TW211610B - - Google Patents
Download PDFInfo
- Publication number
- TW211610B TW211610B TW81107394A TW81107394A TW211610B TW 211610 B TW211610 B TW 211610B TW 81107394 A TW81107394 A TW 81107394A TW 81107394 A TW81107394 A TW 81107394A TW 211610 B TW211610 B TW 211610B
- Authority
- TW
- Taiwan
- Prior art keywords
- matrix
- input
- circuit
- output
- auxiliary
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/147—Discrete orthonormal transforms, e.g. discrete cosine transform, discrete sine transform, and variations therefrom, e.g. modified discrete cosine transform, integer transforms approximating the discrete cosine transform
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/0202—Two or more dimensional filters; Filters for complex signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/66—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
- H04B1/667—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission using a division in frequency subbands
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/63—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
- H04N19/635—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets characterised by filter definition or implementation details
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Signal Processing (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Computational Mathematics (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- General Engineering & Computer Science (AREA)
- Discrete Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computer Networks & Wireless Communication (AREA)
- Image Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Complex Calculations (AREA)
Description
211610 A6 經濟部中央樣準局貝工消費合作社印製 B6_ 五、發明説明(1 ) A .發明背畺 A (1)發明節園 本發明係有關於用K使一群N输入信號轉變為一群N輸 出信號之裝置者,此兩群信號間之關係由一 矩陣予以 界定之。 此一裝置可用Μ,例如,作画像轉變編碼,在是項狀況 下,输入信號示為電視圖像之像素。 雖然本發明雖由於圖像轉變編碼方面之研究而來,惟只 用Μ作其他用途,例如*次頻帶編碼。 Α⑵先前抟蓊之說明 圖像轉變編碼係為使電視影像素之面參變換為稱為,.係 數之平面段,或反之利用平面線性轉變。所述之第一種狀 況稱正向平面轉變,最後一種狀況稱之為逆向平面轉變, 根據此一線性轉變之轉變矩陣A須加合宜選擇而使此平面 轉變可經由連續水平和垂直之直線轉變方式而予實現。為 W表示像素之fTN矩陣,而Y表示係數之N=*N矩陣時,則此 一平面線性轉變可Μ數字方式寫述於下: ⑴........ Y = ATWA 在此式中,Ατ表示為A之換位矩陣。 關於圖像轉變編碼之進一步資訊,讀者如有興趣,請參 閲,例如,C節内第1和2項。 為使像素矩陣W由係數矩陣Y中恢復,此係數矩陣Y須 (請先閲讀背面之注意事項再塡寫本頁) 裝· 訂. 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) 81.9.25,000 211610 Α6 Β6 五、發明說明(2 ) 經濟部中央標準居貝工消费合作社印製 予 作 逆 向 平 面 轉 變 〇 這 可 數 學 方 式 寫 為 下 式 : (2) W (A T) -1 YA -1 此 表 達 式 中 之 A" 1 乃 表 示 矩 陣 A 之 逆 向 式 〇 表 達 式 ⑴ 中 所 示 之 货數 矩 Ά及 式 ⑵ 中 所 示 之 .