TW202415200A - Variable management control system of dissipation shroud - Google Patents

Variable management control system of dissipation shroud Download PDF

Info

Publication number
TW202415200A
TW202415200A TW111135000A TW111135000A TW202415200A TW 202415200 A TW202415200 A TW 202415200A TW 111135000 A TW111135000 A TW 111135000A TW 111135000 A TW111135000 A TW 111135000A TW 202415200 A TW202415200 A TW 202415200A
Authority
TW
Taiwan
Prior art keywords
fan
heat dissipation
side walls
temperature
processing unit
Prior art date
Application number
TW111135000A
Other languages
Chinese (zh)
Other versions
TWI812468B (en
Inventor
陳柏安
連信宏
Original Assignee
英業達股份有限公司
Filing date
Publication date
Application filed by 英業達股份有限公司 filed Critical 英業達股份有限公司
Priority to TW111135000A priority Critical patent/TWI812468B/en
Priority claimed from TW111135000A external-priority patent/TWI812468B/en
Application granted granted Critical
Publication of TWI812468B publication Critical patent/TWI812468B/en
Publication of TW202415200A publication Critical patent/TW202415200A/en

Links

Images

Abstract

A dissipation shroud includes a bottom plate, a top plate, a wind guiding wall, a wind guiding groove, and a plurality of blades. The top plate is disposed over the bottom plate. The wind guiding wall is connected between the bottom plate and the top plate. The wind guiding wall has a plurality of ventilation apertures. The wind guiding groove passes through the wind guiding wall between the bottom plate and the top plate. The blades are disposed in the ventilation apertures, and the blades are pivotally connected to the wind guiding wall in the ventilation apertures.

Description

散熱風罩及其多變化管理控制系統Heat dissipation hood and its variable management and control system

本揭露係有關於一種散熱風罩及其多變化管理控制系統。The present disclosure relates to a heat dissipation hood and a versatile management and control system thereof.

隨著伺服器的處理速度及效能提升,伺服器的散熱效能更加影響了整個系統之效能。伺服器系統的散熱元件已無法預留出足夠空間容置各電子元件,導熱能力的不足將造成電子元件(例如,中央處理單元(CPU))降頻或是熱當。因此,為了提升散熱效能,勢必需要增加風流量及散熱面積。現有的伺服器中係將熱源藉由熱板傳導至熱管上經由風扇將熱源帶走,若要提昇散熱效能就必須增加散熱面積,電腦或其他電子元件的負載愈多,其所耗用的電力愈多,其產生的熱也就愈多。然而,現有伺服器系統的散熱元件之配置已經無法滿足高負載電子元件的散熱需求。As the processing speed and performance of servers increase, the heat dissipation performance of the server has a greater impact on the performance of the entire system. The heat dissipation components of the server system can no longer reserve enough space to accommodate various electronic components. The lack of heat conductivity will cause the electronic components (such as the central processing unit (CPU)) to throttle or overheat. Therefore, in order to improve the heat dissipation performance, it is necessary to increase the air flow and heat dissipation area. In existing servers, the heat source is transferred from the heat plate to the heat pipe and then taken away by the fan. If the heat dissipation performance is to be improved, the heat dissipation area must be increased. The more load the computer or other electronic components have, the more power they consume and the more heat they generate. However, the configuration of the heat dissipation components of the existing server system can no longer meet the heat dissipation requirements of high-load electronic components.

因此,如何提出一種散熱風罩及其多變化管理控制系統來達成可以更靈活地多變化控制的功效,是目前業界亟欲投入研發資源解決的問題之一。Therefore, how to propose a heat dissipation hood and its variable management control system to achieve a more flexible and variable control effect is one of the problems that the industry is eager to invest research and development resources to solve.

有鑑於此,本揭露之一目的在於提出一種可有解決上述問題的散熱風罩。In view of this, one purpose of the present disclosure is to provide a heat dissipation hood that can solve the above problems.

為了達到上述目的,依據本揭露之一實施方式,一種散熱風罩包含底板、頂板、導風牆、導風槽以及數個扇葉。頂板設置於底板上方。導風牆連接於底板與頂板之間。導風牆具有數個通風口。導風槽穿過導風牆於底板與頂板之間。扇葉設置於通風口中,且扇葉樞接導風牆於通風口中。In order to achieve the above-mentioned purpose, according to one embodiment of the present disclosure, a heat dissipation hood includes a bottom plate, a top plate, an air guide wall, an air guide slot, and a plurality of fan blades. The top plate is arranged above the bottom plate. The air guide wall is connected between the bottom plate and the top plate. The air guide wall has a plurality of vents. The air guide slot passes through the air guide wall between the bottom plate and the top plate. The fan blade is arranged in the vent, and the fan blade is connected to the air guide wall in the vent.

於本揭露的一或多個實施方式中,散熱風罩進一步包含兩第一側牆、兩第二側牆以及兩第三側牆。第一側牆連接於底板的兩端。第二側牆連接底板於第一側牆之間。第三側牆連接底板於第一側牆之間。導風槽至少由頂板、兩第二側牆中之一者以及兩第三側牆中之一者所定義,或者至少由頂板、兩第二側牆中之另一者以及兩第三側牆中之另一者所定義。In one or more embodiments of the present disclosure, the heat dissipation hood further includes two first side walls, two second side walls, and two third side walls. The first side wall is connected to both ends of the bottom plate. The second side wall is connected to the bottom plate between the first side walls. The third side wall is connected to the bottom plate between the first side walls. The air guide groove is at least defined by the top plate, one of the two second side walls, and one of the two third side walls, or at least defined by the top plate, the other of the two second side walls, and the other of the two third side walls.

於本揭露的一或多個實施方式中,導風牆連接於兩第一側牆中之一者與兩第二側牆中之一者之間、兩第一側牆中之另一者與兩第二側牆中之另一者之間以及兩第三側牆之間。In one or more embodiments of the present disclosure, the wind guide wall is connected between one of the two first side walls and one of the two second side walls, between the other of the two first side walls and the other of the two second side walls, and between the two third side walls.

於本揭露的一或多個實施方式中,通風口設置於導風牆之靠近兩第一側牆中之一者之一側。In one or more embodiments of the present disclosure, the vent is disposed on a side of the air guide wall close to one of the two first side walls.

於本揭露的一或多個實施方式中,散熱風罩進一步包含數個連動桿、擋板以及致動元件。連動桿連接扇葉。擋板連接連動桿。致動元件設置於擋板上,並經由擋板以及連動桿致動扇葉。In one or more embodiments of the present disclosure, the heat dissipation hood further includes a plurality of connecting rods, baffles, and actuating elements. The connecting rods are connected to the fan blades. The baffles are connected to the connecting rods. The actuating element is disposed on the baffles and actuates the fan blades via the baffles and the connecting rods.

為了達到上述目的,依據本揭露之一實施方式,一種散熱風罩的多變化管理控制系統包含散熱風罩、風扇以及處理單元。散熱風罩包含數個扇葉以及致動元件。扇葉設置於散熱風罩之數個通風口中。致動元件配置以致動扇葉。風扇鄰近散熱風罩。處理單元連接風扇以及散熱風罩。處理單元包含熱感應器以及溫控元件。熱感應器配置以感測處理單元之溫度。溫控元件配置以基於溫度控制風扇以及致動元件。In order to achieve the above-mentioned purpose, according to one embodiment of the present disclosure, a multi-variable management and control system of a heat dissipation hood includes a heat dissipation hood, a fan and a processing unit. The heat dissipation hood includes a plurality of fan blades and an actuator. The fan blades are arranged in a plurality of vents of the heat dissipation hood. The actuator is configured to actuate the fan blades. The fan is adjacent to the heat dissipation hood. The processing unit is connected to the fan and the heat dissipation hood. The processing unit includes a thermal sensor and a temperature control element. The thermal sensor is configured to sense the temperature of the processing unit. The temperature control element is configured to control the fan and the actuator based on the temperature.

