TW202414978A - Power supply control circuit based on peak-valley value current mode - Google Patents

Power supply control circuit based on peak-valley value current mode Download PDF

Info

Publication number
TW202414978A
TW202414978A TW112136031A TW112136031A TW202414978A TW 202414978 A TW202414978 A TW 202414978A TW 112136031 A TW112136031 A TW 112136031A TW 112136031 A TW112136031 A TW 112136031A TW 202414978 A TW202414978 A TW 202414978A
Authority
TW
Taiwan
Prior art keywords
comparator
mos switch
control circuit
output
switch
Prior art date
Application number
TW112136031A
Other languages
Chinese (zh)
Inventor
解建章
張傑
Original Assignee
大陸商上海南芯半導體科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商上海南芯半導體科技股份有限公司 filed Critical 大陸商上海南芯半導體科技股份有限公司
Publication of TW202414978A publication Critical patent/TW202414978A/en

Links

Abstract

A power supply control circuit based on a peak-valley value current mode is provided. The power supply control circuit comprises a power level circuit, a differential amplifier, a first comparator, a Timer circuit, a logic control circuit, an output resistor, an output capacitor and a sampling resistor. An input terminal of the power-level circuit is connected with an input voltage, and an output terminal of the power-level circuit is connected with one terminal of the output resistor, one terminal of the output capacitor, one terminal of the sampling resistor and a reverse input terminal of the differential amplifier. One terminal of the sampling resistor is also connected with a positive input terminal of the first comparator. A positive input terminal of the differential amplifier is connected with a reference voltage, and an output terminal of the differential amplifier is connected with a reverse input terminal of the first comparator. An output terminal of the first comparator is connected with an input terminal of the logic control circuit. the input terminal of the logic control circuit is also connected with an output terminal of the Timer circuit, and an output terminal of the logic control circuit is connected with the power level circuit. An input terminal of the Timer circuit is connected with the input voltage and an output voltage.

Description

一種基於峰谷值電流模式的電源控制電路A power control circuit based on peak and valley current mode

本發明涉及電源管理技術領域,特別是涉及一種基於峰谷值電流模式的電源控制電路。The present invention relates to the field of power management technology, and in particular to a power control circuit based on a peak-valley current mode.

BUCK-BOOST是電感式開關升降壓DCDC電壓穩壓器的簡稱。其基本原理如圖1所示,開關ABCD和儲能電感IND組成了功率級電路,控制電路(Control Circuit)讓開關ABCD按著一定的時序交替工作,在保持輸出電壓VOUT恒定的同時,利用儲能電感IND將能量由輸入電壓VIN端搬移到輸出電壓VOUT端;與其它類型的DCDC穩壓器相比,BUCK-BOOST的輸出電壓VOUT可以大於、小於或等於輸入電壓VIN。該技術在電池供電的應用場景中得到了廣泛的應用。BUCK-BOOST is the abbreviation of inductive switch buck-boost DCDC voltage regulator. Its basic principle is shown in Figure 1. Switch ABCD and energy storage inductor IND form a power stage circuit. The control circuit allows switch ABCD to work alternately in a certain sequence. While keeping the output voltage VOUT constant, the energy is moved from the input voltage VIN to the output voltage VOUT by using the energy storage inductor IND. Compared with other types of DCDC regulators, the output voltage VOUT of BUCK-BOOST can be greater than, less than or equal to the input voltage VIN. This technology has been widely used in battery-powered application scenarios.

在VIN大於VOUT,且VIN與VOUT的差值超出閾值範圍時,開關D保持長導通,開關C保持長關斷,開關A和開關B交替導通,BUCK-BOOST工作在簡單的降壓模式(BUCK模式);在VIN小於VOUT,且VIN與VOUT的差值超出閾值範圍時,開關A保持長導通、開關B保持長關斷、開關C和開關D交替導通,BUCK-BOOST工作在簡單的升壓模式(BOOST模式)。降壓模式和升壓模式都只有在一定的VOUT/VIN比例範圍內才能正常工作,當VIN接近VOUT時,需要設計特殊的升降壓模式(BUCK-BOOST模式),讓開關ABCD配合工作,才能實現VOUT的恒定。When VIN is greater than VOUT, and the difference between VIN and VOUT exceeds the threshold range, switch D remains on for a long time, switch C remains off for a long time, switches A and B are turned on alternately, and BUCK-BOOST works in a simple buck mode (BUCK mode); when VIN is less than VOUT, and the difference between VIN and VOUT exceeds the threshold range, switch A remains on for a long time, switch B remains off for a long time, switches C and D are turned on alternately, and BUCK-BOOST works in a simple boost mode (BOOST mode). Both the buck mode and the boost mode can only work normally within a certain VOUT/VIN ratio range. When VIN is close to VOUT, a special buck-boost mode (BUCK-BOOST mode) needs to be designed to allow switches ABCD to work together to achieve a constant VOUT.

現有方案是在BUCK模式和BUCK-BOOST模式的切換點附近,BUCK模式時,向VOUT端輸出的電流均值小於環路實際控制的峰值電流;BUCK-BOOST模式時,向VOUT端輸出的電流均值大於環路實際控制的峰值電流。在進行模式切換時,環路的工作點不能突變,導致BUCK模式切換到BUCK-BOOST模式時在VOUT端出現電壓上沖;BUCK-BOOST模式切換到BUCK模式時在VOUT端出現電壓下沖。The existing solution is that near the switching point between BUCK mode and BUCK-BOOST mode, in BUCK mode, the average current output to the VOUT end is less than the peak current actually controlled by the loop; in BUCK-BOOST mode, the average current output to the VOUT end is greater than the peak current actually controlled by the loop. When switching modes, the operating point of the loop cannot change suddenly, resulting in a voltage overshoot at the VOUT end when the BUCK mode switches to the BUCK-BOOST mode; and a voltage undershoot at the VOUT end when the BUCK-BOOST mode switches to the BUCK mode.

為了解決上述問題,本發明提供了一種基於峰谷值電流模式的電源控制電路。In order to solve the above problems, the present invention provides a power control circuit based on the peak-valley current mode.