像 素 矩 陣V糸 經 由 實 施 多 次 向 量 矩 陣 相 乘 所 獲 致 〇 例 如 ♦ 為 實 規 式 ⑴ 9 首 先 須 If 算 列 AT 與 W 行 向 量 之 内 部 乘 積 0 因 此 隨 之 獲 得 乘 積 矩 陣(Ά τ \. WJ 之 每 一 列 向 量 之 内 部 乘 積 » 而 計 算 每 一 A 行 0 此 — 向 量 矩 陣 乘 法 乃 稱 為 直 線 轉 變 t 通 常 可 依 数 學 方 式 寫 述 如 下 ⑶ P BX 在 此 式 中 X 表 示 N 點 输 入. 向 量 » 乃 表 示 為 N 轉 變 矩 陣 » 而 Ρ 則 表 示 N 點 输 出 向 量 0 為 由 此 — 输 出 向 量 P 中 恢 復 原 输 入 向 量 X 9 此 — 输 出 向 量 P 必 須 依 據 轉 變 矩 陣 B ' 實 施 逆 向 直 線 轉 變 9 且 此 項 實 施 可 Μ 數 學 方 式 表 示 如 下 r ⑷ B ,P Β ' ΡΧ = (B 'Β) X =: X 為 矩 陣 B ' B 之 乘 積 產 生 單 一 矩 陣 時 則 因 而 所 獲 致 之 輸 出 向 量 X 祗 是 與 X 相 同 〇 除 若 干 例 外 外 9 此 — 结 果 必 須 於 此 等 矩 陣 Β ' 和 B 皆 為 無 限 精 確 始 能 獲 致 之 〇 有 許 多 矩 陣 t 須 使 其 矩 陣 各 元 素 能 有 無 限 數 之 符 號 9 始 可 獲 致 — 结 果 〇 其 矩 陣 各 項 式 所 可 表 示 之 符 號 數 巨 當 妷 /»1V 為 有 限 0 因 此 實 際 上 1 矩 陣 Β 係 為 從 經 由 使 B 之 矩 陣 項 式 實 拖 某 一 適 當 之 捨 入 成 整 數 之 作 業 而 限 制 每 — 項 式 之 符 號 數 巨 之 方 式 而 具 有 無 限 精 確 度 之 理 想 ( 理 論 ) 矩 陣 B ' 中 所 導 出 * 依 相 對 應 方 式 » 經 由 使 理 論 矩 陣 Β" 1 之 矩 陣 元 素 實 施 此 項 作 業 方 式 乃 獲 致 4 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)甲4规格(210 X 297公釐) 81.9.25,000 211610 A6 B6 經濟部中央櫺準局R工消费合作社印髮 五、發明説明(3 ) B’之矩陣項式。每一矩陣B和B’皆可依此方式予以最佳適 化。结果,乘積B’B與單一矩陣通常未必完全相同,因此 使X與X未必完全相同;換言之,此一逆向轉變無法實施 得完美無缺。 在許多狀況下X與X間之此一差異顯然可予接受·但是 ,如使X連鑛實施直線正向和逆向轉變實狍不止一次時, 因此所獲致且稱之為X之输出向量,與X相對,其偏差無 法接受,而且此一偏差將隨進一步之正向和逆向轉變而更 為增加。 B .發明之目的及概也 ' 本發明之目篸提供二裝置丄用K實施置 之線篇變。 一一 根據本發明,此直線轉變裝置包括有許多排列電路和許 多三角形電路之串级裝置。與此一排列電路相结合者為具 有矩陣項式之排列矩陣及與具有矩陣項式K a ’ μ (r表示列數,而k表示行數)之三角形矩陣相 结合之三角形電路。排列矩陣之每一列和每一行正為設有 一非零矩陣項式。三角形矩陣之對角線之一上之所有項式 皆與其一相同,而且此對角線矩陣項式祗在一端側不等於 零。此等電路之相互順序係由轉變矩陣本身予Μ確定·排 列電路和三角形電路皆具有Ν输入和Ν输出,此排列電路 適於在输出r上供應输出資料字組’此字組與其在一預率 _输入k上输人資料字姐加權式相同,其加權係Μ經由矩陣 (請先閲讀背面之注意事項再塡寫本頁) —裝· 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公楚) 81.9.25,000 211610 A6 B6 «濟部中央標準屬R工消費合作杜印製 五、發明説明(4 ) 項式ir*K所述之加權函數為基礎。其三角電路係適於在.f 一输出r上供應输出資料字姐,此字組與一預定输入(k )上之输入資料字姐相同,此(k)在每一输出上皆不相同 ,經由其他输入q夫k上之输入資料字組相同 *此(k) 在每一输出上皆不相同,經由其他输入q尹k上之输入資 料字姐之加權式放大,每一加權皆依加權函數基礎在输人 <!上之输入資料字組皆受加權函數影W,俾對於經由矩陣 項式a're所專述,於输出r上之输出資料字姐有所助益 Ο 須多注意的乃是,加權函數和a’可為標量數量( 真空或複合)。例如有圖像轉變編碼之狀況。在前文所述 之次頻帶編碼之狀況中,此等加權函數可能是極複雜之函 數〇 产 注意的是,此等输入資料字組可表示《實!》而且 是(複&,而一糸列之資料字姐通常稱之為時間不連缅信號 〇 本發明係基於一項認識,即其決定要素為一完全因數之 每一可倒逆Ν*Ν矩陣皆可予分解這乃表示其可寫成為許多 排列矩陣與其相翮決定因素亦為完全因數之許多 三角形矩陣之乘積。完全因數係為其身及其例數值皆可以 某一數字體糸中有限數目之符號表示之數字。在二進位體 系中,乃為,例如,數字j ,-1,2*,而丨為包括〇在内 之正或負整數,而j =厂-丨及此等三數字某些組合,諸如 ,例如-j /8和1 + j 。此等不同矩陣在此乘積中所發生 J ------裝------訂 (請先閲讀背面之注意事項再塡寫本頁) 衣紙張尺度適用t國國家標準(CNS)甲4规格(210 X 297公埯) 81.9.25,000 A6 B6 211610 五、發明説明(5 ) 之次數,當然丨系由轉變矩陣本身來決定,而各轉變矩陣有 所不同且非常獨特的。