於本揭露的一或多個實施方式中,散熱風罩進一步包含數個連動桿以及擋板。連動桿連接扇葉。擋板連接連動桿,且致動元件設置於擋板上。In one or more embodiments of the present disclosure, the heat dissipation hood further includes a plurality of connecting rods and baffles. The connecting rods are connected to the fan blades. The baffles are connected to the connecting rods, and the actuating element is disposed on the baffles.

於本揭露的一或多個實施方式中,溫控元件配置以:當處理單元之溫度維持恆定時,控制風扇以減少風扇之運轉率,並控制致動元件致動扇葉以增加通風口之開孔率。In one or more embodiments of the present disclosure, the temperature control element is configured to: when the temperature of the processing unit is maintained constant, control the fan to reduce the fan's operating rate, and control the actuator to actuate the fan blades to increase the opening rate of the vent.

於本揭露的一或多個實施方式中,溫控元件配置以:當處理單元之溫度上升時,控制風扇以增加風扇之運轉率或控制致動元件致動扇葉以增加通風口之開孔率。In one or more embodiments of the present disclosure, the temperature control element is configured to: when the temperature of the processing unit rises, control the fan to increase the fan's operating rate or control the actuator to actuate the fan blades to increase the opening rate of the vent.

於本揭露的一或多個實施方式中,溫控元件配置以:當處理單元之溫度下降時,控制風扇以減少風扇之運轉率或控制致動元件致動扇葉以減少通風口之開孔率。In one or more embodiments of the present disclosure, the temperature control element is configured to: when the temperature of the processing unit drops, control the fan to reduce the fan's operating rate or control the actuator to actuate the fan blades to reduce the opening rate of the vent.

綜上所述,在本揭露之散熱風罩中,由於散熱風罩具有導風槽,所以風扇的風流可以穿過導風槽被導流至電子元件的區域(例如,中央處理單元區域)。在本揭露之散熱風罩中,由於散熱風罩具有通風口,所以風扇的風流可以穿過通風口被導流至電子元件的區域(例如,記憶卡區域)。在本揭露之散熱風罩中,由於通風口中設置有可被調控的扇葉,使得通風口的開孔率可以被調整。在本揭露之散熱風罩的多變化管理控制系統中,由於多變化管理控制系統中包含溫控元件,使得當處理單元的溫度有所變化時,溫控元件可以控制風扇來調整風扇的運轉率,以適時降低風扇的工作負載而延長風扇的使用壽命。在本揭露之散熱風罩的多變化管理控制系統中,由於散熱風罩具有連動桿、擋板以及致動元件,使得當處理單元的溫度有所變化時,致動元件可以受溫控元件的控制來調整扇葉的擺動,以調整通風口的開孔率的變化。藉此,多變化管理控制系統可以根據處理單元的溫度來控制風扇以及扇葉,以靈活調整伺服器系統的散熱效能,並避免熱回流的問題發生。In summary, in the heat dissipation hood disclosed in the present invention, since the heat dissipation hood has an air guide groove, the airflow of the fan can be guided to the area of electronic components (for example, the central processing unit area) through the air guide groove. In the heat dissipation hood disclosed in the present invention, since the heat dissipation hood has an air vent, the airflow of the fan can be guided to the area of electronic components (for example, the memory card area) through the air vent. In the heat dissipation hood disclosed in the present invention, since the air vent is provided with adjustable fan blades, the opening rate of the air vent can be adjusted. In the variable management and control system of the heat dissipation hood disclosed in the present invention, since the variable management and control system includes a temperature control element, when the temperature of the processing unit changes, the temperature control element can control the fan to adjust the operation rate of the fan, so as to reduce the workload of the fan in time and extend the service life of the fan. In the multi-variable management and control system of the heat dissipation hood disclosed in the present invention, since the heat dissipation hood has a linkage rod, a baffle and an actuator, when the temperature of the processing unit changes, the actuator can be controlled by the temperature control element to adjust the swing of the fan blade to adjust the change of the opening rate of the vent. In this way, the multi-variable management and control system can control the fan and the fan blade according to the temperature of the processing unit to flexibly adjust the heat dissipation performance of the server system and avoid the problem of heat backflow.

以上所述僅係用以闡述本揭露所欲解決的問題、解決問題的技術手段、及其產生的功效等等,本揭露之具體細節將在下文的實施方式及相關圖式中詳細介紹。The above description is only used to explain the problem to be solved by the present disclosure, the technical means for solving the problem, and the effects produced, etc. The specific details of the present disclosure will be introduced in detail in the following implementation method and related drawings.

以下將以圖式揭露本揭露之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本揭露。也就是說,在本揭露部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。在所有圖式中相同的標號將用於表示相同或相似的元件。The following will disclose multiple embodiments of the present disclosure with drawings. For the purpose of clarity, many practical details will be described together in the following description. However, it should be understood that these practical details should not be used to limit the present disclosure. In other words, in some embodiments of the present disclosure, these practical details are not necessary. In addition, in order to simplify the drawings, some commonly used structures and components will be depicted in the drawings in a simple schematic manner. The same reference numerals will be used to represent the same or similar components in all drawings.

以下將詳細介紹本實施方式之散熱風罩100所包含的各元件的結構、功能以及各元件之間的連接關係。The structure, function and connection relationship between each component included in the heat dissipation hood 100 of this embodiment will be described in detail below.

請參考第1圖。第1圖為根據本揭露之一實施方式之散熱風罩100的示意圖。在本實施方式中,散熱風罩100設置於伺服器機箱(未繪示)中,並鄰近數個風扇(未繪示)以及電子元件(未繪示,例如中央處理單元(CPU)以及記憶體(DIMM))。更詳細地說,散熱風罩100設置於上述風扇與電子元件之間,並配置以將風扇的風流藉由散熱風罩100導流至上述電子元件。在本實施方式中,如第1圖所示,散熱風罩100包含底板110、第一側牆120L、第一側牆120R、第二側牆122、第三側牆124、頂板130、導風牆140以及導風槽TN。第一側牆120L以及第一側牆120R連接於底板110的兩端。第二側牆122位於第一側牆120L與第一側牆120R之間連接底板110。第三側牆124位於第一側牆120L與第一側牆120R之間連接底板110。頂板130連接第一側牆120L、第一側牆120R、第二側牆122以及第三側牆124,且頂板130位於底板110上方。導風牆140連接於底板110與頂板130之間。如第1圖所示,導風牆140還具有數個通風口VO。在一些實施方式中,如第1圖所示,導風牆140連接於第一側牆120L與第二側牆122之間。或者,在一些實施方式中,如第1圖所示,導風牆140連接於第一側牆120R與第二側牆122之間。或者,在一些實施方式中,如第1圖所示,導風牆140連接於兩個第三側牆124之間。導風槽TN位於底板110與頂板130之間並穿過導風牆140。在一些實施方式中,如第1圖所示,導風槽TN至少由頂板130、第二側牆122以及第三側牆124所定義。Please refer to FIG. 1. FIG. 1 is a schematic diagram of a heat dissipation hood 100 according to an embodiment of the present disclosure. In this embodiment, the heat dissipation hood 100 is disposed in a server chassis (not shown) and is adjacent to a plurality of fans (not shown) and electronic components (not shown, such as a central processing unit (CPU) and a memory (DIMM)). More specifically, the heat dissipation hood 100 is disposed between the fans and the electronic components and is configured to direct the airflow of the fans to the electronic components through the heat dissipation hood 100. In this embodiment, as shown in FIG. 1 , the heat dissipation hood 100 includes a bottom plate 110, a first side wall 120L, a first side wall 120R, a second side wall 122, a third side wall 124, a top plate 130, an air guide wall 140, and an air guide slot TN. The first side wall 120L and the first side wall 120R are connected to both ends of the bottom plate 110. The second side wall 122 is located between the first side wall 120L and the first side wall 120R and is connected to the bottom plate 110. The third side wall 124 is located between the first side wall 120L and the first side wall 120R and is connected to the bottom plate 110. The top plate 130 is connected to the first side wall 120L, the first side wall 120R, the second side wall 122, and the third side wall 124, and the top plate 130 is located above the bottom plate 110. The wind guide wall 140 is connected between the bottom plate 110 and the top plate 130. As shown in FIG. 1, the wind guide wall 140 also has a plurality of vents VO. In some embodiments, as shown in FIG. 1, the wind guide wall 140 is connected between the first side wall 120L and the second side wall 122. Alternatively, in some embodiments, as shown in FIG. 1, the wind guide wall 140 is connected between the first side wall 120R and the second side wall 122. Alternatively, in some embodiments, as shown in FIG. 1 , the air guide wall 140 is connected between two third side walls 124. The air guide slot TN is located between the bottom plate 110 and the top plate 130 and passes through the air guide wall 140. In some embodiments, as shown in FIG. 1 , the air guide slot TN is defined by at least the top plate 130, the second side wall 122, and the third side wall 124.

