TW202414928A - Laser device, laser processing device, learning device, inference device, laser processing system and laser processing method - Google Patents

Laser device, laser processing device, learning device, inference device, laser processing system and laser processing method Download PDF

Info

Publication number
TW202414928A
TW202414928A TW112131846A TW112131846A TW202414928A TW 202414928 A TW202414928 A TW 202414928A TW 112131846 A TW112131846 A TW 112131846A TW 112131846 A TW112131846 A TW 112131846A TW 202414928 A TW202414928 A TW 202414928A
Authority
TW
Taiwan
Prior art keywords
laser light
pulse
transmittance
laser
switch element
Prior art date
Application number
TW112131846A
Other languages
Chinese (zh)
Other versions
TWI846575B (en
Inventor
山本達也
田所譲
石川恭平
Original Assignee
日商三菱電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱電機股份有限公司 filed Critical 日商三菱電機股份有限公司
Publication of TW202414928A publication Critical patent/TW202414928A/en
Application granted granted Critical
Publication of TWI846575B publication Critical patent/TWI846575B/en

Links

Images

Abstract

雷射裝置(500)具有,產生脈衝雷射光的Q開關雷射振盪器(100)、放大脈衝雷射光的放大器(200)、設置於Q開關雷射振盪器(100)和放大器(200)之間的光路上的光開關元件(26)、基於表示Q開關雷射振盪器(100)產生脈衝雷射光的時間間隔的脈衝特性時間以調變光開關元件(26)的透過率的控制裝置(35)。The laser device (500) comprises a Q-switched laser oscillator (100) for generating pulsed laser light, an amplifier (200) for amplifying the pulsed laser light, an optical switch element (26) provided on an optical path between the Q-switched laser oscillator (100) and the amplifier (200), and a control device (35) for modulating the transmittance of the optical switch element (26) based on a pulse characteristic time representing a time interval of the pulsed laser light generated by the Q-switched laser oscillator (100).

Description

雷射裝置、雷射加工裝置、學習裝置、推論裝置、雷射加工系統及雷射加工方法Laser device, laser processing device, learning device, inference device, laser processing system and laser processing method

本揭露是關於用於雷射加工的雷射裝置、雷射加工裝置、學習裝置、推論裝置、雷射加工系統及雷射加工方法。The present disclosure relates to a laser device for laser processing, a laser processing device, a learning device, an inference device, a laser processing system and a laser processing method.

在需要高輸出的脈衝雷射光的情形下,採用在產生低於所需雷射光輸出的脈衝雷射光後,將脈衝雷射光以放大器進行放大的架構。在這種架構中,在產生脈衝雷射光的脈衝週期(亦即時間間隔)不是一定的情形下,在放大器改變入射脈衝雷射光的時間間隔,由於放大器的增益因每個脈衝雷射光而異,放大器輸出的脈衝雷射光的脈衝能量會發生偏差(不一致)。In the case where a high-output pulsed laser light is required, a structure is adopted in which a pulsed laser light with a lower output than the required laser light is generated and then amplified by an amplifier. In this structure, when the pulse cycle (i.e., time interval) of the pulsed laser light is not constant, when the amplifier changes the time interval of the incident pulsed laser light, the gain of the amplifier varies for each pulsed laser light, and the pulse energy of the pulsed laser light output by the amplifier will deviate (be inconsistent).

專利文獻1揭示,在以放大器將脈衝週期不是一定的脈衝雷射光放大的情形下,除了主信號之外,通過將與主信號有不同波長的二次信號入射到放大器,以在放大器中抑制脈衝雷射光入射時間間隔的變化,以及抑制放大器增益變動的脈衝雷射系統。在此脈衝雷射系統,從放大器的輸出中消除二次信號,以取得主信號作為雷射輸出。 [先前技術文獻] [專利文獻] Patent document 1 discloses a pulse laser system that suppresses the variation of the pulse laser light incident time interval in the amplifier and the gain variation of the amplifier by injecting a secondary signal having a different wavelength from the main signal into the amplifier in addition to the main signal when a pulse laser light having a non-constant pulse period is amplified by an amplifier. In this pulse laser system, the secondary signal is eliminated from the output of the amplifier to obtain the main signal as the laser output. [Prior art document] [Patent document]

[專利文獻1]  日本特表2018-531524號公報[Patent Document 1] Japanese Patent Publication No. 2018-531524

[發明所欲解決的課題][The problem that the invention is trying to solve]

然而,依據上述的知技術,在期望的脈衝週期長的情形下,在放大後消除的二次信號會變多。因此,投入電力中的大部分被用於並非為主信號的二次信號,會發生能量效率低下的問題。However, according to the above-mentioned known technology, when the desired pulse cycle is long, more secondary signals are eliminated after amplification. Therefore, most of the input power is used for secondary signals that are not main signals, resulting in low energy efficiency.

有鑑於此,本揭露之目的為得到雷射裝置,可以在抑制投入電力轉換為雷射輸出的效率低下的同時,即使在脈衝週期變化的情形下可以抑制放大後的脈衝能量的變動。 [用以解決課題的手段] In view of this, the purpose of the present disclosure is to obtain a laser device that can suppress the inefficiency of converting input power into laser output while suppressing the variation of amplified pulse energy even when the pulse cycle varies. [Means for solving the problem]

為解決上述課題且達成目的,本揭露的雷射裝置具有,產生脈衝雷射光的Q開關雷射振盪器、放大脈衝雷射光的放大器、設置於Q開關雷射振盪器和放大器之間的光路上的光開關元件、基於表示Q開關雷射振盪器產生脈衝雷射光的時間間隔的脈衝特性時間以調變光開關元件的透過率的控制裝置。 [發明的效果] In order to solve the above-mentioned problems and achieve the purpose, the laser device disclosed in the present invention has a Q-switched laser oscillator for generating pulsed laser light, an amplifier for amplifying the pulsed laser light, an optical switch element arranged on the optical path between the Q-switched laser oscillator and the amplifier, and a control device for modulating the transmittance of the optical switch element based on the pulse characteristic time representing the time interval of the pulsed laser light generated by the Q-switched laser oscillator. [Effect of the invention]

依據本揭露得到的雷射裝置,具有的效果為可以在抑制投入電力轉換為雷射輸出的效率低下的同時,即使在脈衝週期變化的情形下可以抑制放大後的脈衝能量的變動。The laser device obtained according to the present disclosure has the effect of suppressing the inefficiency of converting input power into laser output and suppressing the variation of amplified pulse energy even when the pulse cycle varies.

以下,基於圖式,詳細地說明本揭露實施例的雷射裝置、雷射加工裝置、學習裝置、推論裝置、雷射加工系統及雷射加工方法。The laser device, laser processing device, learning device, inference device, laser processing system and laser processing method of the disclosed embodiments are described in detail below based on the drawings.

<實施例1> 圖1示意實施例1之雷射裝置500的構成。雷射裝置500具有Q開關雷射振盪器100、放大器200、光開關元件26、控制裝置35、資訊處理裝置36。Q開關雷射振盪器100,使用像是Q開關之具有快門功能的元件以產生脈衝雷射光。放大器200,將Q開關雷射振盪器100產生的脈衝雷射光放大。光開關元件26,設置在Q開關雷射振盪器100與放大器200之間的光軸2上。 <Example 1> FIG. 1 shows the structure of the laser device 500 of Example 1. The laser device 500 has a Q-switch laser oscillator 100, an amplifier 200, an optical switch element 26, a control device 35, and an information processing device 36. The Q-switch laser oscillator 100 uses an element with a shutter function such as a Q switch to generate pulse laser light. The amplifier 200 amplifies the pulse laser light generated by the Q-switch laser oscillator 100. The optical switch element 26 is provided on the optical axis 2 between the Q-switch laser oscillator 100 and the amplifier 200.

Q開關雷射振盪器100產生的脈衝雷射光入射至光開關元件26,以設定好的透過率透過光開關元件26,之後沿光軸2入射至放大器200。光開關元件26的透過率為依據來自控制裝置35的信號而調變。此外,「調變透過率」所指為使透過率隨時間變化。光開關元件26,例如為聲光元件、電光元件等。The pulse laser light generated by the Q-switched laser oscillator 100 is incident on the optical switch element 26, passes through the optical switch element 26 with a set transmittance, and then is incident on the amplifier 200 along the optical axis 2. The transmittance of the optical switch element 26 is modulated according to the signal from the control device 35. In addition, "modulating the transmittance" means changing the transmittance over time. The optical switch element 26 is, for example, an acousto-optic element, an electro-optic element, etc.

控制裝置35與光開關元件26的透過率控制同時進行脈衝週期、脈衝寬度、對Q開關雷射振盪器100和放大器200投入電力等的控制。前述脈衝週期為Q開關雷射振盪器100振盪脈衝雷射光的時間間隔。The control device 35 controls the pulse cycle, pulse width, power input to the Q-switched laser oscillator 100 and the amplifier 200, etc. simultaneously with the transmittance control of the optical switch element 26. The pulse cycle is the time interval for the Q-switched laser oscillator 100 to oscillate the pulse laser light.

資訊處理裝置36,基於設置在Q開關雷射振盪器100及放大器200內未圖示的感測器所取得的資訊,計算依據脈衝雷射光的振盪間隔之光開關元件的控制信號,且將包含計算結果的資訊傳送給控制裝置35。The information processing device 36 calculates the control signal of the optical switch element according to the oscillation interval of the pulse laser light based on the information obtained by the sensor (not shown) provided in the Q-switched laser oscillator 100 and the amplifier 200, and transmits the information including the calculation result to the control device 35.

感測器取得的資訊,例如為脈衝雷射光的脈衝能量、脈衝雷射光的波形、雷射裝置500的溫度資訊等。控制裝置35,基於來自資訊處理裝置36的資訊,藉由傳送控制信號至光開關元件26等,從而控制雷射裝置500的動作。The information obtained by the sensor is, for example, the pulse energy of the pulse laser light, the waveform of the pulse laser light, the temperature information of the laser device 500, etc. The control device 35 controls the operation of the laser device 500 by transmitting a control signal to the optical switch element 26, etc. based on the information from the information processing device 36.

透過光開關元件26入射至放大器200的脈衝雷射光,經過放大器200放大後沿光軸3射出。在連續產生脈衝激光時,光開關元件26被控制為減少從放大器200射出後的脈衝雷射光的脈衝能量的變動。此外,雖然圖1中雷射裝置500有1個光開關元件26,但是雷射裝置500可以有複數個光開關元件26。The pulse laser light incident on the amplifier 200 through the optical switch element 26 is amplified by the amplifier 200 and then emitted along the optical axis 3. When the pulse laser light is continuously generated, the optical switch element 26 is controlled to reduce the variation of the pulse energy of the pulse laser light emitted from the amplifier 200. In addition, although the laser device 500 in FIG. 1 has one optical switch element 26, the laser device 500 may have a plurality of optical switch elements 26.

此外,雖然圖1顯示Q開關雷射振盪器100與放大器200是單獨裝置的情況,但是如以下所示,Q開關雷射振盪器100與放大器200可以是在1個殼體內構成的1個裝置。In addition, although FIG. 1 shows the case where the Q-switched laser oscillator 100 and the amplifier 200 are separate devices, as described below, the Q-switched laser oscillator 100 and the amplifier 200 may be a single device configured in a single housing.

此外,控制裝置35及資訊處理機置36的功能可利用處理電路實現。這些處理電路可由專用的硬體實現,也可是使用CPU(中央處理單元)的控制電路。In addition, the functions of the control device 35 and the information processing unit 36 can be realized by using processing circuits. These processing circuits can be realized by dedicated hardware or by using a control circuit of a CPU (central processing unit).

當處理電路為專用的硬體時,例如使用單一電路、複合電路、已程式化的處理器、已平行程式化的處理器、ASIC(特殊應用積體電路)、FPGA(現場可程式化邏輯閘陣列)、或是前述等的組合。When the processing circuit is dedicated hardware, for example, a single circuit, a complex circuit, a programmed processor, a parallel programmed processor, an ASIC (application specific integrated circuit), an FPGA (field programmable gate array), or a combination of the foregoing is used.

上述的處理電路,當以使用CPU的控制電路實現時,控制電路具有處理器、記憶體。處理器為CPU,也被稱為處理裝置、演算裝置、微處理器、微電腦、DSP(數位信號處理器)。記憶體,例如為RAM(隨機存取記憶體)、ROM(唯讀記憶體)、快閃記憶體、EPROM(可抹除可程式唯讀記憶體)、EEPROM(註冊商標)( 電子抹除式可程式唯讀記憶體)等的非揮發性或揮發性半導體記憶體、磁碟、軟碟、光碟、袖珍光碟、DVD(數位多功能光碟)等。When the above-mentioned processing circuit is implemented by a control circuit using a CPU, the control circuit has a processor and a memory. The processor is a CPU, which is also called a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP (digital signal processor). The memory is, for example, a non-volatile or volatile semiconductor memory such as RAM (random access memory), ROM (read-only memory), flash memory, EPROM (erasable programmable read-only memory), EEPROM (registered trademark) (electronically erasable programmable read-only memory), a magnetic disk, a floppy disk, an optical disk, a compact disk, a DVD (digital versatile disk), etc.

當由使用CPU的控制電路實現上述處理電路時,處理器為,通過讀取並執行記憶體中記憶之與控制裝置35及資訊處理裝置36之處理相對應的程式而實現。此外,可使用記憶體作為處理器執行的各處理中的暫時記憶體。When the above-mentioned processing circuit is realized by a control circuit using a CPU, the processor is realized by reading and executing a program stored in a memory corresponding to the processing of the control device 35 and the information processing device 36. In addition, the memory can be used as a temporary memory in each processing executed by the processor.

圖2示意實施例1之雷射裝置500的詳細構成的一示例。於圖2中,將雷射裝置500的內部構成以立體圖表示。雷射裝置500,例如為三軸正交二氧化碳(CO2)雷射。此外,雷射500可以是一氧化碳雷射、準分子雷射等。FIG2 shows an example of the detailed structure of the laser device 500 of Embodiment 1. In FIG2, the internal structure of the laser device 500 is shown in a three-dimensional diagram. The laser device 500 is, for example, a three-axis orthogonal carbon dioxide (CO2) laser. In addition, the laser 500 can be a carbon monoxide laser, an excimer laser, etc.

於圖2的構成中,構成圖1所示的雷射裝置500的Q開關雷射振盪器100與放大器200的部分,被容納在同一殼體300。In the configuration of FIG. 2 , the Q-switched laser oscillator 100 and the amplifier 200 constituting the laser device 500 shown in FIG. 1 are accommodated in the same housing 300 .

殼體300內密封有雷射氣體。雷射裝置500在殼體300內,具有送風機40和41、一對電極11及一對電極12、熱交換器42和43。雷射氣體藉由送風機40、41,分別在箭號指示的氣流方向13、14上流動。之後,雷射氣體通過電極11、12的電極間。依據放電控制裝置44的控制,在電極11、12上施加高頻電力,在電極間產生無聲放電。此一放電激發雷射氣體。之後,雷射氣體沿箭號指示的氣流方向15、16流動,且由熱交換器42、43冷卻。Laser gas is sealed in the housing 300. The laser device 500 has blowers 40 and 41, a pair of electrodes 11 and a pair of electrodes 12, and heat exchangers 42 and 43 in the housing 300. The laser gas flows in the airflow directions 13 and 14 indicated by the arrows through the blowers 40 and 41, respectively. Then, the laser gas passes between the electrodes 11 and 12. According to the control of the discharge control device 44, high-frequency electricity is applied to the electrodes 11 and 12, and silent discharge is generated between the electrodes. This discharge excites the laser gas. Then, the laser gas flows along the airflow directions 15 and 16 indicated by the arrows and is cooled by the heat exchangers 42 and 43.

此外,雷射裝置500具有全反射鏡21、部分反射鏡24。全反射鏡21及部分反射鏡24構成諧振器,且全反射鏡21及部分反射鏡24設置成,使諧振器的光軸1位於激發雷射氣體的放電空間內。但是,由於雷射氣體即使通過放電空間後仍保持激發一定時間,因此光軸1可通過放電空間以外的位置。In addition, the laser device 500 has a total reflection mirror 21 and a partial reflection mirror 24. The total reflection mirror 21 and the partial reflection mirror 24 constitute a resonator, and the total reflection mirror 21 and the partial reflection mirror 24 are arranged so that the optical axis 1 of the resonator is located in the discharge space of the excited laser gas. However, since the laser gas remains excited for a certain period of time even after passing through the discharge space, the optical axis 1 may pass through a position outside the discharge space.

雷射裝置500更具有Q開關22。Q開關22設置在諧振器的光軸1上,通過控制諧振器的Q值,由脈衝振盪產生脈衝雷射。Q開關22例如可為聲光元件或電光元件。The laser device 500 further has a Q switch 22. The Q switch 22 is disposed on the optical axis 1 of the resonator, and generates pulse laser by pulse oscillation by controlling the Q value of the resonator. The Q switch 22 may be, for example, an acousto-optic element or an electro-optic element.

構成諧振器的全反射鏡21為,反射大部分的光但可讓少量光透過,並且在透過的光入射的位置上設置光感測器50。光感測器50量測諧振器振盪的脈衝雷射光的脈衝波形、脈衝能量等。雷射裝置500更具有窗口23,以遮斷殼體300內的雷射氣體與外部空氣。在圖2的示例中,全反射鏡21、Q開關22、及光感測器50設置於殼體300的外部,窗口23防之雷射氣體從殼體300內洩出,同時使來自部分反射鏡24的光通過殼體300朝向全反射鏡21。部分反射鏡24也負責遮斷殼體300內的雷射氣體與外部空氣。從光感測器50沿光軸1到部分反射鏡24之間所設置的元件,成為構成Q開關雷射振盪器100的一部分。The total reflection mirror 21 constituting the resonator reflects most of the light but allows a small amount of light to pass through, and a photo sensor 50 is set at the position where the light that passes through is incident. The photo sensor 50 measures the pulse waveform, pulse energy, etc. of the pulsed laser light oscillating from the resonator. The laser device 500 further has a window 23 to block the laser gas in the housing 300 from the external air. In the example of FIG. 2 , the total reflection mirror 21, the Q switch 22, and the photo sensor 50 are set outside the housing 300, and the window 23 prevents the laser gas from leaking from the housing 300, while allowing the light from the partial reflection mirror 24 to pass through the housing 300 toward the total reflection mirror 21. The partial reflection mirror 24 is also responsible for shielding the laser gas in the housing 300 from the external air. The components arranged along the optical axis 1 from the photo sensor 50 to the partial reflection mirror 24 constitute a part of the Q-switch laser oscillator 100.

上述中,Q開關22假設是設置在大氣中,但也可以將Q開關22設置在殼體300內,並且可以全反射鏡21取代窗口23,以遮斷殼體300內的雷射氣體與外部空氣。此外,從窗口23至全反射鏡21之間可以設1個以上的鏡子。In the above description, the Q switch 22 is assumed to be set in the atmosphere, but the Q switch 22 can also be set in the housing 300, and the total reflection mirror 21 can replace the window 23 to block the laser gas in the housing 300 from the external air. In addition, more than one mirror can be set between the window 23 and the total reflection mirror 21.

從振盪器的部分反射鏡24射出的脈衝光,藉由鏡25以入射光開關元件26、27,通過光開關元件26、27的脈衝雷射光,藉由鏡子28從窗口29沿光軸2,再入射殼體300內。此時,在從諧振器的部分反射鏡24至窗口29的光部上,可以使用透鏡、曲率鏡等調整脈衝雷射光的光束直徑。從窗口29入射殼體300內的脈衝雷射光,通過被激發的雷射氣體內、且被放大之後,被鏡子30反射,且再次入射被激發的雷射氣體內。之後,通過被激發的雷射氣體內且被放大後,被鏡子31反射且再次入射被激發的雷射氣內。之後,通過被激發的雷射氣體內且被放大後,被鏡子32反射且再次入射被激發的雷射氣內。之後,通過被激發的雷射氣體內且被放大後,放大後的脈衝雷射光從窗口33輸出至殼體300的外部。放大後的脈衝雷射光沿光軸3由部分反射鏡34反射,以輸出作為雷射輸出。從部分反射鏡34透過的一部分光,入射至光感應器51。光感應器51,量測作為雷射輸出而被輸出的脈衝雷射光的脈衝波形、脈衝能量等。The pulsed light emitted from the partial reflection mirror 24 of the oscillator enters the optical switch elements 26 and 27 through the mirror 25, and the pulsed laser light passing through the optical switch elements 26 and 27 enters the housing 300 again through the window 29 along the optical axis 2 through the mirror 28. At this time, the beam diameter of the pulsed laser light can be adjusted using a lens, a curvature mirror, etc. on the optical portion from the partial reflection mirror 24 of the resonator to the window 29. The pulsed laser light entering the housing 300 from the window 29 passes through the excited laser gas and is amplified, and then is reflected by the mirror 30 and enters the excited laser gas again. Afterwards, after passing through the excited laser gas and being amplified, it is reflected by the mirror 31 and enters the excited laser gas again. Afterwards, after passing through the excited laser gas and being amplified, it is reflected by the mirror 32 and enters the excited laser gas again. Afterwards, after passing through the excited laser gas and being amplified, the amplified pulse laser light is output from the window 33 to the outside of the housing 300. The amplified pulse laser light is reflected by the partial reflection mirror 34 along the optical axis 3 and output as the laser output. A portion of the light that passes through the partial reflection mirror 34 is incident on the photo sensor 51. The photo sensor 51 measures the pulse waveform, pulse energy, etc. of the pulse laser light output as the laser output.

