and the N-type metal oxide semi-transistor 92 constitute the main body of the inverter. Transistors 93, 94 and transistors 95, 96 are base bias circuits to provide the forward bias required for the bases of transistors 91 and 92, respectively. Input 97 is connected to the gates of transistors 91 and 92, and output 98 is connected to the drains of transistors 94 and 95. The load capacitor 9 9 is connected to the output terminal 9 8. The working principle of the above inverter circuit is as follows: Let the gates of the transistors 9 3 and 9 6 be the ground and the power supply voltage, respectively, to make them in a constant conduction state. This paper scale is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) Α7 Β7 268166 V. Description of invention () When the input voltage of the input terminal 97 is 0V, the transistors 9 1 and 94 are turned on, and the transistor 92 and 95 closed. Since the transistor 94 is turned on, the voltage value of the node A934 is determined by the power supply voltage value of the transistor 93 and the voltage value of the output terminal 98. Assuming that the initial value of the voltage at the terminal 98 during the charging process is 0 Å, the voltage of the node 934 will be less than the power supply voltage VDD, so that the base of the transistor 91 is forward biased. At the same time, because the transistor 95 is turned off, the potential of the node B956 remains grounded due to the constant conduction state of the transistor hip 96. It is the off state of the K transistor 92 when the input voltage of the input terminal 9 7 is 0V and the base and source are biased at zero. When the input voltage at the input terminal 97 is VDD, the transistors 92 and 95 are turned on and the transistors 91 and 94 are turned off. According to the similar reasoning described above, the voltage value of the node A9 34 is maintained at VDD, and the voltage value of the node B9 5 6 is determined by the voltage division of the output terminal 98 through the transistors 95 and 96. It is that the K transistor 9 2 is in the forward-biased conduction state of the base, and the transistor hip 9 1 is in the off-off state of zero bias of the base and source. By the voltage dividing effect of the transistors 93 and 94 and the transistors 95 and 96, when the transistors 9 1 and 9 2 are turned on, the base-source bias value is kept at about the low level of the power supply voltage value V DD-half , To reduce the leakage current of the base-source junction. The specific embodiment (2) of the present invention has the following characteristics due to the design of the base bias circuit described above * (I) The base-bias operation of the transistor makes the charge and discharge currents higher than those of the transistor under traditional operation It is large, so it can be operated under a low-voltage power supply (S1 · 5V) without reducing the operating speed; this paper size is applicable to the Chinese National Standard (CNS) Α4 specification (210X 297 mm) i 1—-Ί—-IT- -"--R (please read the notes on the back before filling this page)