在一些實施方式中,導風牆140於第一方向(例如,方向X)上延伸。在一些實施方式中,第一側牆120L、第一側牆120R、第二側牆122以及第三側牆124於第二方向(例如,方向Y)上延伸。在一些實施方式中,上述第一方向係與第二方向垂直。在一些實施方式中,第一側牆120L、第一側牆120R、第二側牆122以及第三側牆124自底板110沿著第三方向(例如,方向Z)延伸至頂板130。In some embodiments, the wind guide wall 140 extends in a first direction (e.g., direction X). In some embodiments, the first side wall 120L, the first side wall 120R, the second side wall 122, and the third side wall 124 extend in a second direction (e.g., direction Y). In some embodiments, the first direction is perpendicular to the second direction. In some embodiments, the first side wall 120L, the first side wall 120R, the second side wall 122, and the third side wall 124 extend from the bottom plate 110 along a third direction (e.g., direction Z) to the top plate 130.

在一些實施方式中,第一側牆120L以及第一側牆120R的數量各為一個。在一些實施方式中,第二側牆122以及第三側牆124的數量各為兩個。但本揭露不意欲針對第一側牆120L、第一側牆120R、第二側牆122以及第三側牆124的數量進行限制。In some embodiments, the number of the first sidewall 120L and the number of the first sidewall 120R are each one. In some embodiments, the number of the second sidewall 122 and the number of the third sidewall 124 are each two. However, the present disclosure is not intended to limit the number of the first sidewall 120L, the first sidewall 120R, the second sidewall 122, and the third sidewall 124.

請參考第2圖。第2圖為根據本揭露之一實施方式之散熱風罩100的局部示意圖。如第2圖所示,散熱風罩100進一步包含數個扇葉142。扇葉142位於通風口VO中。在一些實施方式中,扇葉142係樞接於導風牆140,使得扇葉142可以相對於導風牆140擺動。需要說明的是,雖然第2圖僅繪示位於第一側牆120R與第二側牆122之間的通風口VO中設置有扇葉142,但實際上扇葉142可以設置於導風牆140上的每一個通風口VO中。Please refer to FIG. 2. FIG. 2 is a partial schematic diagram of a heat dissipation hood 100 according to one embodiment of the present disclosure. As shown in FIG. 2, the heat dissipation hood 100 further includes a plurality of fan blades 142. The fan blades 142 are located in the vent VO. In some embodiments, the fan blades 142 are pivotally connected to the wind guide wall 140 so that the fan blades 142 can swing relative to the wind guide wall 140. It should be noted that although FIG. 2 only shows that the fan blades 142 are provided in the vent VO between the first side wall 120R and the second side wall 122, in fact, the fan blades 142 can be provided in each vent VO on the wind guide wall 140.

以下將詳細說明本實施方式之扇葉142如何相對於導風牆140擺動。The following will describe in detail how the fan blades 142 of this embodiment swing relative to the wind guide wall 140.

請參考第3圖。第3圖為根據本揭露之一實施方式之通風口VO以及扇葉142的示意圖。在本實施方式中,如第3圖所示,扇葉142位於通風口VO中並樞接於導風牆140。在一些實施方式中,扇葉142可以選擇性地被致動。舉例來說,扇葉142的相位可以藉由手動來調整,但本揭露並不以此為限。以第3圖的視角觀之,由於扇葉142位於通風口VO中,因此扇葉142佔據了通風口VO的部分截面積。在本實施方式中,由於扇葉142佔據了通風口VO相對較小部分的截面積,使得通風口VO在如第3圖的所示的情境下具有相對較大的開孔率。在一使用情境中,若處理單元的溫度升高,使用者可以手動調整扇葉142的相位,使得通風口VO具有較大的開孔率,以使風扇的風流在通風口VO的通量較大,從而適切地降低處理單元的溫度。Please refer to FIG. 3. FIG. 3 is a schematic diagram of the vent VO and the fan blade 142 according to one embodiment of the present disclosure. In the present embodiment, as shown in FIG. 3, the fan blade 142 is located in the vent VO and is pivotally connected to the wind guide wall 140. In some embodiments, the fan blade 142 can be selectively actuated. For example, the phase of the fan blade 142 can be adjusted manually, but the present disclosure is not limited to this. From the perspective of FIG. 3, since the fan blade 142 is located in the vent VO, the fan blade 142 occupies a partial cross-sectional area of the vent VO. In the present embodiment, since the fan blade 142 occupies a relatively small portion of the cross-sectional area of the vent VO, the vent VO has a relatively large opening ratio in the scenario shown in FIG. 3. In a usage scenario, if the temperature of the processing unit rises, the user can manually adjust the phase of the fan blade 142 so that the vent VO has a larger opening rate, so that the air flow of the fan has a larger flux at the vent VO, thereby appropriately reducing the temperature of the processing unit.

請參考第4圖。第4圖為根據本揭露之一實施方式之通風口VO以及扇葉142的另一示意圖。以第4圖的視角觀之,由於扇葉142位於通風口VO中,因此扇葉142佔據了通風口VO的部分截面積。更詳細地說,扇葉142可以選擇性地被致動,使得扇葉142可以擺動以佔據通風口VO相對較大部分的截面積,從而使通風口VO在如第4圖的所示的情境下具有相對較小的開孔率。在一使用情境中,若處理單元的溫度降低,使用者可以手動調整扇葉142的相位,使得通風口VO具有較小的開孔率,以使風扇的風流在通風口VO的通量較小,從而適切地降低處理單元的溫度。Please refer to FIG. 4. FIG. 4 is another schematic diagram of the vent VO and the fan blade 142 according to one embodiment of the present disclosure. From the perspective of FIG. 4, since the fan blade 142 is located in the vent VO, the fan blade 142 occupies a portion of the cross-sectional area of the vent VO. In more detail, the fan blade 142 can be selectively actuated so that the fan blade 142 can be swung to occupy a relatively large portion of the cross-sectional area of the vent VO, thereby making the vent VO have a relatively small opening ratio in the scenario shown in FIG. 4. In a usage scenario, if the temperature of the processing unit decreases, the user can manually adjust the phase of the fan blade 142 so that the vent VO has a smaller opening ratio, so that the flux of the fan airflow in the vent VO is smaller, thereby appropriately reducing the temperature of the processing unit.

接著將詳細說明本揭露的扇葉142相對於導風牆140擺動之另一實施方式。Next, another implementation method of swinging the fan blade 142 relative to the wind guide wall 140 of the present disclosure will be described in detail.