構成放大器200的部分為,從窗口29到入射殼體300的脈衝雷射光通過殼體300內被激發的雷射氣體而從部分反射鏡34輸出、以及光感測器51所含括的部分。The amplifier 200 is constituted by a portion including a portion where the pulsed laser light enters the housing 300 from the window 29 , passes through the laser gas excited in the housing 300 , and is output from the partial reflection mirror 34 , and the photo sensor 51 .

圖2所示的雷射裝置500,Q開關雷射振盪器100與放大器200在1個殼體300內構成,Q開關雷射振盪器100與放大器200的光軸為,通過至少1連續的放電空間內的一體型MOPA(主控振盪器的功率放大器)構成。在此,於殼體300內的各鏡子的反射面與放電空間之間,可設置未圖示的光圈(aperture),以限制光的通過範圍。The laser device 500 shown in FIG2 comprises a Q-switched laser oscillator 100 and an amplifier 200 in a housing 300. The optical axes of the Q-switched laser oscillator 100 and the amplifier 200 are configured to pass through an integrated MOPA (master oscillator power amplifier) in at least one continuous discharge space. Here, an aperture (not shown) may be provided between the reflective surface of each mirror in the housing 300 and the discharge space to limit the range of light passing.

雷射裝置500連續地放電,且可以通過以Q開關22快地改變諧振器的Q值,來執行脈衝振盪。The laser device 500 is continuously discharged and can perform pulse oscillation by rapidly changing the Q value of the resonator using the Q switch 22.

控制裝置35連接並且控制Q開關22及光開關元件26、27以及放電控制裝置44。The control device 35 is connected to and controls the Q switch 22 , the photo-switching elements 26 , 27 , and the discharge control device 44 .

資訊處理裝置36接收來自光感測器50、51的資訊。此外,資訊處理裝置36可以從控制裝置35接收光開關26、27的控制信號以及放電電流的控制信號。資訊處理裝置36可依據脈衝雷射光的脈衝波形,計算脈衝雷射光的脈衝能量。The information processing device 36 receives information from the photo sensors 50 and 51. In addition, the information processing device 36 can receive control signals of the photo switches 26 and 27 and a control signal of the discharge current from the control device 35. The information processing device 36 can calculate the pulse energy of the pulse laser light according to the pulse waveform of the pulse laser light.

此外,資訊處理裝置36可以從未圖示的感測器接收表示雷射裝置500之狀態的資訊,諸如雷射氣體的溫度、氣體壓力、電射裝置500的溫度、冷卻水的溫度、其他隨時間變化的資訊。此外,如以下說明,雷射裝置500當作為雷射加工裝置的雷射光源使用時,可從雷射加工裝置接收:表示雷射振盪的時序、搭載在雷射加工裝置之檢流計掃描鏡(Galvanometer mirror)的穩定時間、靜止時間、包含穩定時間及靜止時間的位置決定時間等的資訊。In addition, the information processing device 36 can receive information indicating the state of the laser device 500 from sensors not shown, such as the temperature of the laser gas, the gas pressure, the temperature of the laser device 500, the temperature of the cooling water, and other information that changes with time. In addition, as described below, when the laser device 500 is used as a laser light source of a laser processing device, it can receive information indicating the timing of laser oscillation, the stabilization time, the static time, and the position determination time including the stabilization time and the static time of the galvanometer scanning mirror mounted on the laser processing device from the laser processing device.

資訊處理裝置36,基於接收到的資訊,計算對Q開關22、光開關元件26、27、及放電控制裝置44進行所需要的資訊,且傳送給控制裝置35。The information processing device 36 calculates the information required for the Q switch 22, the photo-switch elements 26, 27, and the discharge control device 44 based on the received information, and transmits the information to the control device 35.

圖3示意將實施例1之雷射裝置500作為雷射光源使用的雷射加工裝置510的構成。雷射加工裝置510具有雷射裝置500、鑽孔機400。鑽孔機400為使用雷射裝置500輸出的脈衝雷射光執行鑽孔的裝置,例如可以在電子基板上進行鑽孔(開孔加工)。鑽孔機400,使用像是檢流計掃描鏡403的定位機構來定位,使得脈衝雷射光照射到電子基板的預定位置。FIG3 shows the structure of a laser processing device 510 using the laser device 500 of Example 1 as a laser light source. The laser processing device 510 includes the laser device 500 and a drilling machine 400. The drilling machine 400 is a device that uses the pulsed laser light output by the laser device 500 to perform drilling, for example, drilling (opening) holes on an electronic substrate. The drilling machine 400 is positioned using a positioning mechanism such as a galvanometer scanner 403 so that the pulsed laser light is irradiated to a predetermined position on the electronic substrate.

雷射裝置500輸出的脈衝雷射光,入射至鑽孔機400。脈衝雷射光藉由鑽孔機400的鏡子401、402而照射到檢流計掃描鏡403。此外,檢流計掃描鏡403為偏轉元件的一示例,其通過將脈衝雷射光偏轉,從而調整在加工對象物405上的脈衝雷射光的照射位置。此外,脈衝雷射光入射鑽孔機400之後,在照射至檢流計掃描鏡403止的光路上,可以配置未圖示的透鏡、球面鏡等的用於調整光束直徑的光學元件,且可以配置用於整形光束輪廓的遮罩。此外,在圖3中雖然顯示1個檢流計掃描鏡403,但是可使用2個檢流計掃描鏡403作為2軸,從而能夠掃描平面。The pulsed laser light outputted by the laser device 500 enters the drilling machine 400. The pulsed laser light is irradiated to the galvanometer scanner 403 via the mirrors 401 and 402 of the drilling machine 400. The galvanometer scanner 403 is an example of a deflection element, which adjusts the irradiation position of the pulsed laser light on the processing object 405 by deflecting the pulsed laser light. In addition, after the pulsed laser light enters the drilling machine 400, an optical element such as a lens or a spherical mirror (not shown) for adjusting the beam diameter may be arranged on the optical path from the pulsed laser light to the galvanometer scanner 403, and a mask for shaping the beam profile may be arranged. Although one galvanometer scanner 403 is shown in FIG. 3 , two galvanometer scanners 403 may be used as two axes to scan a plane.

照射檢流計掃描鏡403的脈衝雷射光,藉由透鏡404(即物鏡光學系統)照射在加工對象物405上。當使用上述遮罩時,可作為將以遮罩成形的脈衝雷射光轉寫在加工對象物405上的轉寫光學系統。加工對象物405設置在正交3軸方向可動的桌上。The pulsed laser light irradiating the galvanometer scanner 403 is irradiated onto the processing object 405 through the lens 404 (i.e., the objective optical system). When the above-mentioned mask is used, it can be used as a transfer optical system to transfer the pulsed laser light shaped by the mask onto the processing object 405. The processing object 405 is set on a table movable in three orthogonal axis directions.

在加工對象物405上脈衝雷射光照射的位置,為通過調整檢流計掃描鏡403的角度而定位。The position where the pulse laser light is irradiated on the processing object 405 is positioned by adjusting the angle of the galvanometer scanning mirror 403.

在由檢流計掃描鏡403定位的位置,以脈衝雷射光照射1擊(shot)或複數擊,接著,在另一位置上由檢流計掃描鏡403定位後,以下一個脈衝雷射光照射。藉由重複且連續地執行這種處理,在對象物405上加工多個孔。A pulsed laser light is irradiated once or multiple times at a position located by the galvanometer scanner 403, and then another pulsed laser light is irradiated at another position located by the galvanometer scanner 403. By repeatedly and continuously performing this process, a plurality of holes are processed in the object 405.

檢流計掃描鏡403定位所需的時間,取決於電子基板上加工孔的目標形狀,也就是說孔的加工圖案。圖4示意在電子基板上形成之孔的目標形狀的一示例。圖4的箭號指示孔的加工路徑,在以下的說明中,由附在加工路徑上的數字,指定各加工路徑。在依加工路徑#1、加工路徑#2、加工路徑#3…的數字順序進行加工的情形下,電子基板的孔的間隔短的部分,例如在加工路徑#1、加工路徑#4、加工路徑#6、加工路徑#7等,檢流計掃描鏡403定位所需時間變短,孔的間隔長的部分,例如在加工路徑#3、加工路徑#5、加工路徑#8等,檢流計掃描鏡403定位所需時間變長。因此,當在電子基板上連續鑽出複數孔時,加工各個孔時的檢流計掃描鏡403的定位時間並非一定,會隨時間推移而變化。The time required for positioning the galvanometer scanning mirror 403 depends on the target shape of the hole to be processed on the electronic substrate, that is, the processing pattern of the hole. FIG4 shows an example of the target shape of the hole formed on the electronic substrate. The arrows in FIG4 indicate the processing path of the hole. In the following description, each processing path is specified by the number attached to the processing path. When processing is performed in the numerical order of processing path #1, processing path #2, processing path #3, etc., the time required for positioning the galvanometer scanner 403 becomes shorter in the portion where the intervals between holes of the electronic substrate are short, such as processing path #1, processing path #4, processing path #6, processing path #7, etc., and the time required for positioning the galvanometer scanner 403 becomes longer in the portion where the intervals between holes are long, such as processing path #3, processing path #5, processing path #8, etc. Therefore, when drilling multiple holes continuously on the electronic substrate, the positioning time of the galvanometer scanner 403 when processing each hole is not constant and varies over time.

由於脈衝雷射光在檢流計掃描鏡403定位完成的時點進行照射,從雷射裝置500射出脈衝雷射光的時序也會隨時間而變化。Q開關振盪中,由於脈衝雷射光的振盪時序隨時間變化、以及每一脈衝雷射光增益的累積時間變化,振盪的脈衝雷射光的脈衝能量也會隨時間而變化。因此,將Q開關雷射振盪器100振盪的脈衝雷射光就這樣地以放大器200放大,脈衝雷射光的脈衝能量也會隨時間變化。在此情形下,在鑽孔機400中,每一加工孔脈衝雷射光的脈衝能量會改變。這種情況顯示於圖5及圖6。Since the pulse laser light is irradiated at the time when the galvanometer scanning mirror 403 is positioned, the timing of emitting the pulse laser light from the laser device 500 also changes with time. In the Q-switch oscillation, since the oscillation timing of the pulse laser light changes with time and the accumulation time of each pulse laser light gain changes, the pulse energy of the oscillating pulse laser light also changes with time. Therefore, the pulse laser light oscillating by the Q-switch laser oscillator 100 is amplified by the amplifier 200, and the pulse energy of the pulse laser light also changes with time. In this case, the pulse energy of the pulse laser light for each processing hole in the drilling machine 400 will change. This situation is shown in FIG5 and FIG6.

圖5示意在電子基板上加工的加工洞的圖案及加工路徑的一示例。圖6示意當加工圖5所示圖案的加工孔時之脈衝雷射光波形的時間變化。如圖5所示,在以加工孔#1、加工孔#2、加工孔#3、加工孔#4的順序加工孔的情形下,由Q開關振盪致使的脈衝雷射光的波形成為圖6所示者。圖6的橫軸表示時,在橫軸所附的數字對應圖5各加工孔所附的數字。相較於加工孔#1及加工孔#2,在加工孔#3及加工孔#4孔的間隔較長。因此,相較於對加工孔#1和加工孔#2進行加工時照射的脈衝雷射光,對加工孔#3和加工孔#4進行加工的脈衝能量變得較高。在此情形下,由於每一加工孔加工所使用的脈衝雷射光的脈衝能量會發生偏差(不一致),加工品質可能會不穩定。FIG5 shows an example of a pattern of processing holes and a processing path processed on an electronic substrate. FIG6 shows the time change of the pulse laser light waveform when processing the processing holes of the pattern shown in FIG5. As shown in FIG5, when processing holes in the order of processing hole #1, processing hole #2, processing hole #3, and processing hole #4, the waveform of the pulse laser light caused by the oscillation of the Q switch becomes as shown in FIG6. When the horizontal axis of FIG6 is represented, the numbers attached to the horizontal axis correspond to the numbers attached to each processing hole in FIG5. Compared with processing hole #1 and processing hole #2, the interval between processing hole #3 and processing hole #4 is longer. Therefore, the pulse energy of the pulse laser light used to process the processing holes #3 and #4 becomes higher than that of the pulse laser light used to process the processing holes #1 and #2. In this case, the pulse energy of the pulse laser light used to process each processing hole will vary (inconsistent), and the processing quality may become unstable.

因此,在雷射裝置500中,為了抑制入射至鑽孔機400的每一脈衝雷射光的脈衝能量的偏差,對每一脈衝雷射光,調整從Q開關雷射振盪器100射出的脈衝雷射光通過光開關元件26時的透過率,以抑制入射至放大器200的脈衝雷射光的脈衝能量的偏差。Therefore, in the laser device 500, in order to suppress the deviation of the pulse energy of each pulse laser light incident on the drilling machine 400, the transmittance of the pulse laser light emitted from the Q-switched laser oscillator 100 when passing through the optical switching element 26 is adjusted for each pulse laser light, so as to suppress the deviation of the pulse energy of the pulse laser light incident on the amplifier 200.

圖7用於說明電射裝置500的效果。圖7的(a)顯示Q開關雷射振盪器100振盪的脈衝雷射光的波形。圖7的(b)顯示光開關元件26的透過率。圖7的(c)顯示輸入放大器200的脈衝雷射光的波形。圖7的(d)顯示從放大器200輸出的脈衝雷射光的波形。FIG7 is used to illustrate the effect of the electro-optical device 500. FIG7 (a) shows the waveform of the pulse laser light oscillated by the Q-switch laser oscillator 100. FIG7 (b) shows the transmittance of the optical switch element 26. FIG7 (c) shows the waveform of the pulse laser light input to the amplifier 200. FIG7 (d) shows the waveform of the pulse laser light output from the amplifier 200.

Q開關雷射振盪器100振盪的時序並非一定的週期,在脈衝週期變化的情形下,從Q開關雷射振盪器100輸出的脈衝雷射光的脈衝能量,隨著距上次振盪時序的時間間隔變大而變大。舉例而言,與上次脈衝雷射光的間隔長度,以較長者優先之順序為脈衝雷射光#3、脈衝雷射光#4、脈衝雷射光#1,當脈衝雷射光#1及脈衝雷射光#2為相同時,從Q開關雷射振盪器100輸出的脈衝雷射光的脈衝能量 ,以較高者優先之順序為脈衝雷射光#3、脈衝雷射光#4、脈衝雷射光#1,脈衝雷射光#1及脈衝雷射光#2為相同。The oscillation timing of the Q-switched laser oscillator 100 is not a fixed period. When the pulse period changes, the pulse energy of the pulse laser light output from the Q-switched laser oscillator 100 increases as the time interval from the previous oscillation timing increases. For example, the interval length of the last pulse laser light is in the order of the longer one being the first, pulse laser light #3, pulse laser light #4, and pulse laser light #1. When pulse laser light #1 and pulse laser light #2 are the same, the pulse energy of the pulse laser light output from the Q-switch laser oscillator 100 is in the order of the higher one being the first, pulse laser light #3, pulse laser light #4, and pulse laser light #1. Pulse laser light #1 and pulse laser light #2 are the same.

此外,在放大器200中,當輸入相同脈衝能量的脈衝雷射光時,輸出的脈衝雷射光的脈衝能量,會隨著距上次的脈衝雷射光的時間間隔變大而變大。因此,控制光開關元件26的透過率隨著脈衝雷射光的時間間隔變長而變小,從而使入射至放大器200的脈衝雷射光的脈衝能量隨脈衝雷射光的時間間隔變長而變小。在圖7的示例中,入射至放大器200的脈衝雷射光的脈衝能量,以較小者優先的順序為脈衝雷射光#3、脈衝雷射光#4、脈衝雷射光#1,脈衝雷射光#1及脈衝雷射光#2為相同;透過率,以較小者優先的順序為脈衝雷射光#3、脈衝雷射光#4、脈衝雷射光#1,假設脈衝雷射光#1及脈衝雷射光#2為相同。藉此,從放大器200射出的脈衝雷射光的脈衝能量接近均勻,從而抑制偏差。Furthermore, in the amplifier 200, when pulsed laser light of the same pulse energy is input, the pulse energy of the output pulsed laser light increases as the time interval from the previous pulsed laser light increases. Therefore, the transmittance of the control optical switch element 26 decreases as the time interval of the pulsed laser light increases, thereby causing the pulse energy of the pulsed laser light incident on the amplifier 200 to decrease as the time interval of the pulsed laser light increases. In the example of FIG7 , the pulse energy of the pulse laser light incident on the amplifier 200 is in the order of the smaller one being the pulse laser light #3, the pulse laser light #4, and the pulse laser light #1, and the pulse laser light #1 and the pulse laser light #2 are the same; the transmittance is in the order of the smaller one being the pulse laser light #3, the pulse laser light #4, and the pulse laser light #1, and it is assumed that the pulse laser light #1 and the pulse laser light #2 are the same. In this way, the pulse energy of the pulse laser light emitted from the amplifier 200 is close to uniform, thereby suppressing deviation.

脈衝雷射光與脈衝雷射光之間的時間間隔,例如為依據脈衝波形進行檢測,且可以使用檢測值來控制透過率。基於可以測量來自光電偵測器、光電管等的脈衝雷射光的光強度的時間依賴性的感測器測得的量測電壓,可以從脈衝波形的特徵形狀識別脈衝雷射光的發生時間,並定義脈衝雷射光之間的時間間隔。舉例而言,可以將脈衝的峰值時間設置為發生時間,可以將光強度相對於脈衝峰值上升到預定比例的時間設置為發生時間,或者脈衝上升到峰值之後光強度相對於峰值降低到預定比例的時間設置為發生時間。The time interval between pulsed laser lights is detected based on the pulse waveform, for example, and the detection value can be used to control the transmittance. Based on the measured voltage measured by a sensor that can measure the time dependency of the light intensity of pulsed laser lights from a photodetector, a phototube, etc., the occurrence time of the pulsed laser lights can be identified from the characteristic shape of the pulse waveform, and the time interval between the pulsed laser lights can be defined. For example, the peak time of the pulse can be set as the occurrence time, the time it takes for the light intensity to rise to a predetermined ratio relative to the pulse peak value can be set as the occurrence time, or the time it takes for the light intensity to decrease to a predetermined ratio relative to the peak value after the pulse rises to the peak value can be set as the occurrence time.

雷射裝置500,依據脈衝特性時間,對每一脈衝雷射光調變光開關元件26的透過率;前述脈衝特性時間表示Q開關雷射振盪器100產生脈衝雷射光的時間間隔之特徵。脈衝特性時間,例如為Q開關雷射振盪器100產生的複數脈衝雷射光之間的時間間隔,或者為Q開關雷射振盪器100產生的複數脈衝雷射光之間的時間間隔的移動平均。雷射裝置500控制光開關元26的透過率,使得透過率隨脈衝特性時間表示的時間間隔變短而變高,而且使得脈衝雷射光之間的能量變動變得小於預定的值。The laser device 500 modulates the transmittance of the optical switch element 26 for each pulse laser light according to the pulse characteristic time; the pulse characteristic time indicates the characteristics of the time interval of the pulse laser light generated by the Q-switched laser oscillator 100. The pulse characteristic time is, for example, the time interval between the plurality of pulse laser lights generated by the Q-switched laser oscillator 100, or the moving average of the time interval between the plurality of pulse laser lights generated by the Q-switched laser oscillator 100. The laser device 500 controls the transmittance of the optical switch element 26 so that the transmittance increases as the time interval indicated by the pulse characteristic time becomes shorter, and the energy variation between the pulse laser lights becomes smaller than a predetermined value.

此外,如圖2所示,在雷射裝置500具有複數光開關元件26、27的情形下,雷射裝置500控制光開關元件26和27的組合透射率以滿足上述條件。In addition, as shown in FIG. 2 , when the laser device 500 has a plurality of optical switch elements 26 and 27 , the laser device 500 controls the combined transmittance of the optical switch elements 26 and 27 to satisfy the above-mentioned condition.

