TW202413982A - Calculation method of total loss of single-phase induction motor - Google Patents

Calculation method of total loss of single-phase induction motor Download PDF

Info

Publication number
TW202413982A
TW202413982A TW111136239A TW111136239A TW202413982A TW 202413982 A TW202413982 A TW 202413982A TW 111136239 A TW111136239 A TW 111136239A TW 111136239 A TW111136239 A TW 111136239A TW 202413982 A TW202413982 A TW 202413982A
Authority
TW
Taiwan
Prior art keywords
loss
load
induction motor
phase induction
input power
Prior art date
Application number
TW111136239A
Other languages
Chinese (zh)
Other versions
TWI840967B (en
Inventor
陳正虎
許峻瑋
陳柏愷
Original Assignee
國立宜蘭大學
Filing date
Publication date
Application filed by 國立宜蘭大學 filed Critical 國立宜蘭大學
Publication of TW202413982A publication Critical patent/TW202413982A/en
Application granted granted Critical
Publication of TWI840967B publication Critical patent/TWI840967B/en

Links

Images

Abstract

一種單相感應馬達的總損失的計算方法,包括: 計算定子銅損𝑷𝒔;計算鐵損及機械損之總和,鐵損及機械損之總和的公式為:空載輸入功率𝑷𝟎 - 空載定子銅損𝑷𝒔𝟎;計算轉子銅損,轉子銅損的公式為:(輸入功率𝑷𝟏-定子銅損𝑷𝒔-空載輸入功率𝑷𝟎 + 空載定子銅損𝑷𝒔𝟎) × 滑差S;計算雜散損𝑷𝑳𝑳;以及計算總損失,總損失的公式為:定子銅損𝑷𝒔 + (空載輸入功率𝑷𝟎 – 空載定子銅損𝑷𝒔𝟎) + (輸入功率𝑷𝟏-定子銅損𝑷𝒔-空載輸入功率𝑷𝟎 + 空載定子銅損𝑷𝒔𝟎) × 滑差S + 雜散損𝑷𝑳𝑳;其中,單相感應馬達在輸入電壓不變的條件下,鐵損與單相感應馬達的負載率成負相關。A method for calculating the total loss of a single-phase induction motor includes: calculating stator copper loss 𝑷𝒔; calculating the sum of iron loss and mechanical loss, the formula for the sum of iron loss and mechanical loss is: no-load input power 𝑷𝟎 - no-load stator copper loss 𝑷𝒔𝟎; calculating rotor copper loss, the formula for rotor copper loss is: (input power 𝑷𝟏-stator copper loss 𝑷𝒔-no-load input power 𝑷𝟎 + no-load stator copper loss 𝑷𝒔𝟎) × Slip S; calculate stray loss 𝑷𝑳𝑳; and calculate total loss. The formula for total loss is: stator copper loss 𝑷𝒔 + (no-load input power 𝑷𝟎 – no-load stator copper loss 𝑷𝒔𝟎) + (input power 𝑷𝟏-stator copper loss 𝑷𝒔-no-load input power 𝑷𝟎 + no-load stator copper loss 𝑷𝒔𝟎) × slip S + stray loss 𝑷𝑳𝑳; Among them, when the input voltage of a single-phase induction motor remains unchanged, the iron loss is negatively correlated with the load rate of the single-phase induction motor.

Description

單相感應馬達的總損失的計算方法Calculation method of total loss of single-phase induction motor

本發明係為一種馬達能量損失的計算方法,特別係指一種單相感應馬達的各種能量損失及其總損失的計算方法。The present invention is a method for calculating motor energy loss, and in particular, a method for calculating various energy losses and total energy losses of a single-phase induction motor.

感應馬達是利用旋轉磁場使轉子感應電流,並因此產生轉矩而轉動。在單相感應馬達中,轉子為鼠籠式,而為了起動時產生旋轉磁場,單相感應馬達的定子繞組包括運轉繞組(Run Winding)或稱主繞組(Main Winding)以及起動繞組(Start Winding)或稱輔助繞組(Auxiliary Winding)兩種繞組,兩繞組配置 位置相差 90 度電機角。Induction motors use a rotating magnetic field to induce current in the rotor, thereby generating torque and rotating. In a single-phase induction motor, the rotor is a squirrel cage type. In order to generate a rotating magnetic field during starting, the stator windings of a single-phase induction motor include two types of windings: the run winding or main winding and the start winding or auxiliary winding. The two windings are arranged at a 90-degree motor angle difference.