請參考第5圖。第5圖為根據本揭露之一實施方式之致動元件AE、通風口VO以及扇葉142的示意圖。在本實施方式中,如第5圖所示,散熱風罩100進一步包含致動元件AE。致動元件AE係鄰近扇葉142設置。致動元件AE配置以致動扇葉142。Please refer to FIG. 5. FIG. 5 is a schematic diagram of an actuator AE, an air vent VO, and a fan blade 142 according to an embodiment of the present disclosure. In this embodiment, as shown in FIG. 5, the heat dissipation hood 100 further includes an actuator AE. The actuator AE is disposed adjacent to the fan blade 142. The actuator AE is configured to actuate the fan blade 142.

請參考第6圖。第6圖為根據本揭露之一實施方式之致動元件AE致動扇葉142的剖面示意圖。第6圖繪示了更詳細的扇葉142相對於導風牆140擺動之另一實施方式。在本實施方式中,如第6圖所示,散熱風罩100進一步包含數個連動桿144以及擋板146。連動桿144連接扇葉142。更詳細地說,每一個連動桿144分別對應連接每一個扇葉142。如第6圖所示,擋板146連接連動桿144。更詳細地說,上述連動桿144可以是例如等間隔地設置於擋板146上。在連動桿144是等間隔地設置於擋板146上的實施方式中,扇葉142是等間隔地設置於通風口VO中。在一些實施方式中,如第6圖所示,致動元件AE設置於擋板146上。藉由前述結構配置,由於致動元件AE設置於擋板146上,故致動元件AE可以經由擋板146帶動連動桿144致動扇葉142,具體來說,致動元件AE可以經由擋板146以及連動桿144以使扇葉142相對於導風牆140擺動。在一使用情境中,當致動元件AE接受來自例如處理單元的與處理單元的溫度相關連的訊號,致動元件AE可以基於上述與處理單元的溫度相關連的訊號致動擋板146(例如,使擋板146相對於導風牆140移動),設置於擋板146上的連動桿144再連動扇葉142使之相對於導風牆140擺動,以調整通風口VO的開孔率。Please refer to FIG. 6. FIG. 6 is a cross-sectional schematic diagram of the actuator element AE actuating the fan blade 142 according to one embodiment of the present disclosure. FIG. 6 shows another embodiment in which the fan blade 142 is swung relative to the wind guide wall 140 in more detail. In this embodiment, as shown in FIG. 6, the heat dissipation hood 100 further includes a plurality of connecting rods 144 and a baffle 146. The connecting rod 144 is connected to the fan blade 142. In more detail, each connecting rod 144 is respectively connected to each fan blade 142. As shown in FIG. 6, the baffle 146 is connected to the connecting rod 144. In more detail, the above-mentioned connecting rod 144 can be, for example, arranged on the baffle 146 at equal intervals. In the embodiment where the linkage rod 144 is evenly spaced on the baffle 146, the fan blades 142 are evenly spaced in the vent VO. In some embodiments, as shown in FIG. 6 , the actuating element AE is disposed on the baffle 146. With the aforementioned structural configuration, since the actuating element AE is disposed on the baffle 146, the actuating element AE can drive the linkage rod 144 to actuate the fan blades 142 via the baffle 146. Specifically, the actuating element AE can swing the fan blades 142 relative to the air guide wall 140 via the baffle 146 and the linkage rod 144. In one usage scenario, when the actuator AE receives a signal related to the temperature of the processing unit, for example, from the processing unit, the actuator AE can actuate the baffle 146 based on the signal related to the temperature of the processing unit (for example, move the baffle 146 relative to the air guide wall 140), and the connecting rod 144 disposed on the baffle 146 then links the fan blade 142 to make it swing relative to the air guide wall 140 to adjust the opening ratio of the vent VO.

在一些實施方式中,如第6圖所示,連動桿144以及致動元件AE設置於擋板146的相反兩側。但本揭露不以此為限。In some embodiments, as shown in FIG. 6 , the linkage rod 144 and the actuating element AE are disposed on opposite sides of the baffle 146 . However, the present disclosure is not limited thereto.

在一些實施方式中,致動元件AE可以是馬達(Motor)、氣動閥(Pneumatic Valve)、電磁閥(Solenoid Valve)或其他類似的致動元件。In some implementations, the actuator AE may be a motor, a pneumatic valve, a solenoid valve, or other similar actuators.

在一些實施方式中,扇葉142可以是塑膠或其他類似的材料。在一些實施方式中,扇葉142可以是塑膠散熱片或其他類似的散熱材料。在一些實施方式中,扇葉142可以是片狀、條狀或其他類似的形狀。In some embodiments, the fan blade 142 can be plastic or other similar materials. In some embodiments, the fan blade 142 can be a plastic heat sink or other similar heat dissipation materials. In some embodiments, the fan blade 142 can be a sheet, a strip or other similar shapes.

在一些實施方式中,扇葉142於第一方向(例如,方向X)上拉長延伸。In some embodiments, the blades 142 are elongated and extend in a first direction (eg, direction X).

在一些實施方式中,扇葉142的數量與連動桿144的數量相同。在一些實施方式中,如第6圖所示,扇葉142在通風口VO的數量為五個,但本揭露不以此為限。在一些實施方式中,扇葉142可以具有小於五個或大於五個的數量。舉例來說,如第1圖所示,扇葉142在兩個第三側牆124之間的通風口VO中的數量可以是三個。In some embodiments, the number of the blades 142 is the same as the number of the connecting rods 144. In some embodiments, as shown in FIG. 6 , the number of the blades 142 in the vent VO is five, but the present disclosure is not limited thereto. In some embodiments, the number of the blades 142 may be less than five or greater than five. For example, as shown in FIG. 1 , the number of the blades 142 in the vent VO between the two third side walls 124 may be three.

在一些實施方式中,扇葉142係以沿著平行於第一方向(例如,方向X)為旋轉軸相對於導風牆140擺動,但本揭露不以此為限。在一些實施方式中,扇葉142以平行於導風牆140自底板110至頂板130延伸的方向為旋轉軸相對於導風牆140擺動。In some embodiments, the fan blade 142 swings relative to the wind guide wall 140 along a rotation axis parallel to the first direction (e.g., direction X), but the disclosure is not limited thereto. In some embodiments, the fan blade 142 swings relative to the wind guide wall 140 along a rotation axis parallel to the direction in which the wind guide wall 140 extends from the bottom plate 110 to the top plate 130.

接著將說明本揭露之一實施方式的散熱風罩100A。Next, a heat dissipation hood 100A according to an embodiment of the present disclosure will be described.

