TW202415813A - Composition and method for nanotwinned copper formation - Google Patents

Composition and method for nanotwinned copper formation Download PDF

Info

Publication number
TW202415813A
TW202415813A TW112138693A TW112138693A TW202415813A TW 202415813 A TW202415813 A TW 202415813A TW 112138693 A TW112138693 A TW 112138693A TW 112138693 A TW112138693 A TW 112138693A TW 202415813 A TW202415813 A TW 202415813A
Authority
TW
Taiwan
Prior art keywords
copper
electroplating solution
compound
acid
leveler
Prior art date
Application number
TW112138693A
Other languages
Chinese (zh)
Inventor
史蒂芬I 布雷耶
萍萍 葉
建偉 韓
凱爾M 惠頓
湯瑪斯B 李察森
Original Assignee
美商麥克達米德恩索龍股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商麥克達米德恩索龍股份有限公司 filed Critical 美商麥克達米德恩索龍股份有限公司
Publication of TW202415813A publication Critical patent/TW202415813A/en

Links

Abstract

A copper electrolyte comprising a copper salt, a source of halide ions, and a reaction product of an amine or sulfur-containing compound with 2,3-epoxy-1-propanol for producing a nanotwinned copper deposit, optionally in combination with one or more of a leveler or an accelerator. The copper electrolyte is used to initiate a high density nanotwinned copper deposit on various surfaces.

Description

用於奈米雙晶銅形成之組成物及方法Composition and method for forming nano-twinned copper

[相關申請案之交互參照][Cross-reference to related applications]

本申請案主張2022年10月10日申請之美國臨時專利申請案第63/414,725號之優先權,其標的係以引用方式全文併入本文中。This application claims priority to U.S. Provisional Patent Application No. 63/414,725 filed on October 10, 2022, the subject matter of which is incorporated herein by reference in its entirety.

本發明大致上關於在各種基材上之奈米雙晶銅的電沉積、及用於產生高密度奈米雙晶銅沉積物之銅電鍍電鍍浴。The present invention generally relates to the electrodeposition of nanobicrystalline copper on various substrates, and copper electroplating baths for producing high density nanobicrystalline copper deposits.

電化學沉積程序在積體電路製造中已建立完善。銅線可藉由通常稱為「鑲嵌(damascene)」處理(預鈍化金屬化)之方法將金屬電鍍至非常細且高深寬比的溝槽及導通孔中來形成。Electrochemical deposition processes are well established in integrated circuit manufacturing. Copper lines can be formed by electroplating metal into very fine, high aspect ratio trenches and vias in a process commonly referred to as "damascene" processing (pre-passivation metallization).

隨著微電子的發展,對於建立更小且更密集的互連特徵持續存在需求。由於高延展性及導電性,銅係微電子裝置中最重要的導體之一。一種朝向此目標的方法係將連接銅導通孔、墊、凸塊、或柱之兩分開基材之間的焊料移除,其可例如由Cu-Cu混合式接合(hybrid bonding)取代。As microelectronics develop, there is a continuous need to create smaller and denser interconnect features. Copper is one of the most important conductors in microelectronic devices due to its high ductility and conductivity. One approach toward this goal is to remove the solder between two separate substrates that connect copper vias, pads, bumps, or pillars, which can be replaced by, for example, Cu-Cu hybrid bonding.

為確保此方法成功(其需要高溫及高壓兩者),特別較佳的是產生具有>90%之奈米雙晶柱狀銅(ntCu)晶粒之呈(111)定向的電鍍銅。To ensure the success of this method (which requires both high temperatures and high pressures), it is particularly preferred to produce electroplated copper with >90% nanotwin columnar copper (ntCu) grains in a (111) orientation.

由於結合優異的機械性質、良好的導電性、及獨特的結構,奈米雙晶銅在微電子中的使用已引起注意。金屬(諸如銅)的機械強度通常在晶粒大小縮減至奈米級時會增加。奈米雙晶銅代表超細晶銅,其晶粒含有由共格雙晶界(coherent twin boundary)分開之高密度的成層奈米級雙晶。藉由在銅的微結構中引入奈米級雙晶,可改善包括機械強度、延展性、電遷移抗性、及硬度之性質。Nanotwin copper has attracted attention for use in microelectronics due to its combination of excellent mechanical properties, good electrical conductivity, and unique structure. The mechanical strength of metals such as copper generally increases as the grain size is reduced to the nanoscale. Nanotwin copper represents ultrafine crystalline copper whose grains contain a high density of layered nanoscale twin crystals separated by coherent twin boundaries. By introducing nanotwins into the copper microstructure, properties including mechanical strength, ductility, electromigration resistance, and hardness can be improved.

奈米級之金屬薄膜可具有例示性機械性質。因此,具有奈米雙晶結晶性質的金屬可適用於諸如穿矽通孔(TSV)、半導體晶片互連、封裝基材引腳通孔、金屬互連(例如,銅互連)、及基材上之金屬材料的應用。Nanoscale metal films may have exemplary mechanical properties. Therefore, metals having nanobicrystalline properties may be suitable for applications such as through-silicon vias (TSVs), semiconductor chip interconnects, package substrate lead vias, metal interconnects (e.g., copper interconnects), and metal materials on substrates.

奈米雙晶銅可以若干方式達成,包括例如使用已經最佳化以產生奈米雙晶銅的銅電鍍組成物而藉由濺射及藉由電解沉積來達成。Nanocrystal copper can be achieved in several ways, including, for example, by sputtering and by electrolytic deposition using a copper plating composition that has been optimized to produce nanocrystal copper.

濺鍍的優點之一係銅膜的高純度,連同循跡較佳晶粒定向的能力。已顯示,經濺鍍之(111)定向奈米雙晶銅具有高的熱穩定性及強度。One of the advantages of sputter deposition is the high purity of the copper film, together with the ability to track a better grain orientation. It has been shown that sputter deposited (111) oriented nanobi-crystalline copper has high thermal stability and strength.

另一方面,直流電解電鍍具有與工業量產極其相容的優點。電鍍奈米雙晶銅可分成兩類:等軸晶粒奈米雙晶銅及(111)定向奈米雙晶銅。On the other hand, direct current electrolytic plating has the advantage of being extremely compatible with industrial mass production. Electroplated nano-twin copper can be divided into two categories: equiaxed nano-twin copper and (111) oriented nano-twin copper.

晶體缺陷可影響材料的機械、電氣、及光學性質。雙晶現象發生在材料中之晶體結構的兩部分彼此對稱地相關之處。在包括銅之面心立方(face-centered cubic, FCC)晶體結構中,共格雙晶界可形成為(111)鏡像平面,其與(111)平面的典型堆疊序列相反。換言之,相鄰的晶粒在成層的(111)結構中係跨共格雙晶界而互為鏡像。雙晶沿著側向(111)晶體平面延伸以逐層方式生長,其中雙晶厚度大約為數奈米。奈米雙晶銅展現優異的機械及電氣性質,並可在晶圓級封裝及先進封裝之設計中用於各式各樣的應用中。Crystal defects can affect the mechanical, electrical, and optical properties of materials. Twinning occurs where two parts of the crystal structure of a material are symmetrically related to each other. In face-centered cubic (FCC) crystal structures including copper, coherent twin boundaries can form as (111) mirror planes, which is the opposite of the typical stacking sequence of (111) planes. In other words, adjacent grains in the layered (111) structure are mirror images of each other across the coherent twin boundaries. Twins grow in a layer-by-layer manner extending along the lateral (111) crystal planes, with twin thicknesses on the order of a few nanometers. Nanocrystalline copper exhibits excellent mechanical and electrical properties and can be used in a wide variety of applications in wafer-level packaging and advanced packaging designs.

相較於展現習知晶粒晶界的銅,奈米雙晶銅具有強健的機械性質,包括高強度及高拉伸延展性。例如,奈米雙晶銅展現出高導電性,其可歸因於雙晶界,進而相較於晶粒晶界導致較不顯著的電子散射。奈米雙晶銅亦展現高的熱穩定性(其可歸因於雙晶界之過剩能量在數量級上低於晶粒邊界之量值),並實現高銅原子擴散性(其適用於銅對銅的直接接合)。此外,奈米雙晶銅顯示高的電遷移抗性,其可係雙晶界減緩電遷移所誘發之原子擴散的結果。奈米雙晶銅展現出對晶種蝕刻的強抗性(其在細線再分布層應用中可係重要的),且亦顯示低雜質摻入(其由於與奈米雙晶銅之焊接反應而導致較少的克氏孔洞(Kirkendall void))。Compared to copper that exhibits conventional grain boundaries, nanotwin copper has robust mechanical properties, including high strength and high tensile ductility. For example, nanotwin copper exhibits high electrical conductivity, which can be attributed to the twin boundaries, which in turn lead to less significant electron scattering than grain boundaries. Nanotwin copper also exhibits high thermal stability (which can be attributed to the excess energy of the twin boundaries being orders of magnitude lower than that of the grain boundaries) and achieves high copper atomic diffusivity (which is suitable for direct copper-to-copper bonding). In addition, nanotwin copper shows high electromigration resistance, which can be the result of the twin boundaries slowing down the atomic diffusion induced by electromigration. Nano-bi-crystal copper exhibits strong resistance to seed etching (which can be important in fine-line redistribution layer applications) and also shows low impurity incorporation (which results in fewer Kirkendall voids due to soldering reactions with nano-bi-crystal copper).

在一些態樣中,奈米雙晶銅實現直接的銅銅接合,其可在低溫、中等壓力、及較低接合力/時間下發生。一般而言,銅結構之沉積會導致粗糙表面,且在一些情況下,在銅銅接合之前,奈米雙晶銅的電沉積可隨後進行電拋光,以達成平滑表面。在達成平滑表面的情況下,便可以較短的接合時間、較低的溫度、及較少的孔洞將奈米雙晶銅結構用在銅銅接合中。In some embodiments, nano-twin copper achieves direct copper-copper bonding, which can occur at low temperature, moderate pressure, and low bonding force/time. Generally speaking, the deposition of copper structures results in a rough surface, and in some cases, the electrodeposition of nano-twin copper can be followed by electropolishing to achieve a smooth surface before copper-copper bonding. When a smooth surface is achieved, nano-twin copper structures can be used in copper-copper bonding with shorter bonding times, lower temperatures, and fewer voids.

Desmaison等人之美國專利第7,074,315號(其標的全文以引用方式併入本文中)描述一種用於沉積霧面銅層之銅電解質。然而,當中並無關於將Desmaison等人之銅電解質用於沉積奈米雙晶銅的建議。U.S. Patent No. 7,074,315 to Desmaison et al., the entire subject matter of which is incorporated herein by reference, describes a copper electrolyte for depositing a matte copper layer. However, there is no suggestion that the copper electrolyte of Desmaison et al. can be used to deposit nanobicrystalline copper.

Banik等人之WO2020/092244(其標的全文以引用方式併入本文中)描述一種具有沉積在基材上之高密度奈米雙晶銅的銅結構。Banik並未描述任何特定的電解銅鍍浴,而是著重在電鍍條件,包括施加在恆定電流與無電流之間交替的脈衝電流波形,其中無施加電流的持續時間實質上大於施加恆定電流的持續時間。WO2020/092244 to Banik et al., the subject matter of which is incorporated herein by reference in its entirety, describes a copper structure having a high density of nanobicrystalline copper deposited on a substrate. Banik does not describe any particular electrolytic copper plating bath, but rather focuses on plating conditions including a pulsed current waveform that alternates between a constant current and no current, wherein the duration of no current being applied is substantially greater than the duration of the constant current being applied.

Yang之美國專利第10,566,314號(其標的全文以引用方式併入本文中)描述為何用於Cu-Cu金屬對金屬接合之最佳銅晶粒結構是柱狀晶粒微結構。由所揭示之唯抑制劑系統(suppressor-only system)所電鍍的銅晶粒微結構由於電鍍奈米雙晶銅的緣故而產生柱狀晶粒結構。此外,雖然提及柱狀晶粒,但並無提及奈米雙晶銅之(111)銅晶粒結構。U.S. Patent No. 10,566,314 to Yang, the entirety of which is incorporated herein by reference, describes how the best copper grain structure for Cu-Cu metal-to-metal bonding is a columnar grain microstructure. The copper grain microstructure plated by the disclosed suppressor-only system produces a columnar grain structure as a result of the electroplating of nanobicrystalline copper. Furthermore, although columnar grains are mentioned, the (111) copper grain structure of the nanobicrystalline copper is not mentioned.

經研究顯示,鮮少材料能夠藉由電鍍來產生奈米雙晶銅,其中無論下層基材為何,銅沉積物皆展現出高度奈米雙晶現象。Studies have shown that few materials can be used to produce nanotwinned copper by electroplating, where the copper deposits show a high degree of nanotwinning regardless of the underlying substrate.