後者乃表示某特定矩陣之不相同分 解乃為可能。 須予注意的乃是,如在實例中*轉變矩陣之決定因素看 來不像是完全因數時,此一矩陣往往可依其決定因素確已 成為完全因數之方式K予Μ定比。此一定比之選定通常須 使其不致影響及其最後结果中矩陣項式之相互關係。 亦須注意的乃是,經此一分解後,可能產生排列矩陣, 其決定因素係為完全因數,但其非零矩陣項式則為不完全 因數,一如下文中將趨於明顯者,此一矩陣乃非可完全倒 逆者,但是,此一向問題可經由使此一排列矩陣進一步分 解之方式而予解決。 一旦某一特定轉變矩陣經寫述為排列和三角形矩陣之乘 積(使矩陣分解)時,所要之正向轉變装置乃經由使相關 排列電路與三角形電路相串级之方式而獲致之。完全倒逆 之反向轉變裝置乃可依極簡單方式由其中導出,亦即經由 使此正向轉變裝置之输入和输出互換之方式,使三角形電 路(a ’ ^變為-a ’ μ)之權衡函數極性倒置,及經由將排 列電路加權函數取其倒數值(a’4變為l/a'k)等方式。 所有此等方法皆可導致所觀察之效果,玆參照附圖容待 後說明之。 C ·參者畜料(立件) 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公縫) (請先閲讀背面之注意事項再塡寫本頁) 裝· 訂_ 經濟部中央標準局R工消費合作社印製 81.9.25,000 A6 B6 211610 五、發明説明(6 ) (請先閲讀背面之注意事項再填寫本頁) 、/ L 彩色電視圖像之今時正交轉變;H.巴區,A.莫 \ 洛合撰;菲立浦技術評論; 卷 38,第 4/5 期,1 978/ 1 979 年,第 119 — 130頁 2 直線巧悻題像轉變夕R .烏玆瑪等人提出之歐洲專 利案第EP 0 286 184 3. 工程師矩陣;A.D.克勞斯;半球出版公司/柏 材,第113— 127頁 4. 矩陣理論 ;J.N.富蘭克林撰;應用數字中之 Prentice-Hal 丨級數,·第 203— 208 頁 a 多速率數位式濾波器,濾波器組合,多相網路,及 其應用;導師授導; P.P.維迪安納桑;IEEE會釋記錄,§ 7、,第1期, 1990年元月,第59頁。 D .附臑簡胳說明 圖1所示各種符號,係為後續各圖中所使用; 圖2所示為直線轉變式; 圖3,4和5所示為與排列電路相結合之若干排列矩陣 9 經濟部中央標準居興工消费合作社印製 圖6,7,8和9所示為與三角形電路相结合之三角形 矩陣; 圖10和11所示為實際轉變矩陣之轉變電路實例; 圖12所示為次頻帶編碼裝置之概略原理; 圖13所示為用於圖12次頻帶編碼裝置中之頻帶分離網路 81.9.25,000 本紙張尺度適用中國國家標準(CNS)甲4规格(210 X 297公釐) A6 B6 211610 五、發明説明(7 ) 及其等效電路; 圖1 4所示為用於圖1 2次頻帶編碼装置中之重姐網路及其 等效電路; 圖15所示為供次頻帶編碼用之高通滅波器及低通濾波器 9 圖16所示為根據本發明各方面之次頻帶編碼装置之實施 情形。 _ E ·發明之說明 E⑴簡合 圖1所示為本發明說明中所參照之各附圖中所使用之許 多符號。尤其符號I表示加法電路,用Μ接受兩資料字姐 c(和>8,及供應資料字姐α +点。符號Ε表示減法器電路 ,用Μ接受兩資料字姐α和/3 ,及供應差異字姐c(一 /3。 顯然,如施加於加法器上之資料字組為一 /9而非資料字姐 召時,I上所示加法電路可由Ε所示之減法電路取代之。 此一恆等式見示於ΒΙ。符號IV所示為具有權衡函數δ之權 衡網路。堪應於施加於此權衡網路之資料字姐7 ,此權衡 網路乃供應7之加權式ε ,例如ε = 3 7 ·須予注意的乃 是,δ可為頻率之標量,但亦為其函數,或一如在說明信 號時常見作法,變數ζ之函數。 Ε .⑵苜燫TF向餹寒 圖2所示I為直線轉變,為具有矩陣項式^之可倒逆 本紙張尺度適用中國國家標準(CNS)甲4規格(2】0 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) -裝. 訂 經濟部中央標準局貝工消费合作社印製 81.9.25,000 Α6 Β6 211610 五、發明説明(8 ) 矩陣(其中r為列數而k為行數r ,k=l ,2 ,3 ,與包括N输入資料字組h,:<2,χ3,...·Χν2 乘積。此乘積產生出有输出資料字姐yi,y3, ____YN2输出資料向量Y,其中,輸出資料字姐與N输入 資料字姐間之關係見示於圖2之I[上。 一如所已予注意者,本發明係基於一項認識,即赛迭定_ 赛一完全画声之每一 /可倒逆矩巴^ 51予寫述為許多基一 本矩陣之乖積,亦即排列矩陣A和三角形矩陣A,其相關 決定因素亦為完全因數。 排列矩陣之每列及每行恰設有一不等於〇之矩陣項式 a k ,因此乃有N。有N * N矩陣項式之不相同之排列矩陣 ,圖3,4和5所示為三不同4w 4排列矩陣。圖5中所示 矩陣為一對角矩陣。 _ 與此等排列矩陣相结合之排列電路P Μ係為由圖2中之矩 陣相乘之直接结果,此等電路見示於圖3 ,4和5中之I 上。此等排列電路具有四输入·Π·)及四输出〇(.)。输入資 料向量X之各相關输入資料字組Xi,Χ2,Χ3和Χ4係施加於 此等四输入上,且與之相響應而於輸出0(.)上產生输出資 料向量Υ之相翮输出資料字姐yp y2,y^ny4等,此等相 關之输人資料字組係於權衡網路内受權衡運作之影響,一 如經由排列矩陣之非0矩陣元件所界定者。此等權衡網路 之輸出係依各種不同方式與諭出〇(_)相連接,端視須予實 施之排列矩陣而定。 