,1T 經濟部中央標準局眞工消費合作社印製 Α7 Β7 咖;166 五、發明説明() (I I)電晶髖的初始臨界電壓值不需事先利用製程 來降低,Μ此,在靜候狀態下的漏電流降低* 使電晶體於低電壓電源操作時,靜候功率消耗 得以降至最低。 本發明之具體實施例(一)、(二)因具有上述之基 極偏壓裝置之設計,故可於低電壓電源(SI ‘ 5V)下 操作。而一般互補式金氧半反相器之鎖定保持電壓(Η〇 lding Vol tage)均高於具體實施例(一) 、(二)之操作電壓,因此鎖定現象(Latch up )不易發生。 本發明之具體實施例(二)之金氧半反相器與基極偏 壓裝置,包含三個P型金氧半電晶體與三個N型金氧半電 晶體。電路佈局結構上,可K將同型之電晶體簡併化,Μ 降低電路面積之消耗。說明如下: 第八圖係為本發明之具體實施例(二)之截面圖,如 第八圖所示,產生基極順偏的兩個串聯Ρ型金氧半電晶體 可與反相器主體中的Ρ型金氧半電晶體共用同一Ν型摻雜 擴散井區1 1 7。該串聯之電晶體的埋接節點可共用一濃 摻雜區1 1 8 »且連接至電源電壓之一端可同反相器主體 之Ρ型電晶體共用同一源極111。訊號_入端為圖號1 1 2和輸出端為圖號1 1 3。負載電容1 1 4連接至輸出 端1 1 3。閘極1 1 5和1 1 6則分別為Ρ +型摻雜和Ν +型摻雜之複晶矽閘。 再請參閱第九圖,係為本發明之具體實施例(二)之 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) '裝· 經濟部中央標準局員工消費合作社印製 經濟部中央榡準局員工消費合作社印製 268166 A7 _______B7 五、發明説明() 簡併化電路结構上視圖。如圖所示,1 2 1為N型摻雜擴 敗井區;122為P型濃摻雜擴散區;123為P型摻雜 複晶矽閘;124為N型濃摻雜擴散區,係作N型摻雜擴 散井區121的歐姆性接觸區。金屬連線125連接至電 源電壓•且與之相埋的P型濃摻雜擴散區1 2 2是反相器 主體的P型金氧半電晶體和背閘順偏電路之P型金氧半電 晶體所共用之源極。金臛連線1 26接地。金龎達線1 2 7和1 2 8各別為輸入端和輸出端的部分,且需各別連接 至反相器主體中N型金氧半電晶體的閘極和汲極。 茲,為使 鈞局 貴審查委員對本發明之结構、特徵 與習用之反相器有更深之瞭解,特將其差異性比較於后: 1、 習用之互補式金氧半反相器多於2 · OVK上之電壓 工作。於低電E操作(0 · 6〜1· 5V)時,其 操作速度無法保持在較高操作電壓時之操作速度; 本發明之基-源極順向偏壓之互補式金氧半反相器, 於低電壓電源(S 1 · 5 V )下操作時,仍能保持 較高操作電壓時之操作速度。 Μ此,可使個人可攜式電子設備,如掌上型電腦、智 慧型介面卡、無線通話機等等,使用極為普遍之乾 電池電源,減少目前使用充電電池所造成之不便。 2、 習用之互補式金氧半反相器於低電懕操作時,其靜候 功率消耗因截止漏電流較大而偏高; 本發明之基一源極順向偏壓之互補式金氧半反相器, 於低電懕電源(έΐ · 5V)下操作時,基槿偏壓 -10 ' 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X2S»7公釐) (請先閱讀背面之注意事項再填寫本頁) Γ-;裝 訂 A7, 1T Printed by the Ministry of Economic Affairs Central Standards Bureau, Gonggong Consumer Cooperative, Α7 Β7 coffee; 166 V. Description of the invention () (II) The initial critical voltage value of the electric crystal hip does not need to be reduced by the process in advance, Μ this, in the waiting state Reduced leakage current * minimizes the power consumption when the transistor is operated on a low-voltage power supply. The specific embodiments (a) and (b) of the present invention can be operated under a low voltage power supply (SI ‘5V) due to the design of the above base bias device. In general, the lock-up voltage (H〇 lding Vol tage) of the complementary metal-oxygen semi-inverter is higher than the operating voltages of the specific embodiments (1) and (2), so the latch-up phenomenon is unlikely to occur. The metal oxide semi-inverter and base bias device of the specific embodiment (2) of the present invention include three P-type metal oxide semi-transistors and three N-type metal oxide semi-transistors. In the circuit layout structure, the transistors of the same type can be degenerated to reduce the circuit area consumption. The description is as follows: The eighth figure is a cross-sectional view of a specific embodiment (2) of the present invention. As shown in the eighth figure, two series-connected P-type metal oxide semi-transistors that generate base forward bias can be connected to the inverter body The P-type metal oxide semi-transistors in the shared the same N-type doped diffusion well region 1 1 7. The buried node of the series-connected transistors can share a heavily doped region 1 1 8 »and one end connected to the power supply voltage can share the same source 111 as the p-type transistor of the inverter body. The signal_input end is the picture number 1 1 2 and the output end is the picture number 1 1 3. The load capacitor 1 1 4 is connected to the output 1 1 3. The gates 115 and 116 are respectively P + type doped and N + type doped polycrystalline silicon gates. Please refer to the ninth figure again, it is the specific embodiment of the invention (2). The paper size is applicable to the Chinese National Standard (CNS) Α4 specification (210X297 mm) (please read the precautions on the back before filling this page) Apparel · Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs Printed by the Employee Consumer Cooperative of the Central Bureau of Precincts of the Ministry of Economic Affairs 268166 A7 _______B7 V. Description of the invention () Top view of the degenerate circuit structure As shown in the figure, 1 2 1 is an N-type doped diffusion well region; 122 is a P-type densely-doped diffusion region; 123 is a P-type doped polycrystalline silicon gate; 