在所屬技術領域中,仍需要一種用於產生奈米雙晶銅沉積物之銅電鍍溶液,尤其是需要一種能夠在微電子基材之特徵中及/或在非由(111)銅所主導的基材上產生奈米雙晶銅的銅電鍍溶液。There is still a need in the art for a copper electroplating solution for producing nano-twin copper deposits, and in particular, a copper electroplating solution capable of producing nano-twin copper in features of microelectronic substrates and/or on substrates that are not dominated by (111) copper.

本發明之一目的在於提供一種改善的銅電鍍溶液。One object of the present invention is to provide an improved copper electroplating solution.

本發明之另一目的在於提供一種能夠在沉積物中產生高密度奈米雙晶銅的銅電鍍溶液。Another object of the present invention is to provide a copper electroplating solution capable of producing high-density nano-twinned copper in a deposit.

本發明之另一目的在於提供一種經最佳化以在微電子基材之特徵中沉積奈米雙晶銅的銅電鍍溶液。Another object of the present invention is to provide a copper electroplating solution optimized for depositing nanobicrystalline copper in features of microelectronic substrates.

本發明之又另一目的在於提供一種可在任何表面上起始或產生展現高密度奈米雙晶銅之銅沉積物的銅電鍍溶液。Yet another object of the present invention is to provide a copper electroplating solution that can initiate or produce copper deposits exhibiting high density nano-twinned copper on any surface.

本發明之又另一目的在於提供一種能夠在非由(111)銅所主導的表面上產生展現高密度奈米雙晶銅之沉積物的銅電鍍溶液。Yet another object of the present invention is to provide a copper electroplating solution capable of producing deposits exhibiting high density nano-twinned copper on surfaces not dominated by (111) copper.

為此,在一個實施例中,本發明大致上關於一種銅電鍍溶液,其中該銅電鍍溶液包含: a)    銅鹽; b)    鹵化物離子源;及 c)    抑制劑,其中該抑制劑包含反應物與2,3-環氧-1-丙醇之反應產物,其中該反應物包含胺化合物及含硫化合物中之至少一者; 其中該銅電鍍溶液經組態以在一基材上沉積高密度奈米雙晶銅。 To this end, in one embodiment, the present invention generally relates to a copper electroplating solution, wherein the copper electroplating solution comprises: a)    a copper salt; b)    a halide ion source; and c)    an inhibitor, wherein the inhibitor comprises a reaction product of a reactant and 2,3-epoxy-1-propanol, wherein the reactant comprises at least one of an amine compound and a sulfur-containing compound; wherein the copper electroplating solution is configured to deposit high-density nano-twin copper on a substrate.

在一個實施例中,該銅電鍍溶液可選地亦可包含下列中之一或多者: a)    加速劑,其中該加速劑包含有機硫化合物;及 b)    平整劑,其中該平整劑包含聚合四級氮物種。 In one embodiment, the copper plating solution may optionally also include one or more of the following: a)    an accelerator, wherein the accelerator comprises an organic sulfur compound; and b)    a leveler, wherein the leveler comprises a polymerized quaternary nitrogen species.

在另一實施例中,本發明大致上亦關於一種使用本文所述之銅電鍍溶液在一基材(包括非由(111)銅所主導的表面)上沉積高密度奈米雙晶銅的方法。In another embodiment, the present invention also generally relates to a method of depositing high density nanobicrystalline copper on a substrate (including a surface that is not dominated by (111) copper) using the copper electroplating solution described herein.

如本文中所使用,「一(a/an)」及「該(the)」係指單數及複數兩種指示對象,除非上下文另有明確規定。As used herein, “a”, “an” and “the” refer to both the singular and the plural, unless the context clearly requires otherwise.

如本文中所使用,用語「約(about)」係指可測量的值,諸如參數、量、時間持續時間、及類似者,且意欲包括具體敘述值之+/-15%或更小的變化、較佳的是+/-10%或更小的變化、更佳的是+/-5%或更小的變化、甚至更佳的是+/-1%或更小的變化、且又更佳的是+/-0.1%或更小的變化,以致此類變化適於在本文所述之本發明中執行。此外,亦應理解的是,修飾語「約(about)」所指的值本身係在本文中明確揭示。As used herein, the term "about" refers to measurable values, such as parameters, amounts, time durations, and the like, and is intended to include variations of +/-15% or less, preferably +/-10% or less, more preferably +/-5% or less, even more preferably +/-1% or less, and still more preferably +/-0.1% or less of the specifically recited value, such that such variations are suitable for use in the practice of the invention as described herein. In addition, it is also to be understood that the value to which the modifier "about" refers is itself expressly disclosed herein.

如本文中所使用,諸如「下方(beneath)」、「下面(below)」、「下部(lower)」、「上面(above)」、「上部(upper)」、及類似者的空間相對用語係為了便於描述而用以描述一元件或特徵與另一(或多個)元件或特徵的關係,如圖式中所繪示。進一步應理解的是,用語「前面(front)」及「後面(back)」並非意欲作為限制性的,且係意欲在適當處為可互換的。As used herein, spatially relative terms such as "beneath," "below," "lower," "above," "upper," and the like are used for ease of description to describe the relationship of one element or feature to another (or multiple) elements or features, as depicted in the drawings. It should be further understood that the terms "front" and "back" are not intended to be limiting and are intended to be interchangeable where appropriate.

如本文中所使用,用語「包含(comprise/comprising)」具體指明所述之特徵、整數、步驟、操作、元件、及/或組件的存在,但不排除一或多個其他特徵、整數、步驟、操作、元件、組件、及/或其群組的存在或添加。As used herein, the terms “comprise” and “comprising” specifically specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

如本文中所使用,若未在本文中針對一特定元件或化合物來另行定義,則用語「實質上無(substantially free)」或「基本上無(essentially free)」意指一給定元件或化合物無法藉由用於浴分析之通常分析手段來偵測到,該等通常分析手段係為金屬電鍍技術領域中具有通常知識者所熟知。此類方法一般包括原子吸收光譜法、滴定、UV-Vis分析、二次離子質譜法、及其他常見可用的分析技術。As used herein, unless otherwise defined herein with respect to a particular element or compound, the term "substantially free" or "essentially free" means that a given element or compound cannot be detected by conventional analytical means for bath analysis, which are well known to those of ordinary skill in the art of metal plating technology. Such methods generally include atomic absorption spectroscopy, titration, UV-Vis analysis, secondary ion mass spectrometry, and other commonly available analytical techniques.

如本文中所使用,用語「特徵(feature)」係指可存在於微電子基材上之導通孔、穿矽通孔(TSV)、溝槽、柱、墊、凸塊等。As used herein, the term "feature" refers to a via, through-silicon via (TSV), trench, pillar, pad, bump, etc. that may be present on a microelectronic substrate.

如本文中所使用,用語「高密度(high density)」之奈米雙晶銅係指銅沉積物,其在該沉積物中含有至少75%、或至少80%、或至少85%、或至少90%、或至少95%之奈米雙晶柱狀銅晶粒。As used herein, the term "high density" nanotwin copper refers to a copper deposit containing at least 75%, or at least 80%, or at least 85%, or at least 90%, or at least 95% nanotwin columnar copper grains in the deposit.

除非另有註明,否則所有的量均係重量百分比。除了邏輯上此類數值範圍受限於總計達100%之處,所有數值範圍係包含兩端點數的,且可以任何順序組合。用語「平均(average)」等同於樣本之平均值。Unless otherwise noted, all amounts are percentages by weight. All numerical ranges are inclusive and combinable in any order, except where such numerical ranges are logically limited to where they total 100%. The term "average" is equivalent to the mean value of a sample.

用語「鍍覆(plating)」及「沉積(deposit/deposition)」在整個本說明書中可互換使用。The terms "plating" and "deposit" or "deposition" are used interchangeably throughout this specification.

用語「組成物(composition)」、及「浴(bath)」、及「電解質(electrolyte)」、及「溶液(solution)」在整個本說明書中可互換使用。The terms "composition", "bath", "electrolyte", and "solution" are used interchangeably throughout this specification.

除非在本說明書中另描述為具有取代基,否則用語「烷基(alkyl)」意指僅包含碳及氫並具有以下通式之有機化學基團:C nH 2n+1Unless otherwise described as having a substituent in this specification, the term "alkyl" refers to an organic chemical group containing only carbon and hydrogen and having the following general formula: C n H 2n+1 .

經研究顯示,鮮少材料能夠產生奈米雙晶銅(ntCu)或展現高度奈米雙晶現象的銅沉積物。一種此類材料是聚(2,3-環氧-1-丙醇),其係直鏈或支鏈聚羥基化合物,該直鏈或支鏈聚羥基化合物具有約200至約20,000、更佳地約500至約5,000、甚至更佳地約1,000至約3,000之分子量。Studies have shown that few materials can produce nanotwin copper (ntCu) or copper deposits that exhibit a highly nanotwin phenomenon. One such material is poly(2,3-epoxy-1-propanol), which is a linear or branched polyhydroxy compound having a molecular weight of about 200 to about 20,000, more preferably about 500 to about 5,000, and even more preferably about 1,000 to about 3,000.

也有人認為,引入其他的有機電鍍化合物,諸如加速劑、光亮劑、載劑、濕潤劑、及/或平整劑,將會破壞聚羥基化合物產生奈米雙晶銅的能力。It is also believed that the introduction of other organic electroplating compounds, such as accelerators, brighteners, carriers, wetting agents, and/or levelers, will destroy the ability of polyhydroxy compounds to produce nanocrystalline twin copper.

目前對於聚羥基化合物,諸如在Richardson等人之美國專利第11,384,446號及第WO2023/014524號(其標的全文各自以引用方式併入本文)中所述者,除非沉積係在PVD銅晶種層上中進行(其在(111)定向晶粒結構中展現大量的銅),否則很難實現高密度奈米雙晶銅。Currently for polyhydroxy compounds, such as described in U.S. Patent Nos. 11,384,446 and WO2023/014524 to Richardson et al. (the entirety of each of which is incorporated herein by reference), high-density nanobicrystalline copper is difficult to achieve unless the deposition is performed on a PVD copper seed layer (which exhibits a large amount of copper in a (111) oriented grain structure).

在其他表面(包括例如多晶銅晶種層、不鏽鋼、及PVD釕表面)上起始高密度奈米雙晶銅沉積物將會是所欲的。為此,本發明之發明人已研究出用於最佳化銅電鍍溶液之手段,以在各種表面(舉實例而非限制來說,包括多晶銅晶種層、不鏽鋼、及PVD釕)上沉積奈米雙晶銅。It would be desirable to initiate high density nanobicrystalline copper deposits on other surfaces, including, for example, polycrystalline copper seed layers, stainless steel, and PVD ruthenium surfaces. To this end, the inventors of the present invention have developed means for optimizing copper electroplating solutions to deposit nanobicrystalline copper on various surfaces, including, by way of example and not limitation, polycrystalline copper seed layers, stainless steel, and PVD ruthenium.

在一個實施例中,本發明大致上關於奈米雙晶銅之電沉積、及一種經組態以在各種表面上產生展現高密度奈米雙晶銅之銅沉積物的銅電鍍溶液。In one embodiment, the present invention generally relates to the electrodeposition of nanobicrystalline copper, and a copper electroplating solution configured to produce copper deposits exhibiting a high density of nanobicrystalline copper on various surfaces.

在一個實施例中,銅電鍍溶液包含: a)    銅鹽; b)    鹵化物離子源;及 c)    抑制劑,其中該抑制劑包含反應物與2,3-環氧-1-丙醇之反應產物,其中該反應物包含胺化合物及含硫化合物中之至少一者。 In one embodiment, the copper plating solution comprises: a)    copper salt; b)    halide ion source; and c)    inhibitor, wherein the inhibitor comprises a reaction product of a reactant and 2,3-epoxy-1-propanol, wherein the reactant comprises at least one of an amine compound and a sulfur-containing compound.

在一個實施例中,銅電解質可選地亦可包含下列中之一或多者: a)    加速劑,其中該加速劑包含有機硫化合物;及 b)    平整劑,其中該平整劑包含聚合四級氮物種; 在一較佳實施例中,該銅鹽包含硫酸銅。可用在該組成物中的其他銅鹽包括甲磺酸銅、焦磷酸銅、丙磺酸銅、及其他類似化合物。電鍍溶液中的硫酸銅的濃度通常係在約1至100 g/L的範圍內,更佳地在約20至約80 g/L的範圍內,更佳地在約40至約60 g/L的範圍內。 In one embodiment, the copper electrolyte may optionally also include one or more of the following: a)    an accelerator, wherein the accelerator includes an organic sulfur compound; and b)    a leveler, wherein the leveler includes a polymerized quaternary nitrogen species; In a preferred embodiment, the copper salt includes copper sulfate. Other copper salts that may be used in the composition include copper methanesulfonate, copper pyrophosphate, copper propanesulfonate, and other similar compounds. The concentration of copper sulfate in the electroplating solution is generally in the range of about 1 to 100 g/L, more preferably in the range of about 20 to about 80 g/L, and more preferably in the range of about 40 to about 60 g/L.