為實現上述目的,本發明提供了如下方案: 一種基於峰谷值電流模式的電源控制電路,包括:功率級電路、差分放大器、第一比較器、計時器Timer電路、邏輯控制電路、輸出電阻、輸出電容以及取樣電阻; 所述功率級電路的輸入端接輸入電壓,所述功率級電路的輸出端分別與所述輸出電阻的一端、所述輸出電容的一端、所述取樣電阻的一端以及所述差分放大器的反向輸入端連接;所述輸出電阻的另一端以及所述輸出電容的另一端接地;所述取樣電阻的一端還與所述第一比較器的正向輸入端連接,所述取樣電阻的另一端接地;所述差分放大器的正向輸入端接參考電壓,所述差分放大器的輸出端與所述第一比較器的反向輸入端連接;所述第一比較器的輸出端與所述邏輯控制電路的輸入端連接;所述邏輯控制電路的輸入端還與所述計時器Timer電路的輸出端連接,所述邏輯控制電路的輸出端與所述功率級電路連接;所述計時器Timer電路的輸入端接輸入電壓和輸出電壓。 To achieve the above purpose, the present invention provides the following scheme: A power control circuit based on the peak-valley current mode, comprising: a power stage circuit, a differential amplifier, a first comparator, a timer circuit, a logic control circuit, an output resistor, an output capacitor and a sampling resistor; The input end of the power stage circuit is connected to the input voltage, and the output end of the power stage circuit is respectively connected to one end of the output resistor, one end of the output capacitor, one end of the sampling resistor and the reverse input end of the differential amplifier; the other end of the output resistor and the other end of the output capacitor are grounded; one end of the sampling resistor is also connected to the positive input end of the first comparator, and the other end of the sampling resistor is grounded; the differential amplifier The positive input terminal of the differential amplifier is connected to the reference voltage, the output terminal of the differential amplifier is connected to the negative input terminal of the first comparator; the output terminal of the first comparator is connected to the input terminal of the logic control circuit; the input terminal of the logic control circuit is also connected to the output terminal of the timer circuit, and the output terminal of the logic control circuit is connected to the power stage circuit; the input terminal of the timer circuit is connected to the input voltage and the output voltage.

可選地,所述功率級電路包括第一MOS開關、第二MOS開關、第三MOS開關、第四MOS開關以及儲能電感; 所述第一MOS開關的源極為所述功率級電路的輸入端,所述第一MOS開關的漏極分別與所述第二MOS開關的漏極以及所述儲能電感的一端連接;所述第二MOS開關的源極接地;所述儲能電感的另一端分別與所述第三MOS開關的漏極以及所述第四MOS開關的漏極連接;所述第三MOS開關的源極接地;所述第四MOS開關的源極為所述功率級電路的輸出端;所述第二MOS開關的漏極以及所述第三MOS開關的漏極還與所述取樣電阻的一端連接;所述第一MOS開關的柵極、所述第二MOS開關的柵極、所述第三MOS開關的柵極以及所述第四MOS開關的柵極均與所述邏輯控制電路的輸出端連接。 Optionally, the power stage circuit includes a first MOS switch, a second MOS switch, a third MOS switch, a fourth MOS switch and an energy storage inductor; The source of the first MOS switch is the input end of the power stage circuit, the drain of the first MOS switch is respectively connected to the drain of the second MOS switch and one end of the energy storage inductor; the source of the second MOS switch is grounded; the other end of the energy storage inductor is respectively connected to the drain of the third MOS switch and the drain of the fourth MOS switch; the source of the third MOS switch is grounded; the source of the fourth MOS switch is the output end of the power stage circuit; the drain of the second MOS switch and the drain of the third MOS switch are also connected to one end of the sampling resistor; the gate of the first MOS switch, the gate of the second MOS switch, the gate of the third MOS switch and the gate of the fourth MOS switch are all connected to the output end of the logic control circuit.

可選地,所述計時器Timer電路包括第二比較器、第三比較器、第四比較器以及及閘; 所述第二比較器的正向輸入端接所述輸出電壓,所述第二比較器的反向輸入端接所述輸入電壓,所述第二比較器的輸出端與所述邏輯控制電路的輸入端連接;所述第三比較器的正向輸入端接所述輸出電壓,所述第三比較器的反向輸入端接所述輸入電壓,所述第三比較器的輸出端與所述及閘的第一輸入端連接;所述第四比較器的正向輸入端接所述輸入電壓,所述第四比較器的反向輸入端接所述輸出電壓,所述第四比較器的輸出端與所述及閘的第二輸入端連接;所述及閘的輸出端與所述邏輯控制電路的輸入端連接。 Optionally, the timer circuit includes a second comparator, a third comparator, a fourth comparator and an AND gate; The positive input terminal of the second comparator is connected to the output voltage, the reverse input terminal of the second comparator is connected to the input voltage, and the output terminal of the second comparator is connected to the input terminal of the logic control circuit; the positive input terminal of the third comparator is connected to the output voltage, the reverse input terminal of the third comparator is connected to the input voltage, and the output terminal of the third comparator is connected to the first input terminal of the AND gate; the positive input terminal of the fourth comparator is connected to the input voltage, the reverse input terminal of the fourth comparator is connected to the output voltage, and the output terminal of the fourth comparator is connected to the second input terminal of the AND gate; the output terminal of the AND gate is connected to the input terminal of the logic control circuit.

可選地,當VIN大於VOUT,且VIN與VOUT的差值超出閾值範圍時,所述電源控制電路工作在BUCK模式,所述取樣電阻、所述第一比較器以及所述差分放大器構成谷值電流模式環路; 當VIN小於VOUT,且VIN與VOUT的差值超出閾值範圍時,所述電源控制電路工作在BOOST模式,所述取樣電阻、所述第一比較器以及所述差分放大器構成峰值電流模式環路; 當VIN與VOUT的差值在閾值範圍內時,所述電源控制電路工作在BUCK-BOOST模式,所述取樣電阻、所述第一比較器以及所述差分放大器構成峰值電流模式環路; 其中,VIN為輸入電壓,VOUT為輸出電壓。 Optionally, when VIN is greater than VOUT and the difference between VIN and VOUT exceeds the threshold range, the power control circuit operates in BUCK mode, and the sampling resistor, the first comparator and the differential amplifier form a valley current mode loop; When VIN is less than VOUT and the difference between VIN and VOUT exceeds the threshold range, the power control circuit operates in BOOST mode, and the sampling resistor, the first comparator and the differential amplifier form a peak current mode loop; When the difference between VIN and VOUT is within the threshold range, the power control circuit operates in BUCK-BOOST mode, and the sampling resistor, the first comparator and the differential amplifier form a peak current mode loop; Wherein, VIN is the input voltage and VOUT is the output voltage.