三角形矩陣具有對角項式,此等項式皆等於1 ,而祗有 - 10 - (請先閲讀背面之注意事項再塡寫本頁) 丨裝, 、可· 經濟部中央標準局R工消费合作杜印製 衣紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) 81.9.25,000 A6 B6 211610 五、發明説明(9 ) 在其對角線之一邊側有非〇矩陣項式。因此,三角形矩陣 可產生四種不同形狀。此等形狀係M U ,L ,iJ ’,L '等標 示之。N = 4時,此等形吠見示於圖6 ,7 ,8和9中。 更確切的說乃是,圖6所示為三角形矩陣U *其主對角線 (即由左上至右下之對角線)之項式皆為1 ,而其他 非0項式係在此主對角線之上方。此三角形矩陣U乃稱為 為主上三角形矩陣。Μ標示之第二種三角形矩陣形狀見示 於圖7中。其與主上三角形矩陣U不同處乃為其非0項式 係位置於主角線之下方。此一三角形矩陣L乃稱為主下三 角形矩陣,第三種形狀係Μ ΙΓ標示,見示於圖8中。其輔 助對角線(即由右上至左下之對角線)項式皆等於1 ·而 其他非0項式係在此輔助對角線之上方。此一三角形矩陣 乃稱為輔助上三角形矩陣\。其第四種形狀係M L ’標示,見 示於圖9中。其與輔助上三角形矩陣丨厂不同之處為其非0 元件係位置於輔助對角線下方。此一三角形矩陣稱為輔肋 下三角形矩陣。 如圖8中所示,且可簡單方式予Μ確定者乃是*此輔肋 上三角形矩陣ϋ ’係等於主上三角形矩陣U與排列矩陣之矩 陣乘積。依相對應方式可予確定的乃是,一如圖9中所示 ,輔肋下三角矩陣L’係等於主下三角形矩陣與排列矩陣之 矩陣乘積。 原理上因此可由一排列矩陣,一主上三角形矩陣U及一 主下三角形矩陣L姐成為基本矩陣姐。與此等三角形矩陣 U和L相關之三角形電路D R ( U )和D R ( L )亦分別見示於圖 - 11 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) (請先閲讀背面之注意事項再塡寫本頁) 丨裝· 訂 經濟部中央標準局ec工消费合作社印製 81.9.25,000 A6 B6 211610 五、發明説明(⑴) 6和7中。每一此等電路具有N输入J (1 ),J (2 ),J ( 3 ), J(4)(在實豳例中所示N係選定為4)及N输出0(1), 0(2),0(3),0(4)。输入J(l)接受输入資料向量之输入資 料字姐xt,而输出資料向量之输出資料字組^係產生於输 出0U)上。输入JU)係經由一信號頻道R(i)連接至输出 0Π)上,而此一信號頻道R(H係與矩陣列r = i相對應。 如對角線項式a , i (等於1 )外之矩陣列r = ί包括有進 一步之非0項式時,此一信號頻道R(i)包括有許多加法器 電路。此一加法器電路装置接受來自第i信號頻道Mi)之 输入資料字姐X i,並使經非〇矩陣元件a 1 k 加權之其他 輸入資料字姐χκ之版式相加。在此一實例中,k可假定為 1 ,2 ,____N中之任何值,惟值i除外。圖7中所示之 三角形電路DR(L)依同一方式跟隨來自圖7中之二今形矩 陣L。為求完全計,圖8和9乃顯示三角形電路DR(U’)及 DR(L’),此等電路分別與輔肋上三角形矩陣U’及輔助下三 角形矩陣L’相结合。每一三角形電路包括有排列電路PM, 随後為圖8中之三角形電路DR(U)及圖9中之三角形電路 DR (L) ° E (3)首媿反向蟪幾 為實現输入資料向量X之直線正向轉變Μ獲致输出資料 向量Υ,乃實施矩陣相乘: ⑸..., A X = Υ 經由直線反向轉變之方式,乃由输出資料向量Y中恢復原 - 12 - 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) i裝_ 訂_ 經濟部中央標準局员工消費合作社印製 81.9.25,000 211610 A6 B6 經濟部中央櫺準局貝工消费合作社印製 五、發明説明(11 ) 输入資料向量X。此一反向轉變界定於下。 ⑻…· X = A - 1 Y 此表示式中,A — 1乃表示為A之反向矩陣。由於矩陣A可 寫成為若干排列和三角形矩陣之乘積,此反向矩陣A — 1可 予寫成為若干反向排列與三角形矩陣之乘積,例如,特別 假定 A = P ! ϋ X U P 2 U 2 L 2,則 A — 1 = 乃成立。換言之,為求出反向 矩陣A _ 1 ,每一綜合矩陣皆必須予以倒置,並使其順序倒 逆。 為使之完成圖3 ,4和5乃顯示I上所示之排列矩陣I 上之反向矩陣。此一反向排列矩陣包括原排列矩陣之倒數 項式作為非0項式;換言之,a r k係產生於反向排列矩陣 中成原1/ik 。與此等反向排列矩陣相對應之反向排列電 路P Μ —1見示於圖3中IV上。一如由此等附圖中可趨於彰顯 者,如一反排列電路係經由使相對應排列電路Ρ Μ之信號方 向反轉(输入成為输出,及其相反)及經由使權衡函數衡 ar>k由l/ark取代之方式而產生。 如確保且因而使l/ark之選定而使其兩者皆成為完 全因數,且因此可以有限之宜姐長度Μ表示其兩者皆為完 全因數時,此排列電路乃完全倒逆矣,亦即其反排列電路 產生與施加於排列電路上之值完全相同之值xk。為進一步 澄清,讓我們循由圖3中:<3之路徑檢視。此输入資料字姐 X3乘Ma43 *其乘積y4=a43><3乃出現於输出0(4)上。在 反向轉變時,電路(圖3中IV上)係與權衡函數1/^43相 - 13 - 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) 81.9.25,000 (請先閲讀背面之注意事項再填寫本頁) —裝· 訂. A6 B6 211610 五、發明説明(丨2 ) 乘。