鹵化物離子係作為輔助某些有機添加劑吸附至基材表面上的橋梁。鹵化物離子包括但不限於氯化物離子、溴化物離子、碘化物離子、及其等之組合。在一個實施例中,該等鹵化物離子包含氯化物離子。該電鍍溶液中之氯化物離子的濃度通常係在約1至150 mg/L的範圍內,更佳地約30至120 mg/L,最佳地約45至75 mg/L。Halide ions serve as bridges to assist certain organic additives in adsorbing onto the substrate surface. Halide ions include, but are not limited to, chloride ions, bromide ions, iodide ions, and combinations thereof. In one embodiment, the halide ions include chloride ions. The concentration of chloride ions in the electroplating solution is generally in the range of about 1 to 150 mg/L, more preferably about 30 to 120 mg/L, and most preferably about 45 to 75 mg/L.

在一個實施例中,電鍍組成物含有酸以控制電鍍浴之導電性,且合適的酸包括硫酸及甲磺酸。在一個實施例中,該酸係硫酸。電鍍溶液中之酸的濃度通常在約0至240 g/L的範圍內,更佳地在約10至約180 g/L的範圍內,更佳地在約80至約140 g/L的範圍內。在一個實施例中,酸之濃度係在約8至約15 g/L的範圍內,更佳地係約10 g/L。本發明之發明人已出人意料地發現,酸之濃度對展開奈米雙晶現象之能力可具有重大影響,且含有較低酸濃度之組成物傾向於比含有較高酸濃度之類似組成物對ntCu形成更為寬容。In one embodiment, the plating composition contains an acid to control the conductivity of the plating bath, and suitable acids include sulfuric acid and methanesulfonic acid. In one embodiment, the acid is sulfuric acid. The concentration of the acid in the plating solution is generally in the range of about 0 to 240 g/L, more preferably in the range of about 10 to about 180 g/L, and more preferably in the range of about 80 to about 140 g/L. In one embodiment, the concentration of the acid is in the range of about 8 to about 15 g/L, and more preferably about 10 g/L. The inventors of the present invention have unexpectedly discovered that the concentration of acid can have a significant impact on the ability to develop nanotwinning phenomena, and that compositions containing lower acid concentrations tend to be more permissive to ntCu formation than similar compositions containing higher acid concentrations.

在一個實施例中,抑制劑包含胺化合物或含硫化合物與2,3-環氧-1-丙醇之反應產物。所得的直鏈或支鏈聚羥基通常具有約200至約20,000 g/mol、更佳地約500至約5,000 g/mol、最佳地約1,000至約3,000 g/mol之分子量。In one embodiment, the inhibitor comprises a reaction product of an amine compound or a sulfur-containing compound with 2,3-epoxy-1-propanol. The resulting linear or branched polyhydroxyl group generally has a molecular weight of about 200 to about 20,000 g/mol, more preferably about 500 to about 5,000 g/mol, and most preferably about 1,000 to about 3,000 g/mol.

合適的胺化合物(amines)之實例包括:乙醇胺、二乙醇胺、三乙醇胺、丙醇胺、異丙醇胺、二異丙醇胺、三異丙醇胺、N-甲基二乙醇胺、N-乙基二乙醇胺、N-丙基二乙醇胺、甲基單乙醇胺、N,N-二甲基乙醇胺、N,N-二乙基乙醇胺、N-丙基單乙醇胺、N-丙基二乙醇胺、N-丁基乙醇胺、N-丁基二乙醇胺、N,N-二丁基乙醇胺、羥乙基 啉、2-哌啶乙醇、二乙醇異丙醇胺、N-(2-羥乙基)吡咯啶、4-吡啶甲醇、4-吡啶乙醇、4-吡啶丙醇、2-羥-4-甲基吡啶、2-羥甲基-1-甲基咪唑、4-羥甲基-5-甲基咪唑、氯化膽鹼、b-甲基氯化膽鹼、雙(2-羥乙基)二甲基氯化銨、參(2-羥乙基)甲基氯化銨、氯化肉鹼、(2-羥乙基)二甲基(3-磺丙基)氯化銨、1-(2-羥乙基)-3-甲基氯化咪唑、及前述之組合。 Examples of suitable amines include ethanolamine, diethanolamine, triethanolamine, propanolamine, isopropanolamine, diisopropanolamine, triisopropanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N-propyldiethanolamine, methylmonoethanolamine, N,N-dimethylethanolamine, N,N-diethylethanolamine, N-propylmonoethanolamine, N-propyldiethanolamine, N-butylethanolamine, N-butyldiethanolamine, N,N-dibutylethanolamine, hydroxyethyl 1-(2-hydroxyethyl)-1-methylimidazole, 4-hydroxymethyl-5-methylimidazole, choline chloride, b-methylcholine chloride, bis(2-hydroxyethyl)dimethylammonium chloride, tris(2-hydroxyethyl)methylammonium chloride, carnitine chloride, (2-hydroxyethyl)dimethyl(3-sulfopropyl)ammonium chloride, 1-(2-hydroxyethyl)-3-methylimidazole chloride, and combinations thereof.

其他的胺化合物包括三級胺,諸如,3-羥丙基二甲胺、n-丁基二甲胺、二(3-羥丙基)甲胺、2,3-二羥丙基二甲胺、3-羥丙基二乙胺、2-羥丙基二甲胺、4-羥丁基二甲胺、2-羥乙基二甲胺、n-丙基二甲胺、2-羥乙氧基乙基二甲胺、二(2-羥乙基)甲胺、芐基二甲胺、及4-羥芐基二甲胺、4-甲基吡啶、3-乙基吡啶、4-丙基吡啶、4-三級丁基吡啶、4-氰基吡啶、4-異丙基吡啶、4-甲氧基吡啶、3,4 -二甲基吡啶、3-甲氧基吡啶、及4-吡啶甲醇、2-二甲基胺基-1-乙醇、n-丁基二甲胺、及N,N-二甲基芐基胺、4-乙基吡啶、及1-甲基咪唑、1-芐基咪唑、N-甲基 啉、2-[2-(二甲胺基)乙氧基]乙醇。 Other amine compounds include tertiary amines such as 3-hydroxypropyldimethylamine, n-butyldimethylamine, di(3-hydroxypropyl)methylamine, 2,3-dihydroxypropyldimethylamine, 3-hydroxypropyldiethylamine, 2-hydroxypropyldimethylamine, 4-hydroxybutyldimethylamine, 2-hydroxyethyldimethylamine, n-propyldimethylamine, 2-hydroxyethoxyethyldimethylamine, di(2-hydroxyethyl)methylamine, benzyldimethylamine, and 4-hydroxybenzyldimethylamine, 4-methylpyridine, 3-ethylpyridine, 4-propylpyridine, 4-tertiary butylpyridine, 4-cyanopyridine, 4-isopropylpyridine, 4-methoxypyridine, 3,4 -dimethylpyridine, 3-methoxypyridine, 4-pyridinemethanol, 2-dimethylamino-1-ethanol, n-butyldimethylamine, N,N-dimethylbenzylamine, 4-ethylpyridine, 1-methylimidazole, 1-benzylimidazole, N-methyl phenoxyethanol, 2-[2-(dimethylamino)ethoxy]ethanol.

另一合適的胺化合物係雙(2-羥乙基)二甲基氯化銨。Another suitable amine compound is bis(2-hydroxyethyl)dimethylammonium chloride.

能夠與2,3-環氧-1-丙醇反應以產生反應化合物之其他類似的胺化合物亦可用來作為本發明之抑制劑。重要的是,當在銅電鍍溶液中以合適的組成物使用時,反應化合物是要能夠及/或經組態以在各種基材(此等基材包括非由(111)銅所主導的表面)上起始具有高密度奈米雙晶銅之銅沉積物者。Other similar amine compounds that react with 2,3-epoxy-1-propanol to produce reactive compounds can also be used as inhibitors in the present invention. Importantly, when used in a suitable composition in a copper plating solution, the reactive compound is capable and/or configured to initiate copper deposits having high density nanobicrystalline copper on a variety of substrates, including surfaces that are not dominated by (111) copper.

合適的硫化合物之實例包括但不限於:硫代乙醇酸、硫代蘋果酸、硫化氫鈉、硫代二乙醇酸、硫代二乙二醇、硫脲、N,N,N’N’-四甲基硫脲、2-巰基乙醇、3-巰基丙醇、2-巰基咪唑、2-巰基吡啶、4-巰基吡啶、4-巰基酚、3-巰基-1-丙磺酸、3,6-二硫雜-1,8-辛二醇、2,2’-硫代二乙硫醇、2-羥乙基二硫化物、3,3’-硫代二丙醇、及2,2’-(伸乙二氧基)二乙硫醇。Examples of suitable sulfur compounds include, but are not limited to, thioglycolic acid, thiomalonic acid, sodium hydrogen sulfide, thiodiglycolic acid, thiodiethylene glycol, thiourea, N,N,N'N'-tetramethylthiourea, 2-butylethanol, 3-butylpropanol, 2-butylimidazole, 2-butylpyridine, 4-butylpyridine, 4-butylphenol, 3-butyl-1-propanesulfonic acid, 3,6-dithio-1,8-octanediol, 2,2'-thiodiethanethiol, 2-hydroxyethyl disulfide, 3,3'-thiodipropanol, and 2,2'-(ethylenedioxy)diethanethiol.

在銅電解質中,可在非由(111)銅所主導的基材上用來起始具有高密度奈米雙晶銅之銅沉積物的其他反應物包括各種吡啶及咪唑。又,當在銅電鍍溶液中以合適的組成物使用時,此類吡啶及/或咪唑必須能夠及/或經組態以在各種基材(包括非由(111)銅所主導的基材)上起始具有高密度奈米雙晶銅之銅沉積物。Other reactants that can be used in copper electrolytes to initiate copper deposits with high density nanotwinned copper on substrates that are not dominated by (111) copper include various pyridines and imidazoles. Again, when used in a suitable composition in a copper plating solution, such pyridines and/or imidazoles must be capable and/or configured to initiate copper deposits with high density nanotwinned copper on a variety of substrates, including substrates that are not dominated by (111) copper.

在一個實施例中,使用的是反應物之組合(諸如胺化合物及含硫化合物),且反應物之組合係與2,3-環氧-1-丙醇反應。例如,抑制劑可包含雙(2-羥乙基)二甲基氯化銨及2,2’-硫二乙醇與2,3-環氧-1-丙醇之反應產物。In one embodiment, a combination of reactants (such as an amine compound and a sulfur-containing compound) is used, and the combination of reactants is reacted with 2,3-epoxy-1-propanol. For example, the inhibitor may include bis(2-hydroxyethyl)dimethylammonium chloride and the reaction product of 2,2'-thiodiethanol and 2,3-epoxy-1-propanol.

在一個實施例中,抑制劑化合物包含90.0至99.9 wt.%之2,3-環氧-1-丙醇及0.1至10.0 wt.%之一或多種反應物,更佳地95.0至99.5 wt.%之2,3-環氧-1-丙醇及0.5至5.0 wt.%之一或多種反應物,更佳地97.0至99.0 wt.%之2,3-環氧-1-丙醇及2.0至3.0 wt.%之一或多種反應物。In one embodiment, the inhibitor compound comprises 90.0 to 99.9 wt.% of 2,3-epoxy-1-propanol and 0.1 to 10.0 wt.% of one or more reactants, more preferably 95.0 to 99.5 wt.% of 2,3-epoxy-1-propanol and 0.5 to 5.0 wt.% of one or more reactants, more preferably 97.0 to 99.0 wt.% of 2,3-epoxy-1-propanol and 2.0 to 3.0 wt.% of one or more reactants.

在一個實施例中,直鏈或支鏈聚羥基抑制劑化合物在銅電鍍溶液中之濃度係在約1至約10,000 mg/L、更佳地約10至約1,000 mg/L、更佳地約50至約600 mg/L、更佳地約300至約500 mg/L的範圍內。In one embodiment, the concentration of the linear or branched polyhydroxy inhibitor compound in the copper electroplating solution is in the range of about 1 to about 10,000 mg/L, more preferably about 10 to about 1,000 mg/L, more preferably about 50 to about 600 mg/L, more preferably about 300 to about 500 mg/L.

在一些實施例中,銅電鍍溶液可選地可包括加速劑及/或平整劑。In some embodiments, the copper plating solution may optionally include an accelerator and/or a leveler.

若使用的話,加速劑可包含例如有機硫化合物,其包括有機硫鹽。合適的有機硫化合物包括但不限於:二硫化雙-(3-磺丙基) (SPS)、3-巰基-1-丙磺酸(MPS)、3-(苯并噻唑基-2-巰基)-丙基磺酸(ZPS)、N,N-二甲基二硫代胺甲醯基丙基磺酸(DPS)、3-S-異硫脲丙基磺酸鹽(UPS)、及(O-乙基二硫代碳酸)-S-(3-磺丙基)酯(OPX)。If used, the accelerator may include, for example, an organic sulfur compound, including an organic sulfur salt. Suitable organic sulfur compounds include, but are not limited to, bis-(3-sulfopropyl) disulfide (SPS), 3-butyl-1-propanesulfonic acid (MPS), 3-(benzothiazolyl-2-butyl)-propylsulfonic acid (ZPS), N,N-dimethyldithiocarbamate methylpropanesulfonic acid (DPS), 3-S-isothiourea propylsulfonate (UPS), and (O-ethyldithiocarbonate)-S-(3-sulfopropyl) ester (OPX).