可選地,當所述電源控制電路工作在BUCK模式時,由所述第三比較器計算所述第一MOS開關和所述第四MOS開關共同導通的時間,由所述谷值電流模式環路決定所述第二MOS開關和所述第四MOS開關共同導通的時間; 當所述電源控制電路工作在BOOST模式時,由所述第四比較器計算所述第一MOS開關和所述第四MOS開關共同導通的時間;由所述峰值電流模式環路決定所述第一MOS開關和所述第三MOS開關共同導通的時間; 當所述電源控制電路工作在BUCK-BOOST模式時,由所述第二比較器計算所述第二MOS開關和所述第四MOS開關共同導通的時間;由所述第三比較器和所述第四比較器計算所述第一MOS開關和所述第四MOS開關共同導通的時間;由所述峰值電流模式環路決定所述第一MOS開關和所述第三MOS開關共同導通的時間。 Optionally, when the power control circuit operates in BUCK mode, the third comparator calculates the time when the first MOS switch and the fourth MOS switch are turned on together, and the valley current mode loop determines the time when the second MOS switch and the fourth MOS switch are turned on together; When the power control circuit operates in BOOST mode, the fourth comparator calculates the time when the first MOS switch and the fourth MOS switch are turned on together; the peak current mode loop determines the time when the first MOS switch and the third MOS switch are turned on together; When the power control circuit operates in the BUCK-BOOST mode, the second comparator calculates the time when the second MOS switch and the fourth MOS switch are turned on together; the third comparator and the fourth comparator calculate the time when the first MOS switch and the fourth MOS switch are turned on together; and the peak current mode loop determines the time when the first MOS switch and the third MOS switch are turned on together.

根據本發明提供的具體實施例,本發明公開了以下技術效果: 本發明提供的電源控制電路在BUCK模式時採用自我調整on time谷值電流模式控制,在BUCK-BOOST模式和BOOST模式採用自我調整off time峰值電流模式控制,從而避免了模式切換時,由於環路的工作點不能突變而引起的輸出電壓下沖和過沖問題。 According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects: The power control circuit provided by the present invention adopts self-adjusting on time valley current mode control in BUCK mode, and self-adjusting off time peak current mode control in BUCK-BOOST mode and BOOST mode, thereby avoiding the output voltage undershoot and overshoot problems caused by the inability of the loop working point to change suddenly when the mode is switched.

下面將結合本發明實施例中的附圖,對本發明實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例僅僅是本發明一部分實施例,而不是全部的實施例。基於本發明中的實施例,本領域普通技術人員在沒有做出創造性勞動前提下所獲得的所有其他實施例,都屬於本發明保護的範圍。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative labor are within the scope of protection of the present invention.

為使本發明的上述目的、特徵和優點能夠更加明顯易懂,下面結合附圖和具體實施方式對本發明作進一步詳細的說明。In order to make the above-mentioned objects, features and advantages of the present invention more clearly understood, the present invention is further described in detail below with reference to the accompanying drawings and specific embodiments.

如圖2所示,本實施例提供的基於峰谷值電流模式的電源控制電路,包括:功率級電路(虛線框部分)、差分放大器Gm、第一比較器COMP1、計時器Timer電路、邏輯控制電路Logic、輸出電阻Rout、輸出電容Cout以及取樣電阻Rsns。As shown in FIG2 , the power control circuit based on the peak-valley current mode provided in this embodiment includes: a power stage circuit (dashed frame portion), a differential amplifier Gm, a first comparator COMP1, a timer Timer circuit, a logic control circuit Logic, an output resistor Rout, an output capacitor Cout, and a sampling resistor Rsns.

功率級電路的輸入端接輸入電壓VIN,功率級電路的輸出端分別與輸出電阻Rout的一端、輸出電容Cout的一端、取樣電阻Rsns的一端以及差分放大器Gm的反向輸入端連接;輸出電阻Rout的另一端以及輸出電容Cout的另一端接地;取樣電阻Rsns的一端還與第一比較器COMP1的正向輸入端連接,取樣電阻Rsns的另一端接地;差分放大器Gm的正向輸入端接參考電壓VREF,差分放大器Gm的輸出端與第一比較器COMP1的反向輸入端連接;第一比較器COMP1的輸出端與邏輯控制電路Logic的輸入端連接;邏輯控制電路Logic的輸入端還與Timer電路的輸出端連接,邏輯控制電路Logic的輸出端與功率級電路連接;Timer電路的輸入端接輸入電壓VIN和輸出電壓VOUT。The input end of the power stage circuit is connected to the input voltage VIN, and the output end of the power stage circuit is respectively connected to one end of the output resistor Rout, one end of the output capacitor Cout, one end of the sampling resistor Rsns, and the reverse input end of the differential amplifier Gm; the other end of the output resistor Rout and the other end of the output capacitor Cout are grounded; one end of the sampling resistor Rsns is also connected to the positive input end of the first comparator COMP1, and the other end of the sampling resistor Rsns is grounded; the differential amplifier G The positive input terminal of m is connected to the reference voltage VREF, the output terminal of the differential amplifier Gm is connected to the negative input terminal of the first comparator COMP1; the output terminal of the first comparator COMP1 is connected to the input terminal of the logic control circuit Logic; the input terminal of the logic control circuit Logic is also connected to the output terminal of the Timer circuit, and the output terminal of the logic control circuit Logic is connected to the power stage circuit; the input terminal of the Timer circuit is connected to the input voltage VIN and the output voltage VOUT.