請參考第7圖。第7圖為根據本揭露之一實施方式之散熱風罩100A的俯視圖。第7圖的散熱風罩100A的結構配置與第1圖的散熱風罩100的結構配置大致相同,散熱風罩100A與散熱風罩100的不同之處,在於散熱風罩100A僅在其導風牆140的靠近第一側牆120R的一側具有通風口VO。具體來說,散熱風罩100A在第一側牆120L與第二側牆122之間不具有通風口VO,並且散熱風罩100A的位於兩個第三側牆124之間的導風牆140上僅具有靠近第一側牆120R的一側(即,右側)的兩個通風口VO。舉例來說,在製造散熱風罩100A的過程中可以不在第一側牆120L與第二側牆122之間形成通風口VO,以及不在位於兩個第三側牆124之間的導風牆140的靠近第一側牆120L的一側(即,左側)形成通風口VO。或者,在一些實施方式中,使用者可以在散熱風罩100的位於第一側牆120L與第二側牆122之間以及位於兩個第三側牆124之間的導風牆140的靠近第一側牆120L的一側貼附例如片狀的聚酯樹脂(Mylar)覆蓋通風口VO,以形成可以達成相同功效的散熱風罩100A。在一使用情境中,若在伺服器機箱中靠近第一側牆120R的一側的電子元件(例如,中央處理單元(CPU)以及記憶體(DIMM))具有相對較大的散熱需求,可以使用散熱風罩100A以適切地降低上述電子元件的溫度。Please refer to FIG. 7. FIG. 7 is a top view of a heat dissipation hood 100A according to an embodiment of the present disclosure. The structural configuration of the heat dissipation hood 100A in FIG. 7 is substantially the same as the structural configuration of the heat dissipation hood 100 in FIG. 1. The difference between the heat dissipation hood 100A and the heat dissipation hood 100 is that the heat dissipation hood 100A has a vent VO only on one side of its air guide wall 140 close to the first side wall 120R. Specifically, the heat dissipation hood 100A does not have a vent VO between the first side wall 120L and the second side wall 122, and the heat dissipation hood 100A has only two vents VO on one side (i.e., the right side) close to the first side wall 120R on the air guide wall 140 located between the two third side walls 124. For example, in the process of manufacturing the heat dissipation hood 100A, the vent VO may not be formed between the first side wall 120L and the second side wall 122, and the vent VO may not be formed on one side (i.e., the left side) of the air guide wall 140 located between the two third side walls 124 close to the first side wall 120L. Alternatively, in some embodiments, the user may attach a sheet of Mylar, for example, to cover the vent VO on the side of the air guide wall 140 located between the first side wall 120L and the second side wall 122 and between the two third side walls 124 of the heat dissipation hood 100 near the first side wall 120L, so as to form a heat dissipation hood 100A that can achieve the same effect. In a usage scenario, if the electronic components (e.g., central processing unit (CPU) and memory (DIMM)) near the first side wall 120R in the server chassis have a relatively large heat dissipation requirement, the heat dissipation hood 100A may be used to appropriately reduce the temperature of the electronic components.

接著將說明本揭露之散熱風罩100的再一實施方式。Next, another implementation of the heat dissipation hood 100 disclosed herein will be described.

請參考第8圖。第8圖為根據本揭露之一實施方式之散熱風罩100B的俯視圖。第7圖的散熱風罩100B的結構配置與第1圖的散熱風罩100的結構配置大致相同,散熱風罩100B與散熱風罩100的不同之處,在於散熱風罩100B僅在其導風牆140的靠近第一側牆120L的一側具有通風口VO。具體來說,散熱風罩100B在第一側牆120R與第二側牆122之間不具有通風口VO,並且散熱風罩100B的位於兩個第三側牆124之間的導風牆140上僅具有靠近第一側牆120L的一側(即,左側)的兩個通風口VO。舉例來說,在製造散熱風罩100B的過程中可以不在第一側牆120R與第二側牆122之間形成通風口VO,以及不在位於兩個第三側牆124之間的導風牆140的靠近第一側牆120R的一側(即,右側)形成通風口VO。或者,在一些實施方式中,使用者可以在散熱風罩100的位於第一側牆120R與第二側牆122之間以及位於兩個第三側牆124之間的導風牆140的靠近第一側牆120R的一側貼附例如片狀的聚酯樹脂(Mylar)覆蓋通風口VO,以形成可以達成相同功效的散熱風罩100B。在一使用情境中,若在伺服器機箱中靠近第一側牆120L的一側的電子元件(例如,中央處理單元(CPU)以及記憶體(DIMM))具有相對較大的散熱需求,可以使用散熱風罩100B以適切地降低上述電子元件的溫度。Please refer to FIG. 8. FIG. 8 is a top view of a heat dissipation hood 100B according to an embodiment of the present disclosure. The structural configuration of the heat dissipation hood 100B in FIG. 7 is substantially the same as the structural configuration of the heat dissipation hood 100 in FIG. 1. The difference between the heat dissipation hood 100B and the heat dissipation hood 100 is that the heat dissipation hood 100B has a vent VO only on one side of its air guide wall 140 close to the first side wall 120L. Specifically, the heat dissipation hood 100B does not have a vent VO between the first side wall 120R and the second side wall 122, and the heat dissipation hood 100B has only two vents VO on one side (i.e., the left side) close to the first side wall 120L on the air guide wall 140 located between the two third side walls 124. For example, in the process of manufacturing the heat dissipation hood 100B, the vent VO may not be formed between the first side wall 120R and the second side wall 122, and the vent VO may not be formed on one side (i.e., the right side) of the air guide wall 140 located between the two third side walls 124 close to the first side wall 120R. Alternatively, in some embodiments, the user may attach a sheet of Mylar, for example, to cover the vent VO on the side of the air guide wall 140 located between the first side wall 120R and the second side wall 122 and between the two third side walls 124 of the heat dissipation hood 100 near the first side wall 120R, so as to form a heat dissipation hood 100B that can achieve the same effect. In a usage scenario, if the electronic components (for example, the central processing unit (CPU) and the memory (DIMM)) near the first side wall 120L in the server chassis have a relatively large heat dissipation requirement, the heat dissipation hood 100B may be used to appropriately reduce the temperature of the electronic components.

需要說明的是,第7圖的散熱風罩100A以及第8圖的散熱風罩100B的各元件的結構配置僅位簡單說明而舉例,實際上製造者可以根據不同的使用需求而在導風牆140上的不同位置形成一或多個通風口VO,以提升電子元件的散熱效能。It should be noted that the structural configuration of each component of the heat dissipation hood 100A in FIG. 7 and the heat dissipation hood 100B in FIG. 8 is only given as an example for simple explanation. In practice, the manufacturer can form one or more vents VO at different positions on the air guide wall 140 according to different usage requirements to enhance the heat dissipation performance of the electronic components.

接著將說明在本揭露的不同使用情境中風扇的運轉率與通風口VO的開孔率的關係。Next, the relationship between the operating rate of the fan and the opening rate of the vent VO in different usage scenarios of the present disclosure will be described.

請參考第9圖。第9圖為根據本揭露之一實施方式之風扇運轉率以及通風口VO開孔率的關係的表格。更詳細地說,第9圖繪示了處理單元在一恆定溫度的狀態下數個風扇運轉率以及通風口VO開孔率的配置。在一使用情境中,若處理單元的溫度維持恆定,處理單元可以同時控制風扇以及設置於通風口VO中的扇葉142的相位。舉例來說,處理單元可以控制風扇的運轉率為25%且通風口VO的開孔率為100%,或者可以控制風扇的運轉率為50%且通風口VO的開孔率為50%,或者可以控制風扇的運轉率為75%且通風口VO的開孔率為25%,或者可以控制風扇的運轉率為100%且通風口VO的開孔率為0%。在風扇的運轉率相對較低的配置的實施方式中,風扇的工作負載可以降低而延長風扇的使用壽命。Please refer to FIG. 9. FIG. 9 is a table showing the relationship between the fan operation rate and the opening rate of the vent VO according to an embodiment of the present disclosure. More specifically, FIG. 9 shows the configuration of several fan operation rates and the opening rate of the vent VO under a constant temperature state of the processing unit. In a usage scenario, if the temperature of the processing unit is kept constant, the processing unit can simultaneously control the phase of the fan and the fan blade 142 disposed in the vent VO. For example, the processing unit can control the operation rate of the fan to be 25% and the opening rate of the vent VO to be 100%, or can control the operation rate of the fan to be 50% and the opening rate of the vent VO to be 50%, or can control the operation rate of the fan to be 75% and the opening rate of the vent VO to be 25%, or can control the operation rate of the fan to be 100% and the opening rate of the vent VO to be 0%. In the implementation mode of the configuration with a relatively low operation rate of the fan, the working load of the fan can be reduced and the service life of the fan can be extended.