在一個實施例中,加速劑包含ZPS或UPS。在另一實施例中,加速劑係僅由ZPS及/或UPS組成,且銅電解質係至少實質上不含任何較高強度的加速劑,諸如MPS或SPS。In one embodiment, the accelerator comprises ZPS or UPS. In another embodiment, the accelerator consists only of ZPS and/or UPS, and the copper electrolyte is at least substantially free of any higher strength accelerator, such as MPS or SPS.

加速劑之濃度部分取決於在銅電鍍溶液中所使用之特定加速劑,且相較於較強的加速劑,較弱的加速劑可以更高濃度來使用。例如,相較於SPS,ZPS及UPS可以更高的濃度使用在銅電鍍溶液。此外,使用較強的加速劑(諸如SPS)作為加速劑亦可能需要施加高密度奈米雙晶銅沉積物作為一基底層,隨後再使用含有SPS的銅電鍍溶液沉積一後續層。部分取決於特定的抑制劑與加速劑之組合,加速劑之濃度較佳地係小於約10 mg/L,更佳地在約1至約8 mg/L的範圍內,或在約1至約3 mg/L的範圍內。The concentration of the accelerator depends in part on the specific accelerator used in the copper plating solution, and weaker accelerators can be used at higher concentrations than stronger accelerators. For example, ZPS and UPS can be used in copper plating solutions at higher concentrations than SPS. In addition, using stronger accelerators (such as SPS) as an accelerator may also require applying a high-density nanotwin copper deposit as a base layer, followed by depositing a subsequent layer using a copper plating solution containing SPS. Depending in part on the particular inhibitor and accelerator combination, the concentration of the accelerator is preferably less than about 10 mg/L, more preferably in the range of about 1 to about 8 mg/L, or in the range of about 1 to about 3 mg/L.

若使用的話,平整劑化合物可包括聚合四級氮物種,諸如WO2018/057590、美國專利第10,519,557號、及美國專利第10,294,574號中所述,其各自以全文引用之方式併入本文中。其他平整劑化合物包括二吡啶基平整劑,諸如美國專利第7,303,992號及美國專利公開案第2005/0045488號中所述之平整劑,其標的全文各自以引用之方式併入本文中。If used, the leveler compound may include polymeric quaternary nitrogen species, such as those described in WO2018/057590, U.S. Pat. No. 10,519,557, and U.S. Pat. No. 10,294,574, each of which is incorporated herein by reference in its entirety. Other leveler compounds include dipyridyl levelers, such as those described in U.S. Pat. No. 7,303,992 and U.S. Patent Publication No. 2005/0045488, the entirety of which is each incorporated herein by reference.

例如,平整劑可包含脂族二(t-胺)與對應於下式之雙官能烷化劑之反應產物: 其中:G係選自由下列所組成之群組:單一共價鍵、-O-、O-((A) r-O) s-及-((A) r-O) s-;A具有-CR 3R 4-或-C(R 3)(R 4)C(R 33)(R 34)-之結構;p及r之各者獨立地係介於1與6之間的整數(含端值),s係介於1與10之間的整數(含端值),q係介於0與6之間的整數(含端值);R 1、R 2、R 3、R 4、R 5、R 6、及R 34之各者獨立地係選自由下列所組成之群組:氫及包含1至4個碳原子之經取代或未經取代之脂族烴基;R 33係具有1至4個碳原子之經取代或未經取代之脂族烴基,Y係選自由下列所組成之群組的脫離基:氯化物、溴化物、碘化物、對甲苯磺醯基、三氟甲磺酸酯、磺酸酯、甲磺酸酯、硫酸甲酯、氟磺酸酯、對甲苯磺酸甲酯、對溴苯磺酸酯;Z係選自由R 30與脫離基(其獨立地選自與Y相同的群組)所組成之群組,且R 30係選自由下列所組成之群組:脂族烴基、羥基、烷氧基、氰基、羧基、烷氧基羰基、及醯胺基;且當-G-不是單一共價鍵時,q至少是一。 For example, the leveler may comprise the reaction product of an aliphatic di(t-amine) and a difunctional alkylating agent corresponding to the following formula: wherein: G is selected from the group consisting of a single covalent bond, -O-, O-((A) r -O) s - and -((A) r -O) s -; A has a structure of -CR 3 R 4 - or -C(R 3 )(R 4 )C(R 33 )(R 34 )-; p and r are each independently an integer between 1 and 6 (inclusive), s is an integer between 1 and 10 (inclusive), and q is an integer between 0 and 6 (inclusive); R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 34 are each independently selected from the group consisting of hydrogen and a substituted or unsubstituted aliphatic hydrocarbon group containing 1 to 4 carbon atoms; R R33 is a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 4 carbon atoms, Y is a detached group selected from the group consisting of chloride, bromide, iodide, p-toluenesulfonyl, trifluoromethanesulfonate, sulfonate, methanesulfonate, methyl sulfate, fluorosulfonate, methyl p-toluenesulfonate, and p-bromobenzenesulfonate; Z is selected from the group consisting of R30 and a detached group (which is independently selected from the same group as Y), and R30 is selected from the group consisting of an aliphatic hydrocarbon group, a hydroxyl group, an alkoxy group, a cyano group, a carboxyl group, an alkoxycarbonyl group, and an amide group; and when -G- is not a single covalent bond, q is at least one.

平整劑亦可包含寡聚物及/或聚合物化合物,其係選自由包含具有以下結構的陽離子的鹽所組成之群組: 其中:G及A係如上所定義;B具有以下結構; D具有以下結構; 以上結構係在各別t-胺位點鍵結至-(CR 1R 2) p-G-(CR 5R 6) q]-之N,N'-二烷基雜環二胺的殘餘,以形成二(四級銨)陽離子結構; p、r、t、u、w及y之各者係介於1與6之間的整數(含端值),其中q、v、x、k、及z之各者獨立地係介於0與6之間的整數(含端值),s係介於1與10之間的整數(含端值),當v或x不是0時,k至少是一,當G不是單一共價鍵時,q至少是一。R 1至R 6、R 9至R 19、R 23、R 25、及R 34之各者獨立地係選自由下列所組成之群組:氫或包含1至4個碳原子之烷基,R 7、R 8、R 20、R 21、R 22、R 24、及R 33之各者獨立地係選自由具有1至4個碳原子之經取代或未經取代之脂族烴基所組成之群組;及 n係介於約1至約30之間。 The leveler may also comprise an oligomer and/or polymer compound selected from the group consisting of a salt comprising a cation having the following structure: or Wherein: G and A are as defined above; B has the following structure; D has the following structure; The above structure is a residue of an N,N'-dialkyl heterocyclic diamine bonded to -(CR 1 R 2 ) p -G-(CR 5 R 6 ) q ]- at each t-amine site to form a di(quaternary ammonium) cation structure; each of p, r, t, u, w and y is an integer between 1 and 6 (inclusive), wherein each of q, v, x, k, and z is independently an integer between 0 and 6 (inclusive), s is an integer between 1 and 10 (inclusive), when v or x is not 0, k is at least one, and when G is not a single covalent bond, q is at least one. Each of R1 to R6 , R9 to R19 , R23 , R25 , and R34 is independently selected from the group consisting of hydrogen or an alkyl group containing 1 to 4 carbon atoms, each of R7 , R8 , R20 , R21 , R22 , R24 , and R33 is independently selected from the group consisting of a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 4 carbon atoms; and n is between about 1 and about 30.

平整劑亦可包含對應於下式之化合物: 其中:G、A、B、及D係如上所述; The leveler may also include a compound corresponding to the following formula: or Wherein: G, A, B, and D are as described above;

以上結構係在各別t-胺位點鍵結至-(CR 1R 2) p-G-(CR 5R 6) q]-之N,N'-二烷基雜環二胺的殘餘,以形成二(四級銨)陽離子結構;p、r、t、u、w及y之各者係介於1與6之間的整數(含端值),其中q、v、x、k、及z之各者獨立地係介於0與6之間的整數(含端值),s係介於1與10之間的整數(含端值),當v或x不是0時,k至少是一,當G不是單一共價鍵時,q至少是一。R 1至R 6、R 9至R 19、R 23、R 25、及R 34之各者獨立地係選自由下列所組成之群組:氫或包含1至4個碳原子之烷基,R 7、R 8、R 20、R 21、R 22、R 24、及R 33之各者獨立地係選自由具有1至4個碳原子之經取代或未經取代之脂族烴基所組成之群組;及 R 30係選自由下列所組成之群組:脂族烴基、羥基、烷氧基、氰基、羧基、烷氧基羰基、及醯胺基。 The above structure is a residue of an N,N'-dialkyl heterocyclic diamine bonded to -(CR 1 R 2 ) p -G-(CR 5 R 6 ) q ]- at each t-amine site to form a di(quaternary ammonium) cation structure; each of p, r, t, u, w and y is an integer between 1 and 6 (inclusive), wherein each of q, v, x, k and z is independently an integer between 0 and 6 (inclusive), s is an integer between 1 and 10 (inclusive), when v or x is not 0, k is at least one, and when G is not a single covalent bond, q is at least one. Each of R1 to R6 , R9 to R19 , R23 , R25 , and R34 is independently selected from the group consisting of hydrogen or an alkyl group containing 1 to 4 carbon atoms, each of R7 , R8 , R20 , R21 , R22 , R24 , and R33 is independently selected from the group consisting of a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 4 carbon atoms; and R30 is selected from the group consisting of an aliphatic hydrocarbon group, a hydroxyl group, an alkoxy group, a cyano group, a carboxyl group, an alkoxycarbonyl group, and an amide group.

平整劑亦可包含四級銨化之聚(環氧鹵丙烷),其包含n個對應於結構1N的重複單元、及p個對應於結構1P的重複單元: 其中Q具有一結構,其對應於可藉由使聚(環氧鹵丙烷)之側接亞甲基鹵基與三級胺反應而獲得之結構,其中三級胺係選自由下列所組成之群組:(i) NR 1R 2R 3,其中R 1、R 2、及R 3之各者獨立地係選自由下列所組成之群組:經取代或未經取代之烷基、經取代或未經取代之烯基、經取代或未經取代之炔基、經取代或未經取代之脂環、經取代或未經取代之芳烷基、經取代或未經取代之芳基、及經取代或未經取代之雜環;(ii) N-經取代及可選地進一步經取代之雜脂環胺,其中N-取代基係選自由下列所組成之群組:經取代或未經取代之烷基、經取代或未經取代之脂環、經取代或未經取代之芳烷基、經取代或未經取代之芳基、及經取代或未經取代之雜環;及(iii)經取代或未經取代之含氮雜芳基化合物; n係介於3與35之間的整數,p係介於0與25之間的整數; X係鹵基取代基;及 X -係單價陰離子。 The leveler may also include a quaternary ammonium poly(halogenated epoxypropane) comprising n repeating units corresponding to structure 1N and p repeating units corresponding to structure 1P: wherein Q has a structure corresponding to a structure obtainable by reacting a pendant methylene halide group of a poly(halogenated epoxypropane) with a tertiary amine, wherein the tertiary amine is selected from the group consisting of: (i) NR 1 R 2 R 3 , wherein each of R 1 , R 2 , and R 3 is independently selected from the group consisting of substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted alicyclic, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heterocyclic; (ii) N-substituted and optionally further substituted heteroalicyclic amines, wherein the N-substituent is selected from the group consisting of substituted or unsubstituted alkyl, substituted or unsubstituted alicyclic, substituted or unsubstituted aralkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heterocyclic; and (iii) substituted or unsubstituted nitrogen-containing heteroaryl compounds; n is an integer between 3 and 35, p is an integer between 0 and 25; X is a halogen substituent; and X- is a monovalent anion.

較佳地,Q對應於結構IIA、IIB、或IIC: (IIC) 其中:(i)結構IIB係N-經取代之雜環部份;(ii)結構IIC係雜環部份;(iii) R 1、R 2、R 3、及R 4之各者獨立地係選自由下列所組成之群組:經取代或未經取代之烷基、經取代或未經取代之烯基、經取代或未經取代之炔基、經取代或未經取代之芳烷基、經取代或未經取代之脂環、經取代或未經取代之芳基、及經取代或未經取代之雜環;及(iv) R 5、R 6、R 7、R 8、及R 9之各者獨立地選自由下列所組成之群組:氫、經取代或未經取代之烷基、經取代或未經取代之烯基、經取代或未經取代之烯基、經取代或未經取代之芳烷基、經取代或未經取代之脂環、經取代或未經取代之雜環、及經取代或未經取代雜環。當R 1至R 8中之任一者經取代時,取代基較佳地不包含胺基。 Preferably, Q corresponds to structure IIA, IIB, or IIC: or (IIC) wherein: (i) Structure IIB is an N-substituted heterocyclic moiety; (ii) Structure IIC is a heterocyclic moiety; (iii) each of R 1 , R 2 , R 3 , and R 4 is independently selected from the group consisting of substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aralkyl, substituted or unsubstituted alicyclic, substituted or unsubstituted aryl, and substituted or unsubstituted heterocyclic; and (iv) R 5 , R 6 , R 7 , R 8 , and R Each of R 1 to R 8 is independently selected from the group consisting of: hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aralkyl, substituted or unsubstituted alicyclic, substituted or unsubstituted heterocyclic, and substituted or unsubstituted heterocyclic. When any one of R 1 to R 8 is substituted, the substituent preferably does not include an amino group.