如圖2所示,本實施例提供的功率級電路包括第一MOS開關A、第二MOS開關B、第三MOS開關C、第四MOS開關D以及儲能電感IND。第一MOS開關A的源極為功率級電路的輸入端,第一MOS開關A的漏極分別與第二MOS開關B的漏極以及儲能電感IND的一端連接;第二MOS開關B的源極接地;儲能電感IND的另一端分別與第三MOS開關C的漏極以及第四MOS開關D的漏極連接;第三MOS開關C的源極接地;第四MOS開關D的源極為功率級電路的輸出端;第二MOS開關B的漏極以及第三MOS開關C的漏極還與取樣電阻Rsns一端連接,第二MOS開關B的漏極為切換點(SW1),第三MOS開關C的漏極為切換點2(SW2);第一MOS開關A的柵極、第二MOS開關B的柵極、第三MOS開關C的柵極以及第四MOS開關D的柵極均與邏輯控制電路Logic的輸出端連接。As shown in FIG2 , the power stage circuit provided in this embodiment includes a first MOS switch A, a second MOS switch B, a third MOS switch C, a fourth MOS switch D, and an energy storage inductor IND. The source of the first MOS switch A is the input end of the power stage circuit, and the drain of the first MOS switch A is connected to the drain of the second MOS switch B and one end of the energy storage inductor IND respectively; the source of the second MOS switch B is grounded; the other end of the energy storage inductor IND is connected to the drain of the third MOS switch C and the drain of the fourth MOS switch D respectively; the source of the third MOS switch C is grounded; the source of the fourth MOS switch D is the output end of the power stage circuit. end; the drain of the second MOS switch B and the drain of the third MOS switch C are also connected to one end of the sampling resistor Rsns, the drain of the second MOS switch B is the switching point (SW1), and the drain of the third MOS switch C is the switching point 2 (SW2); the gate of the first MOS switch A, the gate of the second MOS switch B, the gate of the third MOS switch C, and the gate of the fourth MOS switch D are all connected to the output end of the logic control circuit Logic.

如圖3所示,本實施提供的Timer電路包括第二比較器COMPA、第三比較器COMPB、第四比較器COMPC以及及閘。As shown in FIG. 3 , the Timer circuit provided by this embodiment includes a second comparator COMPA, a third comparator COMPB, a fourth comparator COMPC, and an AND gate.

第二比較器COMPA的正向輸入端接輸出電壓VOUT,第二比較器COMPA的反向輸入端接輸入電壓VIN、第一開關S1和第一電容C1,第二比較器COMPA的反向輸入端接的第一電流I1=輸入電壓VIN/第一電阻R1,第二比較器COMPA的輸出端與邏輯控制電路Logic的輸入端連接;第三比較器COMPB的正向輸入端接輸出電壓VOUT,第三比較器COMPB的反向輸入端接輸入電壓VIN、第二開關S2、第二電阻R2和第二電容C2,第三比較器COMPB的輸出端與及閘的第一輸入端連接;第四比較器COMPC的正向輸入端接輸入電壓VIN,第四比較器COMPC的反向輸入端接輸出電壓VOUT、第三開關S3、第二電阻R2和第二電容C2,第四比較器COMPC的輸出端與及閘的第二輸入端連接;及閘的輸出端與邏輯控制電路Logic的輸入端連接。The positive input terminal of the second comparator COMPA is connected to the output voltage VOUT, the reverse input terminal of the second comparator COMPA is connected to the input voltage VIN, the first switch S1 and the first capacitor C1, the reverse input terminal of the second comparator COMPA is connected to the first current I1=input voltage VIN/first resistor R1, the output terminal of the second comparator COMPA is connected to the input terminal of the logic control circuit Logic; the positive input terminal of the third comparator COMPB is connected to the output voltage VOUT, the reverse input terminal of the third comparator COMPB is connected to the input voltage VOUT, and the reverse input terminal of the third comparator COMPB is connected to the input voltage VIN. The input voltage VIN, the second switch S2, the second resistor R2 and the second capacitor C2 are connected, and the output terminal of the third comparator COMPB is connected to the first input terminal of the AND gate; the positive input terminal of the fourth comparator COMPC is connected to the input voltage VIN, the reverse input terminal of the fourth comparator COMPC is connected to the output voltage VOUT, the third switch S3, the second resistor R2 and the second capacitor C2, and the output terminal of the fourth comparator COMPC is connected to the second input terminal of the AND gate; the output terminal of the AND gate is connected to the input terminal of the logic control circuit Logic.

本實施例提供的電源控制電路的工作原理如下:參考電壓VREF和VOUT的電壓回饋信號VFB通過差分放大後產生電流控制信號Vc,電感電流在開關B和開關C處取樣,流經Rsns後產生電感電流取樣信號VSNS;VSNS和Vc進行比較,產生脈衝寬度調變信號PWM;Timer電路通過監測VIN和VOUT電壓,產生T1信號(第二比較器COMPA的輸出信號)和T2信號(及閘的輸出信號);PWM、T1信號和T2信號共同控制開關A、B、C、D,實現VOUT的穩壓。The working principle of the power control circuit provided in this embodiment is as follows: the reference voltage VREF and the voltage feedback signal VFB of VOUT are differentially amplified to generate a current control signal Vc, the inductor current is sampled at switch B and switch C, and generates an inductor current sampling signal VSNS after flowing through Rsns; VSNS is compared with Vc to generate a pulse width modulation signal PWM; the Timer circuit generates a T1 signal (the output signal of the second comparator COMPA) and a T2 signal (the output signal of the AND gate) by monitoring the VIN and VOUT voltages; the PWM, T1 signal and T2 signal jointly control switches A, B, C, and D to achieve voltage regulation of VOUT.