如上述說明,實施例1的雷射裝置500具有產生脈衝雷射光的Q開關雷射振盪器100、放大脈衝雷射光的放大器200、配置於Q開關雷射振盪器100與放大器200之間的光路上的光開關元件26、以及依據脈衝特性時間調變光開關元件26的透過率的控制裝置3;脈衝特性時間表示Q開關雷射振盪器100產生脈衝雷射光的時間間隔之特徵。調變透過率表示使透過率的值隨時間變化。具體而言,於實施例1中,控制裝置35對入射至光開關元件26的每一脈衝雷射光改變透過率的值。藉此,改變Q開關雷射振盪器100產生脈衝雷射光的時間間隔,且由Q開關雷射振盪器100產生脈衝雷射光的脈衝能量對於每一脈衝雷射光都不同,即使在放大器的放大率改變的情形下,仍可以抑制放大後的脈衝能量的變動。此外,在此時刻,在藉由將主信號以外的二次信號入射至放大器以抑制脈衝雷射光入射的時間間隔改變 方法中,可以抑制為消除次級信號並取出主信號作為雷射輸出所導致的從輸入電到雷射輸出的轉換效率的降低。所以,在抑制從輸入功率到雷射輸出的轉換效率的降低的同時,即使脈衝週期改變也能夠抑制放大後脈衝能量的變動。As described above, the laser device 500 of the first embodiment includes a Q-switched laser oscillator 100 for generating pulsed laser light, an amplifier 200 for amplifying the pulsed laser light, an optical switch element 26 disposed on an optical path between the Q-switched laser oscillator 100 and the amplifier 200, and a control device 3 for modulating the transmittance of the optical switch element 26 according to the pulse characteristic time; the pulse characteristic time represents the characteristics of the time interval at which the Q-switched laser oscillator 100 generates the pulsed laser light. Modulating the transmittance means changing the transmittance value with time. Specifically, in the first embodiment, the control device 35 changes the transmittance value for each pulsed laser light incident on the optical switch element 26. By this, the time interval at which the Q-switched laser oscillator 100 generates the pulse laser light is changed, and the pulse energy of the pulse laser light generated by the Q-switched laser oscillator 100 is different for each pulse laser light, and even when the amplification factor of the amplifier is changed, the variation of the pulse energy after amplification can be suppressed. In addition, at this moment, in the method of suppressing the time interval change of the pulse laser light incident by injecting a secondary signal other than the main signal into the amplifier, the reduction in the conversion efficiency from the input power to the laser output caused by eliminating the secondary signal and extracting the main signal as the laser output can be suppressed. Therefore, while suppressing the reduction in the conversion efficiency from the input power to the laser output, the variation of the pulse energy after amplification can be suppressed even if the pulse cycle changes.

此外,控制裝置35,獲得Q開關雷射振盪器100產生複數脈衝雷射光之間的時間間隔、或Q開關雷射振盪器100產生複數脈衝雷射光之間的時間間隔的移動平均作為脈衝時間特性,控制光開關元件26的透過率,從而使光開關元件26的透過率隨時間間隔變短而變高、而且使從放大器200射出的複數脈衝雷射光之間的能量變動小於預定的值。在此,控制使從放大器200射出的複數脈衝雷射光之間的能量變動小於預定的值所指的是,例如在圖7示例中,圖7的(d)所示的使脈衝雷射光#1~#4之間的脈衝能量的差小於預定的值。因此,在抑制從輸入功率到雷射輸出的轉換效率降低的同時,即使脈衝週期改變也能夠抑制放大後脈衝能量的變動。Furthermore, the control device 35 obtains the time interval between the multiple pulse laser lights generated by the Q-switched laser oscillator 100 or the moving average of the time interval between the multiple pulse laser lights generated by the Q-switched laser oscillator 100 as the pulse time characteristic, and controls the transmittance of the optical switch element 26 so that the transmittance of the optical switch element 26 becomes higher as the time interval becomes shorter, and the energy variation between the multiple pulse laser lights emitted from the amplifier 200 is smaller than a predetermined value. Here, controlling so that the energy variation between the multiple pulse laser lights emitted from the amplifier 200 is smaller than a predetermined value means, for example, in the example of FIG. 7 , making the difference in pulse energy between the pulse laser lights #1 to #4 smaller than a predetermined value as shown in FIG. 7 (d). Therefore, while suppressing the decrease in conversion efficiency from input power to laser output, it is possible to suppress changes in pulse energy after amplification even when the pulse cycle changes.

此外,於上述中,雖然脈衝雷射光在檢流計掃描鏡403完成定位的時點進行照射,但是當檢流計掃描鏡403的定位時間過短時,在Q開關雷射振盪器100停止振盪期間累積的增益會過小,從放大器200輸出的脈衝雷射光的脈衝能量小於期望的值。在此情形下,可以停止檢流計掃描鏡403直到放大後得到所需的脈衝能量,並且在得到所需的脈衝能量時照射脈衝雷射光。In addition, in the above, although the pulsed laser light is irradiated at the time when the galvanometer scanner 403 completes the positioning, when the positioning time of the galvanometer scanner 403 is too short, the accumulated gain during the period when the Q-switched laser oscillator 100 stops oscillating will be too small, and the pulse energy of the pulsed laser light output from the amplifier 200 will be less than the desired value. In this case, the galvanometer scanner 403 can be stopped until the required pulse energy is obtained after amplification, and the pulsed laser light can be irradiated when the required pulse energy is obtained.

<實施例2> 於實施例2說明將雷射裝置500的雷射輸出用於電子基板的鑽孔機400之雷射加工裝置510的控制流程。 <Example 2> Example 2 describes the control process of the laser processing device 510 of the drilling machine 400 for using the laser output of the laser device 500 for electronic substrates.

圖8為用於說明實施例2的雷射加工裝置510的控制動作之流程圖。雷射裝置500的控制裝置35,首先取得表示鑽孔機400加工電子基板的鑽孔圖案的資料(步驟S101)。舉例而言,表示鑽孔圖案的資料可包含加工電子基板的孔位資訊。FIG8 is a flow chart for explaining the control operation of the laser processing device 510 of Embodiment 2. The control device 35 of the laser device 500 first obtains data representing the drilling pattern of the electronic substrate processed by the drilling machine 400 (step S101). For example, the data representing the drilling pattern may include hole position information of the processed electronic substrate.

接著,控制裝置35依據取得的表示鑽孔圖案的資料,計算電子基板的鑽孔路徑(步驟S102)。之後,控制裝置35計算脈衝雷射光的振盪間隔(步驟S103),振盪間隔指為了加工每一加工孔Q開關雷射振盪器100產生脈衝雷射光的時間間隔。Next, the control device 35 calculates the drilling path of the electronic substrate according to the obtained data representing the drilling pattern (step S102). After that, the control device 35 calculates the oscillation interval of the pulsed laser light (step S103), and the oscillation interval refers to the time interval of the pulsed laser light generated by the Q-switched laser oscillator 100 to process each processing hole.

控制裝置35,對與脈衝雷射光的振盪時間間隔相對應每一脈衝雷射光,計算光開關元件26的透過率的初始值(步驟S104)。控制裝置35,將上述算出的脈衝雷射光的振盪間隔及光開關元件26的透過率之資料,例如儲存在控制裝置35內的記憶體,且設定每一脈衝雷射光的光開關元件26的透過率(步驟S105)。The control device 35 calculates the initial value of the transmittance of the optical switch element 26 for each pulsed laser light corresponding to the oscillation time interval of the pulsed laser light (step S104). The control device 35 stores the calculated data of the oscillation interval of the pulsed laser light and the transmittance of the optical switch element 26 in, for example, a memory in the control device 35, and sets the transmittance of the optical switch element 26 for each pulsed laser light (step S105).

控制裝置35使用算出的脈衝雷射光的振盪間隔及算出的光開關元件26的透過率,以控制Q開關雷射振盪器100及光開關元件26,而且使Q開關雷射振盪器100進行振盪(步驟S106)。The control device 35 uses the calculated oscillation interval of the pulsed laser light and the calculated transmittance of the optical switch element 26 to control the Q-switched laser oscillator 100 and the optical switch element 26, and causes the Q-switched laser oscillator 100 to oscillate (step S106).

此外,控制裝置35藉由資訊處理裝置36,獲得光感測器51取得的放大後的脈衝雷射光的脈衝能量(步驟S107)。此外,在步驟S106執行雷射振盪的次數,例如可以與後1片電子基板的孔數相同,也可將1片電子基板分成多次。在此振盪的脈衝雷射光沒有照射至電子基板上,尚未進行鑽孔。In addition, the control device 35 obtains the pulse energy of the amplified pulse laser light obtained by the photo sensor 51 through the information processing device 36 (step S107). In addition, the number of times the laser oscillation is performed in step S106 can be the same as the number of holes in the next electronic substrate, or one electronic substrate can be divided into multiple times. The pulse laser light in this oscillation is not irradiated onto the electronic substrate, and no hole is drilled yet.

控制裝置35判斷,在步驟S107取得的表示放大後的複數脈衝雷射光的脈衝能量的偏差的值,是否在閾值以下 (步驟S108)。當脈衝能量的偏差沒有在閾值以下時(步驟S108:否),控制裝置35依據放大後的每一脈衝雷射光的脈衝能量的偏差,修正當振盪脈衝能量的偏差為閾值以上的脈衝雷射光時光開關元件26的透過率(步驟S109),並返回步驟S105。所以,雷射裝置500設定修正後的透過率,在使用修正後的透過率控制光開關元件26的狀態,再次進行雷射振盪,取得放大後的脈衝能量。The control device 35 determines whether the value indicating the deviation of the pulse energy of the amplified multiple pulse laser light obtained in step S107 is below the threshold value (step S108). When the deviation of the pulse energy is not below the threshold value (step S108: No), the control device 35 corrects the transmittance of the optical switch element 26 when the deviation of the oscillation pulse energy is above the threshold value according to the deviation of the pulse energy of each pulse laser light after amplification (step S109), and returns to step S105. Therefore, the laser device 500 sets the corrected transmittance, controls the state of the optical switch element 26 using the corrected transmittance, performs laser oscillation again, and obtains the amplified pulse energy.

當脈衝能量的偏差為閾值以下時(步驟S108:是),雷射加工裝置510開始對電子基板鑽孔(步驟S110)。藉由進行此種處理,電射裝置500重複進行光開關元件26的透過率的修正,直到執行雷射振盪所量測的放大後的脈衝能量的偏差為閾值以下。When the pulse energy deviation is below the threshold value (step S108: yes), the laser processing device 510 starts drilling holes in the electronic substrate (step S110). By performing such processing, the laser processing device 500 repeatedly corrects the transmittance of the optical switch element 26 until the deviation of the amplified pulse energy measured by the laser oscillation is below the threshold value.

控制裝置35,例如可以使用比例積分差動(PID:Proportional Integral Differential)控制來修正透過率。此外,也可以由後述的機器學習來決定透過率。The control device 35 may correct the transmittance using, for example, proportional integral differential (PID) control. Alternatively, the transmittance may be determined by machine learning as described below.

若預先知道以設定值作為光開關元件26的過率的初始值而脈衝能量的偏差會在預定範圍內,則取得脈衝能量或修正脈衝能量的偏差等的處理可以省略,並且可以按原樣執行處理。簡而言之,在加工時可以不需要回授控制。此外,取脈衝能量或修正脈衝能量的偏差,可以在執行加工的同時進行,亦即可以執行回授制。If it is known in advance that the deviation of the pulse energy will be within a predetermined range by using the set value as the initial value of the rate of the optical switch element 26, the processing of obtaining the pulse energy or correcting the deviation of the pulse energy can be omitted, and the processing can be performed as it is. In short, feedback control is not required during processing. In addition, obtaining the pulse energy or correcting the deviation of the pulse energy can be performed while the processing is performed, that is, feedback control can be performed.

此外,控制裝置35與資訊處理裝置36的功能分工為一示例,在上述中,以作為控制裝置35的功能而敘述的處理,可以在資訊處理裝置36執行,以作為資訊處理裝置36的功能而敘述的處理,可以在控制裝置35執行。舉例而言,取得電子基板鑽孔圖案的資料、計算電子基板的鑽孔路徑、計算脈衝雷射光的振盪間隔、算出光開關元件26的透過率的初始值、算出表示脈衝能量的偏差的值、算出光開關元件26的透過率的修正量等,可以由資訊處裝置36執行。In addition, the functional division between the control device 35 and the information processing device 36 is an example. In the above, the processing described as the function of the control device 35 can be executed by the information processing device 36, and the processing described as the function of the information processing device 36 can be executed by the control device 35. For example, the information processing device 36 can acquire the data of the drilling pattern of the electronic substrate, calculate the drilling path of the electronic substrate, calculate the oscillation interval of the pulsed laser light, calculate the initial value of the transmittance of the optical switch element 26, calculate the value representing the deviation of the pulse energy, calculate the correction amount of the transmittance of the optical switch element 26, etc.

如以上說明,實施例2的雷射加工方法,包含如下步驟:通過控制裝置35控制Q開關雷射振盪器100,以產生脈衝雷射光之步驟;控制裝置35設定脈衝雷射光透過光開關元件26的透過率之步驟;將脈衝雷射光入射至已設定透過率的光開關元件26,以改變脈衝雷射光的脈衝能量之步驟;由放大器200放大脈衝雷射光之步驟;藉由檢流計掃描鏡403偏轉放大後的脈衝雷射光,以調整脈衝雷射光照射加工對象物405的位置之步驟;以及,將偏轉後的脈衝雷射光聚光或轉寫而照射加工對象物405之步驟;其中,在改變脈衝雷射光的脈衝能量之步驟中,依據表示產生脈衝雷射光的時間間隔的特徵之脈衝特性時間,調變光開關元件26的透過率。As described above, the laser processing method of Example 2 includes the following steps: controlling the Q-switch laser oscillator 100 by the control device 35 to generate a pulse laser light; setting the transmittance of the pulse laser light through the optical switch element 26 by the control device 35; causing the pulse laser light to be incident on the optical switch element 26 with the set transmittance to change the pulse energy of the pulse laser light; and amplifying the pulse laser light by the amplifier 200. Step; a step of adjusting the position of the processing object 405 irradiated by the pulse laser light by deflecting the amplified pulse laser light by the galvanometer scanner 403; and a step of focusing or translating the deflected pulse laser light to irradiate the processing object 405; wherein, in the step of changing the pulse energy of the pulse laser light, the transmittance of the optical switch element 26 is modulated according to the pulse characteristic time representing the characteristic time interval of generating the pulse laser light.

<實施例3> 於實施例2中,雖然將脈衝雷射光的脈衝能量的偏差控制在預定的範圍內,但是也可以將加工孔的形狀的偏差控制在預定範圍內。 <Example 3> In Example 2, although the deviation of the pulse energy of the pulsed laser light is controlled within a predetermined range, the deviation of the shape of the processed hole can also be controlled within a predetermined range.

圖9為用於說明實施例3的雷射加工裝置510的控制動作之流程圖。從步驟S101到步驟S106的處理與圖8相同,所以在此省略其說明。Fig. 9 is a flow chart for explaining the control operation of the laser processing device 510 according to Embodiment 3. The processing from step S101 to step S106 is the same as that in Fig. 8, so the description thereof is omitted here.

當在步驟S106中振盪雷射時,雷射加工裝置510利用雷射裝置500輸出的脈衝雷射光開始在電子基板鑽孔(步驟S121)。執行鑽孔之後,雷射加工裝置510取得鑽孔後的加工孔的形狀(步驟S122)。加工孔的形狀,例如可以從使用相機等取得的圖像中來取得,也可以利用探針雷射掃描加工面上而取得。脈衝雷射光振盪的次數可以與1片電子基板的孔數相同,也可以將1片電子基板分為多次。When the laser is oscillating in step S106, the laser processing device 510 starts drilling holes in the electronic substrate using the pulsed laser light output by the laser device 500 (step S121). After the drilling is performed, the laser processing device 510 obtains the shape of the processed hole after drilling (step S122). The shape of the processed hole can be obtained from an image obtained using a camera, etc., or by scanning the processing surface with a probe laser. The number of times the pulsed laser light oscillates can be the same as the number of holes in one electronic substrate, or one electronic substrate can be divided into multiple times.

控制裝置35,計算用於表示加工孔的形狀的偏差的值,判斷加工孔的形狀的偏差是否在預定的範圍內(步驟S123)。The control device 35 calculates a value indicating the deviation of the shape of the processed hole, and determines whether the deviation of the shape of the processed hole is within a predetermined range (step S123).

在此,加工孔形狀的偏差,為用於表示複數加工孔的每一個特徵的值的變動幅度。表示加工孔特徵的值,可為用於表示計測每一個複數加工孔的計測結果的值,可為從計測結果算出的值。作為表示加工孔特徵的值的一示例,可以為孔徑、孔的縱橫比、孔的面積、孔的深度、孔底面的凹凸、孔周圍飛散物的量等。此外,加工孔的形狀,不僅定義了單孔的形狀,而且還定義了孔的配置,即孔配置在那裡、配置多少個孔等,其可在加工程式、指令等內描述。Here, the deviation of the processed hole shape is the fluctuation range of the value used to represent each characteristic of the plurality of processed holes. The value representing the characteristics of the processed hole can be a value used to represent the measurement result of each of the plurality of processed holes, or a value calculated from the measurement result. As an example of a value representing the characteristics of the processed hole, it can be the hole diameter, the aspect ratio of the hole, the area of the hole, the depth of the hole, the unevenness of the bottom surface of the hole, the amount of scattered materials around the hole, etc. In addition, the shape of the processed hole defines not only the shape of a single hole, but also the configuration of the hole, that is, where the hole is configured, how many holes are configured, etc., which can be described in the processing formula, instructions, etc.

當加工孔形狀的偏差不在預定範圍內時(步驟S123:否),控制裝置35依據加工孔形狀的偏差,修正光開關元件26的透過率(步驟S124),再返回步驟S105。在此,雖然透過率是對應於各脈衝雷射光而設定,但是成為修正對象的透過率為,用於加工差值不在預定範圍內的加工孔的脈衝雷射光對應的透過率;前述差值所指的是與表示加工孔的形狀的值和基準值之間的差。When the deviation of the processed hole shape is not within the predetermined range (step S123: No), the control device 35 corrects the transmittance of the optical switch element 26 according to the deviation of the processed hole shape (step S124), and then returns to step S105. Here, although the transmittance is set corresponding to each pulsed laser light, the transmittance to be corrected is the transmittance corresponding to the pulsed laser light used to process the processing hole whose difference value is not within the predetermined range; the aforementioned difference value refers to the difference between the value representing the shape of the processed hole and the reference value.

當加工孔形狀的偏差在預定範圍內時(步驟S123:是),以設定的透過率進行電子基板的鑽孔(步驟S125)。可以使用調節用的電子基板樣本,直到確定用於執行鑽孔的透射率為止。When the deviation of the processed hole shape is within the predetermined range (step S123: yes), the electronic substrate is drilled at the set transmittance (step S125). The electronic substrate sample for adjustment can be used until the transmittance for drilling is determined.

控制裝置35可使用例如PID控制來修正透過率。此外,可以通過後述的機器學習來決定透過率。The control device 35 can correct the transmittance using, for example, PID control. Alternatively, the transmittance can be determined by machine learning as described below.

此外,於實施例3中,控制裝置35與資訊處理裝置36的功能分工為一示例,在上述中,以作為控制裝置35的功能而敘述的處理,可以在資訊處理裝置36執行,以作為資訊處理裝置36的功能而敘述的處理,可以在控制裝置35執行。舉例而言,取得電子基板鑽孔圖案的資料、計算電子基板的鑽孔路徑、計算脈衝雷射光的振盪間隔、算出光開關元件26的透過率的初始值、取得加工孔形狀、算出表示脈衝能量的偏差的值、算出光開關元件26的透過率的修正量等,可以由資訊處裝置36執行。In addition, in the third embodiment, the functional division between the control device 35 and the information processing device 36 is an example. In the above, the processing described as the function of the control device 35 can be executed by the information processing device 36, and the processing described as the function of the information processing device 36 can be executed by the control device 35. For example, the information processing device 36 can be used to obtain the data of the drilling pattern of the electronic substrate, calculate the drilling path of the electronic substrate, calculate the oscillation interval of the pulse laser light, calculate the initial value of the transmittance of the optical switch element 26, obtain the shape of the processed hole, calculate the value indicating the deviation of the pulse energy, calculate the correction amount of the transmittance of the optical switch element 26, etc.