平整劑亦可包含經取代之吡啶基化合物,其可係例如吡啶鎓化合物,且特別是四級銨吡啶鎓鹽。此等經取代之吡啶基化合物之實例包括但不限於:乙烯基吡啶之衍生物,諸如2-乙烯基吡啶之衍生物、4-乙烯基吡啶之衍生物、乙烯基吡啶之均聚物、乙烯基吡啶之共聚物、乙烯基吡啶之四級銨鹽、及此等均聚物與共聚物之四級銨鹽。此類化合物之特定實例包括:例如,聚(4-乙烯基吡啶),聚(4-乙烯基吡啶)與硫酸二甲酯之反應產物、4-乙烯基吡啶與2-氯乙醇之反應產物、4-乙烯基吡啶與氯甲苯之反應產物、4-乙烯基吡啶與氯丙烯之反應產物、4-乙烯基吡啶與4-氯甲基吡啶之反應產物、4-乙烯基吡啶與1,3-丙烷磺內酯之反應產物、4-乙烯基吡啶與對甲苯磺酸甲酯之反應產物、4-乙烯基吡啶與氯丙酮之反應產物、4-乙烯基吡啶與2-甲氧基乙氧基甲基氯之反應產物、4-乙烯基吡啶與2-氯乙醚之反應產物、2-乙烯基吡啶與對甲苯磺酸甲酯之反應產物、2-乙烯基吡啶與硫酸二甲酯之反應產物、乙烯基吡啶與水溶性起始劑之反應產物、聚(2-甲基-5-乙烯基吡啶)、及1-甲基-4-乙烯基吡啶鎓三氟甲基磺酸鹽等。The leveler may also include substituted pyridyl compounds, such as pyridinium compounds, and in particular quaternary ammonium pyridinium salts. Examples of such substituted pyridyl compounds include, but are not limited to, derivatives of vinyl pyridine, such as derivatives of 2-vinyl pyridine, derivatives of 4-vinyl pyridine, homopolymers of vinyl pyridine, copolymers of vinyl pyridine, quaternary ammonium salts of vinyl pyridine, and quaternary ammonium salts of such homopolymers and copolymers. Specific examples of such compounds include, for example, poly(4-vinylpyridine), the reaction product of poly(4-vinylpyridine) and dimethyl sulfate, the reaction product of 4-vinylpyridine and 2-chloroethanol, the reaction product of 4-vinylpyridine and chlorotoluene, the reaction product of 4-vinylpyridine and chloropropylene, the reaction product of 4-vinylpyridine and 4-chloromethylpyridine, the reaction product of 4-vinylpyridine and 1,3-propanesultone, the reaction product of 4-vinylpyridine and methyl p-toluenesulfonate. reaction product, reaction product of 4-vinylpyridine and chloroacetone, reaction product of 4-vinylpyridine and 2-methoxyethoxymethyl chloride, reaction product of 4-vinylpyridine and 2-chloroethyl ether, reaction product of 2-vinylpyridine and methyl p-toluenesulfonate, reaction product of 2-vinylpyridine and dimethyl sulfate, reaction product of vinylpyridine and a water-soluble initiator, poly(2-methyl-5-vinylpyridine), and 1-methyl-4-vinylpyridinium trifluoromethanesulfonate, etc.

其他聚合四級氮物種亦可用作本文所述之銅電鍍組成物中之平整劑,只要其與抑制劑(及加速劑)相容,且不會在各種基材上對起始奈米雙晶銅沉積物之能力產生不利影響。Other polymeric quaternary nitrogen species may also be used as levelers in the copper electroplating compositions described herein, provided they are compatible with the inhibitors (and accelerators) and do not adversely affect the ability to initiate nanobi-crystalline copper deposits on a variety of substrates.

在一個實施例中,合適的平整劑物種包括但不限於4,4-二吡啶基與2-氯乙基醚之反應產物。平整劑之濃度係部分取決於當下所使用之特定平整劑、以及特定的抑制劑與加速劑、及製程條件。在一個實施例中,平整劑係以小於約10 mg/L的範圍內、或約0.5至約10 mg/L的範圍內、更佳地約2至約5 mg/L之濃度存在於銅電解質中。In one embodiment, suitable leveler species include, but are not limited to, the reaction product of 4,4-bipyridyl and 2-chloroethyl ether. The concentration of the leveler depends in part on the specific leveler used, as well as the specific inhibitors and accelerators, and the process conditions. In one embodiment, the leveler is present in the copper electrolyte at a concentration in the range of less than about 10 mg/L, or in the range of about 0.5 to about 10 mg/L, more preferably about 2 to about 5 mg/L.

已發現較高的電流密度(亦即,約3至約6 ASD,更佳地在約3至約5 ASD的範圍內)有利於產生奈米雙晶銅之目的。然而,當在微電子基材之特徵中超填充(superfilling)銅時,較佳的是較低的電流密度,諸如在約0.5至約2 ASD的範圍內。It has been found that higher current densities (i.e., about 3 to about 6 ASD, more preferably in the range of about 3 to about 5 ASD) are beneficial for the purpose of producing nano-bicrystalline copper. However, when superfilling copper in features of microelectronic substrates, lower current densities, such as in the range of about 0.5 to about 2 ASD, are preferred.

因此,在一個實施例中,銅電鍍組成物包含二或三種組分之銅電鍍浴,其係使用在步階電流(step-current)電鍍法,以經由填充實現奈米雙晶銅微結構。在一個實施例中,可使用雙組分之銅電鍍浴,其包含本文所述之抑制劑化合物及如上所述之包含聚合四級氮物種之平整劑。在另一實施例中,可使用三組分之銅電鍍浴,其包含:本文所述之抑制劑化合物、包含有機硫化合物(較佳是UPS)之加速劑、及包含聚合四級氮物種之平整劑。Thus, in one embodiment, the copper plating composition comprises a two- or three-component copper plating bath, which is used in a step-current plating method to achieve nano-bicrystalline copper microstructures by filling. In one embodiment, a two-component copper plating bath can be used, which comprises an inhibitor compound described herein and a leveler comprising a polymerized quaternary nitrogen species as described above. In another embodiment, a three-component copper plating bath can be used, which comprises: an inhibitor compound described herein, an accelerator comprising an organic sulfur compound (preferably UPS), and a leveler comprising a polymerized quaternary nitrogen species.

亦可將斜坡變化之電流(其中電流斜坡從高到低,相對於階躍電流變化)施加至2組分及3組分之銅電鍍浴,以完成具有奈米雙晶銅微結構之通孔填充。A ramped current (where the current ramps from high to low, as opposed to a step current change) can also be applied to the 2-component and 3-component copper plating baths to accomplish via filling with nanobicrystalline copper microstructures.

如本文中所述,在一個實施例中,銅電鍍溶液包含: A)   約40至約60 g/L的銅離子; B)   約80至約140 g/L的硫酸; C)   約30至約120 mg/L的氯化物離子; D)   約300至約500 mg/L的胺化合物或含硫化合物與2,3-環氧-1-丙醇之反應產物; E)   可選地,約0.5至約10 mg/L的平整劑,該平整劑包含聚合物四級氮物種;及 F)   可選地,約1至約50 mg/L的加速劑,該加速劑包含有機硫化合物。 As described herein, in one embodiment, a copper plating solution comprises: A)   about 40 to about 60 g/L of copper ions; B)   about 80 to about 140 g/L of sulfuric acid; C)   about 30 to about 120 mg/L of chloride ions; D)   about 300 to about 500 mg/L of a reaction product of an amine compound or a sulfur-containing compound and 2,3-epoxy-1-propanol; E)   optionally, about 0.5 to about 10 mg/L of a leveler comprising a polymeric quaternary nitrogen species; and F)   optionally, about 1 to about 50 mg/L of an accelerator comprising an organic sulfur compound.

在另一較佳實施例中,銅電鍍溶液基本上由下列組成: A)   約40至約60 g/L的銅離子; B)   約80至約140 g/L的硫酸; C)   約30至約120 mg/L的氯化物離子; D)   約300至約500 mg/L的胺化合物或含硫化合物與2,3-環氧-1-丙醇之反應產物;及 E)   約0.0至約10 mg/L的平整劑,該平整劑包含聚合物四級氮物種。 In another preferred embodiment, the copper plating solution consists essentially of: A)   about 40 to about 60 g/L of copper ions; B)   about 80 to about 140 g/L of sulfuric acid; C)   about 30 to about 120 mg/L of chloride ions; D)   about 300 to about 500 mg/L of a reaction product of an amine compound or a sulfur-containing compound and 2,3-epoxy-1-propanol; and E)   about 0.0 to about 10 mg/L of a leveler comprising a polymeric quaternary nitrogen species.

在另一較佳實施例中,銅電鍍溶液基本上由下列組成: A)   約40至約60 g/L的銅離子; B)   約80至約140 g/L的硫酸; C)   約30至約120 mg/L的氯化物離子; D)   約300至約500 mg/L的胺化合物或含硫化合物與2,3-環氧-1-丙醇之反應產物; E)   約0.5至約10 mg/L的平整劑,該平整劑包含聚合物四級氮物種;及 F)   約0.0至約50 mg/L的加速劑,該加速劑包含有機硫化合物。 In another preferred embodiment, the copper plating solution consists essentially of: A)   about 40 to about 60 g/L of copper ions; B)   about 80 to about 140 g/L of sulfuric acid; C)   about 30 to about 120 mg/L of chloride ions; D)   about 300 to about 500 mg/L of a reaction product of an amine compound or a sulfur-containing compound and 2,3-epoxy-1-propanol; E)   about 0.5 to about 10 mg/L of a leveler comprising a polymeric quaternary nitrogen species; and F)   about 0.0 to about 50 mg/L of an accelerator comprising an organic sulfur compound.

在另一實施例中,本發明之銅電解質包含較少量的硫酸。例如,銅電解質可包含: A)   約5至約50 g/L的銅離子; B)   約8至約15 g/L的硫酸; C)   約30至約120 mg/L的氯化物離子; D)   約300至約500 mg/L的胺化合物或含硫化合物與2,3-環氧-1-丙醇之反應產物; E)   可選地,約0.5至約10 mg/L的平整劑,該平整劑包含聚合物四級氮物種;及 F)   可選地,約1至約50 mg/L的加速劑,該加速劑包含有機硫化合物。 In another embodiment, the copper electrolyte of the present invention contains a relatively small amount of sulfuric acid. For example, the copper electrolyte may contain: A)   about 5 to about 50 g/L of copper ions; B)   about 8 to about 15 g/L of sulfuric acid; C)   about 30 to about 120 mg/L of chloride ions; D)   about 300 to about 500 mg/L of a reaction product of an amine compound or a sulfur-containing compound and 2,3-epoxy-1-propanol; E)   optionally, about 0.5 to about 10 mg/L of a leveler, the leveler comprising a polymeric quaternary nitrogen species; and F)   optionally, about 1 to about 50 mg/L of an accelerator, the accelerator comprising an organic sulfur compound.

在另一較佳實施例中,銅電鍍溶液基本上由下列組成: A)   約5至約50 g/L的銅離子; B)   約8至約15 g/L的硫酸; C)   約30至約120 mg/L的氯化物離子; D)   約300至約500 mg/L的胺化合物或含硫化合物與2,3-環氧-1-丙醇之反應產物;及 E)   約0.0至約5 mg/L的平整劑,該平整劑包含聚合物四級氮物種。 In another preferred embodiment, the copper plating solution consists essentially of: A)   about 5 to about 50 g/L of copper ions; B)   about 8 to about 15 g/L of sulfuric acid; C)   about 30 to about 120 mg/L of chloride ions; D)   about 300 to about 500 mg/L of a reaction product of an amine compound or a sulfur-containing compound and 2,3-epoxy-1-propanol; and E)   about 0.0 to about 5 mg/L of a leveler comprising a polymeric quaternary nitrogen species.

在另一較佳實施例中,銅電鍍溶液基本上由下列組成: A)   約5至約50 g/L的銅離子; B)   約8至約15 g/L的硫酸; C)   約30至約120 mg/L的氯化物離子; D)   約300至約500 mg/L的胺化合物或含硫化合物與2,3-環氧-1-丙醇之反應產物; E)   約0.0至約5 mg/L的平整劑,該平整劑包含聚合物四級氮物種;及 F)   約0.0至約50 mg/L的加速劑,乾加速劑包含有機硫化合物。 In another preferred embodiment, the copper plating solution consists essentially of: A)   about 5 to about 50 g/L of copper ions; B)   about 8 to about 15 g/L of sulfuric acid; C)   about 30 to about 120 mg/L of chloride ions; D)   about 300 to about 500 mg/L of the reaction product of an amine compound or a sulfur-containing compound and 2,3-epoxy-1-propanol; E)   about 0.0 to about 5 mg/L of a leveler comprising a polymeric quaternary nitrogen species; and F)   about 0.0 to about 50 mg/L of an accelerator, the dry accelerator comprising an organic sulfur compound.