請參考第10圖。第10圖為根據本揭露之一實施方式之處理單元溫度、風扇運轉率以及通風口VO開孔率的關係的表格。更詳細地說,第10圖繪示了處理單元在不同溫度的狀態下數個風扇運轉率以及通風口VO開孔率的配置。在一使用情境中,處理單元可以根據其溫度的變化控制設置於通風口VO中的扇葉142的相位,具體來說,當處理單元溫度較高時,通風口VO的開孔率亦較高,而當處理單元溫度較低時,通風口VO的開孔率亦較低。舉例來說,如第10圖所示,當處理單元溫度高時,處理單元可以控制風扇的運轉率為100%且通風口VO的開孔率為100%,或者當處理單元溫度次高時,處理單元可以控制風扇的運轉率為100%且通風口VO的開孔率為90%,或者當處理單元溫度次低時,處理單元可以控制風扇的運轉率為100%且通風口VO的開孔率為80%,或者當處理單元溫度低時,處理單元可以控制風扇的運轉率為100%且通風口VO的開孔率為70%。在如以上之風扇的運轉率維持恆定的配置的實施方式中,通風口VO中的扇葉142的相位可以適應性的根據處理單元溫度來改變。Please refer to FIG. 10. FIG. 10 is a table showing the relationship between the processing unit temperature, the fan operating rate, and the vent VO opening rate according to one embodiment of the present disclosure. In more detail, FIG. 10 illustrates the configuration of several fan operating rates and the vent VO opening rates of the processing unit under different temperature conditions. In a usage scenario, the processing unit can control the phase of the fan blade 142 disposed in the vent VO according to the change of its temperature. Specifically, when the processing unit temperature is higher, the vent VO opening rate is also higher, and when the processing unit temperature is lower, the vent VO opening rate is also lower. For example, as shown in FIG. 10, when the temperature of the processing unit is high, the processing unit can control the operation rate of the fan to be 100% and the opening rate of the vent VO to be 100%, or when the temperature of the processing unit is second highest, the processing unit can control the operation rate of the fan to be 100% and the opening rate of the vent VO to be 90%, or when the temperature of the processing unit is second lowest, the processing unit can control the operation rate of the fan to be 100% and the opening rate of the vent VO to be 80%, or when the temperature of the processing unit is low, the processing unit can control the operation rate of the fan to be 100% and the opening rate of the vent VO to be 70%. In the above embodiment of the configuration in which the operation rate of the fan is maintained constant, the phase of the fan blade 142 in the vent VO can be adaptively changed according to the temperature of the processing unit.

接著將詳細說明本揭露之一實施方式的散熱風罩100的多變化管理控制系統1100如何控制風扇F以及散熱風罩100的各元件。Next, how the variable management control system 1100 of the heat dissipation hood 100 according to one embodiment of the present disclosure controls the fan F and each component of the heat dissipation hood 100 will be described in detail.

請參考第11圖。第11圖為根據本揭露之一實施方式之多變化管理控制系統1100的示意圖。在本實施方式中,多變化管理控制系統1100包含處理單元PU、風扇F以及散熱風罩100。處理單元PU連接風扇F以及散熱風罩100。處理單元PU包含熱感應器TS以及溫控元件TC。風扇F設置鄰近於散熱風罩100。散熱風罩100至少包含致動元件AE以及扇葉142。在一些實施方式中,散熱風罩100進一步包含連動桿144以及擋板146。需要說明的是,散熱風罩100的其他各元件已在上文詳細說明,故此處不再贅述。在一些實施方式中,多變化管理控制系統1100使用了演算法,此演算法根據處理單元PU的熱感應器TS感測到的溫度之讀數作為其輸入參數。當溫控元件TC收到上述輸入參數時,將定期評估處理單元PU的區域周邊的溫度(即,熱感應器TS感測到的溫度),並根據上述溫度判斷套用上述演算法以控制風扇F以及扇葉142。藉由前述結構配置,處理單元PU的熱感應器TS感測處理單元PU的溫度,處理單元PU的溫控元件TC基於上述溫度控制風扇F以及致動元件AE。具體來說,溫控元件TC配置以控制風扇F以調整風扇F的運轉率,並控制致動元件AE致動扇葉142以調整通風口VO的開孔率。風扇F提供風流通過散熱風罩100至處理單元PU,以對處理單元PU散熱。Please refer to Figure 11. Figure 11 is a schematic diagram of a variable management and control system 1100 according to one embodiment of the present disclosure. In this embodiment, the variable management and control system 1100 includes a processing unit PU, a fan F and a heat dissipation hood 100. The processing unit PU is connected to the fan F and the heat dissipation hood 100. The processing unit PU includes a thermal sensor TS and a temperature control element TC. The fan F is arranged adjacent to the heat dissipation hood 100. The heat dissipation hood 100 includes at least an actuator element AE and a fan blade 142. In some embodiments, the heat dissipation hood 100 further includes a linkage rod 144 and a baffle 146. It should be noted that the other components of the heat dissipation hood 100 have been described in detail above, so they will not be repeated here. In some embodiments, the multi-variable management control system 1100 uses an algorithm that uses the reading of the temperature sensed by the thermal sensor TS of the processing unit PU as its input parameter. When the temperature control element TC receives the above input parameter, it will periodically evaluate the temperature around the area of the processing unit PU (i.e., the temperature sensed by the thermal sensor TS), and apply the above algorithm to control the fan F and the fan blades 142 based on the above temperature judgment. Through the above structural configuration, the thermal sensor TS of the processing unit PU senses the temperature of the processing unit PU, and the temperature control element TC of the processing unit PU controls the fan F and the actuator AE based on the above temperature. Specifically, the temperature control element TC is configured to control the fan F to adjust the operating rate of the fan F, and control the actuator AE to actuate the fan blades 142 to adjust the opening rate of the vent VO. The fan F provides air flow through the heat dissipation hood 100 to the processing unit PU to dissipate heat from the processing unit PU.

請同時參考第9圖以及第11圖。在一使用情境中,當處理單元PU的溫度維持恆定時,溫控元件TC控制風扇F以減少風扇F的運轉率,並控制致動元件AE致動扇葉142以增加通風口VO之開孔率。或者,溫控元件TC控制風扇F以增加風扇F的運轉率,並控制致動元件AE致動扇葉142以減少通風口VO的開孔率。Please refer to Figure 9 and Figure 11 at the same time. In a usage scenario, when the temperature of the processing unit PU is kept constant, the temperature control element TC controls the fan F to reduce the operating rate of the fan F, and controls the actuator AE to actuate the blade 142 to increase the opening rate of the vent VO. Alternatively, the temperature control element TC controls the fan F to increase the operating rate of the fan F, and controls the actuator AE to actuate the blade 142 to reduce the opening rate of the vent VO.

請同時參考第10圖以及第11圖。在一使用情境中,當處理單元PU的溫度上升時,溫控元件TC控制致動元件AE致動扇葉142以增加通風口VO的開孔率。當處理單元PU的溫度下降時,溫控元件TC控制致動元件AE致動扇葉142以減少通風口VO的開孔率。Please refer to Figure 10 and Figure 11. In one use scenario, when the temperature of the processing unit PU rises, the temperature control element TC controls the actuator element AE to actuate the fan blade 142 to increase the opening rate of the vent VO. When the temperature of the processing unit PU drops, the temperature control element TC controls the actuator element AE to actuate the fan blade 142 to reduce the opening rate of the vent VO.

或者,在其他實施方式中,當處理單元PU的溫度上升時,溫控元件TC控制風扇F以增加風扇F的運轉率。當處理單元PU的溫度下降時,溫控元件TC控制風扇F以減少風扇F的運轉率。Alternatively, in other embodiments, when the temperature of the processing unit PU rises, the temperature control element TC controls the fan F to increase the operating rate of the fan F. When the temperature of the processing unit PU drops, the temperature control element TC controls the fan F to reduce the operating rate of the fan F.

在一些實施方式中,熱感應器TS可以是溫度感測器或其他類似的感測器。In some embodiments, the thermal sensor TS can be a temperature sensor or other similar sensor.

在一些實施方式中,溫控元件TC可以是基板管理控制(Board Management Controller;BMC)晶片或其他類似的溫控元件。In some implementations, the temperature control element TC may be a baseboard management controller (BMC) chip or other similar temperature control elements.