124 is an N-type heavily-doped diffusion region. It serves as an ohmic contact region of N-type doped diffusion well region 121. The metal connection 125 is connected to the power supply voltage and the buried P-type heavily doped diffusion region 1 2 2 is the P-type metal oxide semiconductor of the inverter body and the P-type metal oxide semiconductor of the back-gate forward bias circuit The source shared by transistors. Connect Jin 26 to ground. The Jinda wires 1 2 7 and 1 2 8 are the input and output parts, and need to be connected to the gate and drain of the N-type metal oxide semi-transistor in the inverter body. Hereby, in order to make Jun Jugui's reviewer have a deeper understanding of the structure, features and conventional inverters of the present invention, the difference is compared to the following: 1. The conventional complementary metal oxide semi-inverter is more than 2 · Voltage operation on OVK. When operating at low power E (0 · 6 ~ 1 · 5V), its operating speed cannot be maintained at the operating speed at higher operating voltage; the complementary metal-oxygen semi-inverted base-source forward bias of the present invention When operating under low voltage power supply (S 1 · 5 V), it can still maintain the operating speed at higher operating voltage. In this way, personal portable electronic devices, such as handheld computers, smart interface cards, wireless telephones, etc., can use extremely common dry battery power, reducing the inconvenience caused by the current use of rechargeable batteries. 2. When the conventional complementary metal-oxygen semi-inverter is operated at low current, its static power consumption is higher due to the larger cut-off leakage current; the present invention is based on the forward biased complementary metal-oxygen of the source Semi-inverter, when operating under low-voltage power supply (έl · 5V), the hibiscus bias -10 'This paper scale is applicable to China National Standard (CNS) Α4 specifications (210X2S »7mm) (please read the back (Please fill out this page again) Γ-; Binding A7
26δΪ66 五、發明説明() 裝置可適時控制基一源極間之偏壓不致過大,降低 截止漏電流,保持甚低之靜候功率消耗。 3、習用之互補式金氧半反相器之鎖定保持電壓(Ho 1 ding Voltage)均大於 0.5 — 1. 5伏特,鎖定琨象(Latch up) —旦發生 *可能造成電路之永久性損壞; 本發明之基一源極順向偏壓之互補式金氧半反相器, 乃是於低電壓電源(S 1 · 5 V )下操作時,小於 習用之互補式金氧半反相器之I貞定保持電壓,使鎖 定現象(latch-up _)不易發生。 綜上所述,當知本案所發明之「基一源極順向偏壓之 互補式金氧半反相器」已具產業利用性、新穎性與進步性 ,符合發明專利要件。 上述僅為本發明之具體實施例,並非用K限制本發明 者,大a精習於此類技藝之專業人士,依據下列申請專利 範圍所述之形狀、構造、特擞及精神範圍内,所為修飾、 變化等之實施,均應包括於本發明之申請專利範圍。 (一)圖式部份 第一圖係為習用之反相器電路(一)圖 第二圖係為習用之反相器電路(二)圖 第三圖係為本發明之具體實施例(一)之電路圖 第四圖係為本發明之具體實施例(一)之臨界電壓對 基極順向偏壓函數闞係之理論值與實驗值 第五圖係為本發明之具體實施例(一)與習用之反相 -11 - 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) ,裝*26δΪ66 V. Description of the invention () The device can timely control the bias voltage between the base and the source so as not to be too large, reduce the cut-off leakage current, and maintain very low standby power consumption. 3. The lock-up voltage (Ho 1 ding Voltage) of the conventional complementary metal-oxygen semi-inverters are all greater than 0.5-1.5 volts, and latch up-once it occurs * may cause permanent damage to the circuit; The base-source forward biased complementary metal-oxygen semi-inverter of the present invention is smaller than the conventional complementary metal-oxygen semi-inverter when operating under a low voltage power supply (S 1 · 5 V) I keep the holding voltage, so that the latch-up phenomenon is less likely to occur. In summary, it should be known that the "base-source forward biased complementary metal-oxygen semi-inverter" invented in this case has industrial applicability, novelty, and