「基本上由…組成(consisting essentially of)」意指該組成物不含會對組成物在基材(包括非(111)銅基材之基材)上起始具有高密度奈米雙晶銅之銅沉積物之能力產生不利影響的任何添加劑。“Consisting essentially of” means that the composition does not contain any additives that would adversely affect the ability of the composition to initiate copper deposits having high density nanobi-crystalline copper on substrates, including substrates other than (111) copper substrates.

本發明大致上亦關於一種在基材上電鍍奈米雙晶銅之方法,該方法包含下列步驟: A)   提供基材、至少一陽極、及本文所述之銅電鍍浴; B)   使基材及至少一陽極分別與銅浴接觸;及 C)   在工件之表面與至少一陽極之間施加電壓,使得陰極極性相對於至少一陽極加諸於基材上; 其中具有高密度奈米雙晶的銅結構係沉積在基材上。 The present invention also generally relates to a method for electroplating nanobicrystalline copper on a substrate, the method comprising the following steps: A)   providing a substrate, at least one anode, and a copper electroplating bath as described herein; B)   contacting the substrate and the at least one anode with the copper bath respectively; and C)   applying a voltage between the surface of the workpiece and the at least one anode so that the cathode polarity is applied to the substrate relative to the at least one anode; wherein a copper structure having a high density of nanobicrystalline is deposited on the substrate.

電流密度通常係在約0.01至約50 ASD的範圍內,更佳地約0.5至約20 ASD,最佳地約1至約10 ASD。此外,電鍍溶液較佳地經攪拌,且電鍍溶液通常係以約1至約2,500 rpm、更佳地約10至約1,200 rpm、最佳地約50至約400 rpm混合。The current density is generally in the range of about 0.01 to about 50 ASD, more preferably about 0.5 to about 20 ASD, and most preferably about 1 to about 10 ASD. In addition, the plating solution is preferably stirred, and the plating solution is generally mixed at about 1 to about 2,500 rpm, more preferably about 10 to about 1,200 rpm, and most preferably about 50 to about 400 rpm.

陽極可係不溶性或可溶性陽極。較佳的是不溶性陽極。The anode can be an insoluble or soluble anode. An insoluble anode is preferred.

對銅進行電沉積一段時間,以將奈米雙晶銅沉積物起始至約0.1至約1,000 µm、更佳地約0.3至約200 µm、最佳地約1至約100 µm的厚度。Copper is electrodeposited for a period of time to initiate a nanobicrystalline copper deposit to a thickness of about 0.1 to about 1,000 μm, more preferably about 0.3 to about 200 μm, and most preferably about 1 to about 100 μm.

可用本文所述之銅電鍍溶液來電鍍的基材包括印刷線路板(PWB)、印刷電路板(PCB)、及其他可包括一或多個柱、墊、線、及導通孔之電子基材,包括非(111)銅之表面,諸如多晶銅晶種層、不鏽鋼、及PVD釕。Substrates that may be plated using the copper plating solutions described herein include printed wiring boards (PWBs), printed circuit boards (PCBs), and other electronic substrates that may include one or more posts, pads, lines, and vias, including non-(111) copper surfaces such as polycrystalline copper seed layers, stainless steel, and PVD ruthenium.

可使用任何合適的顯微技術(諸如電子顯微鏡技術)觀察奈米雙晶晶粒結構的存在。銅沉積物中之奈米雙晶晶粒結構的量較佳地係大於約80%,更佳地大於約90%奈米雙晶柱狀銅晶粒,其係基於SEM截面來評估。The presence of nanotwinned grain structures can be observed using any suitable microscopic technique, such as electron microscopy. The amount of nanotwinned grain structures in the copper deposit is preferably greater than about 80%, more preferably greater than about 90% nanotwinned columnar copper grains, as assessed based on SEM cross-sections.

如下列實例中所陳述,奈米雙晶銅結構的特徵可在於含有大多數的奈米雙晶之複數個(111)定向銅晶粒。在一些實施方案中,複數個(111)定向銅晶粒含有高密度奈米雙晶。如本文中所使用,「高密度奈米雙晶(high density of nanotwins)」可指具有大於約80%奈米雙晶,且甚至大於約90%奈米雙晶的銅結構,如使用合適顯微技術所觀察到者。As described in the following examples, the nanotwinned copper structure can be characterized by a plurality of (111) oriented copper grains containing a majority of nanotwins. In some embodiments, the plurality of (111) oriented copper grains contain a high density of nanotwins. As used herein, "high density of nanotwins" can refer to a copper structure having greater than about 80% nanotwins, and even greater than about 90% nanotwins, as observed using appropriate microscopy techniques.

銅晶粒之晶體定向可使用合適技術(諸如電子背向散射繞射(EBSD)分析)來特徵化。在一些實施方案中,晶體定向圖可顯示在反極圖(IPF)中。根據本發明,較佳的是奈米雙晶銅結構主要含有(111)定向晶粒。The crystal orientation of the copper grains can be characterized using suitable techniques such as electron backscatter diffraction (EBSD) analysis. In some embodiments, the crystal orientation map can be displayed in an anti-pole figure (IPF). According to the present invention, it is preferred that the nano-bicrystalline copper structure mainly contains (111) oriented grains.

在實例中係使用下列的抑制劑化合物: 化合物1:4-吡啶甲醇(1 wt.%)與2,3-環氧-1-丙醇(99 wt.%)之反應產物,以產生聚合物。 In the examples, the following inhibitor compounds were used: Compound 1: the reaction product of 4-pyridinemethanol (1 wt.%) and 2,3-epoxy-1-propanol (99 wt.%) to produce a polymer.

化合物2A:1 wt.%之雙(2-羥乙基)二甲基氯化銨係與99 wt.%之2,3-環氧-1-丙醇反應,以產生聚合物。Compound 2A: 1 wt.% of bis(2-hydroxyethyl)dimethylammonium chloride was reacted with 99 wt.% of 2,3-epoxy-1-propanol to produce a polymer.

化合物2B:1 wt.%之雙(2-羥乙基)二甲基氯化銨及1 wt.%之2,2’-硫二乙醇係與98 wt.%之2,3-環氧-1-丙醇反應,以產生聚合物。Compound 2B: 1 wt.% of bis(2-hydroxyethyl)dimethylammonium chloride and 1 wt.% of 2,2'-thiodiethanol were reacted with 98 wt.% of 2,3-epoxy-1-propanol to produce a polymer.

抑制劑化合物係藉由使胺化合物或含硫化合物與2,3-環氧-1-丙醇反應來製備。一般反應程序如下: 在配備有溫度計、回流冷凝器、及磁攪拌器之1L圓底燒瓶中,按所列之重量百分比將甲醇中之三氟化硼合乙醚(5 mmol)溶液逐滴添加至2,3-環氧-1-丙醇與胺化合物或含硫化合物之溶液,以產生化合物1、化合物2A、及化合物2B之各者。允許溫度在放熱期間自由地增加,並在其最大溫度下持續加熱30分鐘。接著允許反應冷卻至小於100℃,其中添加水以製成20% w/w溶液,持續攪拌該溶液達4小時。此溶液接著經過濾並依現況使用。 實例1: The inhibitor compound is prepared by reacting an amine compound or a sulfur-containing compound with 2,3-epoxy-1-propanol. The general reaction procedure is as follows: In a 1 L round-bottom flask equipped with a thermometer, a reflux condenser, and a magnetic stirrer, a solution of boron trifluoride etherate (5 mmol) in methanol is added dropwise to a solution of 2,3-epoxy-1-propanol and an amine compound or a sulfur-containing compound in the weight percentages listed to produce each of Compound 1, Compound 2A, and Compound 2B. The temperature is allowed to increase freely during the exotherm, and heating is continued at its maximum temperature for 30 minutes. The reaction is then allowed to cool to less than 100°C, whereupon water is added to make a 20% w/w solution, and the solution is stirred for 4 hours. This solution is then filtered and used as is. Example 1:

製備含有40 g/L之銅(II)離子、10 g/L之硫酸、50 mg/L之氯離子、及400 mg/L之胺基聚羥基抑制劑的銅電解質(基線組成物),且以與基線組成物相同之方式製備第二銅電解質,但替換為400 mg/L之化合物1(具有化合物1之組成物)。A copper electrolyte containing 40 g/L copper (II) ions, 10 g/L sulfuric acid, 50 mg/L chloride ions, and 400 mg/L amino polyhydroxy inhibitor was prepared (baseline composition), and a second copper electrolyte was prepared in the same manner as the baseline composition, but with 400 mg/L Compound 1 substituted (composition with Compound 1).

在1 ASD之恆定電流下,使用兩種電解質,以自(111)所主導的PVD銅晶種及多晶銅晶種起始中間奈米雙晶銅沉積物。Using two electrolytes at a constant current of 1 ASD, intermediate nanobicrystalline Cu deposits were initiated from (111) dominated PVD Cu seeds and polycrystalline Cu seeds.

由圖1可見,雖然兩種溶液皆能夠自(111)所主導的銅晶種產生中間奈米雙晶銅,但基線組成物完全無法在多晶銅晶種層上產生任何奈米雙晶銅,而化合物1組成物卻能夠自多晶銅晶種產生中間奈米雙晶銅。As shown in Figure 1, although both solutions can generate intermediate nano-twin copper from (111)-dominated copper seeds, the baseline composition is completely unable to generate any nano-twin copper on the polycrystalline copper seed layer, while the compound 1 composition can generate intermediate nano-twin copper from polycrystalline copper seeds.

圖2描繪在多晶銅晶種上所鍍覆之化合物1組成物之過渡層的50K放大圖。由圖2可見,在沉積111 nm之後,化合物1組成物能夠自多晶銅晶種產生ntCu,達到約2.8 µm的總厚度。Figure 2 depicts a 50K magnified image of the transition layer of Compound 1 composition deposited on a polycrystalline copper seed. As can be seen from Figure 2, after 111 nm deposition, Compound 1 composition is able to generate ntCu from the polycrystalline copper seed to a total thickness of approximately 2.8 µm.

由圖4可見,化合物1組成物能夠自不鏽鋼及釕基材產生大量的奈米雙晶銅,而基線組成物無法辦到。 實例2: As shown in Figure 4, the compound 1 composition can produce a large amount of nano-twin copper from stainless steel and ruthenium substrates, while the baseline composition cannot do so. Example 2:

製備含有40 g/L之銅(II)離子、10 g/L之硫酸、50 mg/L之氯離子、及400 mg/L之化合物2A的銅電解質,且以同樣方式製備第二銅電解質,但替換為400 mg/L之化合物2B。A copper electrolyte containing 40 g/L copper (II) ions, 10 g/L sulfuric acid, 50 mg/L chloride ions, and 400 mg/L compound 2A was prepared, and a second copper electrolyte was prepared in the same manner, but with 400 mg/L compound 2B instead.

在1 ASD之恆定電流下,使用兩種電解質,以自(111)所主導的PVD銅晶種及多晶銅晶種起始中間奈米雙晶銅沉積物。Using two electrolytes at a constant current of 1 ASD, intermediate nanobicrystalline Cu deposits were initiated from (111) dominated PVD Cu seeds and polycrystalline Cu seeds.

由圖3可見,雖然兩種溶液皆能夠自(111)所主導的銅晶種產生中間奈米雙晶銅,但除了胺之外還添加硫醇化合物,以及使這兩者與2,3-環氧-1-丙醇反應改善了在非(111) Cu基材上之奈米雙晶銅能力。As shown in Figure 3, although both solutions are capable of generating intermediate nanobicrystalline copper from (111)-dominated copper seeds, adding a thiol compound in addition to the amine and reacting both with 2,3-epoxy-1-propanol improves the nanobicrystalline copper capability on non-(111) Cu substrates.

由實例1及實例2可見,在銅電鍍溶液中使用上文所述之抑制劑(其包含胺化合物或含硫化合物與2,3-環氧-1-丙醇之反應產物)使銅電鍍溶液能夠在各種基材(包括非(111)銅基材)上起始高密度奈米雙晶銅沉積,並在基材之特徵中產生奈米雙晶銅。 實例3: As can be seen from Examples 1 and 2, the use of the inhibitor described above (which comprises the reaction product of an amine compound or a sulfur-containing compound and 2,3-epoxy-1-propanol) in a copper electroplating solution enables the copper electroplating solution to initiate high-density nano-twin copper deposition on various substrates (including non-(111) copper substrates) and generate nano-twin copper in the features of the substrate. Example 3:

製備含有40 g/L之銅(II)離子、10 g/L之硫酸、50 mg/L之氯離子、1 mg/L之SPS、及400 mg/L之化合物2A的銅電解質。將具有(111)所主導的PVD銅晶種層的覆蓋試片(blanket coupon)在3 ASD下電鍍,並產生>90%之奈米雙晶銅。A copper electrolyte containing 40 g/L copper (II) ions, 10 g/L sulfuric acid, 50 mg/L chloride ions, 1 mg/L SPS, and 400 mg/L compound 2A was prepared. Blanket coupons with (111)-dominated PVD copper seed layers were electroplated at 3 ASD and produced >90% nano-twin copper.