其結果乃為输出資料字姐;/4/343=343父3/343^這乃 與χ3完全相等,因為商s43/s43恰等於1 。 圖6顯示反向式U — 1係與主上三角形矩陣U ,及相對應 之反向三角形電路D R ( U — 1)相鄰·一如由其中可趨於明顯 者,此一反向三角形電路DRU — )可經由使其信號頻道 RH)中之信號方向反轉及使權衡函數變為反向,亦即 a’^變為- a,或者,相同的是,其相翮加法器電路由 減法器電路取代之(參閲圖1之U)之方式,而由原三角 形電路D R ( W 中導出之。 依相應方式,圖7顯示此反向式L — 1與主下三角形矩陣 L,及相對應反向三角形電路DRiL — 1)相鄰。此反向三角 形電路DR(L — Μ亦可經由使其信號頻道(Rd中之信號方向 反轉及使權.衡函數反向(a’變為- a’)之方式,由_ 三角形電路DR(L)導出之。 明顯的是,如循沿圖6中輸入資料字姐χ32路徑時,此 等反向三角形電路乃完全反向。使信號頻道M3)内之此一 輸入資料字組加上a’34X4時,y3=X3+a'34X4乃告成立。 在反向三角電路DR(U_1)中,使y3減去a'34y4=a’34X4, 而使仍維持x3+a’34x4=x3。如此祗要此一作業在兩三角 形電路中完全相同,乃使諸如a’34χ4之乘積是否受某些捨 入作業影響而使字姐長度受限制之事實無關。 為求完全,乃追踪圖6中><2之路徑。三角形電路DR(U) 產生输出資料字組y2,因此下式乃成立: (7) . . . . Y2 = XZ + a*23X3 + a'24X4 - 14 - 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) —裝· 訂_ 經濟部中央標準局貝工消費合作社印製 81.9.25,000 A6 B6 2116x0 五、發明説明(丨3 ) (請先閲讀背面之注意事項再填寫本頁) 在反向三角形電路D R ( U — 1 )中,由所接收之資料字姐中減 去3’2〇4與3’23(73-3’3〇4)而使其仍保持 y 2 — a 24y4_a 23(y3_a 3 4 y 4) (8) · · . . = X2 + a'23X3 + a’24X4_ a'24X4 — a’23(X3 + a'34X4 — a,34X4)= X2 須予注意者乃是I為完全計,圖8和9亦分別顯示輔助 上三角形電路DR(U’)及輔肋下三角形電路DR(L’)之反向式 D R ( 1广 1 )及 D R ( L …>。 E⑷若平應用窖例 在上文中之節E (2)和E⑶中,已予簡介基本轉變電路, 亦即排列電路及三角形電路,有了這些電路,則每一可反 向轉變矩陣皆可予實施,而使其決定因素滿足前述諸條件 。本節將詳细討論若干轉變矩陣之可能轉變電路。 玆假定擬予寅施之轉變矩陣F之形狀為 ⑼ 14 1.4 -15 ()… F = 14 1.7 -20 _ 3 0.4 -5 經濟部中央標準局貝工消费合作社印製 此一矩陣之決定因素丨F丨= 0.5 ,因此係為完全因數。 此矩陣因此可予區分為若干基本矩陣,其每一基本矩陣亦 具有係為完全因數之決定因素。其可能之區分乃經由使之 首先寫成為排列矩陣Ρα,其決定因素丨Pi丨= 0.5 ,而輔 - 15 - 81.9.25,000 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) 11G10 A6 B6 五、發明説明(丨4 ) 肋矩陣G之決定因素丨G丨=1 ,因此F=GPa而獲致之 。此排列矩陣Ρ τ乃可予界定,例如,於下 10) G 0 矩 助 輔 於 對
是人、、 S
G ο ο 0 01 ο 0-0.5 ο ο ο 3 4 1 ·4·7·4 1 1 14143 如 例 為 離 分, 予素 可因 G 定 陣決 矩之 輔於 此等 ’ 有 時具 要各 緊, 在陣 ί/ 3 4 1 2 10 .1 ο ο. (請先閲讀背面之注意事項再塡寫本頁) 乃成立矣 矩 —f Π 種 四 述 下 -裝. 訂. 經濟部中央標準局貝工消費合作社印製 1 0 0 1 0 0 L = 2 1 0 Ρ2 = 0 0.1 0 3 4 1 0 0 10 - 16 - 本紙張尺度適用中國國家標準(CNS)甲4規格(2〗0 X 297公釐) 81.9.25,000 A6 B6 211610 五、發明説明(15 ) 而使 F = U L P 2 P ,。 K此種分解方式所獲致之對角矩陣具有非完全因數之矩 陣項式(即0 . 1 > 。這乃表示矩陣無法成為完全反向電路 之基礎。但是,此一問題可予解決如下。因為P 2決定因素 等於1 | P 2本身乃可予分離為,例如,下列之矩陣: (請先閲讀背面之注意事項再填寫本頁) "2.1 ^2.2 1 0 0 1 0 0 0 -0.1 1 0 0 0 1 1 0 0 1 l2.2 l2.1 1 0 0 0 1 0 0 9 1 1 0 0 0 1 0 0 -0.9 1 丨裝_ 訂. 經濟部中央標準局貝工消費合作杜印製 因此卩2=1)2.1.112.1.1)2.2.匕2.2及尸= ULUz.iLz.ilU.aU.zPa,因此F可依圓10之I上所示方式 予Μ實施,乃告成立。為求其完全,此反向矩陣F-1之茛 施乃見示圖10之]I上。 另一種轉變矩陣係為不連續餘弦轉變矩陣,此種矩陣在 圖像轉變編碼上十分常用,茲說明其蓠施於下。一如概略 知悉者,茲將DCT矩陣之矩陣元件ar^說明於下。雖 然N = 8係通常選用作為圖像轉變編碼之用•本說明中乃 以假定N = 4作為本啻例之說明,而不致使此件事趨於複 雜而不必要的使之不易明瞭。 17 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) 81.9.25,000 211610 A6 B6 五、發明説明(i6