progress, and meets the requirements of the invention patent. The above is only a specific embodiment of the present invention, and the present invention is not limited by K. Professionals who are skilled in this type of technology, according to the shape, structure, characteristics and spirit described in the scope of the following patent applications, are The implementation of modifications, changes, etc. should be included in the patent application scope of the present invention. (1) The first part of the diagram is the conventional inverter circuit (1) The second picture is the conventional inverter circuit (2) The third picture is a specific embodiment of the invention (1 ) The fourth diagram of the circuit diagram is a specific embodiment of the invention (a) the theoretical value and experimental value of the threshold voltage vs. base forward bias function function. The fifth diagram is a specific embodiment of the invention (a) Reverse phase with conventional usage -11-This paper scale is applicable to the Chinese National Standard (CNS) Α4 specification (210X297mm) (please read the precautions on the back before filling this page), install *
、1T 經濟部中央標準局員工消費合作衽印製 A7 經濟部中央標準局員工消費合作社印製 268166 B7 五、發明説明() 器 電 路 ( _- )之 暫 態 響 trtxt 脃 比 較 第 /、 圖 係 為 本 發 明 之具 體 實 施 例 ( 一 ) 與 習 用之 反 相 器 電 路 ( — ); 之 延 遲 時 間 對 電 源 電 壓 翮係 之 比 較 第 ir 圖 係 為 本 發 明 之: 體 實 施 例 ( 二 ) 之 電 路圖 第 八 圖 係 為 本 發 明 之: 風 體 實 施 例 ( 二 ) 之 截 面圖 第 九 圖 係 為 本 發 明 之: 具 體 實 施 例 ( 二 ) 之 簡 併化 電 路 結 構 上 視 圖 ( 二 ) 圖 號 部 份 3 1 定 電 壓 源 ( V BP ) 3 2 定 電 壓 源 ( V BN ) 9 1 P 型 金 氧 半 電 晶 體 ( P Μ 0 S ) 9 2 N 型 金 氧 半 電 晶 體 ( N Μ 〇 S ) 9 3 P 型 金 氧 半 電 晶 體 ( P Μ 〇 S ) 9 4 P 型 金 氧 半 電 晶 體 ( P Μ 0 S ) 9 5 N 型 金 氧 半 電 晶 體 ( N Μ 0 S ) 9 6 N 型 金 氧 半 電 晶 體 ( N Μ 0 S ) 9 7 輸 入 端 9 8 輸 出 端 9 9 負 載 電 容 9 3 4 節 點 A 9 5 6 節 點 B 1 1 1 源 極 1 1 2 輸 入 端 1 1 3 輸 出 端 1 1 4 負 載 電 容 1 1 5 閘 極 1 1 6 閘 極 1 1 7 N 型 摻 雜 擴 散 井 區 -12 - ----„------裝-- (請先閱讀背面之注意事項再填寫本頁) -* 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 268166 ΑΊ Β7五、發明説明() 118 濃摻雜區 121 N型摻雜擴散井區 122 P型濃摻雜擴散區 123 P型摻雜複晶矽閘 124 N型濃摻雜擴散區 125 金屬連線 126 金鼷連線 127 金屬連線 128 金鼷連線 (請先閱讀背面之注意事項再填寫本頁)、 1T Printed by the Ministry of Economic Affairs, Central Bureau of Standardization and Employee Consumer Cooperation A7 Printed by the Ministry of Economic Affairs and Standardization Bureau, Employee and Consumer Cooperative Society 268166 B7 V. The invention describes the transient response of the device circuit (_-) trtxt. This is a specific embodiment of the present invention (1) compared with the conventional inverter circuit (-); the delay time is compared with the power supply voltage. The ir diagram is the invention: the eighth embodiment of the circuit diagram of the second embodiment The figure is the invention: the cross-sectional view of the embodiment of the wind body (2). The ninth picture is the invention: the top view of the degenerate circuit structure of the specific embodiment (2) (2). Voltage source (V BP) 3 2 Constant voltage source (V BN) 9 1 P-type metal oxide semi-transistor (P Μ 0 S) 9 2 N-type metal oxide semi-transistor (N Μ 〇S) 9 3 P-type gold Oxygen semi-transistor (P Μ 〇S) 9 4 P type gold Semi-transistor (P Μ 0 S) 9 5 N-type metal oxide semi-transistor (N Μ 0 S) 9 6 N-type metal oxide semi-transistor (N Μ 0 S) 9 7 Input 9 8 Output 9 9 Load Capacitor 9 3 4 Node A 9 5 6 Node B 1 1 1 Source 1 1 2 Input 1 1 3 Output 1 1 4 Load capacitance 1 1 5 Gate 1 1 6 Gate 1 1 7 N-type doped diffusion well Area-12----- „------ installed-- (please read the precautions on the back before filling in this page)-* This paper size is applicable to China National Standard (CNS) A4 specification (210X 297mm ) 268166 ΑΊ Β7 V. Description of the invention () 118 Concentrated doped region 121 N-type doped diffusion well region 122 P-type concentrated doped diffusion region 123 P-type doped polycrystalline silicon gate 124 N-type concentrated doped diffusion region 125 Metal Connection 126 Gold connection 127 Metal connection 128 Gold connection (Please read the notes on the back before filling this page)