圖5描繪在(111)所主導的PVD銅晶種層上所鍍覆之化合物2A組成物之過渡層的20K放大圖。由圖5可見,化合物2A組成物能夠自(111)所主導的PVD銅晶種產生ntCu。 實例3A: FIG5 depicts a 20K magnified image of the transition layer of the compound 2A composition coated on the (111)-dominated PVD copper seed layer. As can be seen from FIG5, the compound 2A composition is able to produce ntCu from the (111)-dominated PVD copper seed. Example 3A:

以與實例3相同之方式製備銅電解質,但是將3 mg/L之SPS添加至溶液中。將具有(111)所主導的PVD銅晶種層的覆蓋試片在3 ASD下電鍍,並產生>90%之奈米雙晶銅。 實例3B: The copper electrolyte was prepared in the same manner as in Example 3, but 3 mg/L of SPS was added to the solution. A blanket coupon with a (111)-dominated PVD copper seed layer was plated at 3 ASD and produced >90% nano-twinned copper. Example 3B:

以與實例3相同之方式製備銅電解質,但是將8 mg/L之SPS添加至溶液中,且使用化合物1代替化合物2A。將具有(111)所主導的PVD銅晶種層的覆蓋試片在3 ASD下電鍍,並產生>90%之奈米雙晶銅。 實例3C: The copper electrolyte was prepared in the same manner as in Example 3, but 8 mg/L of SPS was added to the solution and Compound 1 was used instead of Compound 2A. A blanket coupon with a (111)-dominated PVD copper seed layer was electroplated at 3 ASD and produced >90% nanobi-crystalline copper. Example 3C:

以與實例3相同之方式製備額外的銅電解質,但是將8 mg/L之SPS添加至溶液中,且使用化合物2B代替化合物2A。將具有(111)所主導的PVD銅晶種層的覆蓋試片在3 ASD下電鍍,並產生>90%之奈米雙晶銅。 比較例4: An additional copper electrolyte was prepared in the same manner as Example 3, but 8 mg/L of SPS was added to the solution and Compound 2B was used instead of Compound 2A. A blanket coupon with a (111)-dominated PVD copper seed layer was plated at 3 ASD and produced >90% nanotwin copper. Comparative Example 4:

以與實例3相同之方式製備銅電解質,但是將28 mg/L之SPS添加至溶液中。將具有(111)所主導的PVD銅晶種層的覆蓋試片在3 ASD下電鍍,但並未產生奈米雙晶銅。The copper electrolyte was prepared in the same manner as in Example 3, but 28 mg/L of SPS was added to the solution. The covered coupon with the (111)-dominated PVD copper seed layer was electroplated at 3 ASD, but no nano-twinned copper was produced.

圖6描繪在(111)所主導的PVD銅晶種層上所鍍覆之化合物2A組成物之過渡層的20K放大圖。由圖6可見,化合物2A組成物不能自(111)所主導的PVD銅晶種產生ntCu。Figure 6 depicts a 20K magnified image of the transition layer of compound 2A deposited on a (111)-dominated PVD copper seed layer. As shown in Figure 6, compound 2A cannot generate ntCu from a (111)-dominated PVD copper seed.

由比較例4可見,在銅電鍍溶液中自1至28 mg/L增加SPS的量造成奈米雙晶銅的損失。 比較例5: From Comparative Example 4, it can be seen that increasing the amount of SPS from 1 to 28 mg/L in the copper electroplating solution causes the loss of nano-twin copper. Comparative Example 5:

以與實例3相同之方式製備銅電解質,但是將50 g/L之銅(II)離子及100 g/L之硫酸添加至溶液中。將具有(111)所主導的PVD銅晶種層的覆蓋試片在3 ASD下電鍍,但並未產生奈米雙晶銅。A copper electrolyte was prepared in the same manner as in Example 3, but 50 g/L of copper (II) ions and 100 g/L of sulfuric acid were added to the solution. A blanket coupon with a (111)-dominated PVD copper seed layer was electroplated at 3 ASD, but nano-twin copper was not produced.

圖7描繪在(111)所主導的PVD銅晶種層上所鍍覆之化合物2A組成物之過渡層的20K放大圖。由圖7可見,化合物2A組成物不能自(111)所主導的PVD銅晶種產生ntCu。Figure 7 depicts a 20K magnified image of the transition layer of compound 2A deposited on a (111)-dominated PVD copper seed layer. As shown in Figure 7, compound 2A cannot generate ntCu from a (111)-dominated PVD copper seed.

由比較例5可見,在銅電鍍溶液中自10至100 g/L增加硫酸的量造成奈米雙晶銅的損失。 實例6: From Comparative Example 5, it can be seen that increasing the amount of sulfuric acid from 10 to 100 g/L in the copper electroplating solution causes the loss of nano-twin copper. Example 6:

製備含有40 g/L之銅(II)離子、10 g/L之硫酸、50 mg/L之氯離子、1 mg/L之SPS、400 mg/L之化合物2A、及3 mg/L之平整劑的銅電解質。將具有(111)所主導的PVD銅晶種層的覆蓋試片在3 ASD下電鍍,並產生>90%之奈米雙晶銅。A copper electrolyte containing 40 g/L of Cu(II) ions, 10 g/L of sulfuric acid, 50 mg/L of chloride ions, 1 mg/L of SPS, 400 mg/L of compound 2A, and 3 mg/L of leveler was prepared. A covered wafer with a (111)-dominated PVD copper seed layer was electroplated at 3 ASD and produced >90% nano-twinned copper.

圖8描繪在(111)所主導的PVD銅晶種層上所鍍覆之化合物2A組成物之過渡層的20K放大圖。由圖8可見,化合物2A組成物能夠自(111)所主導的PVD銅晶種產生ntCu。 實例7: FIG8 depicts a 20K magnified image of the transition layer of the compound 2A composition coated on the (111)-dominated PVD copper seed layer. As can be seen from FIG8, the compound 2A composition is able to generate ntCu from the (111)-dominated PVD copper seed. Example 7:

以與比較例4相同之方式製備銅電解質,但是將3 mg/L的平整劑添加至溶液中。將具有(111)所主導的PVD銅晶種層的覆蓋試片在3 ASD下電鍍,並產生>90%之奈米雙晶銅。The copper electrolyte was prepared in the same manner as in Comparative Example 4, but 3 mg/L of the leveler was added to the solution. A blanket coupon with a (111) dominated PVD copper seed layer was plated at 3 ASD and produced >90% nanobi-crystalline copper.

圖9描繪在(111)所主導的PVD銅晶種層上所鍍覆之化合物2A組成物之過渡層的20K放大圖。由圖9可見,組成物能夠自(111)所主導的PVD銅晶種產生ntCu。Figure 9 depicts a 20K magnified image of the transition layer of the compound 2A composition deposited on the (111) dominated PVD copper seed layer. As can be seen from Figure 9, the composition is able to produce ntCu from the (111) dominated PVD copper seed.

由實例7可見,當與低濃度之硫酸組合使用並添加平整劑時,即使具有高濃度之加速劑,亦可產生>90%之奈米雙晶銅。As can be seen from Example 7, when used in combination with low concentration sulfuric acid and a leveling agent, even with a high concentration of accelerator, >90% nano-twin copper can be produced.

最後,亦應理解的是,下列申請專利範圍意欲涵蓋本文所述之本發明的所有通用及特定特徵,以及就語言方面可落在其間的本發明之範疇的所有陳述。Finally, it is also to be understood that the following claims are intended to cover all generic and specific features of the invention described herein, as well as all statements of the scope of the invention which in terms of language may fall therebetween.

without

[圖1]描繪基線組成物與化合物1組成物在(111)所主導的PVD銅上所沉積之銅與在多晶銅上所沉積之銅的SEM。 [圖2]描繪由化合物1組成物沉積在多晶銅上之奈米雙晶銅的過渡層之50K放大圖。 [圖3]描繪化合物2A組成物與化合物2B組成物在(111)所主導的PVD銅上所沉積之銅與在多晶銅上所沉積之銅的SEM。 [圖4]描繪基線組成物與化合物1組成物在(111)所主導的PVD銅、不鏽鋼、及PVD釕表面上所沉積之銅的SEM。 [圖5]描繪根據實例3之由化合物2A組成物沉積的奈米雙晶銅的過渡層之20K放大圖。 [圖6]描繪根據比較例4之由化合物2A組成物沉積的過渡層之20K放大圖。 [圖7]描繪根據比較例5之由化合物2A組成物沉積的過渡層之20K放大圖。 [圖8]描繪根據實例6之由化合物2A組成物沉積的奈米雙晶銅的過渡層之20K放大圖。 [圖9]描繪根據實例7之由化合物2A組成物沉積的奈米雙晶銅的過渡層之20K放大圖。 [Figure 1] SEM images of copper deposited by the baseline composition and the compound 1 composition on (111)-dominated PVD copper and on polycrystalline copper. [Figure 2] A 50K magnified image of the transition layer of nanobicrystalline copper deposited by the compound 1 composition on polycrystalline copper. [Figure 3] SEM images of copper deposited by the compound 2A composition and the compound 2B composition on (111)-dominated PVD copper and on polycrystalline copper. [Figure 4] SEM images of copper deposited by the baseline composition and the compound 1 composition on (111)-dominated PVD copper, stainless steel, and PVD ruthenium surfaces. [Figure 5] depicts a 20K magnified image of a transition layer of nano-twin copper deposited from the compound 2A composition according to Example 3. [Figure 6] depicts a 20K magnified image of a transition layer deposited from the compound 2A composition according to Comparative Example 4. [Figure 7] depicts a 20K magnified image of a transition layer deposited from the compound 2A composition according to Comparative Example 5. [Figure 8] depicts a 20K magnified image of a transition layer of nano-twin copper deposited from the compound 2A composition according to Example 6. [Figure 9] depicts a 20K magnified image of a transition layer of nano-twin copper deposited from the compound 2A composition according to Example 7.

Claims (23)