依據IEEE (Institute of Electrical and Electronic Engineers, IEEE)標準(Std)114的規範,單相感應馬達的損失可分為五大類,包括1.定子銅損 、2.轉子銅損 、3.鐵損 、4.機械損 以及5.雜散損 。其中,定子銅損 是電流流經定子線圈的損失,轉子銅損 是轉子電流通過轉子電阻所造成的損失,鐵損 是指因導磁體受到變動磁場的影響,在鐵芯中損耗的部份能量,在習知技術中鐵損 為一定值,機械損 通常是指單相感應馬達中風扇造成的能量損失,而不屬於上述四種損失的即歸類為雜散損 。在習知技術中,單相感應馬達的總損失 即為定子銅損 +轉子銅損 +鐵損 +機械損 +雜散損 ,其中,習知技術及習知的量測法規對鐵損的基本假設為,鐵損與輸入電壓平方成正比,與負載無關。 According to the IEEE (Institute of Electrical and Electronic Engineers, IEEE) Standard (Std) 114, the loss of single-phase induction motors can be divided into five categories, including 1. Stator copper loss 2. Rotor copper damage 3. Iron damage 4. Mechanical damage and 5. Dissipation Among them, stator copper loss is the loss of current flowing through the stator coil and the rotor copper loss It is the loss caused by the rotor current passing through the rotor resistance. It refers to the energy lost in the iron core due to the influence of the changing magnetic field on the magnetic conductor. In the conventional technology, iron loss is For a certain value, mechanical damage Usually refers to the energy loss caused by the fan in a single-phase induction motor. Losses that do not fall into the above four categories are classified as stray losses. In the conventional art, the total loss of a single-phase induction motor is Stator copper loss + Rotor copper loss +Iron damage +Mechanical damage +Miscellaneous loss Among them, the basic assumption of known technology and known measurement regulations for iron loss is that iron loss is proportional to the square of the input voltage and has nothing to do with the load.

另一方面,若使用動力計量測法來計算總損失,單相感應馬達在各負載下的總損失即為輸入電氣功率扣除機械輸出功率,總損失 即為輸入電氣功率 - 機械輸出功率 On the other hand, if the dynamometer method is used to calculate the total loss, the total loss of a single-phase induction motor under each load is the input electrical power minus the mechanical output power. The input electrical power - Mechanical output power .