T1信號和T2信號的產生電路如圖3所示。當VIN大於VOUT,且VIN與VOUT的差值超出閾值範圍,本實施例提供的電源控制電路工作在BUCK模式,由第三比較器COMPB構成的電路計算開關A和開關D共同導通的時間;由谷值電流模式環路決定開關B和開關D共同導通的時間。其中,取樣電阻Rsns、第一比較器COMP1以及差分放大器Gm構成谷值電流模式環路。當VIN小於VOUT,且VIN與VOUT的差值超出閾值範圍,本實施例提供的電源控制電路工作在BOOST模式,由第四比較器COMPC構成的電路計算開關A和開關D共同導通的時間;由峰值電流模式環路決定開關A和開關C共同導通的時間。其中,取樣電阻Rsns、第一比較器COMP1以及差分放大器Gm構成峰值電流模式環路。當VIN接近VOUT時,本實施例提供的電源控制電路工作在BUCK-BOOST模式,由第二比較器COMPA構成的電路計算開關B和開關D共同導通的時間;由第三比較器COMPB和第四比較器COMPC構成的電路計算開關A和開關D共同導通的時間;由峰值電流模式環路決定開關A和開關C共同導通的時間。其中,取樣電阻Rsns、第一比較器COMP1以及差分放大器Gm構成峰值電流模式環路。The circuit for generating the T1 signal and the T2 signal is shown in FIG3. When VIN is greater than VOUT, and the difference between VIN and VOUT exceeds the threshold range, the power control circuit provided in the present embodiment operates in the BUCK mode, and the circuit formed by the third comparator COMPB calculates the time when switch A and switch D are turned on together; the valley current mode loop determines the time when switch B and switch D are turned on together. Among them, the sampling resistor Rsns, the first comparator COMP1 and the differential amplifier Gm constitute the valley current mode loop. When VIN is less than VOUT, and the difference between VIN and VOUT exceeds the threshold range, the power control circuit provided in the present embodiment operates in the BOOST mode, and the circuit formed by the fourth comparator COMPC calculates the time when switch A and switch D are turned on together; the peak current mode loop determines the time when switch A and switch C are turned on together. The sampling resistor Rsns, the first comparator COMP1 and the differential amplifier Gm form a peak current mode loop. When VIN is close to VOUT, the power control circuit provided by the present embodiment operates in the BUCK-BOOST mode, the circuit formed by the second comparator COMPA calculates the time when the switch B and the switch D are turned on together; the circuit formed by the third comparator COMPB and the fourth comparator COMPC calculates the time when the switch A and the switch D are turned on together; the peak current mode loop determines the time when the switch A and the switch C are turned on together. The sampling resistor Rsns, the first comparator COMP1 and the differential amplifier Gm form a peak current mode loop.

T1信號和T2信號都隨著VIN和VOUT自我調整的調整,本實施例提供的電源控制電路會根據T1信號和T2信號的值自動調整開關A和開關C的共同導通時間,或,開關B和開關D的共同導通時間,使得儲能電感IND的充放電保持平衡。依靠自我調整關斷時間(off time)的峰值電流模式環路或自我調整導通時間(on time)的谷值電流模式環路,本實施例提供的電源控制電路在全電壓範圍內開關頻率幾乎保持不變。The T1 signal and the T2 signal are adjusted along with the self-regulation of VIN and VOUT. The power control circuit provided by the present embodiment will automatically adjust the common conduction time of switch A and switch C, or the common conduction time of switch B and switch D according to the values of the T1 signal and the T2 signal, so that the charge and discharge of the energy storage inductor IND are balanced. Relying on the peak current mode loop with self-adjustment of the off time or the valley current mode loop with self-adjustment of the on time, the power control circuit provided by the present embodiment keeps the switching frequency almost unchanged in the full voltage range.

本實施例提供的電源控制電路在BUCK模式時採用自我調整on time谷值電流模式控制,在BUCK-BOOST模式和BOOST模式採用自我調整off time峰值電流模式控制。避免了模式切換時,由於環路的工作點不能突變而引起的輸出電壓下沖和過沖問題。The power control circuit provided in this embodiment adopts self-adjusting on time valley current mode control in BUCK mode, and self-adjusting off time peak current mode control in BUCK-BOOST mode and BOOST mode, thereby avoiding the output voltage undershoot and overshoot problems caused by the inability of the loop operating point to change suddenly when switching between modes.

圖4為BUCK工作模式下,開關信號和電感電流信號I L的時序圖。如圖4所示,當VIN大於VOUT,且VIN與VOUT的差值超出閾值範圍時,本實施例提供的電源控制電路工作在谷值電流模式BUCK模式,開關C關斷,開關D保持長通。每個開關週期的開始開關A導通,開關B關斷,電感電流隨時間而線性增加,同時Timer電路開始計時。當到達預設的時間後,T2信號將開關A關斷,開關B導通,電感電流隨時間而線性降低。當電感電流取樣信號VSNS達到Vc設定的谷值時,PWM將開關B關斷,開關A導通,從而進入下一個開關週期。 FIG4 is a timing diagram of the switch signal and the inductor current signal IL in the BUCK working mode. As shown in FIG4, when VIN is greater than VOUT and the difference between VIN and VOUT exceeds the threshold range, the power control circuit provided in the present embodiment operates in the valley current mode BUCK mode, switch C is turned off, and switch D remains on. At the beginning of each switching cycle, switch A is turned on, switch B is turned off, and the inductor current increases linearly with time, and the Timer circuit starts timing. When the preset time is reached, the T2 signal turns off switch A and turns on switch B, and the inductor current decreases linearly with time. When the inductor current sampling signal VSNS reaches the valley value set by Vc, PWM turns off switch B and turns on switch A, thereby entering the next switching cycle.

圖5A與圖5B為BUCK-BOOST工作模式下,開關信號和電感電流信號I L的時序圖,其中圖5A為VIN>=VOUT時的開關信號和電感電流信號I L的時序圖,圖5B為VIN<=VOUT時的開關信號和電感電流信號I L的時序圖。如圖5A與圖5B 所示,當VIN接近VOUT(即VIN與VOUT的差值在閾值範圍內),無論是VIN>=VOUT還是VIN<=VOUT,本實施例提供的電源控制電路都工作在相同的BUCK-BOOST模式。每個開關週期的開始時開關A和開關C導通,開關B和開關D關斷,電感電流隨時間而線性增加。當電感電流取樣信號VSNS達到Vc設定的峰值時,PWM將開關C關斷,開關D導通。同時Timer電路開始計時,當到達預設的時間後,T2信號將開關A關斷,開關B導通。同時Timer電路開始計時,當到達預設的時間後,T1信號將開關B和開關D關斷,開關A和開關C導通,本實施例提供的電源控制電路進入下一個開關週期。 FIG5A and FIG5B are timing diagrams of the switch signal and the inductor current signal IL in the BUCK-BOOST working mode, wherein FIG5A is a timing diagram of the switch signal and the inductor current signal IL when VIN>=VOUT, and FIG5B is a timing diagram of the switch signal and the inductor current signal IL when VIN<=VOUT. As shown in FIG5A and FIG5B, when VIN is close to VOUT (i.e., the difference between VIN and VOUT is within the threshold range), whether VIN>=VOUT or VIN<=VOUT, the power control circuit provided in this embodiment works in the same BUCK-BOOST mode. At the beginning of each switching cycle, switch A and switch C are turned on, switch B and switch D are turned off, and the inductor current increases linearly with time. When the inductor current sampling signal VSNS reaches the peak value set by Vc, PWM turns off switch C and turns on switch D. At the same time, the Timer circuit starts timing. When the preset time is reached, the T2 signal turns off switch A and turns on switch B. At the same time, the Timer circuit starts timing. When the preset time is reached, the T1 signal turns off switches B and D, and turns on switches A and C, and the power control circuit provided by this embodiment enters the next switching cycle.