一種銅電鍍溶液,其包含: a)     銅鹽; b)     鹵化物離子源;及 c)     抑制劑,其中該抑制劑包含反應物與2,3-環氧-1-丙醇之反應產物,其中該反應物包含胺化合物及含硫化合物中之至少一者; 其中該銅電解質能夠沉積銅,其中該銅沉積物展現大於約80%之奈米雙晶柱狀銅晶粒。 A copper electroplating solution comprising: a)     a copper salt; b)     a halide ion source; and c)     an inhibitor, wherein the inhibitor comprises a reaction product of a reactant and 2,3-epoxy-1-propanol, wherein the reactant comprises at least one of an amine compound and a sulfur-containing compound; wherein the copper electrolyte is capable of depositing copper, wherein the copper deposit exhibits greater than about 80% nano-twin columnar copper grains. 如請求項1之銅電鍍溶液,其中該銅鹽係硫酸銅。The copper electroplating solution of claim 1, wherein the copper salt is copper sulfate. 如請求項1或2之銅電鍍溶液,其進一步包含酸,其中該酸包含硫酸或甲磺酸。The copper electroplating solution of claim 1 or 2, further comprising an acid, wherein the acid comprises sulfuric acid or methanesulfonic acid. 如請求項1至3中任一項之銅電鍍溶液,其中該銅電鍍組成物包含下列中之一或多者: (i)    加速劑,其中該加速劑包含有機硫化合物;及 (ii)   平整劑,其中該平整劑包含聚合四級氮物種。 A copper electroplating solution as claimed in any one of claims 1 to 3, wherein the copper electroplating composition comprises one or more of the following: (i)    an accelerator, wherein the accelerator comprises an organic sulfur compound; and (ii)   a leveler, wherein the leveler comprises a polymerized quaternary nitrogen species. 如請求項1至4中任一項之銅電鍍溶液,其中該反應物包含胺化合物,該胺化合物係選自由下列所組成之群組:乙醇胺、二乙醇胺、三乙醇胺、丙醇胺、異丙醇胺、二異丙醇胺、三異丙醇胺、N-甲基二乙醇胺、N-乙基二乙醇胺、N-丙基二乙醇胺、甲基單乙醇胺、N,N-二甲基乙醇胺、N,N-二乙基乙醇胺、N-丙基單乙醇胺、N-丙基二乙醇胺、N-丁基乙醇胺、N-丁基二乙醇胺、N,N-二丁基乙醇胺、羥乙基 啉、2-哌啶乙醇、二乙醇異丙醇胺、N-(2-羥乙基)吡咯啶、4-吡啶甲醇、4-吡啶乙醇、4-吡啶丙醇、2-羥-4-甲基吡啶、2-羥甲基-1-甲基咪唑、4-羥甲基-5-甲基咪唑、氯化膽鹼、b-甲基氯化膽鹼、雙(2-羥乙基)二甲基氯化銨、參(2-羥乙基)甲基氯化銨、氯化肉鹼、(2-羥乙基)二甲基(3-磺丙基)氯化銨、1-(2-羥乙基)-3-甲基氯化咪唑、雙(2-羥乙基)二甲基氯化銨、及前述之組合。 A copper electroplating solution as claimed in any one of claims 1 to 4, wherein the reactant comprises an amine compound, and the amine compound is selected from the group consisting of ethanolamine, diethanolamine, triethanolamine, propanolamine, isopropanolamine, diisopropanolamine, triisopropanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N-propyldiethanolamine, methylmonoethanolamine, N,N-dimethylethanolamine, N,N-diethylethanolamine, N-propylmonoethanolamine, N-propyldiethanolamine, N-butylethanolamine, N-butyldiethanolamine, N,N-dibutylethanolamine, hydroxyethyl , 2-piperidinylethanol, diethanolisopropanolamine, N-(2-hydroxyethyl)pyrrolidine, 4-pyridinemethanol, 4-pyridineethanol, 4-pyridinepropanol, 2-hydroxy-4-methylpyridine, 2-hydroxymethyl-1-methylimidazole, 4-hydroxymethyl-5-methylimidazole, choline chloride, b-methylcholine chloride, bis(2-hydroxyethyl)dimethylammonium chloride, tris(2-hydroxyethyl)methylammonium chloride, carnitine chloride, (2-hydroxyethyl)dimethyl(3-sulfopropyl)ammonium chloride, 1-(2-hydroxyethyl)-3-methylimidazole chloride, bis(2-hydroxyethyl)dimethylammonium chloride, and combinations thereof. 如請求項1至4中任一項之銅電鍍溶液,其中該反應物包含含硫化合物,該含硫化合物係選自由下列所組成之群組:2,2’-硫二乙醇、硫代乙醇酸、硫代蘋果酸、硫化氫鈉、硫代二乙醇酸、硫代二乙二醇、硫脲、N,N,N’N’-四甲基硫脲、2-巰基乙醇、3-巰基丙醇、2-巰基咪唑、2-巰基吡啶、4-巰基吡啶、4-巰基酚、3-巰基-1-丙磺酸、3,6-二硫雜-1,8-辛二醇、2,2’-硫代二乙硫醇、2-羥乙基二硫化物、3,3’-硫代二丙醇、2,2’-(伸乙二氧基)二乙硫醇、及前述中之一或多者之組合。A copper electroplating solution as claimed in any one of claims 1 to 4, wherein the reactant comprises a sulfur-containing compound, and the sulfur-containing compound is selected from the group consisting of: 2,2'-thiodiethanol, thioglycolic acid, thiomalonic acid, sodium hydrogen sulfide, thiodiglycolic acid, thiodiethylene glycol, thiourea, N,N,N'N'-tetramethylthiourea, 2-butylethanol, 3-butylpropanol, 2-butylimidazole, 2-butylpyridine, 4-butylpyridine, 4-butylphenol, 3-butyl-1-propanesulfonic acid, 3,6-dithio-1,8-octanediol, 2,2'-thiodiethanethiol, 2-hydroxyethyl disulfide, 3,3'-thiodipropanol, 2,2'-(ethylenedioxy)diethanethiol, and a combination of one or more of the foregoing. 如請求項6之銅電鍍溶液,其中該含硫化合物包含2,2’-硫二乙醇。A copper electroplating solution as claimed in claim 6, wherein the sulfur-containing compound comprises 2,2'-thiodiethanol. 如請求項4之銅電鍍溶液,其中該加速劑存在且係選自由下列所組成之群組:二硫化雙-(3-磺丙基)、3-巰基-1-丙磺酸、3-(苯并噻唑基-2-巰基)-丙基磺酸、N,N-二甲基二硫代胺甲醯基丙基磺酸、3-S-異硫脲丙基磺酸鹽、及(O-乙基二硫代碳酸)-S-(3-磺丙基)酯。A copper electroplating solution as claimed in claim 4, wherein the accelerator is present and is selected from the group consisting of: bis-(3-sulfopropyl) disulfide, 3-butyl-1-propanesulfonic acid, 3-(benzothiazolyl-2-butyl)-propylsulfonic acid, N,N-dimethyldithiocarbamate propylsulfonic acid, 3-S-isothiourea propylsulfonate, and (O-ethyldithiocarbonic acid)-S-(3-sulfopropyl) ester. 如請求項4之銅電鍍溶液,其中該加速劑及該平整劑兩者皆存在於該組成物中。A copper electroplating solution as claimed in claim 4, wherein both the accelerator and the leveler are present in the composition. 如請求項1至4中任一項之銅電鍍溶液,其中該抑制劑包含與0.1至10.0 wt.%之該(等)反應物反應之90.0至99.9 wt.%之該2,3-環氧-1-丙醇,或其中該抑制劑包含與0.5至5.0 wt.%之該(等)反應物反應之95.0至99.5 wt.%之該2,3-環氧-1-丙醇,或其中該抑制劑包含與2.0至3.0 wt.%之該(等)反應物反應之97.0至99.0 wt.%之該2,3-環氧-1-丙醇。A copper electroplating solution as claimed in any one of claims 1 to 4, wherein the inhibitor comprises 90.0 to 99.9 wt.% of the 2,3-epoxy-1-propanol reacted with 0.1 to 10.0 wt.% of the reactant(s), or wherein the inhibitor comprises 95.0 to 99.5 wt.% of the 2,3-epoxy-1-propanol reacted with 0.5 to 5.0 wt.% of the reactant(s), or wherein the inhibitor comprises 97.0 to 99.0 wt.% of the 2,3-epoxy-1-propanol reacted with 2.0 to 3.0 wt.% of the reactant(s). 如請求項1之銅電鍍溶液,其中該銅電鍍溶液包含: a.     約40至約60 g/L的銅離子; b.     約80至約140 g/L的硫酸; c.     約30至約120 mg/L的氯化物離子; d.     約300至約600 mg/L的胺化合物或含硫化合物與2,3-環氧-1-丙醇之反應產物。 The copper electroplating solution of claim 1, wherein the copper electroplating solution comprises: a.     About 40 to about 60 g/L of copper ions; b.     About 80 to about 140 g/L of sulfuric acid; c.     About 30 to about 120 mg/L of chloride ions; d.     About 300 to about 600 mg/L of a reaction product of an amine compound or a sulfur-containing compound and 2,3-epoxy-1-propanol. 如請求項1之銅電鍍溶液,其中該銅電鍍溶液包含: a.     約5至約50 g/L的銅離子; b.     約8至約15 g/L的硫酸; c.     約30至約120 mg/L的氯化物離子; d.     約300至約600 mg/L的胺化合物或含硫化合物與2,3-環氧-1-丙醇之反應產物。 The copper electroplating solution of claim 1, wherein the copper electroplating solution comprises: a.     About 5 to about 50 g/L of copper ions; b.     About 8 to about 15 g/L of sulfuric acid; c.     About 30 to about 120 mg/L of chloride ions; d.     About 300 to about 600 mg/L of a reaction product of an amine compound or a sulfur-containing compound and 2,3-epoxy-1-propanol. 如請求項12之銅電鍍溶液,其進一步包含: a.     約0.01至約10 mg/L的該平整劑,該平整劑包含聚合物四級氮物種;或 b.     約0.1至約50 mg/L的該加速劑。 The copper plating solution of claim 12 further comprises: a.     About 0.01 to about 10 mg/L of the leveler, the leveler comprising a polymeric quaternary nitrogen species; or b.     About 0.1 to about 50 mg/L of the accelerator. 如請求項1之銅電鍍溶液,其中該銅電鍍溶液係至少實質上無任何加速劑、光亮劑、載劑、濕潤劑、或平整劑、或者任何可作用為加速劑、光亮劑、載劑、濕潤劑、或平整劑的化合物。A copper electroplating solution as claimed in claim 1, wherein the copper electroplating solution is at least substantially free of any accelerator, brightener, carrier, wetting agent, or leveler, or any compound that can act as an accelerator, brightener, carrier, wetting agent, or leveler. 一種在一基材上電沉積銅之方法,該方法包含下列步驟: a.     使該基材之一表面及至少一陽極與如請求項1至4中任一項之銅電解質接觸;及 b.     在該基材之該表面與該至少一陽極之間施加電壓,使得陰極極性相對於該至少一陽極加諸於該基材上; 其中具有高密度奈米雙晶柱狀銅晶粒之銅沉積物係起始在該基材上。 A method for electro-depositing copper on a substrate, the method comprising the following steps: a.     contacting a surface of the substrate and at least one anode with a copper electrolyte as in any one of claims 1 to 4; and b.     applying a voltage between the surface of the substrate and the at least one anode so that a cathode with polarity relative to the at least one anode is applied to the substrate; wherein a copper deposit having a high density of nano-twin columnar copper grains is initially formed on the substrate. 如請求項15之方法,其中該奈米雙晶銅沉積物係呈(111)定向。The method of claim 15, wherein the nano-bicrystalline copper deposit is oriented in a (111) direction. 如請求項15或16之方法,其中該銅沉積物包含大於90%之奈米雙晶柱狀銅晶粒。The method of claim 15 or 16, wherein the copper deposit comprises greater than 90% nano-twinned columnar copper grains. 如請求項15之方法,其中該基材係非(111)定向的銅基材。The method of claim 15, wherein the substrate is a non-(111) oriented copper substrate. 如請求項18之方法,其中該基材係選自由下列所組成之群組:多晶銅晶種、不鏽鋼、及PVD釕。The method of claim 18, wherein the substrate is selected from the group consisting of: polycrystalline copper seed, stainless steel, and PVD ruthenium. 如請求項18或19之方法,其中該奈米雙晶銅沉積物係呈(111)定向。The method of claim 18 or 19, wherein the nano-bicrystalline copper deposit is oriented in a (111) direction. 一種在非(111)定向的銅基材上電沉積>80%之奈米雙晶銅的方法,其使用含有至少一種有機添加劑之水性銅電解質。A method for electrodepositing >80% nanobi-crystalline copper on a non-(111) oriented copper substrate using an aqueous copper electrolyte containing at least one organic additive. 如請求項21之方法,其中該至少一種有機添加劑包含反應物與2,3-環氧-1-丙醇之反應產物,其中該反應物包含胺化合物及含硫化合物中之至少一者。The method of claim 21, wherein the at least one organic additive comprises a reaction product of a reactant and 2,3-epoxy-1-propanol, wherein the reactant comprises at least one of an amine compound and a sulfur-containing compound. 如請求項15之方法,其中電壓係以介於約1至約8 ASD之間、更佳地介於約1至約3 ASD之間的電流密度施加。The method of claim 15, wherein the voltage is applied at a current density between about 1 and about 8 ASD, more preferably between about 1 and about 3 ASD.
TW112138693A 2022-10-10 2023-10-11 Composition and method for nanotwinned copper formation TW202415813A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US63/414,725 2022-10-10

Publications (1)

Publication Number Publication Date
TW202415813A true TW202415813A (en) 2024-04-16

Family

ID=

Similar Documents

Publication Publication Date Title
TWI795878B (en) Compositions and methods for the electrodeposition of nanotwinned copper
TWI285687B (en) Electrolytic copper plating solutions
TWI321167B (en)
JP6689939B2 (en) Electroplated copper
JP4888913B2 (en) Copper electrical deposition method in microelectronics
EP2723921B1 (en) Method for copper plating
TWI619853B (en) Method of electroplating copper into a via on a substrate from an acid copper electroplating bath
JP6776228B2 (en) Leveler for copper precipitation in microelectronics
TW200924036A (en) Copper metallization of through silicon via
JP2002235187A (en) Seed repair and electroplating bath
TW200525695A (en) Copper electrodeposition in microelectronics
KR20110096138A (en) Electrodeposition of copper in microelectronics with dipyridyl-based levelers
JP6129242B2 (en) Plating method
JP2021185271A (en) Acidic aqueous composition for electrolytic copper plating
TW200426251A (en) Electroplating composition
TW202415813A (en) Composition and method for nanotwinned copper formation
JP2021503560A (en) Cobalt electroplating composition containing a leveling agent
TW202031940A (en) Composition for cobalt plating comprising additive for void-free submicron feature filling
TW202314054A (en) Compositions and methods for the electrodeposition of nanotwinned copper
WO2024081584A1 (en) Composition and method for nanotwinned copper formation
TW201945595A (en) Composition for cobalt or cobalt alloy electroplating
TW202244329A (en) Method for copper-to-copper direct bonding and assembly
WO2024061290A1 (en) Leveling agent, electroplating composition, and use thereof
JP7203832B2 (en) Bath and method for filling vertical interconnect accesses or grooves of workpieces with nickel or nickel alloys
JP2018012887A (en) Indium electroplating composition containing amine compound and method for electroplating indium