然而,經由實際量測後,發現由習知方法(IEEE Std 114)計算出來的馬達總損失與動力計量測出來的總損失並不相等,實際量測數值如下表一所示。 負載率 % 0% 25% 50% 75% 100% 115% 電壓 (V) 主線 115.13 115.09 115.13 115.14 115.10 115.13 輔線 141.64 139.48 135.92 132.75 129.18 126.93 電容 192.62 189.95 184.52 179.09 174.08 171.25 電流 (A) 輸入 1.34 1.68 2.20 2.86 3.67 4.16 主線 2.99 2.58 2.40 2.54 2.98 3.34 輔線 2.61 2.57 2.49 2.42 2.35 2.31 輸入功率 Watt 88.55 161.83 236.98 316.85 410.57 466.78 功因 % 57.57 83.62 93.57 96.06 97.22 97.56 轉矩 Kg-cm 0.00 2.29 4.55 6.74 9.18 10.60 轉速 RPM 3600 3564 3531 3496 3453 3425 馬達效率 % 0.00 51.89 69.60 76.38 79.27 79.91 主線電阻 Ohm 2.05 2.05 2.05 2.05 2.05 2.05 輔線電阻+電容等效電阻 2.96 2.96 2.96 2.96 2.96 2.96 空載定子銅損 Watt 38.54 鐵損 Watt 50.01 50.01 50.01 50.01 50.01 50.01 定子銅損 Watt 33.23 30.22 30.58 34.57 38.67 轉子銅損 Watt 0.79 3.00 6.83 13.31 18.28 依據IEEE 114(習知方法)計算之總損失(未含雜散損) Watt 84.02 83.23 87.41 97.89 106.96 動力計實際量測之總損失(含雜散損) Watt 77.85 72.04 74.83 85.12 93.78 表一 However, after actual measurement, it was found that the total motor loss calculated by the conventional method (IEEE Std 114) was not equal to the total loss measured by the dynamometer. The actual measured values are shown in Table 1 below. Load factor % 0% 25% 50% 75% 100% 115% Voltage(V) Main Story 115.13 115.09 115.13 115.14 115.10 115.13 Auxiliary line 141.64 139.48 135.92 132.75 129.18 126.93 Capacitance 192.62 189.95 184.52 179.09 174.08 171.25 Current(A) Input 1.34 1.68 2.20 2.86 3.67 4.16 Main Story 2.99 2.58 2.40 2.54 2.98 3.34 Auxiliary line 2.61 2.57 2.49 2.42 2.35 2.31 Input power Watt 88.55 161.83 236.98 316.85 410.57 466.78 Cause % 57.57 83.62 93.57 96.06 97.22 97.56 Torque Kg-cm 0.00 2.29 4.55 6.74 9.18 10.60 Speed RPM 3600 3564 3531 3496 3453 3425 Motor efficiency % 0.00 51.89 69.60 76.38 79.27 79.91 Main line resistance Ohm 2.05 2.05 2.05 2.05 2.05 2.05 Auxiliary line resistance + capacitor equivalent resistance 2.96 2.96 2.96 2.96 2.96 2.96 No-load stator copper loss Watt 38.54 Iron damage Watt 50.01 50.01 50.01 50.01 50.01 50.01 Stator copper loss Watt 33.23 30.22 30.58 34.57 38.67 Rotor copper loss Watt 0.79 3.00 6.83 13.31 18.28 Total loss calculated according to IEEE 114 (known method) (excluding scattered loss) Watt 84.02 83.23 87.41 97.89 106.96 Total loss of actual measurement of dynamometer (including scattered loss) Watt 77.85 72.04 74.83 85.12 93.78 Table I

由上表一可看出,在負載率25%、50%、75%、100%以及115%時,依據IEEE Std 114所計算出來的馬達總損失分別為84.02W、83.23W、87.41W、97.89W以及106.96W,而同樣在負載率25%、50%、75%、100%以及115%時,依據動力計實際量測之總損失卻是分別為77.85W、72.04W、74.83W、85.12W以及93.78W。因此,由習知方法(IEEE Std 114)所計算出來的總損失會大於動力計實際量測之總損失,表示習知方法(IEEE Std 114)的計算方法有改善空間,此問題一直存在於產業界,有待解決。From Table 1 above, we can see that at load rates of 25%, 50%, 75%, 100% and 115%, the total motor losses calculated according to IEEE Std 114 are 84.02W, 83.23W, 87.41W, 97.89W and 106.96W respectively. At load rates of 25%, 50%, 75%, 100% and 115%, the total losses actually measured by the dynamometer are 77.85W, 72.04W, 74.83W, 85.12W and 93.78W respectively. Therefore, the total loss calculated by the known method (IEEE Std 114) is greater than the total loss actually measured by the dynamometer, indicating that the calculation method of the known method (IEEE Std 114) has room for improvement. This problem has always existed in the industry and needs to be solved.

[發明所欲解決的課題] 由上述的先前技術可知,目前在單相感應馬達的總損失計算方法上有存在無法反映真實損失的問題。因此,需要提供一種全新的計算方法,使其能確實的計算出單相感應馬達的總損失。 [Problem to be solved by the invention] From the above-mentioned prior art, it can be seen that the current method for calculating the total loss of a single-phase induction motor has the problem of not being able to reflect the actual loss. Therefore, it is necessary to provide a new calculation method that can accurately calculate the total loss of a single-phase induction motor.