在一些實施方式中,上述演算法可以是有關於在BMC的規格中的熱節流演算法。In some implementations, the algorithm described above may be related to a thermal throttling algorithm in the BMC specification.

由以上對於本揭露之具體實施方式之詳述,可以明顯地看出,在本揭露之散熱風罩中,由於散熱風罩具有導風槽,所以風扇的風流可以穿過導風槽被導流至電子元件的區域(例如,中央處理單元區域)。在本揭露之散熱風罩中,由於散熱風罩具有通風口,所以風扇的風流可以穿過通風口被導流至電子元件的區域(例如,記憶卡區域)。在本揭露之散熱風罩中,由於通風口中設置有可被調控的扇葉,使得通風口的開孔率可以被調整。在本揭露之散熱風罩的多變化管理控制系統中,由於多變化管理控制系統中包含溫控元件,使得當處理單元的溫度有所變化時,溫控元件可以控制風扇來調整風扇的運轉率,以適時降低風扇的工作負載而延長風扇的使用壽命。在本揭露之散熱風罩的多變化管理控制系統中,由於散熱風罩具有連動桿、擋板以及致動元件,使得當處理單元的溫度有所變化時,致動元件可以受溫控元件的控制來調整扇葉的擺動,以調整通風口的開孔率的變化。藉此,多變化管理控制系統可以根據處理單元的溫度來控制風扇以及扇葉,以靈活調整伺服器系統的散熱效能,並避免熱回流的問題發生。From the above detailed description of the specific implementation of the present disclosure, it can be clearly seen that in the heat dissipation hood of the present disclosure, since the heat dissipation hood has an air guide groove, the wind flow of the fan can be directed to the area of the electronic components (for example, the central processing unit area) through the air guide groove. In the heat dissipation hood of the present disclosure, since the heat dissipation hood has an air vent, the wind flow of the fan can be directed to the area of the electronic components (for example, the memory card area) through the air vent. In the heat dissipation hood of the present disclosure, since the air vent is provided with an adjustable fan blade, the opening rate of the air vent can be adjusted. In the multi-variable management and control system of the heat dissipation hood disclosed in the present invention, since the multi-variable management and control system includes a temperature control element, when the temperature of the processing unit changes, the temperature control element can control the fan to adjust the fan's operating rate, so as to timely reduce the fan's workload and extend the fan's service life. In the multi-variable management and control system of the heat dissipation hood disclosed in the present invention, since the heat dissipation hood has a linkage rod, a baffle and an actuator, when the temperature of the processing unit changes, the actuator can be controlled by the temperature control element to adjust the swing of the fan blades to adjust the change in the opening rate of the vent. In this way, the multi-variable management and control system can control the fan and the fan blades according to the temperature of the processing unit to flexibly adjust the heat dissipation performance of the server system and avoid the problem of heat backflow.

在本揭露的一實施方式中,本揭露之散熱風罩係可應用於伺服器,該伺服器係可用於人工智慧(Artificial Intelligence,簡稱AI)運算、邊緣運算(edge computing),亦可當作5G伺服器、雲端伺服器或車聯網伺服器使用。In one embodiment of the present disclosure, the heat dissipation hood of the present disclosure can be applied to a server, which can be used for artificial intelligence (AI) computing, edge computing, and can also be used as a 5G server, cloud server, or Internet of Vehicles server.

雖然本揭露已以實施方式揭露如上,然其並不用以限定本揭露,任何熟習此技藝者,在不脫離本揭露的精神和範圍內,當可作各種的更動與潤飾,因此本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although the present disclosure has been disclosed in the above implementation form, it is not intended to limit the present disclosure. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure shall be determined by the scope of the attached patent application.

100,100A,100B:散熱風罩 110:底板 120L,120R:第一側牆 122:第二側牆 124:第三側牆 130:頂板 140:導風牆 142:扇葉 144:連動桿 146:擋板 1100:多變化管理控制系統 AE:致動元件 F:風扇 PU:處理單元 TC:溫控元件 TN:導風槽 TS:熱感應器 VO:通風口 X,Y,Z:方向 100,100A,100B: heat dissipation hood 110: bottom plate 120L,120R: first side wall 122: second side wall 124: third side wall 130: top plate 140: air guide wall 142: fan blade 144: linkage rod 146: baffle 1100: variable management control system AE: actuator element F: fan PU: processing unit TC: temperature control element TN: air guide slot TS: thermal sensor VO: vent X,Y,Z: direction

為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖繪示根據本揭露之一實施方式之散熱風罩的示意圖。 第2圖繪示根據本揭露之一實施方式之散熱風罩的局部示意圖。 第3圖繪示根據本揭露之一實施方式之通風口以及扇葉的示意圖。 第4圖繪示根據本揭露之一實施方式之通風口以及扇葉的另一示意圖。 第5圖繪示根據本揭露之一實施方式之致動元件、通風口以及扇葉的示意圖。 第6圖繪示根據本揭露之一實施方式之致動元件致動扇葉的剖面示意圖。 第7圖繪示根據本揭露之一實施方式之散熱風罩的俯視圖。 第8圖繪示根據本揭露之一實施方式之散熱風罩的俯視圖。 第9圖繪示根據本揭露之一實施方式之風扇運轉率以及通風口開孔率的關係的表格。 第10圖繪示根據本揭露之一實施方式之處理單元溫度、風扇運轉率以及通風口開孔率的關係的表格。 第11圖繪示根據本揭露之一實施方式之多變化管理控制系統的功能方塊圖。 In order to make the above and other purposes, features, advantages and embodiments of the present disclosure more clearly understandable, the attached drawings are described as follows: FIG. 1 is a schematic diagram of a heat dissipation hood according to an embodiment of the present disclosure. FIG. 2 is a partial schematic diagram of a heat dissipation hood according to an embodiment of the present disclosure. FIG. 3 is a schematic diagram of a vent and a fan blade according to an embodiment of the present disclosure. FIG. 4 is another schematic diagram of a vent and a fan blade according to an embodiment of the present disclosure. FIG. 5 is a schematic diagram of an actuating element, a vent and a fan blade according to an embodiment of the present disclosure. FIG. 6 is a cross-sectional schematic diagram of an actuating element actuating a fan blade according to an embodiment of the present disclosure. FIG. 7 is a top view of a heat dissipation hood according to an embodiment of the present disclosure. FIG. 8 is a top view of a heat dissipation hood according to an embodiment of the present disclosure. FIG. 9 shows a table showing the relationship between the fan operation rate and the vent opening rate according to one embodiment of the present disclosure. FIG. 10 shows a table showing the relationship between the processing unit temperature, the fan operation rate and the vent opening rate according to one embodiment of the present disclosure. FIG. 11 shows a functional block diagram of a multi-variable management control system according to one embodiment of the present disclosure.