如以上說明,實施例3的雷射加工裝置510具有:電射裝置500;檢流計掃描鏡403,為用於偏轉從放大器200輸出的脈衝雷射光的偏轉元件;透鏡404,為將來自檢流計掃描鏡403的脈衝雷射光聚光或轉寫以照射加工對象物405的物鏡光學系統;以及,使加工對象物405移動的移動機構。控制裝置35依據加工孔特性值來控制透過率,使得透過率隨加工孔的間隔變短而變高、而且使得表示複數加工孔形狀的偏差的值小於預定的值;前述加工孔特性值表示由脈衝雷射光在加工對象物405上進行鑽孔時在加工路徑上所包含的加工孔的特性。在雷射裝置500用於鑽孔的情形下,由於脈衝特性時間隨著加工孔間隔變長而變長,通過依據加工孔特性值來控制透過率,可以控制基於脈衝特性時間的透過率,而且,可以將加工孔的形狀同質化。As described above, the laser processing device 510 of the third embodiment includes: the electro-optical device 500; the galvanometer scanner 403, which is a deflection element for deflecting the pulse laser light output from the amplifier 200; the lens 404, which is an objective optical system for focusing or translating the pulse laser light from the galvanometer scanner 403 to irradiate the processing object 405; and a moving mechanism for moving the processing object 405. The control device 35 controls the transmittance based on the processing hole characteristic value, which represents the characteristics of the processing holes included in the processing path when drilling holes in the processing object 405 by the pulse laser light, so that the transmittance becomes higher as the interval of the processing holes becomes shorter and the value representing the deviation of the shapes of the plurality of processing holes is less than a predetermined value. When the laser device 500 is used for drilling holes, since the pulse characteristic time becomes longer as the interval between processed holes becomes longer, by controlling the transmittance based on the characteristic value of the processed holes, the transmittance based on the pulse characteristic time can be controlled, and the shapes of the processed holes can be homogenized.

此外,加工孔特性值,表示加工路徑上複數加工孔的間隔、或複數加工孔的間隔的移動平均的值。In addition, the machined hole characteristic value indicates the interval between a plurality of machined holes on the machining path or the moving average value of the interval between a plurality of machined holes.

<實施例4> 於實施例2、3中,雖為表示電子基板的鑽孔圖案為預先得知之情形,但是在電子基板的孔數非常多的情形下,有需要將每一個孔對應的透過率作為資料保存下來,使記憶體資源面臨壓力。此外,有需要預先決定脈衝雷射光的振盪時序。 <Example 4> In Examples 2 and 3, although the drilling pattern of the electronic substrate is known in advance, when the number of holes in the electronic substrate is very large, it is necessary to save the transmittance corresponding to each hole as data, which puts pressure on memory resources. In addition, it is necessary to predetermine the oscillation timing of the pulse laser light.

於實施例4所示的控制方法,可以適用於電子基板的鑽孔圖案或脈衝雷射光的振盪時序沒有預先得知的情形。The control method shown in the fourth embodiment can be applied to the case where the drilling pattern of the electronic substrate or the oscillation timing of the pulsed laser light is not known in advance.

圖10示意實施例4之學習裝置60的構成。學習裝置60執行與雷射裝置500相關的機器學習。學習裝置60,具有學習用資料取得部61,取得用於學習的學習用資料;以及,模型生成部62,生成用於使用學習用資料推論光開關元件26的透過率的學習完畢模型。模型生成部62將生成的學習完畢模型儲存在記憶部70。FIG10 illustrates the structure of the learning device 60 of the fourth embodiment. The learning device 60 performs machine learning related to the laser device 500. The learning device 60 includes a learning data acquisition unit 61 for acquiring learning data for learning, and a model generation unit 62 for generating a learned model for inferring the transmittance of the optical switch element 26 using the learning data. The model generation unit 62 stores the generated learned model in the memory unit 70.

學習用資料取得部61取得,表示雷射裝置500產生脈衝雷射光的時間間隔的間隔資訊、含括脈衝雷射光放大後的脈衝能量的狀態量、光開關元件26的透過率,作為學習用資料。間隔資訊,如果是表示產生脈衝雷射光的時間間隔的資訊,則可為任何資訊。間隔資訊例如包含:上述的脈衝特性時間、Q開關雷射振盪器100產生的脈衝雷射光的能量、Q開關雷射振盪器100產生的脈衝雷射光的波形、由放大器200放大後的脈衝雷射光的波形、以及Q開關雷射振盪器100及放大器200的驅動電流或放電電流,其中的至少之一。學習裝置60,取得例如產生脈衝雷射光的時間間隔和光開關元件26的透過率改變為各種值時的放大後脈衝雷射光的脈衝能量,並且取得包含當時的間隔資訊和放大後的脈衝能量的狀態量、及設定的透過率,作為學習用資料。The learning data acquisition unit 61 acquires, as learning data, interval information indicating the time interval at which the laser device 500 generates pulsed laser light, a state quantity including pulse energy after amplification of the pulsed laser light, and transmittance of the optical switch element 26. The interval information may be any information as long as it indicates the time interval at which the pulsed laser light is generated. The interval information includes, for example, the above-mentioned pulse characteristic time, the energy of the pulse laser light generated by the Q-switched laser oscillator 100, the waveform of the pulse laser light generated by the Q-switched laser oscillator 100, the waveform of the pulse laser light amplified by the amplifier 200, and at least one of the driving current or the discharge current of the Q-switched laser oscillator 100 and the amplifier 200. The learning device 60 obtains, for example, the time interval of generating the pulse laser light and the pulse energy of the amplified pulse laser light when the transmittance of the optical switch element 26 changes to various values, and obtains the state quantity including the interval information at that time and the amplified pulse energy, and the set transmittance as learning data.

此外,在雷射裝置500為氣體雷射(即雷射介質是氣體)的情形下,學習用資料取得部61獲得的狀態量,包含Q開關雷射振盪器100或放大器200的冷卻水溫度、Q開關雷射振盪器100或放大器200的氣體溫度、Q開關雷射振盪器100或放大器200的氣體壓力、Q開關雷射振盪器100或放大器200的連續放電時間、Q開關雷射振盪器100或放大器200的電極溫度、以及Q開關雷射振盪器100或放大器200的光學構件更換後的總放電時間,其中的至少之一。In addition, when the laser device 500 is a gas laser (i.e., the laser medium is gas), the state quantity obtained by the learning data acquisition unit 61 includes at least one of the cooling water temperature of the Q-switched laser oscillator 100 or the amplifier 200, the gas temperature of the Q-switched laser oscillator 100 or the amplifier 200, the gas pressure of the Q-switched laser oscillator 100 or the amplifier 200, the continuous discharge time of the Q-switched laser oscillator 100 or the amplifier 200, the electrode temperature of the Q-switched laser oscillator 100 or the amplifier 200, and the total discharge time after the optical component of the Q-switched laser oscillator 100 or the amplifier 200 is replaced.

模型生成部62,依據將狀態量與光開關元件26的過率相結合而作成的學習用資料,來學習光開關元件26的透過率;前述狀態量,包含從學習用取得部61輸出的間隔資訊、及雷射裝置500產生的脈衝雷射光放大後的脈衝能量。具體而言,模型生成部62,生成學習完畢模型,用以從雷射裝置500的狀態量推論光開關元件26的透過率,目標值為放大後脈衝能量。在此,學習用資料為將狀態量及光開關元件26的透過率相互關聯的資料。The model generation unit 62 learns the transmittance of the optical switch element 26 based on the learning data generated by combining the state quantity and the transmittance of the optical switch element 26; the aforementioned state quantity includes the interval information output from the learning acquisition unit 61 and the pulse energy of the pulse laser light generated by the laser device 500 after amplification. Specifically, the model generation unit 62 generates a learned model for inferring the transmittance of the optical switch element 26 from the state quantity of the laser device 500, and the target value is the amplified pulse energy. Here, the learning data is data that correlates the state quantity and the transmittance of the optical switch element 26.

模型生成部62使用的學習演算法,可為監督學習、無監督學習、強化學習等眾所周知的演算法。作為一示例,將說明應用於神經網路的情況。The learning algorithm used by the model generation unit 62 may be a well-known algorithm such as supervised learning, unsupervised learning, or reinforcement learning. As an example, the case where the algorithm is applied to a neural network will be described.

模型生成部62,依據例如神經網路模型,且通過所謂的監督學習來學習光開關元件26的透過率。在此,所謂監督學習為,藉由將輸入與結果(標籤)的資料組給予學習裝置60,從而學習這些學習用資料有的特徵,並且從輸入推論結果。The model generation unit 62 learns the transmittance of the optical switch element 26 by so-called supervised learning based on, for example, a neural network model. Here, so-called supervised learning is to give a data set of input and result (label) to the learning device 60, thereby learning the characteristics of these learning data and inferring the result from the input.

神經網路包括,由複數神經元構成的輸入層、由複數神經元構成亦即穩藏層的中間層、以及由複數神經元構成的輸出層。中間層可為1層,也可為2層以上。A neural network includes an input layer composed of multiple neurons, an intermediate layer composed of multiple neurons, i.e., a storage layer, and an output layer composed of multiple neurons. The intermediate layer may be one layer or two or more layers.

圖11示意3層神經網路的一示例。舉例而言,如果是如圖11所示的3層神經網,複數輸入被輸入至輸入層(X1~X3)後,在其值乘上權重W1(w11~w16)且被輸入至中間層(Y1~Y2),在其結果更乘上權重W2(w21~w26)從輸出層(Z1~Z3)輸出。此輸出結果依據權重W1及W2的值而改變。FIG11 shows an example of a 3-layer neural network. For example, if it is a 3-layer neural network as shown in FIG11, after a plurality of inputs are input to the input layer (X1~X3), their values are multiplied by weights W1 (w11~w16) and input to the middle layer (Y1~Y2), and their results are further multiplied by weights W2 (w21~w26) and output from the output layer (Z1~Z3). This output result changes according to the values of weights W1 and W2.

於實施例4中,神經網路是依據由學習用資料取得部61取得的狀態量以及透過率的組合所作成的學習用資料,通過所謂的監督學習從而學習透過率。In the fourth embodiment, the neural network learns the transmittance through so-called supervised learning based on the learning data created by the combination of the state quantity and the transmittance acquired by the learning data acquisition unit 61.

也就是說,於神經網路中,在輸入層輸入包含放大後脈衝能量的目標值的狀態量,從輸出層輸出的結果是通過調整權重W1及權重W2,使得放大後的脈衝能量接近成為目標值的光開關元件26的透過率,從而進行學習。That is, in the neural network, a state quantity including a target value of the amplified pulse energy is inputted into the input layer, and the result outputted from the output layer is learned by adjusting weights W1 and W2 so that the amplified pulse energy approaches the transmittance of the optical switch element 26 which is the target value.

模型生成部62通過執行如上的學習而生成學習完畢模型,且輸出到學習完畢模型記憶部70。The model generation unit 62 generates a learned model by executing the above learning, and outputs the learned model to the learned model storage unit 70 .

學習完畢模型記憶部70,儲存由模型生成部62輸出的學習完畢模型。The learned model storage unit 70 stores the learned model output by the model generation unit 62 .

接著,使用圖12說明學習裝置60進行的學習處理。圖12為用以說明學習裝置60的學習處理的流程圖。Next, the learning process performed by the learning device 60 will be described using Fig. 12. Fig. 12 is a flowchart for describing the learning process of the learning device 60.

學習用資料取得部61,取得包含狀態量以及透過率的學習用資料(步驟S201)。此外,在此狀態量和透過率是同時取得,但是狀態量和透過率可以相互關聯地輸入,並且狀態量和透過率可以在不同的時點取得。The learning data acquisition unit 61 acquires learning data including state quantities and transmittance (step S201). In addition, the state quantities and transmittance are acquired at the same time, but the state quantities and transmittance can be input in association with each other, and the state quantities and transmittance can be acquired at different times.

模型生成部62依據由學習用資料取得部61取得的狀態量以及透過率的組合而作成的學習用資料,通過所謂的監督學習,藉以進行學習放大後脈衝能量將是目標值的透過率之學習處理,從而生成學習完畢模型(步驟S202)。The model generation unit 62 generates a learning data based on the combination of state quantity and transmittance obtained by the learning data acquisition unit 61, and performs a learning process of the transmittance so that the pulse energy after learning amplification will be the target value through so-called supervised learning, thereby generating a learning-completed model (step S202).

學習完畢模型記憶部70,儲存模型生成部62生成的學習完畢型(步驟S203)。The learned model storage unit 70 stores the learned model generated by the model generation unit 62 (step S203).

圖13為雷射裝置500的推論裝置80的構成圖。推論裝置80具有推論用資料取得部81、及推論部82。13 is a diagram showing the configuration of the inference device 80 of the laser device 500. The inference device 80 includes an inference data acquisition unit 81 and an inference unit 82.

推論用資料取得部81,取得狀態量作為推論用資料。狀態量包含上述間隔資訊、放大後的脈衝能量的目標值。此外,在雷射裝置500為氣體雷射(即雷射介質是氣體)的情形下,推論用資料取得部81獲得的狀態量,包含Q開關雷射振盪器100或放大器200的冷卻水溫度、Q開關雷射振盪器100或放大器200的氣體溫度、Q開關雷射振盪器100或放大器200的氣體壓力、Q開關雷射振盪器100或放大器200的連續放電時間、Q開關雷射振盪器100或放大器200的電極溫度、以及Q開關雷射振盪器100或放大器200的光學構件更換後的總放電時間,其中的至少之一。The inference data acquisition unit 81 acquires state quantities as inference data. The state quantities include the interval information and the target value of the amplified pulse energy. In addition, when the laser device 500 is a gas laser (i.e., the laser medium is gas), the state quantity obtained by the inferred data acquisition unit 81 includes at least one of the cooling water temperature of the Q-switched laser oscillator 100 or the amplifier 200, the gas temperature of the Q-switched laser oscillator 100 or the amplifier 200, the gas pressure of the Q-switched laser oscillator 100 or the amplifier 200, the continuous discharge time of the Q-switched laser oscillator 100 or the amplifier 200, the electrode temperature of the Q-switched laser oscillator 100 or the amplifier 200, and the total discharge time after the optical component of the Q-switched laser oscillator 100 or the amplifier 200 is replaced.

推論部82,推論利用學習完畢模型而得的透過率。換言之,推論部82藉由將推論用資料取得部81取得的推論用資料,輸入至學習完畢記憶部70儲存的學習完畢模型,能夠輸出過率,使得依據狀態量推論的放大後脈衝能量成為目標值。The inference unit 82 infers the transmittance obtained by the learned model. In other words, the inference unit 82 inputs the inference data obtained by the inference data acquisition unit 81 into the learned model stored in the learned memory unit 70, and can output the transmittance so that the amplified pulse energy inferred based on the state quantity becomes the target value.

此外,使用推論裝置80的學習完畢模型,可以是利用從雷射裝置500(即推論裝置80的推論對象)取得的學習用資料而學習的學習完畢模型,也可以從和雷射裝置500(即推論裝置80的推論對象)不同的其他雷射裝置500等的外部取得學習完畢模型。In addition, the learned model using the inference device 80 can be a learned model learned using learning data obtained from the laser device 500 (i.e., the inference object of the inference device 80), or a learned model obtained from outside such as another laser device 500 that is different from the laser device 500 (i.e., the inference object of the inference device 80).

接著,使用圖14說明利用推論裝置80得到透過率的處理。圖14為用於說明使用推論裝置80以得到透過率之處理的流程圖。Next, the process of obtaining the transmittance using the inference device 80 will be described using Fig. 14. Fig. 14 is a flow chart for describing the process of obtaining the transmittance using the inference device 80.

推論用資料取得部81,取得推論用資料(步驟S301)。The inference data acquisition unit 81 acquires inference data (step S301).

推論部82,將狀態量輸入給學習完畢模型記憶部70儲存的學習完畢模型(步驟S302)、且輸出透過率的推論結果給雷射裝置500(步驟S303)。The inference unit 82 inputs the state quantity to the learned model stored in the learned model memory unit 70 (step S302), and outputs the inference result of the transmittance to the laser device 500 (step S303).

雷射裝置500被輸出的透過率推定結果,控制光十關元件26(步驟S304)。The transmittance estimation result outputted from the laser device 500 is used to control the optical switching element 26 (step S304).

舉例而言,於如圖3所示的鑽孔機400中,當實施電子基板的鑽孔加工時,控制裝置35對Q開關振盪器100發出脈衝雷射光的輸出指令,使得在檢流計掃描鏡403完成定位後,脈衝雷射光照射在加工對象物405上。此外,控制裝置35為了降低指令信號延遲引起的時間損失,會預測檢流計掃描鏡403完成定位的時間,且在檢流計掃描鏡403定位完成之前對Q開關振盪器100發出脈衝雷射光的輸出指令,使得在定位完成之後脈衝雷射光立即照射至加工對象物405。在任何狀況下,脈衝雷射光的發生時刻是取決於檢流計掃描鏡403的定位時間。此時,藉由利用以上述學習裝置60而得到的學習完畢模型,推論裝置80可以依據,表示脈衝雷射光發生間隔的間隔資訊、及包含放大後脈衝能量的目標值的狀態量,從而決定光開關元件26的透過率。所以,通過使用學習完畢模型,即使在脈衝雷射光的發生間隔沒有預先決定的情形下,可以對每一脈衝雷射光決定光開關元件26的透過率,且可以控制放大後的脈衝能量。For example, in the drilling machine 400 shown in FIG. 3 , when drilling a hole on an electronic substrate, the control device 35 issues a pulse laser light output command to the Q switching oscillator 100, so that after the galvanometer scanner 403 completes positioning, the pulse laser light is irradiated on the processing object 405. In addition, in order to reduce the time loss caused by the delay of the command signal, the control device 35 predicts the time when the galvanometer scanner 403 completes positioning, and issues a pulse laser light output command to the Q switching oscillator 100 before the galvanometer scanner 403 completes positioning, so that the pulse laser light is immediately irradiated on the processing object 405 after the positioning is completed. In any case, the generation time of the pulsed laser light depends on the positioning time of the galvanometer scanning mirror 403. At this time, by using the learned model obtained by the learning device 60, the inference device 80 can determine the transmittance of the optical switch element 26 based on the interval information indicating the generation interval of the pulsed laser light and the state quantity including the target value of the amplified pulse energy. Therefore, by using the learned model, even if the generation interval of the pulsed laser light is not predetermined, the transmittance of the optical switch element 26 can be determined for each pulsed laser light, and the amplified pulse energy can be controlled.

此外,於本實施例中,雖是說明將監督學習應用為模型生成部62使用的學習演算法之情形,但是並非限定於此。除了監督學習之外,學習演算法可以使用強化學習、無監督學習、或半監督學習等。In addition, in this embodiment, although the supervised learning is applied as the learning algorithm used by the model generation unit 62, the present invention is not limited to this. In addition to the supervised learning, the learning algorithm may use reinforcement learning, unsupervised learning, or semi-supervised learning.

此外,模型生成部62可以依照對複數雷射裝置500建立的學習用資料來學習透過率。此外,模型生成部62,可從在同一區域使用的複數雷射裝置500取得學習用資料,也可利用從在不同區域使用獨立運作的複數雷射裝置500收集的學習用資料來學習透過率。此外,可以將收集學習用資料的雷射裝置500,在途中追加為對象或從對象中移除。此外,已經學習到某個雷射裝置500的透射率的學習裝置60,可以應用於另一雷射裝置500,並且可以重新學習和更新另一雷射裝置500的透射率。In addition, the model generation unit 62 can learn the transmittance according to the learning data established for the plurality of laser devices 500. In addition, the model generation unit 62 can obtain the learning data from the plurality of laser devices 500 used in the same area, and can also learn the transmittance using the learning data collected from the plurality of laser devices 500 used in different areas and operating independently. In addition, the laser device 500 for which the learning data is collected can be added as an object or removed from the object during the process. In addition, the learning device 60 that has learned the transmittance of a certain laser device 500 can be applied to another laser device 500, and the transmittance of another laser device 500 can be relearned and updated.

此外,作為模型成成部62中使用的學習演算法,可以使用學習擷取特徵量本身的深度學習(Deep Learning),也可以依照其他的周知的方法,例如遺傳編程、功能邏輯編程、支援向量機等,以實現機器學習。In addition, as a learning algorithm used in the model generation unit 62, deep learning (Deep Learning) can be used to learn the feature quantity itself, or other well-known methods such as genetic programming, functional logic programming, support vector machine, etc. can be used to implement machine learning.

此外,學習裝置60及推論裝置80,用於學習雷射裝置500的光開元件26的透過率,例如通過網路而連接雷射裝500,且可以是與此雷射裝置500分離的裝置。此外,學習裝置60及推論裝置80,可內建於雷射裝置500或雷射加工裝置510。舉例而言,學習裝置60及推論裝置80至少其中之一,可以是控制裝置35或資訊處理裝置36之功能的一部分。此外,學習裝置60及推論裝置80,可以存放在雲端伺服器上。In addition, the learning device 60 and the inference device 80 are used to learn the transmittance of the optical switch element 26 of the laser device 500, and are connected to the laser device 500 through a network, for example, and can be devices separate from the laser device 500. In addition, the learning device 60 and the inference device 80 can be built into the laser device 500 or the laser processing device 510. For example, at least one of the learning device 60 and the inference device 80 can be part of the function of the control device 35 or the information processing device 36. In addition, the learning device 60 and the inference device 80 can be stored on a cloud server.

此外,上述為通過控制光開關元件26的透過率以穩定放大後的脈衝能量,但也可通過控制光開關元件26的透過率、以及放電電流或放大電力,以穩定放大後的脈衝能量。In addition, the above-mentioned method stabilizes the amplified pulse energy by controlling the transmittance of the optical switch element 26, but the amplified pulse energy may also be stabilized by controlling the transmittance of the optical switch element 26 and the discharge current or the amplified power.