圖6為BOOST工作模式下,開關信號和電感電流信號I L的時序圖。如圖6所示,當VIN小於VOUT,且VIN與VOUT的差值超出閾值範圍時,本實施例提供的電源控制電路工作在峰值電流模式BOOST模式,開關A在每個開關週期保持常通,開關B在每個開關週期保持常關。每個開關週期的開始將開關C導通,開關D關斷。電感電流隨時間而線性增加,當電感電流取樣信號VSNS達到Vc設定的峰值時,PWM將開關C關斷,開關D導通。同時Timer電路開始計時,當到達預設的時間後,T2信號將開關D關斷,開關C導通,從而進入下一個開關週期。 FIG6 is a timing diagram of the switch signal and the inductor current signal IL in the BOOST working mode. As shown in FIG6, when VIN is less than VOUT and the difference between VIN and VOUT exceeds the threshold range, the power control circuit provided in the present embodiment works in the peak current mode BOOST mode, and switch A remains normally on in each switching cycle, and switch B remains normally off in each switching cycle. At the beginning of each switching cycle, switch C is turned on and switch D is turned off. The inductor current increases linearly with time. When the inductor current sampling signal VSNS reaches the peak value set by Vc, PWM turns off switch C and turns on switch D. At the same time, the Timer circuit starts timing. When the preset time is reached, the T2 signal turns off switch D and turns on switch C, thereby entering the next switching cycle.

BUCK模式和BUCK-BOOST模式切換時的波形如圖7所示。在相同條件下,對比現有技術的瞬態波形,VOUT的變化大幅度減小。The waveforms when switching between BUCK mode and BUCK-BOOST mode are shown in Figure 7. Under the same conditions, compared with the transient waveform of the existing technology, the change of VOUT is greatly reduced.

本文中應用了具體個例對本發明的原理及實施方式進行了闡述,以上實施例的說明只是用於幫助理解本發明的方法及其核心思想;同時,對於本領域的一般技術人員,依據本發明的思想,在具體實施方式及應用範圍上均會有改變之處。綜上,本說明書內容不應理解為對本發明的限制。This article uses specific examples to illustrate the principles and implementation methods of the present invention. The above examples are only used to help understand the method and core ideas of the present invention. At the same time, for ordinary technicians in this field, according to the ideas of the present invention, there will be changes in the specific implementation methods and application scope. In general, the content of this specification should not be understood as limiting the present invention.

A:第一MOS開關/開關 B:第二MOS開關/開關 C:第三MOS開關/開關 D:第四MOS開關/開關 COMP1:第一比較器 COMPA:第二比較器 COMPB:第三比較器 COMPC:第四比較器 C1:第一電容 C2:第二電容 Cout:輸出電容 Gm:差分放大器 IND:儲能電感 I1:第一電流 I L:電感電流信號 Logic:邏輯控制電路 PWM:脈衝寬度調變信號 R1:第一電阻 R2:第二電阻 Rsns:取樣電阻 S1:第一開關 S2:第二開關 S3:第三開關 SW1:切換點1 SW2:切換點2 T1、T2:信號 Timer:計時器電路 Vc:控制信號 VFB:電壓回饋信號 VIN:輸入電壓 VREF:參考電壓 VSNS:電感電流取樣信號 VOUT:輸出電壓 Rout:輸出電阻 A: First MOS switch/switch B: Second MOS switch/switch C: Third MOS switch/switch D: Fourth MOS switch/switch COMP1: First comparator COMPA: Second comparator COMPB: Third comparator COMPC: Fourth comparator C1: First capacitor C2: Second capacitor Cout: Output capacitor Gm: Differential amplifier IND: Energy storage inductor I1: First current I L : Inductor current signal Logic: Logic control circuit PWM: Pulse width modulation signal R1: First resistor R2: Second resistor Rsns: Sampling resistor S1: First switch S2: Second switch S3: Third switch SW1: Switching point 1 SW2: Switching point 2 T1, T2: signal Timer: timer circuit Vc: control signal VFB: voltage feedback signal VIN: input voltage VREF: reference voltage VSNS: inductor current sampling signal VOUT: output voltage Rout: output resistance

為了更清楚地說明本發明實施例或現有技術中的技術方案,下面將對實施例中所需要使用的附圖作簡單地介紹,顯而易見地,下面描述中的附圖僅僅是本發明的一些實施例,對於本領域普通技術人員來講,在不付出創造性勞動性的前提下,還可以根據這些附圖獲得其他的附圖。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technical personnel in this field, other drawings can be obtained based on these drawings without paying creative labor.

圖1為BUCK-BOOST的原理圖。 圖2為本發明提供的基於峰谷值電流模式的電源控制電路的示意圖。 圖3為本發明提供的計時器Timer電路的示意圖。 圖4為BUCK工作模式下,開關信號和電感電流信號的時序圖。 圖5A與圖5B為BUCK-BOOST工作模式下,開關信號和電感電流信號的時序圖。 圖6為BOOST工作模式下,開關信號和電感電流信號的時序圖。 圖7為BUCK模式和BUCK-BOOST模式切換時的波形圖。 Figure 1 is a schematic diagram of BUCK-BOOST. Figure 2 is a schematic diagram of a power control circuit based on a peak-valley current mode provided by the present invention. Figure 3 is a schematic diagram of a timer circuit provided by the present invention. Figure 4 is a timing diagram of a switch signal and an inductor current signal in BUCK working mode. Figures 5A and 5B are timing diagrams of a switch signal and an inductor current signal in BUCK-BOOST working mode. Figure 6 is a timing diagram of a switch signal and an inductor current signal in BOOST working mode. Figure 7 is a waveform diagram when switching between BUCK mode and BUCK-BOOST mode.