用於r ='1時 因此,下式乃造成立: ark 2 用於=1時 「在cos昙(2免+1)(,-1)用於'2幺厂S 4 .咳 此一 DCT矩陣係M DCT (4)標示,其形狀如下述,其矩陣項 式限於小數Μ下三位。 (16).“ DCT(4) 0.500 0.500 0.653 0.271 0.500 -0.500 0.271 -0.653 Q 1Φ3 ·5·2·56 ο·°·ο·°· Φ 3 Ό 1 Φ5 Φ 7 5 6 5 2 ···· ο-°ο-° (請先閲讀背面之注意事項再塡寫本頁) 經濟部中央標準局R工消费合作社印製 等實放 路在之 網現變 衡實不 權之定 及式恆 器比之 法定數 加|2係 之厂有 要之所 需陣為 所矩視 施 4 可 實τ(比 之 D 定 陣 一 一 矩此此 4)規。 τ(發利 DC乃有 一, 為 此目頗 於數上 鑒之際 本紙張又度適用中國國家標準(CNS)甲4規格(210 X 297公釐) 81.9.25,000 211610 A6 B6 五、發明説明(丨7 ) 大,因此不致影響及此等係數相互間之比率及其所需要之 資料。此一定比式乃M D C T ( 4 ) ’表示之,其與D C T ( 4 >之關 係如下:D C Τ ( 4 ) ' = J 2 D C Τ ( 41 此一矩陣D C Τ ( 4 ) ’於是具有下述形狀: DCT(4y 0.7070.9240.7070.383 0.7070.383 -0.707 -0.924 0.707 -0.383 -0.7070.924 0.707 -0.9240.707 -0.383 DCT(4)’之決定因素等於4(=22),因此,,此 可予分解•例如,可予寫成為下述矩陣之乘積 矩陣乃 (請先閲讀背面之注意事項再填寫本頁) —裝· 訂 DCT(4)/ 0 10 0 0 0 10 10 0 0 0 0 0 1 1 α 0 0 0 10 0 0 0 10 0 0 0 1 10 0 0 办1 ο ο 0 0 10 0 0 0 1 1 α Ο Ο 0 10 0 0 0 10 0 0 0 1 10 0 0 0 10 0 0 0 10 Ο Ο c 1 (18). 經濟部中央標準局貝工消費合作杜印製 10 0 0 10 0 0 10 0 0 0 10 0 0 10 0 0 10 0 0 0 1 d • 0 0 10 • 0 110 • 0 0 0 1 0 0 c 1 10 0 1 10 0 0 0 10 0 0 0-20 0 0 0 -2 10 0 1 0 110 • 0 0 10 0 0 0 1 19 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公楚) 81.9.25,000 211610 A6 B6 五、發明説明(18) α = 1-^2 « -0.4142 其中 办=忽+0.7071 c = tan— - —l— « -0.6682 8 x cos— 8 d = cos-ί » 0.9239 . 經濟部中央標準局s工消費合作杜印製 此一轉變矩陣DCT(4)’ 之賁施見示於画11中之I上,而 反向矩陣DCTM)'-1之實砲見示於圖11之Π上。 亦須予注意者乃是此一區分並非獨特,而使此一區分付 諸實現之方法通常可由矩陣理論中獲知,請參閱,例如, 參考文件3 ,因此,這一方面擬不予進一步說明。 E⑷次银错煸磘 一如通常所知,次頻帶編碼係為使信號頻率帶區分為若 干(例如,N)次頻帶之技術,而在此一次頻帶中之信號 樣本頻率係Μ因數N予Μ簡化而產生出N次頻帶信號。因 此,每一次頻帶信號乃依相關次頻帶信號。因此,每一次 頻帶信號乃依相關次頻帶最佳適方式予Μ量化。 圖12中所示為Ν = 2時之次頻帶编碼之概略原理。時間 不連續之信號X ( η )係於滤波器F 和F Η内分別受到低通和高 通濾波器運作HL(z)和Ηη(ζ)之影饗。因此所獲致之信號 交L(n)及交Η(η)之樣本頻率因此乃於樣本速率減小電路 SRi和$1?2中依因數2降低,因此乃獲致次頻帶信號 - 20 - 本紙張尺度適用中國國家標準(CN§)甲4規格(210 X 297公釐) 81.9.25,000 ----------------f -------裝------.玎 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局貝工消費合作社印製 A6 B6 五、發明説明(19 ) X ι ( m )和X h ( ra )。使次頻帶信號分別實施量化運作Q l·和 Q H之後,此量化後之次頻帶信號h和?Η乃傳送至某些接收 機站台。在此站台中,此量化次頻帶信號乃接受反向量化 運作Q U - 1和Q Η - 1,因此乃獲致次頻帶信號^ ’( Π1)和 xH’(ra)。在依樣本率增加之電路SI1和SI2中,此等信號 之樣本頻率乃依因數2而增加。因此而獲致之信號 X ^ ’( η )和Χ η ’( η )乃隨之在濾波器F '和F ’ η内分別接受低 通和高通濾波器運作和GH(z)。因此而獲致之信號 χΑ(η>和5(8(以乃於加法器電路AD内而相加在下起,因此 而獲致大致上與χ( η)相對之输出信號。此多速率《波器網 路包括有濾波器Fl^DFh及兩兩樣本速率減小電路Sh和 S R 2 ,乃稱之為頻帶分離網路。相類似的是,包括濾波器 Fu·和FH’及兩樣本速率增加電路SI1和SI2之多速率濾 波器網路稱為重顯網路。 顯然的乃是,除因某些增益因數外,其目的乃為使输出 信號y(n)儘量與输入信號x(n)相一致。如y(n)由於某一原 因而必須再度接受次頻帶編碼時,其另一項目的為不使任 何進一步(捨入或量化)誤差介入。此後一目的可經由至 少確使重顯網路作完全重現,亦即重顯網路之输出信號與 頻帶分離網路输人信號完全相同(除可能之增益因數外) 之方式而予實現之。此項目的可經由此等網路之實施而實 現之,而此等網路係根據於前此所述之轉變網路技術。但 是,需要使頻帶分離網路寫成為矩嗶。為達成此一目的, 其起點乃為下述濾波器功能Ηί^(ζ)和Η„(ζ>概略數學方式 - 21 - 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) 81.9.25,000 (請先閲讀背面之注意事項再填寫本頁) 裝. 訂· A6 B6