此外,如實施例1所示,在檢流計掃描鏡403的定位時間過短使得放大器200輸出的脈衝能量小於期望的值的之情形下,可停止檢流計掃描鏡403,直到得到放大後所需的脈衝能量,且可進行控制使得在得到所需的脈衝能量的時間點照射脈衝雷射光。In addition, as shown in Example 1, when the positioning time of the galvanometer scanner 403 is too short so that the pulse energy output by the amplifier 200 is less than the desired value, the galvanometer scanner 403 can be stopped until the required pulse energy after amplification is obtained, and control can be performed so that the pulse laser light is irradiated at the time point when the required pulse energy is obtained.

舉例而言,在CO2雷射中,振盪效率是依據氣體溫度、氣體壓力而變化。因此,為修正由於氣體溫度、氣體壓力的造成的脈衝能量的變化或光開關元件26的透過率,可使用這些參數作為機器學習的狀態量。此外,在執行連續放電時,會發生由於雷射氣體劣化而造成脈衝量低下的情形。因此,通過將雷射裝置500的放電時間作為機器學習的狀態量,算出光開關元件26的透過率與脈衝能量的依賴性,可用於修正光開關元件26的透過率或脈衝能量。此外,更換光學構件後的總放電時間,成為光學構件劣化狀態的指標。光學構件劣化時,由於其反射率或透過率的降低,導致脈衝能量會發生變化。因此,可將光學構件更換後的總放電時間作為機器學習的狀態量。For example, in CO2 laser, the oscillation efficiency changes according to the gas temperature and gas pressure. Therefore, in order to correct the change of pulse energy or the transmittance of the optical switch element 26 caused by the gas temperature and gas pressure, these parameters can be used as the state quantity of machine learning. In addition, when performing continuous discharge, the pulse quantity may decrease due to the degradation of the laser gas. Therefore, by using the discharge time of the laser device 500 as the state quantity of machine learning, the dependence of the transmittance of the optical switch element 26 and the pulse energy is calculated, which can be used to correct the transmittance or pulse energy of the optical switch element 26. In addition, the total discharge time after replacing the optical component becomes an indicator of the degradation state of the optical component. When optical components deteriorate, the pulse energy changes due to a decrease in reflectivity or transmittance. Therefore, the total discharge time after the optical component is replaced can be used as a state quantity for machine learning.

如以上的說明,實施例4的雷射裝置500可更配備有學習裝置60。學習裝置60具有取得學習用資料的學習用資料取得部61、以及生成學習完畢模型的模型生成部62。學習用資料,包含狀態量、以及光開關元件26的透過率。狀態量包含,表示雷射裝置500產生脈衝雷射光的時間間隔的間隔資訊、與脈衝雷射光放大後的脈衝能量。學習完畢模型,使用學習用資料,從狀態量推論使放大後脈衝能量成為周標值之光開關元件26的透過率。As described above, the laser device 500 of the fourth embodiment may be further equipped with a learning device 60. The learning device 60 has a learning data acquisition unit 61 for acquiring learning data and a model generation unit 62 for generating a learned model. The learning data includes a state quantity and a transmittance of the optical switch element 26. The state quantity includes interval information indicating a time interval at which the laser device 500 generates a pulse laser light and a pulse energy after amplification of the pulse laser light. The learned model uses the learning data to infer the transmittance of the optical switch element 26 that makes the amplified pulse energy a cyclic value from the state quantity.

此外,實施例4的雷射裝置500可更配備有推論裝置80。推論裝置80,具有:推論用資料取得部81,取得狀態量其包含表示產生脈衝雷射光的時間間隔的間隔資訊、及脈衝雷射光放大後之脈衝能量的目標值;以及,推論部82,使用用於從狀態量,推論目標值為放大後脈衝能量之光開關元件26的透過率的學習完畢模型,從由推論用資料取得部81取得的狀態量推論透過率。控制裝置35,使用推論80推論得的透過率,控制光開關元件26。In addition, the laser device 500 of the fourth embodiment may be further equipped with an inference device 80. The inference device 80 includes: an inference data acquisition unit 81 that acquires a state quantity including interval information indicating a time interval for generating a pulse laser light and a target value of a pulse energy after amplification of the pulse laser light; and an inference unit 82 that infers transmittance from the state quantity acquired by the inference data acquisition unit 81 using a learned model for inferring the transmittance of the optical switch element 26 whose target value is the amplified pulse energy from the state quantity. The control device 35 controls the optical switch element 26 using the transmittance inferred by the inference unit 80.

此外,學習裝置60以及推論裝置80使用的間隔資訊,例如為,包含Q開關雷射振盪器100產生脈衝雷射光的脈衝特性時間、Q開關雷射振盪器100產生脈衝雷射光的能量、Q開關雷射振盪器100產生脈衝雷射光的波形、放大器200放大後的脈衝雷射光的波形、Q開關雷射振盪器100及放大器200的驅動電流或放電力,其中的至少之一。In addition, the interval information used by the learning device 60 and the inference device 80 includes, for example, at least one of the pulse characteristic time of the pulse laser light generated by the Q-switched laser oscillator 100, the energy of the pulse laser light generated by the Q-switched laser oscillator 100, the waveform of the pulse laser light generated by the Q-switched laser oscillator 100, the waveform of the pulse laser light amplified by the amplifier 200, and the driving current or discharge force of the Q-switched laser oscillator 100 and the amplifier 200.

此外,當雷射裝置500為氣體雷射時,學習狀置60及推論裝置80使用的狀態量,包含Q開關雷射振盪器100或放大器200的冷卻水溫度、Q開關雷射振盪器100或放大器200的氣體溫度、Q開關雷射振盪器100或放大器200的氣體壓力、Q開關雷射振盪器100或放大器200的連續放電時間、Q開關雷射振盪器100或放大器200的電極溫度、Q開關雷射振盪器100或放大器200的光學構件更換後的總放電時間,其中的至少之一。In addition, when the laser device 500 is a gas laser, the state quantities used by the learning state device 60 and the inference device 80 include at least one of the cooling water temperature of the Q-switched laser oscillator 100 or the amplifier 200, the gas temperature of the Q-switched laser oscillator 100 or the amplifier 200, the gas pressure of the Q-switched laser oscillator 100 or the amplifier 200, the continuous discharge time of the Q-switched laser oscillator 100 or the amplifier 200, the electrode temperature of the Q-switched laser oscillator 100 or the amplifier 200, and the total discharge time after the optical component of the Q-switched laser oscillator 100 or the amplifier 200 is replaced.

此外,此學習裝置60及推論裝置80,可以是與雷射裝置500分離的的裝置。可以建構雷射加工系統,配備有與雷射裝置500分離的學習裝置60及推論裝置80的至少之一。In addition, the learning device 60 and the inference device 80 may be devices separate from the laser device 500. A laser processing system may be constructed by being equipped with at least one of the learning device 60 and the inference device 80 separate from the laser device 500.

<實施例5> 於實施例4,為學習目標值為放大後脈衝能量的光開關元件26的透過率,在將雷射裝置500輸出的脈衝雷射光用於在電子基板上鑽孔時,更期望加工形狀的穩定。 <Example 5> In Example 4, the transmittance of the optical switch element 26 whose target value is the amplified pulse energy is learned. When the pulse laser light output by the laser device 500 is used to drill holes in an electronic substrate, the stability of the processed shape is more desired.

因此,在實施例5中,說明對學習透過率以使加工後的加工孔的形狀為目標形狀的方法。Therefore, in Example 5, a method of learning the transmittance so that the shape of the processed hole after processing becomes the target shape is described.

圖15示意實施例5之學習裝置60a的構成。學習裝置60a,進行例如圖3所示的雷射加工裝置510的機器學習。學習裝60a具有:取得部61a,取得學習用資料,即用於學習的資料;模基生成部62a,使用學習用資料,生成用於推論光開關元件26的透過率的學習完畢模型。模型生成部62a將生成的學習完畢模型,儲存在學習完畢模型記憶部70a。FIG15 shows the structure of the learning device 60a of the fifth embodiment. The learning device 60a performs machine learning of the laser processing device 510 shown in FIG3, for example. The learning device 60a comprises: an acquisition unit 61a, which acquires learning data, i.e., data used for learning; and a model generation unit 62a, which uses the learning data to generate a learned model for inferring the transmittance of the optical switch element 26. The model generation unit 62a stores the generated learned model in the learned model storage unit 70a.

學習用資料取得部61a,取得包含間隔資訊及形狀資訊的狀態量、以及光開關元件26的透過率,作為學習用資料。間隔資訊表示雷射加工裝置510的雷射裝置500產生脈衝雷射光的時間間隔。形狀資訊表示由雷射加工裝置510加工後的加工孔形狀。當間隔資訊為產生脈衝雷射光的時間間隔時,則可以是任何資訊。間隔資訊,例如包含上述脈衝特性時間、Q開關振盪器100產生的脈衝雷射光的能量、Q開關振盪器100產生的脈衝雷射光的波形、放大器200放大後的脈衝雷射光的波形、Q開關振盪器100及放大器200的驅動電流或放電電流,其中的至少之一。學習裝置60a,例如,取得使產生脈衝雷射光的時間間隔、光開關元件26的透過率作種種變化時進行加工所得到的加工孔形狀,並且取得將包含當時之間隔資訊及形狀資訊的狀態量、與設定的透過率,作為學習用資料。The learning data acquisition unit 61a acquires the state quantity including the interval information and the shape information and the transmittance of the optical switch element 26 as learning data. The interval information indicates the time interval of the pulse laser light generated by the laser device 500 of the laser processing device 510. The shape information indicates the shape of the processed hole processed by the laser processing device 510. When the interval information is the time interval of generating the pulse laser light, it can be any information. The interval information includes, for example, the pulse characteristic time, the energy of the pulse laser light generated by the Q-switching oscillator 100, the waveform of the pulse laser light generated by the Q-switching oscillator 100, the waveform of the pulse laser light amplified by the amplifier 200, and at least one of the drive current or discharge current of the Q-switching oscillator 100 and the amplifier 200. The learning device 60a, for example, obtains the shape of the processed hole obtained by processing while making various changes to the time interval of generating the pulse laser light and the transmittance of the optical switch element 26, and obtains the state quantity including the interval information and shape information at that time and the set transmittance as learning data.

此外,當雷射裝置500是雷射介質為氣體的氣體雷射時,學習用資料取得部61a取得的狀態量,包含Q開關雷射振盪器100或放大器200的冷卻水溫度、Q開關雷射振盪器100或放大器200的氣體溫度、Q開關雷射振盪器100或放大器200的氣體壓力、Q開關雷射振盪器100或放大器200的連續放電時間、Q開關雷射振盪器100或放大器200的電極溫度、Q開關雷射振盪器100或放大器200的光學構件更換後的總放電時間,其中的至少之一。In addition, when the laser device 500 is a gas laser whose laser medium is gas, the state quantities obtained by the learning data acquisition unit 61a include at least one of the cooling water temperature of the Q-switched laser oscillator 100 or the amplifier 200, the gas temperature of the Q-switched laser oscillator 100 or the amplifier 200, the gas pressure of the Q-switched laser oscillator 100 or the amplifier 200, the continuous discharge time of the Q-switched laser oscillator 100 or the amplifier 200, the electrode temperature of the Q-switched laser oscillator 100 or the amplifier 200, and the total discharge time after the optical components of the Q-switched laser oscillator 100 or the amplifier 200 are replaced.

模型生成部62a,依據基於包含學習用資料取得部61a輸出的間隔資訊及表示由雷射加工裝置510加工的加工孔形狀的形狀資訊的狀態量、與光開關元件26透過率的結合,而作成的學習用資料,來學習光開關元件26的透過率。具體而言,模型生成部62a生成學習完畢模型,用以從雷射加工裝置510的狀態量,以推論使加工後的加工孔形狀為期望形狀的光開關元件26的透過率。The model generation unit 62a learns the transmittance of the optical switch element 26 based on the learning data generated based on the combination of the state quantity including the interval information output by the learning data acquisition unit 61a and the shape information indicating the shape of the processed hole processed by the laser processing device 510 and the transmittance of the optical switch element 26. Specifically, the model generation unit 62a generates a learned model for inferring the transmittance of the optical switch element 26 so that the shape of the processed hole after processing is a desired shape from the state quantity of the laser processing device 510.

模型生成部62a使用的學習演算法,可使用監督學習、無監督學習、強化學習等眾所周知的演算法。以下說明應用於神經網路的情形,作為一示例。The learning algorithm used by the model generation unit 62a may be a well-known algorithm such as supervised learning, unsupervised learning, and reinforcement learning. The following describes the case where the algorithm is applied to a neural network as an example.

模型生成部62a,例如依照神經網路,通過所謂的監督學習,學習光開關元件26的透過率。在此,所謂監督學習的手法,為通過將輸入結果(標籤)的資料給予學習裝置60a,以學習這些學習用資料中的特徵,且從輸入推論結果。The model generation unit 62a learns the transmittance of the optical switch element 26 by so-called supervised learning, for example, according to a neural network. Here, the so-called supervised learning method is to input result (label) data to the learning device 60a, learn the features in the learning data, and infer the result from the input.

神經網路的配置包括,由複數神經元構成的輸入層、由複數神經元構成的即是隱藏層的中間層、以及由複數神經元構成的輸出層。中間層可以是1層,也可以是2層以上。與實施例4相同,可以使用如圖11所示的神經網路。The configuration of the neural network includes an input layer composed of multiple neurons, an intermediate layer composed of multiple neurons, i.e., a hidden layer, and an output layer composed of multiple neurons. The intermediate layer can be one layer or two or more layers. As in Embodiment 4, a neural network as shown in FIG. 11 can be used.

於實施例5,神經網路依據基於學習用資料取得部61a取得的狀態量及透過率的組合而作成的學習用資料,通過所謂的監督學習,學習使加工孔形狀為期望形狀的透過率。In the fifth embodiment, the neural network learns the transmittance that makes the processed hole shape a desired shape through so-called supervised learning based on the learning data created based on the combination of the state quantity and transmittance acquired by the learning data acquisition unit 61a.

換言之,神經網路通過調整權重W1及權重W2而進行學習,使得包含放大後脈衝能量之目標值的狀態量輸入到輸入層且由輸出層輸出的結果,靠近使放大後脈衝能量成為目標值的光開關元件26的透過率。In other words, the neural network learns by adjusting weights W1 and W2 so that the state quantity including the target value of the amplified pulse energy is input to the input layer and the result output by the output layer is close to the transmittance of the optical switch element 26 that makes the amplified pulse energy reach the target value.

模型生成部62a,通過實施如上的學習以生成學習完畢模型,且輸出至學習完畢模型記憶部70a。The model generation unit 62a generates a learned model by performing the above-described learning, and outputs the learned model to the learned model storage unit 70a.

學習完畢模型記憶部70a,儲存模型生成部62a輸出的學習完畢模型。The learned model storage unit 70a stores the learned model output by the model generation unit 62a.

學習裝置60a學習處理的流程與實施例4的學習裝置60相同,在此省略其說明。The learning process of the learning device 60a is the same as that of the learning device 60 of Embodiment 4, and its description is omitted here.

圖16為雷射加工裝置510的推論裝置80a的構成圖。推論裝置80a具有推論用資料取得部81a及推論部82a。Fig. 16 is a diagram showing the configuration of an inference device 80a of the laser processing device 510. The inference device 80a includes an inference data acquisition unit 81a and an inference unit 82a.

推論用資料取得部81a取得狀態量作為推論用資料。狀態量包含上述間隔資訊、及加工後的加工孔的目標形狀。此外,當雷射裝置500是雷射介質為氣體的氣體雷射時,推論用資料取得部81a取得的狀態量,可更包含Q開關雷射振盪器100或放大器200的冷卻水溫度、Q開關雷射振盪器100或放大器200的氣體溫度、Q開關雷射振盪器100或放大器200的氣體壓力、Q開關雷射振盪器100或放大器200的連續放電時間、Q開關雷射振盪器100或放大器200的電極溫度、以及Q開關雷射振盪器100或放大器200的光學構件更換後的總放電時間,其中的至少之一。The inference data acquisition unit 81a acquires state quantities as inference data. The state quantities include the above-mentioned interval information and the target shape of the processed hole after processing. In addition, when the laser device 500 is a gas laser whose laser medium is gas, the state quantity obtained by the inferred data acquisition unit 81a may further include at least one of the cooling water temperature of the Q-switched laser oscillator 100 or the amplifier 200, the gas temperature of the Q-switched laser oscillator 100 or the amplifier 200, the gas pressure of the Q-switched laser oscillator 100 or the amplifier 200, the continuous discharge time of the Q-switched laser oscillator 100 or the amplifier 200, the electrode temperature of the Q-switched laser oscillator 100 or the amplifier 200, and the total discharge time after the optical component of the Q-switched laser oscillator 100 or the amplifier 200 is replaced.

推論部82a,推論利用學習完畢模型而得的透過率。換言之,推論部82a,通過將推論用資料取得部81a取得的推論用資料,輸入至儲存於學習完畢記憶部70a中的學習完畢模型,可以依據狀態量推論、輸出使得加工孔的形狀成為目標形狀的透過率。The inference unit 82a infers the transmittance obtained by using the learned model. In other words, the inference unit 82a can infer and output the transmittance that makes the shape of the processed hole become the target shape based on the state quantity by inputting the inference data obtained by the inference data acquisition unit 81a into the learned model stored in the learned memory unit 70a.

此外,推論裝置80a使用的學習完畢模型,可以是利用從即推論裝置80a之推論對象的雷射裝置500所取得的學習用資料,而完成學習的學習完畢模型。也可以從與推論裝置80a之推論對象的雷射裝置500不同的其他雷射裝置500等的外部,取得學習完畢模型。Furthermore, the learned model used by the inference device 80a may be a learned model that has been learned using learning data obtained from the laser device 500 that is the inference target of the inference device 80a. The learned model may also be obtained from an external laser device 500 that is different from the laser device 500 that is the inference target of the inference device 80a.

推論裝置80a的推論動作的流程與實施例4的推論裝置80相同,在此省略其說明。The process of the inference action of the inference device 80a is the same as that of the inference device 80 of Example 4, and its description is omitted here.

舉例而言,在如圖3所示的鑽孔機400中,當進行電子基板的鑽孔(孔加工)時,控制裝置35對Q開關振盪器100送出脈衝雷射光的輸出指令,使得檢流計掃描鏡403定位完成後,在加工對象物405上照射脈衝雷射光。此外,為了降低指令信號延遲引起的時間損失,控制裝置30,預設檢流計掃描鏡定位的時刻,且在檢流計掃描鏡403完成定位前向Q開關振盪器100發出脈衝雷射光的輸出指令,使在檢流計掃描鏡403定位完成後立即,將脈衝雷射光照射在加工對象物405上。在任何情形下,脈衝雷射光的發生時刻,取決於檢流計掃描鏡403的定位時間。此時,通過使用上述學習裝置60a得到的學習完畢模型,推論裝置80a,可以從包含表示脈衝雷射光發生的時間間隔的間隔資訊及加工孔的目標形狀之狀態量,決定光開關元件26的透過率。因此,通過使用學習完畢模型,即使在脈衝雷射光的發生間隔沒有預先決定的情形下,可以對每一脈衝雷射光決定光開關元件26的透過率,且可以控制放大後的脈衝量。For example, in the drilling machine 400 shown in FIG3 , when drilling (hole processing) an electronic substrate, the control device 35 sends a pulse laser light output command to the Q switching oscillator 100, so that after the galvanometer scanner 403 is positioned, the pulse laser light is irradiated on the processing object 405. In addition, in order to reduce the time loss caused by the delay of the command signal, the control device 30 presets the timing of the galvanometer scanner positioning, and sends a pulse laser light output command to the Q switching oscillator 100 before the galvanometer scanner 403 is positioned, so that the pulse laser light is irradiated on the processing object 405 immediately after the galvanometer scanner 403 is positioned. In any case, the timing of the pulse laser light generation is determined by the positioning time of the galvanometer scanner 403. At this time, by using the learned model obtained by the learning device 60a, the inference device 80a can determine the transmittance of the optical switch element 26 from the state quantity including the interval information indicating the time interval of the pulse laser light generation and the target shape of the processed hole. Therefore, by using the learned model, even if the interval of the pulse laser light generation is not predetermined, the transmittance of the optical switch element 26 can be determined for each pulse laser light, and the pulse quantity after amplification can be controlled.

此外,於本實施例中,雖是說明將監督學習應用於模型生成部62a使用的學習演算法的情形,但是並非定於此。有關學習演算法,除了監督學習之外,也可採用強化學、無監督學習、或半監督學習等。In addition, in this embodiment, although the supervised learning is applied to the learning algorithm used by the model generation unit 62a, it is not limited to this. Regarding the learning algorithm, in addition to supervised learning, reinforcement learning, unsupervised learning, or semi-supervised learning may also be adopted.