100:散熱風罩 100: Heat dissipation hood

110:底板 110: Base plate

120L,120R:第一側牆 120L,120R: First side wall

122:第二側牆 122: Second side wall

124:第三側牆 124: Third side wall

130:頂板 130: Top plate

140:導風牆 140: Wind deflector wall

TN:導風槽 TN: air guide slot

VO:通風口 VO:Ventilation vent

X,Y,Z:方向 X,Y,Z: Direction

Claims (10)

一種散熱風罩,包含: 一底板; 一頂板,設置於該底板上方; 一導風牆,連接於該底板與該頂板之間,並具有複數個通風口; 一導風槽,穿過該導風牆於該底板與該頂板之間;以及 複數個扇葉,設置於該些通風口中,且該些扇葉樞接該導風牆於該些通風口中。 A heat dissipation hood comprises: a bottom plate; a top plate disposed above the bottom plate; an air guide wall connected between the bottom plate and the top plate and having a plurality of vents; an air guide slot passing through the air guide wall between the bottom plate and the top plate; and a plurality of fan blades disposed in the vents, and the fan blades are pivotally connected to the air guide wall in the vents. 如請求項1所述之散熱風罩,進一步包含: 兩第一側牆,連接於該底板的兩端; 兩第二側牆,連接該底板於該兩第一側牆之間;以及 兩第三側牆,連接該底板於該兩第一側牆之間,其中該導風槽至少由該頂板、該兩第二側牆中之一者以及該兩第三側牆中之一者所定義,或者至少由該頂板、該兩第二側牆中之另一者以及該兩第三側牆中之另一者所定義。 The heat dissipation hood as described in claim 1 further comprises: Two first side walls connected to the two ends of the bottom plate; Two second side walls connected to the bottom plate between the two first side walls; and Two third side walls connected to the bottom plate between the two first side walls, wherein the air guide groove is defined by at least the top plate, one of the two second side walls and one of the two third side walls, or at least the top plate, the other of the two second side walls and the other of the two third side walls. 如請求項2所述之散熱風罩,其中該導風牆連接於該兩第一側牆中之一者與該兩第二側牆中之一者之間、該兩第一側牆中之另一者與該兩第二側牆中之另一者之間以及該兩第三側牆之間。A heat dissipation hood as described in claim 2, wherein the air guide wall is connected between one of the two first side walls and one of the two second side walls, between the other of the two first side walls and the other of the two second side walls, and between the two third side walls. 如請求項3所述之散熱風罩,其中該些通風口設置於該導風牆之靠近該兩第一側牆中之該者之一側。A heat dissipation hood as described in claim 3, wherein the vents are arranged on one side of the air guide wall close to the one of the two first side walls. 如請求項1所述之散熱風罩,進一步包含: 複數個連動桿,連接該些扇葉; 一擋板,連接該些連動桿;以及 一致動元件,設置於該擋板上,並經由該擋板以及該些連動桿致動該些扇葉。 The heat dissipation hood as described in claim 1 further comprises: A plurality of linkage rods connected to the fan blades; A baffle connected to the linkage rods; and An actuating element disposed on the baffle and actuating the fan blades via the baffle and the linkage rods. 一種散熱風罩的多變化管理控制系統,包含: 一散熱風罩,包含: 複數個扇葉,設置於該散熱風罩之複數個通風口中;以及 一致動元件,配置以致動該些扇葉; 一風扇,鄰近該散熱風罩;以及 一處理單元,連接該風扇以及該散熱風罩並包含一熱感應器以及一溫控元件,其中該熱感應器配置以感測該處理單元之一溫度,該溫控元件配置以基於該溫度控制該風扇以及該致動元件。 A variable management control system for a heat dissipation hood, comprising: A heat dissipation hood, comprising: A plurality of fan blades, arranged in a plurality of vents of the heat dissipation hood; and An actuating element, configured to actuate the fan blades; A fan, adjacent to the heat dissipation hood; and A processing unit, connected to the fan and the heat dissipation hood and comprising a thermal sensor and a temperature control element, wherein the thermal sensor is configured to sense a temperature of the processing unit, and the temperature control element is configured to control the fan and the actuating element based on the temperature. 如請求項6所述之多變化管理控制系統,其中該散熱風罩進一步包含: 複數個連動桿,連接該些扇葉;以及 一擋板,連接該些連動桿,且該致動元件設置於該擋板上。 A variable management control system as described in claim 6, wherein the heat dissipation hood further comprises: a plurality of linkage rods connected to the fan blades; and a baffle connected to the linkage rods, and the actuating element is disposed on the baffle. 如請求項6所述之多變化管理控制系統,其中該溫控元件配置以: 當該處理單元之該溫度維持恆定時,控制該風扇以減少該風扇之一運轉率,並控制該致動元件致動該些扇葉以增加該些通風口之一開孔率。 A variable management control system as described in claim 6, wherein the temperature control element is configured to: When the temperature of the processing unit is kept constant, control the fan to reduce a running rate of the fan, and control the actuator to actuate the fan blades to increase an opening rate of the vents. 如請求項6所述之多變化管理控制系統,其中該溫控元件配置以: 當該處理單元之該溫度上升時,控制該風扇以增加該風扇之一運轉率或控制該致動元件致動該些扇葉以增加該些通風口之一開孔率。 A variable management control system as described in claim 6, wherein the temperature control element is configured to: When the temperature of the processing unit rises, control the fan to increase an operating rate of the fan or control the actuator to actuate the fan blades to increase an opening rate of the vents. 如請求項6所述之多變化管理控制系統,其中該溫控元件配置以: 當該處理單元之該溫度下降時,控制該風扇以減少該風扇之一運轉率或控制該致動元件致動該些扇葉以減少該些通風口之一開孔率。 A variable management control system as described in claim 6, wherein the temperature control element is configured to: When the temperature of the processing unit drops, control the fan to reduce an operating rate of the fan or control the actuator to actuate the fan blades to reduce an opening rate of the vents.
TW111135000A 2022-09-15 2022-09-15 Variable management control system of dissipation shroud TWI812468B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111135000A TWI812468B (en) 2022-09-15 2022-09-15 Variable management control system of dissipation shroud

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111135000A TWI812468B (en) 2022-09-15 2022-09-15 Variable management control system of dissipation shroud

Publications (2)

Publication Number Publication Date
TWI812468B TWI812468B (en) 2023-08-11
TW202415200A true TW202415200A (en) 2024-04-01

Family

ID=88585995

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111135000A TWI812468B (en) 2022-09-15 2022-09-15 Variable management control system of dissipation shroud

Country Status (1)

Country Link
TW (1) TWI812468B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM389425U (en) * 2010-05-07 2010-09-21 yi-lin Zhu Heat-dissipation system
US9204576B2 (en) * 2012-09-14 2015-12-01 Cisco Technolgy, Inc. Apparatus, system, and method for configuring a system of electronic chassis
US10394294B2 (en) * 2016-08-25 2019-08-27 Microchip Technology Incorporated Predictive thermal control management using temperature and power sensors
CN107660093A (en) * 2017-11-26 2018-02-02 滁州市金凯达电器装饰有限公司 A kind of heat radiating type integrated form macromolecule control panel cover
CN217363665U (en) * 2022-05-20 2022-09-02 赣州有色冶金研究所有限公司 Heat dissipation device for electromechanical equipment

Similar Documents

Publication Publication Date Title
US8117012B2 (en) Method for determining cooling requirements of a computer system enclosure
Tang et al. Thermal-aware task scheduling to minimize energy usage of blade server based datacenters
US20070293137A1 (en) Acoustic noise reduction using airflow management
CN100562238C (en) Heat abstractor
US9995500B2 (en) Automated, adaptive ventilation for a data center
CN102262428A (en) Flow dividing type air guide cover
KR20200018342A (en) Fan expansion card and motherboard module
TW201328488A (en) Electronic device and airflow guider module thereof
US8747056B2 (en) Fan unit
WO2017063331A1 (en) Fan speed-adjustment policy for entire machine cabinet by placing fan table on node bmc
TWI812468B (en) Variable management control system of dissipation shroud
TW202415200A (en) Variable management control system of dissipation shroud
CN2826507Y (en) Computer with external radiator
CN115190734A (en) Heat sink device
CN110043499B (en) Intelligent fan speed regulating device
JP2010198185A (en) Cooling system, computer device, cooling fan control device, cooling fan control method, and cooling fan control program
US20070146993A1 (en) Method, apparatus and computer system for enhancement of thermal energy transfer
CN117707301A (en) Heat dissipation fan cover and multiple variation management control system thereof
CN112431780A (en) Method and system for regulating and controlling lower-layer fan of 4U storage server
JPH11135694A (en) Apparatus for cooling electronic apparatus
CN201413491Y (en) Heat radiating system and computer employing same
CN217718593U (en) Intelligent box and server
CN219625929U (en) Computer heat dissipation machine case
TWI715504B (en) Computer device
CN2689449Y (en) Radiators