五、發明説明(W 之說明 (19)..· HL(Z) = aL0 + aLlz_1 + aL2z'2 + aL3z"3 + ·hh(z) = aH〇 + amz_1 + a] '2 + aH3z"3 + 此一濟波器功能裝置可M寫成為一矩陣如下 (20). HL(z) P(z2) Q(z2) R(z2) S(z2) (請先閲讀背面之注意事項再塡寫本頁) ,矩陣 項P ( z 2 ) Q ( z 2 )R ( 2 2 ) 頁式。 因此 ,例如1 •不列各 P(z2)= :aL0 ' f aL2z'2 ' ha〆H Q(z2)= :aLl + aL3z'2 + aL5z'4 R(z2)= =aHO + aH2z"2 + aH4z-4 S(P) = aH1 + aH3z"2 + aH5z_4 經濟部中央標準局貝工消费合作社印製 在此表達式中 (21)… 一如通常由數位信號處理理論中所獲知,量z-1乃表示施 加於滅波器之信號之一採樣週期T之延遲。量於是乃 表示兩採樣週期T之延遲。在所討論之實例中,N = 2 , 週期2T乃等於在樣本速率減小電路SRa和$卩2之输出上所 匕紙張尺度適用中國國家標準(CNS)甲4规格(210 X 297公釐) 81.9.25,000 A6 B6 211610 五、發明説明(2J ) 產生樣本之週期(參間圖12)。經由此一方式使變數z2T 介入時,乃為兩輸入採樣週期2Τ之延遲,表達式 (2 Γ)乃可重寫成為: Ρ(Ζ2Τ) = aLO + aL2z-ir + aL4z_《T + … Q(Z2T) = aL1 + aL3z~21T + + ... (22)... R(Z2T) = aH〇 + + aH4z-|T + … S(Z2T) = aHl + + aH5z_22T + … 上述諸式之寅體意義見示於圖1 3中。更確切的說,其原來 頻帶分離網路見示於I上,而其實胞係根據式(2 0)之等效 頻帶分離網路見於Π上。其中所示之滤波器網路Η之傳遞 函數,係視變數ζ 2而定。由於此一滤波器網路之後跟隨有 採樣率減縮電路S R α和S R 2其減縮因數各為2 ,可Μ說是 ”具有惰性”(參閱參考文件5 ),因此,此濾波器網路 Η及其兩採樣率減縮電路Sh和51?2可予互換。如此乃導 致圖1 3中1Π上所示之等級頻帶分離網路。 依相對應方式,如其起點係為下列概述之濾波器函數 Gl(z)和 G„(z)時, (23)... GL^sgLO + gLld+gl^z^ + gU21-3·^.· GH(z) = gH〇 + gmz-1 + gH2z-2 + gH3z-3 + … 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 丨裝. 訂 經濟部中央標準局員工消費合作杜印製 81.9.25,000 211610 A6 B6 五、發明説明(22) 則此一濾被器函數體係亦為寫成為一矩陣 〇L(z)GHiz) T(z2) Uiz2) V(z2) W{z2) 其矩陣項式T(z2), U(z2), \Mz2)和 W(z2)亦表示為要敝 (z2)之多項式。於是,例如,下述諸式乃成立: (25)... T(z2) = gL1 + gL3z-2 + gj^z'4 + . Viz2) = gL〇 + Sl2z'2 + gL4z'4 + · u(z2) = gH1 + gH3z-2 + gH5Z-4 +Wiz2) = gRO + δΗ2ζ'2 ,+ gH4z'4 '+ (請先閲讀背面之注意事項再填寫本頁) 經濟部中央櫺準局員工消費合作社印製 此乃表示為其完全計而見示於圖14中I上之原重顯網路 •係與見示於圖14中I上之重顯網路等效。由於濾波器網 路G及採樣率增加電路Sh和$12在此一實例中亦構成有 ”惰性性質”,係為可予互換者,因此乃獲致等效重顯電 路,見示如圖14之HI ,其中原有變數z2亦由Z2T所取代矣 〇 為使此一次頻帶編碼器之運作滿意,重顯網路G應為 完全反向。可依前此已於說明轉變矩陣時所說明之方式使 之宮現。更確切的說乃是,在相關實例中,矩陣D(z2T).係 利用式(22)中變數之多項式說明於下: -^4- 良纸張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) 81.9.25,000 五、發明説明(23 ) P6)". d(.^2T> A6 B6 ρ{^2ϋ Q{^2T) R(z2t) S(z2j) 如其決定因素係等於,此一矩陣乃可分解, 式中之Q為包括0之正整數,而C為一完全因數。下述諸 濾波器函數作為實例說明之: Hh(z) = -0.6 + 0.64 Z'1 - 0.2 z'2 - 0.12 z'3 - 0.048 z'4 + 0.0512 z'5 其波幅頻率特性見示於圖1 5中。可由此等濾波器函數中導 出下述矩陣諸項 、 (27)...