此外,模型生成部62a,可依據針對複數雷射裝置500作成的學習用資料來學習透過率。此外,模型生成部62a可以從在同一區域使用的複數雷射裝置500取得學習用資料,也可以利用從在不同區域獨立運作的複數雷射裝置500所收集的學習用資料來學習透過率。此外,可以在途中將收集學習用資料的雷射裝置500追加為對象、或從對象中移除。此外,將已學習到某雷射裝置500之透過率的學習裝置60a應用至另一雷射裝置500,可再學習及更新該另一個雷射裝置500的透過率。In addition, the model generation unit 62a can learn the transmittance based on the learning data created for the plurality of laser devices 500. In addition, the model generation unit 62a can obtain the learning data from the plurality of laser devices 500 used in the same area, and can also learn the transmittance using the learning data collected from the plurality of laser devices 500 independently operating in different areas. In addition, the laser device 500 for which the learning data is collected can be added as an object or removed from the object during the process. In addition, the learning device 60a that has learned the transmittance of a certain laser device 500 can be applied to another laser device 500 to learn and update the transmittance of the other laser device 500.

此外,作為模型生成裝置62a中使用的學習演算法,可以使用學習擷取特徵量本身的深度學習,也可依照其他眾所周知的方法,例如遺傳編程、功能邏輯編程、支援向量機等,以實現機器學習。In addition, as a learning algorithm used in the model generating device 62a, deep learning of learning and extracting feature quantities themselves can be used, or machine learning can be realized according to other well-known methods, such as genetic programming, functional logic programming, support vector machines, etc.

此外,學習裝置60a及推論裝置80a,用於學習雷射裝置500的光開元件26的透過率,例如通過網路而連接雷射裝500,且可以是與此雷射裝置500分離的裝置。此外,學習裝置60a及推論裝置80a,可內建於雷射裝置500。此外,學習裝置60a及推論裝置80a,可以存放在雲端伺服器上。In addition, the learning device 60a and the inference device 80a are used to learn the transmittance of the optical switch element 26 of the laser device 500, and are connected to the laser device 500 through a network, for example, and can be devices separate from the laser device 500. In addition, the learning device 60a and the inference device 80a can be built into the laser device 500. In addition, the learning device 60a and the inference device 80a can be stored on a cloud server.

此外,上述為通過控制光開關元件26的透過率以穩定放大後的脈衝能量,但也可通過控制光開關元件26的透過率、以及放電電流或放大電力,以穩定放大後的脈衝能量。In addition, the above-mentioned method stabilizes the amplified pulse energy by controlling the transmittance of the optical switch element 26, but the amplified pulse energy may also be stabilized by controlling the transmittance of the optical switch element 26 and the discharge current or the amplified power.

此外,如實施例1所示,在檢流計掃描鏡403的定位時間過短使得放大器200輸出的脈衝能量小於期望的值的之情形下,可停止檢流計掃描鏡403,直到得到放大後所需的脈衝能量,且可進行控制使得在得到所需的脈衝能量的時間點照射脈衝雷射光。In addition, as shown in Example 1, when the positioning time of the galvanometer scanner 403 is too short so that the pulse energy output by the amplifier 200 is less than the desired value, the galvanometer scanner 403 can be stopped until the required pulse energy after amplification is obtained, and control can be performed so that the pulse laser light is irradiated at the time point when the required pulse energy is obtained.

舉例而言,在CO2雷射中,振盪效率是依據氣體溫度、氣體壓力而變化。因此,為修正由於氣體溫度、氣體壓力的造成的脈衝能量的變化或光開關元件26的透過率,可使用這些參數作為機器學習的狀態量。此外,在執行連續放電時,會發生由於雷射氣體劣化而造成脈衝量低下的情形。因此,通過使用雷射裝置500的放電時間作為機器學習的狀態量,算出光開關元件26的透過率與脈衝能量的依賴性,可用於修正光開關元件26的透過率或脈衝能量。此外,更換光學構件後的總放電時間,成為光學構件劣化狀態的指標。光學構件劣化時,由於其反射率或透過率的降低,導致脈衝能量會發生變化。因此,可將光學構件更換後的總放電時間作為機器學習的狀態量。For example, in CO2 laser, the oscillation efficiency changes according to the gas temperature and gas pressure. Therefore, in order to correct the change of pulse energy or the transmittance of the optical switch element 26 caused by the gas temperature and gas pressure, these parameters can be used as the state quantity of machine learning. In addition, when performing continuous discharge, the pulse quantity may decrease due to the degradation of the laser gas. Therefore, by using the discharge time of the laser device 500 as the state quantity of machine learning, the dependence of the transmittance of the optical switch element 26 and the pulse energy is calculated, which can be used to correct the transmittance or pulse energy of the optical switch element 26. In addition, the total discharge time after replacing the optical component becomes an indicator of the degradation state of the optical component. When optical components deteriorate, the pulse energy changes due to a decrease in reflectivity or transmittance. Therefore, the total discharge time after the optical component is replaced can be used as a state quantity for machine learning.

如以上的說明,實施例5的學習裝置60a,為雷射加工裝置510的雷射裝置500具有的學習裝置60a,用於學習光開關元件26的透過率。學習裝置60a具有取得學習用資料的學習用資料取得部61a、以及生成學習完畢模型的模型生成部62a。學習用資料,包含狀態量、以及光開關元件26的透過率。狀態量包含,表示產生脈衝雷射光的時間間隔的間隔資訊、與表示使用脈衝雷射光加工過的加工孔形狀的形狀資訊。學習完畢模型為,使用學習用資料,從狀態量推論使加工孔的形狀成為目標形狀之光開關元件26的透過率。藉由具有此種配置,可學習使加工後的加工孔的形狀均質化的透過率與狀態量的關係。As described above, the learning device 60a of Example 5 is a learning device 60a included in the laser device 500 of the laser processing device 510, and is used to learn the transmittance of the optical switch element 26. The learning device 60a has a learning data acquisition unit 61a that acquires learning data, and a model generation unit 62a that generates a learned model. The learning data includes a state quantity and the transmittance of the optical switch element 26. The state quantity includes interval information indicating the time interval of generating the pulsed laser light and shape information indicating the shape of the processed hole processed using the pulsed laser light. The learned model is to infer the transmittance of the optical switch element 26 that makes the shape of the processed hole become the target shape from the state quantity using the learning data. By having such an arrangement, it is possible to learn the relationship between the transmittance and the state quantity so as to make the shape of the processed hole uniform after processing.

此外,實施例5的推論裝置80a,為雷射加工裝置510的雷射裝置500具有的推論裝置80a,用於推論光開關元件26的透過率。推論裝置80a,具有:推論用資料取得部81a,取得狀態量其包含表示產生脈衝雷射光的時間間隔的間隔資訊、及形狀資訊其表示使用衝雷射光來加工加工孔的目標形狀;以及,推論部82a,使用用於從狀態量及形狀資訊來推論光開關元件26的透過率的學習完畢模型,而從推論用資料取得部81a取得的狀態量及目標形狀來推論透過率。藉由使用此種推論裝置80a,可推論使加工後的加工孔的形狀均質化的透過率。In addition, the inference device 80a of the fifth embodiment is the inference device 80a of the laser device 500 of the laser processing device 510, and is used to infer the transmittance of the optical switch element 26. The inference device 80a includes: an inference data acquisition unit 81a that acquires a state quantity including interval information indicating the time interval of generating the pulsed laser light and shape information indicating the target shape of the processing hole processed by using the pulsed laser light; and an inference unit 82a that uses a learned model for inferring the transmittance of the optical switch element 26 from the state quantity and shape information to infer the transmittance from the state quantity and target shape acquired by the inference data acquisition unit 81a. By using such an inference device 80a, the transmittance that makes the shape of the processed hole after processing uniform can be inferred.

此外,學習裝置60a及推論裝置80a,可內建於雷射裝置500或雷射加工裝置510,且可以是與此雷射裝置500及雷射加工裝置510分離的裝置。此外,可以建構配備有學習裝置60a及推論裝置80a的至少之一的雷射加工系統。In addition, the learning device 60a and the inference device 80a may be built into the laser device 500 or the laser processing device 510, or may be devices separate from the laser device 500 and the laser processing device 510. In addition, a laser processing system equipped with at least one of the learning device 60a and the inference device 80a may be constructed.

<實施例6> 於實施例1中,假設針對每一脈衝雷射光決定光開關元件26的透過率,且產生每一脈衝雷射光時,透射率是一定的。 <Example 6> In Example 1, it is assumed that the transmittance of the optical switch element 26 is determined for each pulse laser light, and the transmittance is constant when each pulse laser light is generated.

然而,以Q開關雷射振盪器100產生脈衝間隔不同的脈衝雷射光時的脈衝波形,會有不相似的情形。圖17示意脈衝間隔不同的脈衝雷射光波形的一示例。However, the pulse waveforms of pulse laser lights with different pulse intervals generated by the Q-switched laser oscillator 100 are different. FIG17 shows an example of the waveforms of pulse laser lights with different pulse intervals.

圖17的(a)表示Q開關雷射振盪器100振盪的脈衝雷射光的波形。圖17的(b)表示光開關元件26的透過率。圖17的(c)表示輸入放大器200的脈衝雷射光的波形。圖17的(d)表示放大器200輸出的脈衝雷射光的波形。Fig. 17(a) shows the waveform of the pulse laser light oscillated by the Q-switched laser oscillator 100. Fig. 17(b) shows the transmittance of the optical switch element 26. Fig. 17(c) shows the waveform of the pulse laser light input to the amplifier 200. Fig. 17(d) shows the waveform of the pulse laser light output by the amplifier 200.

如圖17的(a)所示,當脈衝間隔不同的脈衝雷射光產生時,Q開關雷射振盪器100輸出的脈衝雷射光的波形並非相似的形狀,脈衝頂部的峰值與脈衝後部的穩定值的強度比率,會發生不同的情形。舉例而言,相對於脈衝雷射光#2的峰值p2與脈衝雷射光#3的峰值p3變大,脈衝雷射光#2的穩定值c2與脈衝雷射光#3的穩定值c3則約略為相等值。在這種情形下,使用與實施例1相同的方法,如圖17的(b)所示,當執行控制以對每一脈衝雷射光設定一定的透過率時,如圖17的(d)所示,即使脈衝能量相等,放大後的脈衝雷射光的波形會變得不同。在此,圖17的(c)為入射放大器200的脈衝雷射光的波形。As shown in (a) of FIG. 17 , when pulse laser light with different pulse intervals is generated, the waveform of the pulse laser light output by the Q-switch laser oscillator 100 is not similar in shape, and the intensity ratio of the peak value at the top of the pulse to the stable value at the back of the pulse will be different. For example, relative to the increase in the peak value p2 of the pulse laser light #2 and the peak value p3 of the pulse laser light #3, the stable value c2 of the pulse laser light #2 and the stable value c3 of the pulse laser light #3 are approximately equal. In this case, using the same method as in Example 1, as shown in FIG17(b), when control is performed to set a certain transmittance for each pulse laser light, as shown in FIG17(d), even if the pulse energy is equal, the waveform of the amplified pulse laser light becomes different. Here, FIG17(c) is the waveform of the pulse laser light entering the amplifier 200.

如此,在Q開關雷射振盪器100產生的複數脈衝雷射光的波形並非相似形的情形下,如圖18所示,通過使光開關元件26的透過在一個脈衝時間內變化,不僅是脈衝能量可同質化,也能將波形同質化。In this way, when the waveforms of the multiple pulse laser lights generated by the Q-switched laser oscillator 100 are not similar, as shown in FIG. 18 , by varying the transmission of the optical switch element 26 within one pulse time, not only the pulse energy but also the waveform can be homogenized.

圖18說明脈衝時間內透過率隨時間變化的示例。圖18的(a)表示Q開關雷射振盪器100振盪的脈衝雷射光的波形。圖18的(b)表示光開關元件26的透過率。圖18的(c)表示輸入放大器200的脈衝雷射光的波形。圖18的(d)表示放大器200輸出的脈衝雷射光的波形。FIG18 illustrates an example of the change in transmittance over time during a pulse time. FIG18(a) shows the waveform of the pulse laser light oscillating from the Q-switched laser oscillator 100. FIG18(b) shows the transmittance of the optical switch element 26. FIG18(c) shows the waveform of the pulse laser light input to the amplifier 200. FIG18(d) shows the waveform of the pulse laser light output from the amplifier 200.

此外,在使用機器學習實行這樣的透過率配置的情形下,作為狀態量可包含,Q開關雷射振盪器100產生脈衝雷射光的時序,與脈衝雷射光的脈衝能量、脈衝頂部的脈衝峰值、及脈衝後部的脈衝穩定值的至少之一,此等其中的至少之一。此外,即為學習結果的透過率,每個脈衝雷射光並非穩定值,可以是在1個脈衝雷射光透過的期間隨時間變化的值。Furthermore, when such a transmittance configuration is implemented using machine learning, the state quantity may include the timing of the Q-switched laser oscillator 100 generating the pulse laser light, and at least one of the pulse energy of the pulse laser light, the pulse peak value at the top of the pulse, and the pulse stability value at the rear of the pulse. Furthermore, the transmittance, which is the learning result, is not a stable value for each pulse laser light, and may be a value that changes with time during the period when one pulse laser light is transmitted.

如以上說明,實施例6的脈衝雷射裝置500,在1個脈衝雷射光透過光開關元件26的期間,使透過率隨時間變化。因此,可使放大後的脈衝雷射光的波形同質化。此外,在使用機器學習設定透過率的情形下,學習裝置60、60a的模型生成部62、62a,依據狀態量,可產生學習完畢模型,用於推論1個脈衝雷射光透過光開關元件26的期間隨時間變化的透過率。As described above, the pulse laser device 500 of the sixth embodiment changes the transmittance with time during the period when one pulse laser light passes through the optical switch element 26. Therefore, the waveform of the amplified pulse laser light can be homogenized. In addition, when the transmittance is set using machine learning, the model generation unit 62, 62a of the learning device 60, 60a can generate a learned model based on the state quantity for inferring the transmittance that changes with time during the period when one pulse laser light passes through the optical switch element 26.

<實施例7> 當產生脈衝雷射光的間隔短時,不僅前1個脈衝雷射光的間隔而且複數脈衝雷射光的歷史也可能受影響。在此情形下,實施例4至6所示的狀態量包含的間隔資訊,並非對象脈衝雷射光與前1個脈衝雷射光之間的時間間隔 ,可以是表示一定期間內包含的複數脈衝雷射光的複數時間間隔的資訊。 <Example 7> When the interval of generating pulse laser light is short, not only the interval of the previous pulse laser light but also the history of multiple pulse laser lights may be affected. In this case, the interval information included in the state quantity shown in Examples 4 to 6 is not the time interval between the target pulse laser light and the previous pulse laser light, but may be information indicating multiple time intervals of multiple pulse laser lights included in a certain period of time.

圖19說明實施例7的透過率控制。圖19的(a)表示Q開關雷射振盪器100振盪的脈衝雷射光波形。圖19的(b)表示光開關元件26的透過率。圖19的(c)表示輸入放大器26的脈衝雷射光的波形。圖19的(d)表示放大器200輸出的脈衝雷射光的波形。FIG19 illustrates the transmittance control of Example 7. FIG19(a) shows the waveform of the pulse laser light oscillated by the Q-switch laser oscillator 100. FIG19(b) shows the transmittance of the optical switch element 26. FIG19(c) shows the waveform of the pulse laser light input to the amplifier 26. FIG19(d) shows the waveform of the pulse laser light output by the amplifier 200.

如圖19的(a)所示,即使在脈衝雷射光#1~#6以一定時間間隔振盪的情形下,當時間間隔短時,各脈衝雷射光#1~#6不僅受到前個脈衝雷射光的影響,也會受到複數脈衝雷射光的影響。在此情形下,即使像脈衝雷射光#1~#6以一定的間隔振盪,假設受的響的期間長為TL,對於脈衝雷射光#1,在脈衝雷射光#1發生時刻之前的TL期間包含1個脈衝雷射光,對於脈衝雷射光#3,在脈衝雷射光#3發生時刻之前的TL期間包含2個脈衝雷射光#1~#2。此外,對於脈衝雷射光#4,在脈衝雷射光#1發生時刻之前的TL期間包含3個脈衝雷射光#1~#3。脈衝雷射光#5和#6也和脈衝雷射光#4相同,在每個脈衝雷射光發生時刻之前的TL期間包含3個脈衝雷射光。因此,在脈衝雷射光#1~#4中脈衝能量為變化的,在脈衝雷射光#4~#6中脈衝能量為一定的。在此情形下,基於脈衝雷射光受影響的TL期間內脈衝雷射光間的時間間隔的合計值,也就是移動平均值,如圖19的(b)所示地控制透過率,能夠如圖19的(d)所示地抑制放大後脈衝能量的偏差(不一致)。As shown in (a) of FIG. 19, even when pulse laser light #1 to #6 oscillates at a certain time interval, when the time interval is short, each pulse laser light #1 to #6 is affected not only by the previous pulse laser light but also by multiple pulse laser lights. In this case, even if pulse laser light #1 to #6 oscillates at a certain time interval, assuming that the duration of the response is TL, for pulse laser light #1, one pulse laser light is included in the TL period before the occurrence of pulse laser light #1, and for pulse laser light #3, two pulse laser lights #1 to #2 are included in the TL period before the occurrence of pulse laser light #3. In addition, for pulse laser light #4, three pulse laser lights #1 to #3 are included in the TL period before the occurrence of pulse laser light #1. Pulse laser lights #5 and #6 are also the same as pulse laser light #4, and three pulse laser lights are included in the TL period before each pulse laser light occurs. Therefore, the pulse energy in pulse laser lights #1 to #4 is variable, and the pulse energy in pulse laser lights #4 to #6 is constant. In this case, by controlling the transmittance as shown in FIG. 19(b) based on the total value of the time interval between the pulse laser lights within the TL period on which the pulse laser lights are affected, that is, the moving average value, the deviation (inconsistency) of the pulse energy after amplification can be suppressed as shown in FIG. 19(d).

此外,由於TL的值依脈衝輸出等條件而異,如實施例4和5所示,當使用機器學習時,使TL的值在各種條件下變化以取得資料,在狀態量中包含TL的值以進行機器學習,而獲得最適當的範圍。In addition, since the value of TL varies depending on conditions such as pulse output, as shown in Examples 4 and 5, when machine learning is used, the value of TL is varied under various conditions to obtain data, and the value of TL is included in the state quantity to perform machine learning, thereby obtaining the most appropriate range.

<實施例8> 在脈衝雷射光發生的間隔非常長的情形下,可以變化放電電力。舉例而言,當雷射裝置500是三軸正交CO2雷射時,從放電開始到增益上升需要一定時間。 <Example 8> When the interval between pulse laser light generation is very long, the discharge power can be changed. For example, when the laser device 500 is a three-axis orthogonal CO2 laser, it takes a certain amount of time from the start of discharge to the gain rise.

圖20示意實施例8之雷射裝置500的電極11間的部分構成。為了簡單起見,在圖20僅顯示電極11的部分,沒有顯示電極12。Fig. 20 shows a partial structure between electrodes 11 of the laser device 500 of Embodiment 8. For simplicity, Fig. 20 shows only a portion of the electrode 11, and does not show the electrode 12.

圖20為從光軸方向,觀察圖2所示雷射裝置500的電極11間的放電空間。於圖20中,Vg為氣體流速、Dwd為氣流方向13的電極11的電極寬度。Fig. 20 shows the discharge space between the electrodes 11 of the laser device 500 shown in Fig. 2 as viewed from the optical axis direction. In Fig. 20, Vg is the gas flow rate, and Dwd is the electrode width of the electrode 11 in the gas flow direction 13.

圖21示意圖20所示配置的雷射裝置500的電極11間的穩定狀態之增益分佈。從放電開始到成為穩定狀態的增益分佈,在即電極11寬度方向的氣流方向13中,雷射氣體從電極11的端到端流動需要時間。換言之,將放電開始到增益分佈成為穩定狀態的時間設定為τ時,則τ=Dwd/Vg。舉例而言,當氣體流速Vg=80m/s、電極寬度Dwd=40mm時,τ=0.5msec。換言之,當脈衝雷射光發生的時間間隔比上述τ長時,停止放電以降低電力消耗,可在發生下一個脈衝雷射光的時刻之前τ開始放電。此外,即使在發生脈衝雷射光的時間間隔短於上述τ的情形下,當脈衝能量過大時可以進行控制使放電電力降低。如此,即使在脈衝頻率低的情形,也可以提高能量效率。此外,比τ長的時間,由於受到先前脈衝雷射光的影響,可以將τ作為已在實施例7說明的TL值。FIG21 shows the gain distribution of the stable state between the electrodes 11 of the laser device 500 configured as shown in FIG20. From the start of discharge to the gain distribution in the stable state, it takes time for the laser gas to flow from the end to the end of the electrode 11 in the gas flow direction 13, which is the width direction of the electrode 11. In other words, when the time from the start of discharge to the gain distribution becoming a stable state is set to τ, τ=Dwd/Vg. For example, when the gas flow rate Vg=80m/s and the electrode width Dwd=40mm, τ=0.5msec. In other words, when the time interval of the pulse laser light is longer than the above τ, the discharge is stopped to reduce the power consumption, and the discharge can be started τ before the next pulse laser light is generated. In addition, even in the case where the time interval of the pulse laser light is shorter than the above τ, when the pulse energy is too large, the discharge power can be controlled to be reduced. In this way, even in the case of low pulse frequency, the energy efficiency can be improved. In addition, for a time longer than τ, due to the influence of the previous pulse laser light, τ can be made into the TL value described in Example 7.