A:第一MOS開關 A: First MOS switch

B:第二MOS開關 B: Second MOS switch

C:第三MOS開關 C: Third MOS switch

D:第四MOS開關 D: Fourth MOS switch

COMP1:第一比較器 COMP1: First comparator

Cout:輸出電容 Cout: output capacitance

Gm:差分放大器 Gm: Differential amplifier

IND:儲能電感 IND: Energy storage inductor

Logic:邏輯控制電路 Logic: logic control circuit

PWM:脈衝寬度調變信號 PWM: Pulse Width Modulation Signal

Rsns:取樣電阻 Rsns: sampling resistor

SW1:切換點1 SW1: Switch point 1

SW2:切換點2 SW2: Switch point 2

T1、T2:信號 T1, T2: signal

Timer:計時器電路 Timer: Timer circuit

Vc:控制信號 Vc: control signal

VFB:電壓回饋信號 VFB: voltage feedback signal

VIN:輸入電壓 VIN: Input voltage

VREF:參考電壓 VREF: reference voltage

VSNS:電感電流取樣信號 VSNS: Inductor current sampling signal

VOUT:輸出電壓 VOUT: output voltage

Rout:輸出電阻 Rout: output resistance

Claims (7)

一種基於峰谷值電流模式的電源控制電路,包括:功率級電路、差分放大器、第一比較器、計時器Timer電路、邏輯控制電路以及取樣電阻; 所述功率級電路的輸入端接輸入電壓,所述功率級電路的輸出端分別與所述取樣電阻的一端以及所述差分放大器的反向輸入端連接;所述取樣電阻的一端還與所述第一比較器的正向輸入端連接,所述取樣電阻的另一端接地;所述差分放大器的正向輸入端接參考電壓,所述差分放大器的輸出端與所述第一比較器的反向輸入端連接;所述第一比較器的輸出端與所述邏輯控制電路的輸入端連接;所述邏輯控制電路的輸入端還與所述計時器Timer電路的輸出端連接,所述邏輯控制電路的輸出端與所述功率級電路連接;所述計時器Timer電路的輸入端接輸入電壓和輸出電壓。 A power control circuit based on a peak-valley current mode includes: a power stage circuit, a differential amplifier, a first comparator, a timer circuit, a logic control circuit, and a sampling resistor; The input end of the power stage circuit is connected to the input voltage, and the output end of the power stage circuit is respectively connected to one end of the sampling resistor and the reverse input end of the differential amplifier; one end of the sampling resistor is also connected to the positive input end of the first comparator, and the other end of the sampling resistor is grounded; the positive input end of the differential amplifier is connected to the reference voltage, and the output end of the differential amplifier is connected to the reverse input end of the first comparator; the output end of the first comparator is connected to the input end of the logic control circuit; the input end of the logic control circuit is also connected to the output end of the timer circuit, and the output end of the logic control circuit is connected to the power stage circuit; the input end of the timer circuit is connected to the input voltage and the output voltage. 如請求項1所述的基於峰谷值電流模式的電源控制電路,其中,所述功率級電路包括第一MOS開關、第二MOS開關、第三MOS開關、第四MOS開關以及儲能電感; 所述第一MOS開關的源極為所述功率級電路的輸入端,所述第一MOS開關的漏極分別與所述第二MOS開關的漏極以及所述儲能電感的一端連接;所述第二MOS開關的源極接地;所述儲能電感的另一端分別與所述第三MOS開關的漏極以及所述第四MOS開關的漏極連接;所述第三MOS開關的源極接地;所述第四MOS開關的源極為所述功率級電路的輸出端;所述第二MOS開關的漏極以及所述第三MOS開關的漏極還與所述取樣電阻的一端連接;所述第一MOS開關的柵極、所述第二MOS開關的柵極、所述第三MOS開關的柵極以及所述第四MOS開關的柵極均與所述邏輯控制電路的輸出端連接。 A power control circuit based on a peak-valley current mode as described in claim 1, wherein the power stage circuit includes a first MOS switch, a second MOS switch, a third MOS switch, a fourth MOS switch and an energy storage inductor; The source of the first MOS switch is the input end of the power stage circuit, the drain of the first MOS switch is respectively connected to the drain of the second MOS switch and one end of the energy storage inductor; the source of the second MOS switch is grounded; the other end of the energy storage inductor is respectively connected to the drain of the third MOS switch and the drain of the fourth MOS switch; the source of the third MOS switch is grounded; the source of the fourth MOS switch is the output end of the power stage circuit; the drain of the second MOS switch and the drain of the third MOS switch are also connected to one end of the sampling resistor; the gate of the first MOS switch, the gate of the second MOS switch, the gate of the third MOS switch and the gate of the fourth MOS switch are all connected to the output end of the logic control circuit. 如請求項2所述的基於峰谷值電流模式的電源控制電路,其中,所述計時器Timer電路包括第二比較器、第三比較器、第四比較器、及閘; 所述第二比較器的正向輸入端接所述輸出電壓,所述第二比較器的反向輸入端接所述輸入電壓,所述第二比較器的輸出端與所述邏輯控制電路的輸入端連接;所述第三比較器的正向輸入端接所述輸出電壓,所述第三比較器的反向輸入端接所述輸入電壓,所述第三比較器的輸出端與所述及閘的第一輸入端連接;所述第四比較器的正向輸入端接所述輸入電壓,所述第四比較器的反向輸入端接所述輸出電壓,所述第四比較器的輸出端與所述及閘的第二輸入端連接;所述及閘的輸出端與所述邏輯控制電路的輸入端連接。 A power control circuit based on a peak-valley current mode as described in claim 2, wherein the timer circuit includes a second comparator, a third comparator, a fourth comparator, and a gate; The positive input terminal of the second comparator is connected to the output voltage, the reverse input terminal of the second comparator is connected to the input voltage, and the output terminal of the second comparator is connected to the input terminal of the logic control circuit; the positive input terminal of the third comparator is connected to the output voltage, the reverse input terminal of the third comparator is connected to the input voltage, and the output terminal of the third comparator is connected to the first input terminal of the AND gate; the positive input terminal of the fourth comparator is connected to the input voltage, the reverse input terminal of the fourth comparator is connected to the output voltage, and the output terminal of the fourth comparator is connected to the second input terminal of the AND gate; the output terminal of the AND gate is connected to the input terminal of the logic control circuit. 如請求項3所述的基於峰谷值電流模式的電源控制電路,其中,當VIN大於VOUT,且VIN與VOUT的差值超出閾值範圍時,所述電源控制電路工作在BUCK模式,所述取樣電阻、所述第一比較器以及所述差分放大器構成谷值電流模式環路; 當VIN小於VOUT,且VIN與VOUT的差值超出閾值範圍時,所述電源控制電路工作在BOOST模式,所述取樣電阻、所述第一比較器以及所述差分放大器構成峰值電流模式環路; 當VIN與VOUT的差值在閾值範圍內時,所述電源控制電路工作在BUCK-BOOST模式,所述取樣電阻、所述第一比較器以及所述差分放大器構成峰值電流模式環路; 其中,VIN為輸入電壓,VOUT為輸出電壓。 A power control circuit based on a peak-valley current mode as described in claim 3, wherein, when VIN is greater than VOUT and the difference between VIN and VOUT exceeds the threshold range, the power control circuit operates in a BUCK mode, and the sampling resistor, the first comparator and the differential amplifier form a valley current mode loop; When VIN is less than VOUT and the difference between VIN and VOUT exceeds the threshold range, the power control circuit operates in a BOOST mode, and the sampling resistor, the first comparator and the differential amplifier form a peak current mode loop; When the difference between VIN and VOUT is within the threshold range, the power control circuit operates in a BUCK-BOOST mode, and the sampling resistor, the first comparator and the differential amplifier form a peak current mode loop; Wherein, VIN is the input voltage and VOUT is the output voltage. 如請求項4所述的基於峰谷值電流模式的電源控制電路,其中,當所述電源控制電路工作在BUCK模式時,由所述第三比較器計算所述第一MOS開關和所述第四MOS開關共同導通的時間,由所述谷值電流模環路決定所述第二MOS開關和所述第四MOS開關共同導通的時間; 當所述電源控制電路工作在BOOST模式時,由所述第四比較器計算所述第一MOS開關和所述第四MOS開關共同導通的時間;由所述峰值電流模環路決定所述第一MOS開關和所述第三MOS開關共同導通的時間; 當所述電源控制電路工作在BUCK-BOOST模式時,由所述第二比較器計算所述第二MOS開關和所述第四MOS開關共同導通的時間;由所述第三比較器和所述第四比較器計算所述第一MOS開關和所述第四MOS開關共同導通的時間;由所述峰值電流模式環路決定所述第一MOS開關和所述第三MOS開關共同導通的時間。 A power control circuit based on a peak-valley current mode as described in claim 4, wherein when the power control circuit operates in a BUCK mode, the third comparator calculates the time when the first MOS switch and the fourth MOS switch are turned on together, and the valley current mode loop determines the time when the second MOS switch and the fourth MOS switch are turned on together; When the power control circuit operates in a BOOST mode, the fourth comparator calculates the time when the first MOS switch and the fourth MOS switch are turned on together; and the peak current mode loop determines the time when the first MOS switch and the third MOS switch are turned on together; When the power control circuit operates in the BUCK-BOOST mode, the second comparator calculates the time when the second MOS switch and the fourth MOS switch are turned on together; the third comparator and the fourth comparator calculate the time when the first MOS switch and the fourth MOS switch are turned on together; and the peak current mode loop determines the time when the first MOS switch and the third MOS switch are turned on together. 如請求項1-5任一項所述的基於峰谷值電流模式的電源控制電路,其中,還包括:輸出電阻和輸出電容; 所述功率級電路的輸出端還分別與所述輸出電阻的一端以及所述輸出電容的一端連接;所述輸出電阻的另一端以及所述輸出電容的另一端接地。 A power control circuit based on a peak-valley current mode as described in any one of claim items 1-5, further comprising: an output resistor and an output capacitor; The output end of the power stage circuit is also connected to one end of the output resistor and one end of the output capacitor respectively; the other end of the output resistor and the other end of the output capacitor are grounded. 一種電感式開關升降壓DC/DC電壓穩壓器,包括:如請求項1-6任一項所述的基於峰谷值電流模式的電源控制電路。An inductive switching buck-boost DC/DC voltage regulator comprises: a power control circuit based on a peak-valley current mode as described in any one of claims 1-6.
TW112136031A 2022-09-22 2023-09-21 Power supply control circuit based on peak-valley value current mode TW202414978A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2022111600672 2022-09-22