P(Z2T) = 0.76 + 0.16 z'jT - 0.0192 ζ'^τ Q(z2T) = 0.856 - 0.304 z'Jj + 0.02048 z'^T R(Z2T) = -0.6-0.2 - 0.048 z'^T S(Z2T) = 0.64 - 0.12 z'2^ + 0.0512 z"^T (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局员工消費合作社印製 須以此姐成之矩陣D (z 2 T)乃可依,例如,下述方式予M分 解 d(^2T) 1 0.4' 0 1 -0.2^2 j· 0 1 -0.4z 0
2T 1 0 -0.6 1 1 0.6] 0 1 私紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) 81.9.25,000 A6 B6 2ll6i〇 五、發明説明(24) 依上述滹波器函數之選擇 > 圖1 2之頻帶分離網路(F L , FH, SRx, SR2>乃可依|例如,圖16中之I上所示方式實 施之,而其相關之重顯濾波器(S Π , S I 2 , F L ’,F η ’)乃 可依圖16之II上所示方式實拖。 須予注意的是,在次頻帶編碼實例中,有矩陣項式已不 再為恆定不變,一如,例如,圖像轉變編碼(例如,在 DCT中)之實例中,但是係為變數ζ之函數。 ----------------_-------裝------、可---^--| : (請先閲讀背面之注意事項再埸寫本頁) 經濟部中央標竿局貝工消费合作杜印製 - 26 - 本紙張尺度適用中國國家標準(CNS)甲4規格(210 X 297公釐) 81.9.25,000
Claims (1)
- 六、申請專利範園 種裝置,用K使 線正向轉變 特點乃為此 串级装置, 之排列矩陣 式a ’ ^之三 陣決定之, 別用Μ接受 雷路適於在 序數為r之 输入上輔助 為矩陣項式 應輔肋输出 相同,經在 以放大,在 係用Μ決定 ,可反向 裝置包括若干排 具有與每一排列 ,及具有 角形矩陣 而且每一 輔肋输入 其各不用 輸出此輔 输入信號 其 信號,此 其他輸入 輸入Q上 其經由矩 Z 出r上輔肋输出信號 一種裝置,用K使一 A 7 B7 C7 D7 經濟部中央標準局員工消費合作社印製 線轉變,此 轉變之方向 範圍第1項 置相對,其 之極性相反 轉變與申 相反,其 所述之直 输人和输 ,而排列 與每一 ,此等 電路具 信號和 输出上 助输出 之加權 三角形 信號與 q关k 之輔助 陣項式 之肋益 群N個 請專利 特點為 線正向 出可予 電路之 27 時間不連續 轉變矩陣即 列電路與若 電路相结合 三角形電路 電路之相互 有N個输入 供應輔助输 供應輔肋输 信號係為具 式,其中之 電路適於在 其输入k上 上之輔肋输 输入信號所 對於a ' r q所 Ο 時間不連績 範圍第1項 此裝置在结 轉變者相同 互換,三角 權衡函數係 输入信 Μ此為 干三角 之矩陣 相结合 順序係 和Ν個 出信號 出信號 有序數 權衡函 其每 之補肋 入信號 接受之 特別說 號接受直 基礎,其 形電路之 項式a ^ 之矩陣項 由轉變矩 输出,分 ;其排列 ,在具有 k之預定 數係標示 输出上供 輸入信號 加權式予 權衡函數 明,於输 輸入信號接受直 所述之直線正向 構上與申請專利 ,因而與後述装 形電路權衡函數 為倒數。 (請先閲讀背面之注意事項再填寫本頁) • *\叮:: •線. 本紙诋尺度適川中ra闲家標半(CNS广規格(210x297公釐) 81. 1. 5.000(H)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP91203086 | 1991-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW211610B true TW211610B (zh) | 1993-08-21 |
Family
ID=8208034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW81107394A TW211610B (zh) | 1991-11-26 | 1992-09-19 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0544356A2 (zh) |
JP (1) | JPH05225225A (zh) |
TW (1) | TW211610B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08235159A (ja) * | 1994-12-06 | 1996-09-13 | Matsushita Electric Ind Co Ltd | 逆コサイン変換装置 |
US5754794A (en) * | 1995-10-19 | 1998-05-19 | Lucent Technologies Inc. | Subband coding using local bases in multiple dimensions |
CN111669183B (zh) * | 2020-06-30 | 2022-04-19 | 中南大学 | 一种压缩感知采样与重建方法、设备及存储介质 |
-
1992
- 1992-09-19 TW TW81107394A patent/TW211610B/zh active
- 1992-11-18 EP EP92203544A patent/EP0544356A2/en not_active Withdrawn
- 1992-11-25 JP JP31519092A patent/JPH05225225A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
EP0544356A3 (zh) | 1994-02-09 |
JPH05225225A (ja) | 1993-09-03 |
EP0544356A2 (en) | 1993-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Manivel | Symmetric functions, Schubert polynomials and degeneracy loci | |
Deif | Adv Matrix Theory Sci Eng | |
TW211609B (zh) | ||
EP0286183B1 (en) | Television transmission system using transform coding | |
CN101087421B (zh) | 减少位深的量子化方法 | |
TW436729B (en) | Computing method and computing apparatus | |
Ozeki | Theory of affine projection algorithms for adaptive filtering | |
Basu et al. | Wavelets and perfect reconstruction subband coding with causal stable IIR filters | |
JPS61502148A (ja) | トライアングル及びピラミッド変換及び装置 | |
JP2821489B2 (ja) | 静止画像圧縮処理装置及び方法 | |
Parfieniuk et al. | Quaternion multiplier inspired by the lifting implementation of plane rotations | |
Patera | Quasicrystals and discrete geometry | |
TW211610B (zh) | ||
Elliott | The characteristic roots of certain real symmetric matrices | |
Hu et al. | Quaternion Fourier and linear canonical inversion theorems | |
Koecher et al. | Hamilton’s quaternions | |
Rizvi et al. | An efficient Euclidean distance computation for vector quantization using a truncated look-up table | |
JPH07121507A (ja) | 離散コサイン変換装置 | |
TW395135B (en) | A high throughput and regular architecture of 2-D 8x8 DCT/IDCT using direct form | |
US6292817B1 (en) | Discrete cosine transformation circuit | |
Ri | Lattice factorization based symmetric PMI paraunitary matrix extension and construction of symmetric orthogonal wavelets | |
JPH07200539A (ja) | 二次元dct演算装置 | |
Rassias | The Problem of Plateau: A Tribute to Jesse Douglas and Tibor Rado | |
Gurevich et al. | Traces in braided categories | |
Llamed | Realization of infinite dimensional Lie-admissible algebras |