如上述的說明,於實施例8的雷射裝置500中,脈衝特性時間,小於或等於放電電極的電極寬度Dwg除以氣體流速Vg的值;其中,放電電極的電極寬度Dwg為Q開關雷射振盪器100的電極11、12中雷射氣體流動方向的長度。因此,可以從穩定放大器200輸出的脈衝雷射光的脈衝能量,且可以將使用此雷射裝置500進行加工的加工形狀同質化。As described above, in the laser device 500 of the eighth embodiment, the pulse characteristic time is less than or equal to the value of the electrode width Dwg of the discharge electrode divided by the gas flow rate Vg; wherein the electrode width Dwg of the discharge electrode is the length of the electrodes 11 and 12 of the Q-switch laser oscillator 100 in the direction of laser gas flow. Therefore, the pulse energy of the pulse laser light output from the amplifier 200 can be stabilized, and the processed shapes processed using the laser device 500 can be homogenized.

<實施例9> 圖22示意實施例9之電射裝置500a的內部構成。雷射裝置500a中,構成諧振器的部分配置的一部分與雷射裝置500不同。具體而言,於雷射裝置500a中,具有全反射鏡54以取代全反射鏡21,全反鏡54由法線互相垂直的2個平面鏡組合而成。此時,2個法線平行電極面,也就是平行XZ平面。因此,全反射鏡54成為XZ平面方向的遞歸反射鏡。 <Example 9> Figure 22 shows the internal structure of the laser device 500a of Example 9. In the laser device 500a, a part of the configuration of the part constituting the resonator is different from that of the laser device 500. Specifically, in the laser device 500a, there is a total reflection mirror 54 to replace the total reflection mirror 21. The total reflection mirror 54 is composed of two plane mirrors whose normals are perpendicular to each other. At this time, the two normals are parallel to the electrode plane, that is, parallel to the XZ plane. Therefore, the total reflection mirror 54 becomes a recursive reflection mirror in the XZ plane direction.

從光軸方向觀察圖22所示雷射裝置500a的電極11間的放電空間時,則與圖20所示狀態相同。此外,圖23示意雷射裝置500a電極11間的穩定狀態之溫度分佈。When the discharge space between the electrodes 11 of the laser device 500a shown in Fig. 22 is observed from the optical axis direction, the state is the same as that shown in Fig. 20. In addition, Fig. 23 shows the temperature distribution between the electrodes 11 of the laser device 500a in a stable state.

雷射氣體,從氣流上流側即X軸的正方向朝下流側即X軸的負方向流動期間,通過連續放電而投入電力。因此,在氣流方向13產生溫度分佈,相較於上流側,下流側的雷射氣體的溫度變高。因此,在電極11之間的雷射氣體中出現折射率分佈,通過該部分傳播的光的光軸會稍微彎曲。在使用一般凹面鏡對的諧振器中,在此情形下,在氣流的上流側移動光軸,且依據情況停止振盪。於實施例9中,由於使用即遞歸反射鏡的全反射鏡54來構成諧振器,諧振條件為光軸位置限制在遞歸反射鏡的2個鏡子的切線上。換言之,當使用遞歸反射鏡時,即使在氣流方向上出現溫度分佈,光軸移動會受到限制,且可以穩定地振盪。在此情形下,諧振器的脈衝能量及脈衝波形,輸出諧振器之後的鏡子可以使用部分反射鏡55取代雷射裝置500的鏡子25,並以光感測器50觀測部分的透過光。圖22中,雖然部分反射鏡24與即遞歸反射鏡的全反射鏡54是設置在直線上,但是可以在部分反射鏡24及全反射鏡54之間設置折返鏡。The laser gas is supplied with electricity by continuous discharge while flowing from the upstream side of the gas flow, i.e., the positive direction of the X-axis, to the downstream side, i.e., the negative direction of the X-axis. Therefore, a temperature distribution is generated in the gas flow direction 13, and the temperature of the laser gas on the downstream side becomes higher than that on the upstream side. Therefore, a refractive index distribution appears in the laser gas between the electrodes 11, and the optical axis of the light propagating through this part is slightly bent. In a resonator using a general concave mirror pair, in this case, the optical axis is moved on the upstream side of the gas flow, and the oscillation is stopped according to the situation. In Embodiment 9, since the total reflection mirror 54, i.e., the recursive reflector, is used to form the resonator, the resonant condition is that the optical axis position is limited to the tangent line of the two mirrors of the recursive reflector. In other words, when the recursive reflector is used, even if the temperature distribution appears in the airflow direction, the movement of the optical axis is limited and can oscillate stably. In this case, the pulse energy and pulse waveform of the resonator, the mirror after the output resonator can use the partial reflection mirror 55 instead of the mirror 25 of the laser device 500, and the light sensor 50 can observe part of the transmitted light. In FIG. 22 , although the partial reflection mirror 24 and the total reflection mirror 54 , which is the recursive reflection mirror, are arranged on a straight line, a reflection mirror may be arranged between the partial reflection mirror 24 and the total reflection mirror 54 .

如上述說明,實施例9的雷射裝置500a的Q開關雷射振盪器100具有遞歸反射鏡,作為構成諧振器的全反射鏡54。因此,即使當氣流方向上出現溫度分佈時,也能夠實現穩定的振盪。As described above, the Q-switch laser oscillator 100 of the laser device 500a of the ninth embodiment has a recursive mirror as the total reflection mirror 54 constituting the resonator. Therefore, even when there is a temperature distribution in the air flow direction, stable oscillation can be achieved.

<實施例10> 圖2所示的雷射裝置500中,Q開關雷射振盪器100與放大器200是收納在同一殼體300內,且共享雷射介質。因此,從Q開關雷射振盪器100的脈衝能量,可以推測放大器200的增益之狀態。舉例而言,當雷射氣體劣化引起振盪段的脈衝雷射光的脈衝能量降低時,放大段的增益也會降低。將放大器200中增益的狀態與Q開開關雷射振盪器100中脈衝能量的關件模型化,通過由這模型修正光開關元件26的透過率,可以穩定放大後的脈衝能量,因此能夠將使用此脈衝雷射光進行雷射加工後的加工形狀同質化。 <Example 10> In the laser device 500 shown in FIG. 2 , the Q-switched laser oscillator 100 and the amplifier 200 are housed in the same housing 300 and share the laser medium. Therefore, the gain state of the amplifier 200 can be inferred from the pulse energy of the Q-switched laser oscillator 100. For example, when the pulse energy of the pulsed laser light in the oscillation section decreases due to the degradation of the laser gas, the gain of the amplifier section will also decrease. The relationship between the gain state in the amplifier 200 and the pulse energy in the Q-switched laser oscillator 100 is modeled. By correcting the transmittance of the optical switch element 26 using this model, the amplified pulse energy can be stabilized, so that the processed shape after laser processing using this pulse laser light can be homogenized.

圖24為用於說明實施例10之雷射加工裝置510動作的流程圖。步驟S101~步驟S104由於與圖8等相同,在此省略其說明。Fig. 24 is a flow chart for explaining the operation of the laser processing device 510 of Embodiment 10. Since steps S101 to S104 are the same as those in Fig. 8 and the like, their description is omitted here.

控制裝置35,將算出的光開關元件26的透過率的資料,例如儲存於控制裝置35內的記憶體,且設定每個脈衝雷射光的光開關元件26的透過率(步驟S131)。The control device 35 stores the calculated transmittance data of the optical switch element 26 in, for example, a memory within the control device 35, and sets the transmittance of the optical switch element 26 for each pulsed laser light (step S131).

控制裝置35,使用在步驟S103算出脈衝雷射光的振盪間隔、及在步驟S131設定的光開關元件26的透過率,以控制Q開關雷射振盪器100及光開關元件26,且使Q開關雷射振盪器100僅雷射振盪1個脈衝(步驟S132)。The control device 35 uses the oscillation interval of the pulse laser light calculated in step S103 and the transmittance of the optical switch element 26 set in step S131 to control the Q-switched laser oscillator 100 and the optical switch element 26, and causes the Q-switched laser oscillator 100 to oscillate only one pulse (step S132).

此外,控制裝置35,通過資訊處理裝置36,取得由光感測器50測得的Q開關雷射振盪器100的脈衝雷射光的脈衝能量(步驟S133)。Furthermore, the control device 35 obtains the pulse energy of the pulse laser light of the Q-switched laser oscillator 100 measured by the photo sensor 50 through the information processing device 36 (step S133).

雷射加工裝置510,使用雷射裝置500振盪的脈衝雷射光,在電子基板上只鑽(加工)1個孔(步驟S134),即返回步驟S132。此外,與此鑽孔實施同時進行,控制裝置35基於模型,算出下一個脈衝雷射光的脈衝能量(步驟S135)。在此使用的模型,如上所述,為表示放大器200中增益的狀態、與Q開關雷射振盪器100中脈衝能量之關係的模型。控制裝置35,依據基於模型算出的下一個脈衝雷射光的脈衝能量,修正光開關元件26的透過率(步驟S136),且返回步驟S131。The laser processing device 510 uses the pulsed laser light oscillated by the laser device 500 to drill (process) only one hole on the electronic substrate (step S134), and then returns to step S132. In addition, while the hole drilling is being performed, the control device 35 calculates the pulse energy of the next pulsed laser light based on the model (step S135). As described above, the model used here is a model that represents the relationship between the state of gain in the amplifier 200 and the pulse energy in the Q-switch laser oscillator 100. The control device 35 corrects the transmittance of the optical switch element 26 according to the pulse energy of the next pulsed laser light calculated based on the model (step S136), and then returns to step S131.

通過如上述的處理,可以在每振盪一個脈衝時,取得振盪段的脈衝能量,並在下一個脈衝雷射光振盪前,基於模型修正光開關元件26的透過率。Through the above-mentioned processing, the pulse energy of the oscillation segment can be obtained every time a pulse oscillates, and the transmittance of the optical switch element 26 can be corrected based on the model before the next pulse laser light oscillates.

此時,模型的作成是通過機器學習而實現。At this time, the model is created through machine learning.

以上實施例所示的配置為一示例, 以上實施例所示的配置只不過是示例,在不脫離本發明的主旨的範圍內,可以與其他公知技術組合,或者可以與其他實施例組合,也可以省略或變更部分配置。 The configuration shown in the above embodiment is an example. The configuration shown in the above embodiment is only an example. Without departing from the scope of the subject matter of the present invention, it can be combined with other known technologies, or it can be combined with other embodiments, and part of the configuration can be omitted or changed.

舉例而言,上述實施例1~10中,雷射裝置500、500a,雖假設為雷射介質是氣體的氣體雷射,但是當脈衝雷射光的振盪間隔改變時,Q開關雷盪器100振盪時的脈衝能量的變動,對於固體雷射等,也會有同樣的影響。因此,除了上述所示的氣體雷射的特有部分之外,上述配置也能應用於固體雷射等,可預期得到相同效果。For example, in the above-mentioned embodiments 1 to 10, although the laser devices 500 and 500a are assumed to be gas lasers whose laser medium is gas, when the oscillation interval of the pulse laser light changes, the change of the pulse energy when the Q-switch oscillator 100 oscillates will have the same influence on solid lasers, etc. Therefore, in addition to the unique parts of the gas laser shown above, the above-mentioned configuration can also be applied to solid lasers, etc., and the same effect can be expected.

此外,雖然上述主要是說明用於控制光開關元件26的透過率之示例,但如圖2所示,當雷射裝置500具有複數光開關元件26、27時,可永控制結合複數光開關元件26、27的透過率,以滿足上述條件。In addition, although the above mainly describes an example for controlling the transmittance of the optical switch element 26, as shown in FIG. 2, when the laser device 500 has a plurality of optical switch elements 26, 27, the transmittance of the plurality of optical switch elements 26, 27 can be permanently controlled to meet the above conditions.

1,2,3:光軸 11,12:電極 13,14,15,16:氣流方向 21,54:全反鏡 22:Q開關 23,29,33:窗口 24,34,55:部分反射鏡 25,28,30,31,401,402:鏡子 26,27:光開關元件 35:控制裝置 36:資訊處理裝置 40,41:送風機 42,43:熱交換器 44:放電控制裝置 50,51:光感測器 60,60a:學習裝置 61,61a:學習用資料取得部 62,62a:模型生成部 70,70a:學習完畢模型記憶部 80,80a:推論裝置 81,81a:推論用資料取得部 82,82a:推論部 100:Q開關雷射振盪器 200:放大器 300:殼體 400:鑽孔機 403:檢流計掃描鏡 404:透鏡 405:加工對象物 500,500a:雷射裝置 510:雷射加工裝置 1,2,3: optical axis 11,12: electrode 13,14,15,16: airflow direction 21,54: total reflector 22: Q switch 23,29,33: window 24,34,55: partial reflector 25,28,30,31,401,402: mirror 26,27: optical switch element 35: control device 36: information processing device 40,41: blower 42,43: heat exchanger 44: discharge control device 50,51: photo sensor 60,60a: learning device 61,61a: learning data acquisition unit 62,62a: model generation unit 70,70a: Learning model memory unit 80,80a: Inference device 81,81a: Inference data acquisition unit 82,82a: Inference unit 100: Q-switch laser oscillator 200: Amplifier 300: Housing 400: Drilling machine 403: Galvanometer scanner 404: Lens 405: Processing object 500,500a: Laser device 510: Laser processing device

圖1示意實施例1之雷射裝置的構成。 圖2示意實施例1之雷射裝置的詳細構成的一示例。 圖3示意將實施例1之雷射裝置作為雷射光源使用的雷射加工裝置的構成。 圖4示意在電子基板上形成之洞的目標形狀的一示例。 圖5示意在電子基板上加工的加工洞的圖案及加工路徑的一示例。 圖6示意當加工圖5所示圖案的加工孔時之脈衝雷射光波形的時間變化。 圖7用於說明電射裝置的效果。 圖8為用於說明實施例2的雷射加工裝置的控制動作之流程圖。 圖9為用於說明實施例3的雷射加工裝置的控制動作之流程圖。 圖10示意實施例4之學習裝置的構成。 圖11示意3層神經網路的一示例。 圖12為用以說明學習裝置的學習處理的流程圖。 圖13為雷射裝置的推論裝置的構成圖。 圖14為用於說明使用推論裝置以得到透過率之處理的流程圖。 圖15示意實施例5之學習裝置的構成。 圖16為雷射加工裝置的推論裝置的構成圖。 圖17示意脈衝間隔不同的脈衝雷射光波形的一示例。 圖18說明脈衝時間內透過率隨時間變化的示例。 圖19說明實施例7的透過率控制。 圖20示意實施例8之雷射裝置電極間的部分構成。 圖21示意圖20所示配置的雷射裝置電極間的穩定狀態之增益分佈。 圖22示意實施例9之電射裝置的內部構成。 圖23示意雷射裝置電極間的穩定狀態之溫度分佈。 圖24為用於說明實施例10之雷射加工裝置動作的流程圖。 FIG. 1 illustrates the structure of the laser device of Example 1. FIG. 2 illustrates an example of the detailed structure of the laser device of Example 1. FIG. 3 illustrates the structure of a laser processing device using the laser device of Example 1 as a laser light source. FIG. 4 illustrates an example of the target shape of a hole formed on an electronic substrate. FIG. 5 illustrates an example of the pattern of a processing hole processed on an electronic substrate and a processing path. FIG. 6 illustrates the time variation of the pulse laser light waveform when processing the processing hole of the pattern shown in FIG. 5. FIG. 7 is used to illustrate the effect of the electro-optical device. FIG. 8 is a flowchart for illustrating the control action of the laser processing device of Example 2. FIG. 9 is a flowchart for illustrating the control action of the laser processing device of Example 3. FIG. 10 illustrates the structure of the learning device of Example 4. FIG11 shows an example of a three-layer neural network. FIG12 is a flowchart for explaining the learning process of the learning device. FIG13 is a diagram showing the structure of the inference device of the laser device. FIG14 is a diagram showing the process of using the inference device to obtain the transmittance. FIG15 shows the structure of the learning device of Example 5. FIG16 is a diagram showing the structure of the inference device of the laser processing device. FIG17 shows an example of a pulse laser light waveform with different pulse intervals. FIG18 shows an example of the change of transmittance over time within the pulse time. FIG19 shows the transmittance control of Example 7. FIG20 shows the partial structure between the electrodes of the laser device of Example 8. FIG. 21 shows the gain distribution of the stable state between the electrodes of the laser device configured as shown in FIG. 20. FIG. 22 shows the internal structure of the laser device of Example 9. FIG. 23 shows the temperature distribution of the stable state between the electrodes of the laser device. FIG. 24 is a flow chart for explaining the operation of the laser processing device of Example 10.

2,3:光軸 2,3: optical axis

26:光開關元件 26: Optical switch components

35:控制裝置 35: Control device

36:資訊處理裝置 36: Information processing device

100:Q開關雷射振盪器 100:Q switch laser oscillator

200:放大器 200:Amplifier

500:雷射裝置 500:Laser device

Claims (23)