Publications (1)

Publication Number Publication Date
TW202414978A true TW202414978A (en) 2024-04-01

Family

ID=

Similar Documents

Publication Publication Date Title
US10305363B1 (en) Current doubling DC-DC converter with efficient sleep mode
CN100461601C (en) A system and method for realizing the isolation of high frequency switch DC-DC conversion
CN105322792A (en) Power converter using hysteretic boost architecture and method therefor
TW201725837A (en) Dual-constant-time buck-boost switching regulator and control circuit and method thereof
CN111953206A (en) Control method of DC converter, DC converter and readable storage medium
JP2002233139A (en) Dc-dc converter
WO2020015391A1 (en) Control method for improving output precision of switching power supply
CN115498861A (en) Power supply control circuit based on peak-valley current mode
WO2020024200A1 (en) Direct current buck-boost circuit
CN110912405A (en) Four-switch buck-boost converter based on voltage mode control
CN113691133B (en) BUCK-BOOST with high-precision low-ripple light-load working mode
US9621108B2 (en) Flyback amplifier with direct feedback
CN115642805A (en) ZVS-based six-switch buck-boost converter
CN114679056A (en) Control method and control circuit of four-switch-tube buck-boost converter
CN106899207B (en) Improved constant on-time control method for high-transformation-ratio direct-current buck converter
CN113437873B (en) Self-adaptive control method of BUCK-BOOST converter
CN111987908A (en) Three-phase interleaved parallel bidirectional DC/DC converter based on PI sliding mode variable structure control
CN115242089B (en) Switching converter, control circuit and control method thereof
CN114944748B (en) Constant frequency control circuit and method for constant on-time control mode converter
CN113949267B (en) Four-switch BUCKBOOST controller based on average current mode
TW202414978A (en) Power supply control circuit based on peak-valley value current mode
CN107659155B (en) Bidirectional DC converter and bidirectional DC conversion control method
CN111555416B (en) Battery charge-discharge control circuit
CN113783421A (en) Direct current conversion equipment that steps up
Qin et al. Mechanisim of Duty Cycle Mutation and a New Mode Smooth Switching Control Method in High Efficiency Four-Mode Four-Switch Buck-Boost Converter