T 裝-T Pack-
*1T 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐)* 1T Printed by the Employee Consumer Cooperative of the Central Bureau of Standards of the Ministry of Economic Affairs. This paper scale applies the Chinese National Standard (CNS) Α4 specification (210X 297 mm)
3 1X3 1X
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW84107404A TW268166B (en) | 1995-07-18 | 1995-07-18 | CMOS inverter of base-source electrode forward bias |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW84107404A TW268166B (en) | 1995-07-18 | 1995-07-18 | CMOS inverter of base-source electrode forward bias |
Publications (1)
Publication Number | Publication Date |
---|---|
TW268166B true TW268166B (en) | 1996-01-11 |
Family
ID=51396874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW84107404A TW268166B (en) | 1995-07-18 | 1995-07-18 | CMOS inverter of base-source electrode forward bias |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW268166B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103124174A (en) * | 2011-11-17 | 2013-05-29 | 三星电机株式会社 | Ic circuit |
-
1995
- 1995-07-18 TW TW84107404A patent/TW268166B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103124174A (en) * | 2011-11-17 | 2013-05-29 | 三星电机株式会社 | Ic circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100302535B1 (en) | SOI type semiconductor device and bias voltage generator with variable threshold voltage | |
Ker et al. | Ultra-high-voltage charge pump circuit in low-voltage bulk CMOS processes with polysilicon diodes | |
US4875151A (en) | Two transistor full wave rectifier | |
EP0128947B1 (en) | Integrated circuit voltage multiplier | |
TWI260779B (en) | Logic switch and circuits utilizing the switch | |
JP2805991B2 (en) | Substrate bias generation circuit | |
JPH04364776A (en) | Integrated circuit | |
US9985016B2 (en) | Charge pump circuit for providing multiplied voltage | |
JPH0689574A (en) | Semiconductor device | |
JPH051621B2 (en) | ||
TW200529549A (en) | Amplifiers using gated diodes | |
CN109584775B (en) | Drive control circuit and display device | |
EP1344253A1 (en) | Ultra-low power basic blocks and their uses | |
JPS6388858A (en) | Integrated circuit with latch-up protecting circuit | |
JP4691624B2 (en) | Lateral bipolar CMOS integrated circuit | |
JPS6388859A (en) | Integrated circuit with latch-up protecting circuit | |
TW268166B (en) | CMOS inverter of base-source electrode forward bias | |
US9660034B1 (en) | Electronic chip comprising transistors with front and back gates | |
US8742829B2 (en) | Low leakage digital buffer using bootstrap inter-stage | |
JPH11511904A (en) | Improved charge pump using storage capacitors | |
Nagatomi et al. | A 361nA thermal run-away immune VBB generator using dynamic substrate controlled charge pump for ultra low sleep current logic on 65nm SOTB | |
US6229405B1 (en) | Low-voltage oscillation amplifying circuit | |
CN108829174A (en) | Linear regulator circuit | |
TW417284B (en) | Semiconductor integrated circuit device and flash EEPROM | |
KR930009810B1 (en) | Semiconductor device with substrate bias circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees | ||
MK4A | Expiration of patent term of an invention patent |