一種雷射裝置,包括: Q開關雷射振盪器,產生脈衝雷射光; 放大器,放大前述脈衝雷射光; 光開關元件,設置於前述Q開關雷射振盪器與前述放大器之間的光路上;以及 控制裝置,基於用以表示前述Q開關雷射振盪器產生前述脈衝雷射光的時間間隔之特徵的脈衝特性時間,調變前述光開關元件的透過率。 A laser device, comprising: a Q-switched laser oscillator, generating a pulse laser light; an amplifier, amplifying the pulse laser light; an optical switch element, disposed on an optical path between the Q-switched laser oscillator and the amplifier; and a control device, modulating the transmittance of the optical switch element based on a pulse characteristic time characteristic of a time interval at which the Q-switched laser oscillator generates the pulse laser light. 如請求項1之雷射裝置,其中 前述控制裝置, 求得前述Q開關雷射振盪器產生的複數前述脈衝雷射光之間的時間間隔、或前述Q開關雷射振盪器產生的複數前述脈衝雷射光之間的時間間隔的移動平均,作為前述脈衝特性時間,及 控制前述透過率,使得前述透過率隨前述時間間隔變短而變高,且使得前述放大器輸出的複數前述脈衝雷射光之間的能量的變成為比預定值小。 A laser device as claimed in claim 1, wherein the control device obtains the time interval between the plurality of pulse laser lights generated by the Q-switched laser oscillator or the moving average of the time interval between the plurality of pulse laser lights generated by the Q-switched laser oscillator as the pulse characteristic time, and controls the transmittance so that the transmittance increases as the time interval becomes shorter, and the energy variation between the plurality of pulse laser lights output by the amplifier becomes smaller than a predetermined value. 如請求項1之雷射裝置,更包括學習裝置,其中 前述學習裝置,具有 學習用資料取得部,取得學習用資料;前述學習用資料包含狀態量與前述光開關元件之透過率;前述狀態量,包含用於表示前述雷射裝置產生前述脈衝雷射光的時間間隔的間隔資訊、及前述脈衝雷射光放大後的脈衝能量;以及 模型生成部,使用前述學習用資料,依據前述狀態量,產生學習完畢模型;前述學習完畢模型,用於推論放大後的前述脈衝能量為目標值的前述光開關元件的透過率。 The laser device of claim 1 further includes a learning device, wherein the learning device has a learning data acquisition unit for acquiring learning data; the learning data includes a state quantity and a transmittance of the optical switch element; the state quantity includes interval information for indicating the time interval of the pulse laser light generated by the laser device and the pulse energy of the pulse laser light after amplification; and a model generation unit for generating a learning model based on the state quantity using the learning data; the learning model is used to infer the transmittance of the optical switch element with the amplified pulse energy being the target value. 如請求項1之雷射裝置,更包括推論裝置,推論前述光開關元件的透過率,其中 前述推論裝置,具有 推論用資料取得部,取得狀態量;前述狀態量包含,表示產生前述脈衝雷射光的時間間隔的間隔資訊、及前述脈衝雷射光放大後的脈衝能量的目標值;以及 推論部,使用學習完畢模型,以依據前述推論用資料取得部獲得的前述狀態量,推論前述透過率;前學習完畢模型,依據前述狀態量,推論以放大後的前述脈衝量為目標值之前述光開關元件的透過率; 前述控制裝置,使用前述推論裝置推論得到的前述透過率,控制前述光開關元件。 The laser device of claim 1 further includes an inference device for inferring the transmittance of the optical switch element, wherein the inference device has an inference data acquisition unit for acquiring a state quantity; the state quantity includes interval information indicating the time interval for generating the pulse laser light and a target value of the pulse energy of the pulse laser light after amplification; and the inference unit uses a learned model to infer the transmittance based on the state quantity obtained by the inference data acquisition unit; the learned model infers the transmittance of the optical switch element based on the state quantity with the amplified pulse quantity as the target value; the control device uses the transmittance inferred by the inference device to control the optical switch element. 如請求項3之雷射裝置,更包括推論裝置,推論前述光開關元件的透過率,其中 前述推論裝置,具有 推論用資料取得部,取得狀態量;前述狀態量包含,表示產生前述脈衝雷射光的時間間隔的間隔資訊、及前述脈衝雷射光放大後的脈衝能量的目標值;以及 推論部,使用學習完畢模型,以依據前述推論用資料取得部獲得的前述狀態量,推論前述透過率;前學習完畢模型,依據前述狀態量,推論以放大後的前述脈衝量為目標值之前述光開關元件的透過率; 前述控制裝置,使用前述推論裝置推論得到的前述透過率,控制前述光開關元件。 The laser device of claim 3 further includes an inference device for inferring the transmittance of the optical switch element, wherein the inference device has an inference data acquisition unit for acquiring a state quantity; the state quantity includes interval information indicating the time interval for generating the pulse laser light and a target value of the pulse energy of the pulse laser light after amplification; and the inference unit uses a learned model to infer the transmittance based on the state quantity obtained by the inference data acquisition unit; the learned model infers the transmittance of the optical switch element based on the state quantity with the amplified pulse quantity as the target value; the control device uses the transmittance inferred by the inference device to control the optical switch element. 如請求項3~5中任一項之雷射裝置,其中 前述間隔資訊包含,前述Q開關雷射振盪器產生前述脈衝雷射光的前述脈衝特性時間、前述Q開關雷射振盪器產生前述脈衝雷射光的能量、前述Q開關雷射振盪器產生前述脈衝雷射光的波形、由前述放大器放大後的前述脈衝雷射光的波形、前述Q開關雷射振盪器及前述放大器的驅動電流或放電電力,其中的至少之一。 A laser device as claimed in any one of claims 3 to 5, wherein the interval information includes at least one of the pulse characteristic time of the pulse laser light generated by the Q-switched laser oscillator, the energy of the pulse laser light generated by the Q-switched laser oscillator, the waveform of the pulse laser light generated by the Q-switched laser oscillator, the waveform of the pulse laser light amplified by the amplifier, and the driving current or discharge power of the Q-switched laser oscillator and the amplifier. 如請求項3~5中任一項之雷射裝置,其中 前述雷射裝置為雷射介質是氣體的氣體雷射; 前述狀態量包含,前述Q開關雷射振盪器或前述放大器的冷卻水溫度、前述Q開關雷射振盪器或前述放大器的氣體溫度、前述Q開關雷射振盪器或前述放大器的氣體壓力、前述Q開關雷射振盪器或前述放大器的連續放電時間、前述Q開關雷射振盪器或前述放大器的電極溫度、前述Q開關雷射振盪器或前述放大器的光學構件更換後的總放電時間,其中的至少之一。 A laser device as claimed in any one of claims 3 to 5, wherein the laser device is a gas laser whose laser medium is gas; the state quantity includes at least one of the cooling water temperature of the Q-switched laser oscillator or the amplifier, the gas temperature of the Q-switched laser oscillator or the amplifier, the gas pressure of the Q-switched laser oscillator or the amplifier, the continuous discharge time of the Q-switched laser oscillator or the amplifier, the electrode temperature of the Q-switched laser oscillator or the amplifier, and the total discharge time after the optical component of the Q-switched laser oscillator or the amplifier is replaced. 如請求項1~5中任一項之雷射裝置,其中 前述脈衝特性時間小於或等於電極寬度除以氣體流速得到的值;前述電極寬度為前述Q開關雷射振盪器具有的放電電極中氣流流動方向的長度。 A laser device as claimed in any one of claims 1 to 5, wherein the aforementioned pulse characteristic time is less than or equal to the value obtained by dividing the electrode width by the gas flow rate; the aforementioned electrode width is the length of the discharge electrode of the aforementioned Q-switch laser oscillator in the direction of gas flow. 如請求項1~5中任一項之雷射裝置,其中 前述控制裝置,在1個前述脈衝雷射光透過前述開關元件的期間,使前述透過率隨時間變化。 A laser device as claimed in any one of claims 1 to 5, wherein the control device changes the transmittance over time during the period in which one of the pulsed laser light passes through the switch element. 如請求項3之雷射裝置,其中 前述模型生成裝置,依據前述狀態量,生成學習完畢模型;前述學習完畢模型,用於推論在1個前述脈衝雷射光透過前述開關元件期間隨時間變化的前述透過率。 As in claim 3, the laser device, wherein the model generation device generates a learned model based on the state quantity; the learned model is used to infer the transmittance that varies with time during the period when one of the pulsed laser light passes through the switch element. 一種雷射加工裝置,包括: 雷射裝置,具有Q開關雷射振盪器,產生脈衝雷射光;放大器,放大前述脈衝雷射光;光開關元件,設置於前述Q開關雷射振盪器與前述放大器之間的光路上;以及,控制裝置,基於用以表示前述Q開關雷射振盪器產生前述脈衝雷射光的時間間隔之特徵的脈衝特性時間,調變前述光開關元件的透過率; 偏轉元件,將前述放大器輸出的前述脈衝雷射光偏轉;以及 物鏡光學系統,將來自前述偏轉元件的前述脈衝雷射光進行集光或轉寫,並照射至加工對象物; 前述控制裝置, 依據加工孔特性值來控制前述透過率,而且控制前述透過率,使得前述透過率隨前述加工孔的間隔變短而變高,且使得表示複數前述加工孔形狀之偏差的值小於預定的值; 前述加工孔特性值,表示由前述脈衝雷射光對前述加工對象物進行開孔加工時加工路徑上所包含的加工孔特性。 A laser processing device, comprising: a laser device, having a Q-switched laser oscillator, generating a pulse laser light; an amplifier, amplifying the pulse laser light; an optical switch element, disposed on an optical path between the Q-switched laser oscillator and the amplifier; and a control device, modulating the transmittance of the optical switch element based on a pulse characteristic time characteristic of the time interval at which the Q-switched laser oscillator generates the pulse laser light; a deflection element, deflecting the pulse laser light outputted from the amplifier; and an objective optical system, collecting or transcribing the pulse laser light from the deflection element, and irradiating it onto a processing object; the control device, The transmittance is controlled according to the processing hole characteristic value, and the transmittance is controlled so that the transmittance becomes higher as the interval of the processing holes becomes shorter, and the value representing the deviation of the shapes of the plurality of processing holes is less than a predetermined value; The processing hole characteristic value represents the processing hole characteristic included in the processing path when the processing object is subjected to the hole opening processing by the pulse laser light. 如請求項11之雷射加工裝置,其中 前述加工孔特性值為,表示前述加工路徑上的複數前述加工孔的間隔、或複數前述加工孔的間隔的移動平均的值。 A laser processing device as claimed in claim 11, wherein the processing hole characteristic value is a value representing the interval between a plurality of processing holes on the processing path, or a moving average of the interval between a plurality of processing holes. 如請求項11或12之雷射加工裝置,其中 前述Q開關雷射振盪器具有遞歸反射鏡,作為構成諧振器三全反射鏡。 A laser processing device as claimed in claim 11 or 12, wherein the aforementioned Q-switch laser oscillator has a recursive reflector as a three-total reflector constituting a resonator. 一種學習裝置,用於學習請求項1之雷射裝置的前述光開關元件的透過率,包括: 學習用資料取得部,取得學習用資料;前述學習用資料包含狀態量與前述光開關元件之透過率;前述狀態量,包含用於表示前述雷射裝置產生前述脈衝雷射光的時間間隔的間隔資訊、及前述脈衝雷射光放大後的脈衝能量;以及 模型生成部,使用前述學習用資料,依據前述狀態量,產生學習完畢模型;前述學習完畢模型,用於推論前述脈衝能量為目標值的前述光開關元件的透過率。 A learning device for learning the transmittance of the optical switch element of the laser device of claim 1, comprising: a learning data acquisition unit for acquiring learning data; the learning data includes a state quantity and the transmittance of the optical switch element; the state quantity includes interval information for indicating the time interval of the pulse laser light generated by the laser device, and the pulse energy of the amplified pulse laser light; and a model generation unit for generating a learning model based on the state quantity using the learning data; the learning model is used to infer the transmittance of the optical switch element with the pulse energy being the target value. 一種學習裝置,用於學習請求項11之雷射加工裝置具有的前述光開關元件的透過率,包括: 學習用資料取得部,取得學習用資料;前述學習用資料包含狀態量與前述光開關元件之透過率;前述狀態量,包含用於表示前述雷射裝置產生前述脈衝雷射光的時間間隔的間隔資訊、及用於表示使用前述脈衝雷射光加工過的加工孔之形狀的形狀資訊;以及 模型生成部,使用前述學習用資料,依據前述狀態量,產生學習完畢模型;前述學習完畢模型,用於推論以前述加工孔之形狀為目標形狀的前述光開關元件的透過率。 A learning device for learning the transmittance of the optical switch element of the laser processing device of claim 11, comprising: a learning data acquisition unit for acquiring learning data; the learning data includes a state quantity and the transmittance of the optical switch element; the state quantity includes interval information for indicating the time interval of the pulse laser light generated by the laser device, and shape information for indicating the shape of the processed hole processed by the pulse laser light; and a model generation unit for generating a learning model based on the state quantity using the learning data; the learning model is used to infer the transmittance of the optical switch element with the shape of the processed hole as the target shape. 如請求項14或15之學習裝置,其中 前述間隔資訊包含,前述Q開關雷射振盪器產生前述脈衝雷射光的前述脈衝特性時間、前述Q開關雷射振盪器產生前述脈衝雷射光的能量、前述Q開關雷射振盪器產生前述脈衝雷射光的波形、由前述放大器放大後的前述脈衝雷射光的波形、前述Q開關雷射振盪器及前述放大器的驅動電流或放電電力,其中的至少之一。 A learning device as claimed in claim 14 or 15, wherein the interval information includes at least one of the pulse characteristic time of the pulse laser light generated by the Q-switched laser oscillator, the energy of the pulse laser light generated by the Q-switched laser oscillator, the waveform of the pulse laser light generated by the Q-switched laser oscillator, the waveform of the pulse laser light amplified by the amplifier, and the driving current or discharge power of the Q-switched laser oscillator and the amplifier. 如請求項14或15之學習裝置,其中 前述雷射裝置為雷射介質是氣體的氣體雷射; 前述狀態量包含,前述Q開關雷射振盪器或前述放大器的冷卻水溫度、前述Q開關雷射振盪器或前述放大器的氣體溫度、前述Q開關雷射振盪器或前述放大器的氣體壓力、前述Q開關雷射振盪器或前述放大器的連續放電時間、前述Q開關雷射振盪器或前述放大器的電極溫度、前述Q開關雷射振盪器或前述放大器的光學構件更換後的總放電時間,其中的至少之一。 A learning device as claimed in claim 14 or 15, wherein the laser device is a gas laser whose laser medium is gas; the state quantity includes at least one of the cooling water temperature of the Q-switched laser oscillator or the amplifier, the gas temperature of the Q-switched laser oscillator or the amplifier, the gas pressure of the Q-switched laser oscillator or the amplifier, the continuous discharge time of the Q-switched laser oscillator or the amplifier, the electrode temperature of the Q-switched laser oscillator or the amplifier, and the total discharge time after the optical component of the Q-switched laser oscillator or the amplifier is replaced. 一種推論裝置,用於推論請求項1或2之雷射裝置具有的前述光開關元件的透過率,包括: 推論用資料取得部,取得包含用於表示產生前述脈衝雷射光的時間間隔的間隔資訊,以及前述脈衝雷射光放大後的脈衝能量的目標值;以及 推論部,使用學習完畢模型,以依據前述推論用資料取得部獲得的前述狀態量及前述目標值,推論前述透過率;前學習完畢模型,依據前述狀態量及前述目標值,推論前述光開關元件的透過率。 An inference device for inferring the transmittance of the optical switch element of the laser device of claim 1 or 2, comprising: an inference data acquisition unit, which acquires interval information including a time interval for generating the pulse laser light and a target value of the pulse energy of the amplified pulse laser light; and an inference unit, which uses a learned model to infer the transmittance based on the state quantity and the target value obtained by the inference data acquisition unit; the pre-learned model infers the transmittance of the optical switch element based on the state quantity and the target value. 一種推論裝置,用於推論請求項11或12之雷射加工裝置的前述雷射裝置具有的前述光開關元件的透過率,包括: 推論用資料取得部,取得包含用於表示產生前述脈衝雷射光的時間間隔的間隔資訊之狀態量,及用於表示使用前述脈衝雷射光加工加工孔之目標形狀的形狀資訊;以及 推論部,使用學習完畢模型,以依據前述推論用資料取得部獲得的前述狀態量及前述目標形狀,推論前述透過率;前學習完畢模型,依據前述狀態量及前述形狀資訊,推論前述光開關元件的透過率。 An inference device for inferring the transmittance of the optical switch element of the laser device of the laser processing device of claim 11 or 12, comprising: an inference data acquisition unit, which acquires a state quantity including interval information for indicating the time interval of generating the pulse laser light, and shape information for indicating the target shape of a processing hole processed using the pulse laser light; and an inference unit, which uses a learned model to infer the transmittance based on the state quantity and the target shape obtained by the inference data acquisition unit; the pre-learned model infers the transmittance of the optical switch element based on the state quantity and the shape information. 一種雷射加工系統,包括: Q開關雷射振盪器,產生脈衝雷射光; 放大器,放大前述脈衝雷射光; 光開關元件,設置於前述Q開關雷射振盪器與前述放大器之間的光路上; 偏轉元件,將前述放大器輸出的前述脈衝雷射光偏轉;以及 物鏡光學系統,將來自前述偏轉元件的前述脈衝雷射光進行集光或轉寫,並照射至加工對象物;以及 控制裝置,依據加工孔特性值來控制前述光開關元件前述透過率,而且控制前述透過率,使得前述透過率隨前述加工孔的間隔變短而變高,且使得表示複數前述加工孔形狀之偏差的值小於預定的值,從而調變前述透過率; 前述加工孔特性值,表示由前述脈衝雷射光對前述加工對象物進行開孔加工時加工路徑上所包含的加工孔特性。 A laser processing system includes: A Q-switch laser oscillator that generates pulsed laser light; An amplifier that amplifies the pulsed laser light; An optical switch element that is disposed on an optical path between the Q-switch laser oscillator and the amplifier; A deflection element that deflects the pulsed laser light output by the amplifier; and An objective optical system that collects or transcribes the pulsed laser light from the deflection element and irradiates the object to be processed; and A control device that controls the transmittance of the optical switch element according to a processing hole characteristic value, and controls the transmittance so that the transmittance increases as the interval between the processing holes becomes shorter, and the value representing the deviation of the shapes of the plurality of processing holes is less than a predetermined value, thereby modulating the transmittance; The aforementioned processing hole characteristic value represents the processing hole characteristic included in the processing path when the aforementioned pulse laser light is used to perform hole opening processing on the aforementioned processing object. 如請求項20之雷射加工系統,更包括學習裝置,其中,前述學習裝置包括, 學習用資料取得部,取得學習用資料;前述學習用資料包含,狀態量與用於表示使用前述脈衝雷射光加工過的加工孔之形狀的形狀資訊;前述狀態量,包含用於表示前述雷射裝置產生前述脈衝雷射光的時間間隔的間隔資訊;以及 模型生成部,使用前述學習用資料,依據前述狀態量,產生學習完畢模型;前述學習完畢模型,用於推論前述加工孔之形狀為目標形狀的前述光開關元件的透過率。 The laser processing system of claim 20 further includes a learning device, wherein the learning device includes, a learning data acquisition unit, which acquires learning data; the learning data includes a state quantity and shape information for indicating the shape of a processing hole processed using the pulsed laser light; the state quantity includes interval information for indicating the time interval at which the laser device generates the pulsed laser light; and a model generation unit, which uses the learning data to generate a learning model based on the state quantity; the learning model is used to infer the transmittance of the optical switch element whose shape of the processing hole is a target shape. 如請求項20或21之雷射加工系統,更包括推論裝置,其中,前推論裝置包括, 推論用資料取得部,取得包含用於表示產生前述脈衝雷射光的時間間隔的間隔資訊之狀態量,及用於表示使用前述脈衝雷射光加工加工孔之目標形狀的形狀資訊;以及 推論部,使用學習完畢模型,以依據前述推論用資料取得部獲得的前述狀態量及前述目標形狀,推論前述透過率;前學習完畢模型,依據前述狀態量及前述形狀資訊,推論前述光開關元件的透過率。 The laser processing system of claim 20 or 21 further includes an inference device, wherein the pre-inference device includes, an inference data acquisition unit, which acquires a state quantity including interval information for indicating the time interval for generating the aforementioned pulse laser light, and shape information for indicating the target shape of the processing hole processed using the aforementioned pulse laser light; and an inference unit, which uses a learned model to infer the aforementioned transmittance based on the aforementioned state quantity and the aforementioned target shape obtained by the aforementioned inference data acquisition unit; the pre-learned model infers the transmittance of the aforementioned optical switch element based on the aforementioned state quantity and the aforementioned shape information. 一種雷射加工方法,包括: 產生脈衝雷射光之步驟; 設定使前述脈衝雷射光透過光開關元件的透過率之步驟; 通過將脈衝雷射光入射已設定透過率的前述開關元件,從而使前述脈衝雷射光的脈衝能量改變之步驟; 放火前述脈衝雷射光之步驟; 通過將前述放大後的前述脈衝雷射光偏轉,以調整前述脈衝雷射光照射加工對象物的位置之步驟;以及 對偏轉後的前述脈衝雷射光進行集光或轉寫,以照射前述加工對象物之步驟; 其中,前述使前述脈衝雷射光的脈衝能量改變之步驟,為基於表示產生前述脈衝雷射光的時間間隔之特徵的脈衝特性時間,而調整前述光開關元件的透過率。 A laser processing method, comprising: A step of generating pulsed laser light; A step of setting the transmittance of the pulsed laser light through an optical switch element; A step of changing the pulse energy of the pulsed laser light by causing the pulsed laser light to enter the switch element with the set transmittance; A step of igniting the pulsed laser light; A step of adjusting the position of the pulsed laser light irradiating the processing object by deflecting the amplified pulsed laser light; and A step of collecting or transcribing the deflected pulsed laser light to irradiate the processing object; The step of changing the pulse energy of the pulse laser light is to adjust the transmittance of the optical switch element based on the pulse characteristic time that represents the time interval of generating the pulse laser light.
TW112131846A 2022-09-15 2023-08-24 Laser device, laser processing device, learning device, inference device, laser processing system and laser processing method TWI846575B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
WOPCT/JP2022/034581 2022-09-15

Publications (2)

Publication Number Publication Date
TW202414928A true TW202414928A (en) 2024-04-01
TWI846575B TWI846575B (en) 2024-06-21

Family

ID=

Similar Documents

Publication Publication Date Title
CN110142503B (en) Defocusing compensation system for laser cutting and compensation method thereof
JP6050607B2 (en) Laser processing apparatus and laser output calibration method
JP2009297777A (en) Method and apparatus for fiber laser machining
JP3580430B2 (en)   Exposure system and exposure method
TWI393313B (en) Femtosecond laser device having output stabilizing mechanism
SG184081A1 (en) Method and apparatus for controlling light bandwidth
US9847618B2 (en) Laser apparatus
WO2018044583A1 (en) Adjusting an amount of coherence of a light beam
TW202414928A (en) Laser device, laser processing device, learning device, inference device, laser processing system and laser processing method
JP7250231B1 (en) Laser device, laser processing device, learning device, reasoning device, laser processing system, and laser processing method
JP4619146B2 (en) Laser oscillator output correction method and laser oscillator
US10609803B2 (en) Extreme ultraviolet (EUV) light generating apparatus and control method for centroid of EUV light
CN111357156A (en) Lithography system bandwidth control
JP5988903B2 (en) Laser processing apparatus and laser processing method
JP4131088B2 (en) Circuit board manufacturing method and manufacturing apparatus
JP5755068B2 (en) Narrowband laser spectral width adjustment device
JP2002208750A (en) Laser oscillator and laser pulse control method thereof
CN113169500A (en) Controlling laser beam parameters by crystal movement
JP3957517B2 (en) Laser apparatus and control method thereof
JP5026186B2 (en) Laser damage resistance estimation method and laser damage resistance estimation apparatus for optical material
JP3693189B2 (en) Laser light output control device
TW202133980A (en) Processing sequence determination device, laser processing device and laser processing method capable of shortening a processing time while maintaining a stable pulse energy
JP6998127B2 (en) Solid-state laser device
JP2012042630A (en) Light source device
JPH11191651A (en) Energy control device of excimer laser