[解決課題的技術手段] 一種單相感應馬達的總損失的計算方法,包括: 計算一定子銅損𝑷𝒔;計算一鐵損及一機械損之總和,該鐵損及該機械損之總和的公式為:空載輸入功率𝑷𝟎 - 空載定子銅損𝑷𝒔𝟎;計算一轉子銅損,該轉子銅損的公式為:(輸入功率𝑷𝟏-該定子銅損𝑷𝒔-該空載輸入功率𝑷𝟎 + 該空載定子銅損𝑷𝒔𝟎) × 滑差S;計算一雜散損𝑷𝑳𝑳;以及計算該總損失,該總損失的公式為:該定子銅損𝑷𝒔 + (該空載輸入功率𝑷𝟎 – 該空載定子銅損𝑷𝒔𝟎) + (該輸入功率𝑷𝟏-該定子銅損𝑷𝒔-該空載輸入功率𝑷𝟎 + 該空載定子銅損𝑷𝒔𝟎) × 該滑差S + 該雜散損𝑷𝑳𝑳;其中,該單相感應馬達在輸入電壓不變的條件下,該鐵損與該單相感應馬達的一負載率成負相關。 [Technical means to solve the problem] A method for calculating the total loss of a single-phase induction motor, including: calculating a stator copper loss 𝑷𝒔; calculating the sum of an iron loss and a mechanical loss, the formula for the sum of the iron loss and the mechanical loss is: no-load input power 𝑷𝟎 - no-load stator copper loss 𝑷𝒔𝟎; calculating a rotor copper loss, the formula for the rotor copper loss is: (input power 𝑷𝟏-the stator copper loss 𝑷𝒔-the no-load input power 𝑷𝟎 + the no-load stator copper loss 𝑷𝒔𝟎) × slip S; calculate a stray loss 𝑷𝑳𝑳; and calculate the total loss, the total loss formula is: the stator copper loss 𝑷𝒔 + (the no-load input power 𝑷𝟎 – the no-load stator copper loss 𝑷𝒔𝟎) + (the input power 𝑷𝟏-the stator copper loss 𝑷𝒔-the no-load input power 𝑷𝟎 + the no-load stator copper loss 𝑷𝒔𝟎) × the slip S + The stray loss 𝑷𝑳𝑳; wherein, when the input voltage of the single-phase induction motor remains unchanged, the iron loss is negatively correlated with a load rate of the single-phase induction motor.

較佳地,該負相關的相關係數落於0.8-1之間。Preferably, the negative correlation coefficient is between 0.8 and 1.

較佳地,在該單相感應馬達的一等效電路的相位關係中,進一步量測該單相感應馬達的一主線及一輔線的電流夾角之總和,該主線的電流夾角為該等效電路的該相位關係中一線電壓與一主繞組電流之間的夾角,該輔線的電流夾角為該等效電路的該相位關係中該線電壓與一輔繞組電流之間的夾角,該鐵損與該主線及該輔線的電流夾角之總和成正相關。Preferably, in a phase relationship of an equivalent circuit of the single-phase induction motor, the sum of the current angles of a main line and an auxiliary line of the single-phase induction motor is further measured, the current angle of the main line being the angle between a line voltage and a main winding current in the phase relationship of the equivalent circuit, the current angle of the auxiliary line being the angle between the line voltage and an auxiliary winding current in the phase relationship of the equivalent circuit, and the iron loss is positively correlated with the sum of the current angles of the main line and the auxiliary line.

較佳地,該正相關的相關係數落於0.8-1之間。Preferably, the positive correlation coefficient is between 0.8 and 1.

較佳地,在該單相感應馬達的一等效電路中,進一步量測該單相感應馬達的一輔線電壓,該鐵損與該輔線電壓的平方成正相關。Preferably, in an equivalent circuit of the single-phase induction motor, an auxiliary line voltage of the single-phase induction motor is further measured, and the iron loss is positively correlated with the square of the auxiliary line voltage.

較佳地,該計算方法係依據IEEE(Institute of Electrical and Electronic Engineers)標準114的規範。Preferably, the calculation method is based on the specification of IEEE (Institute of Electrical and Electronic Engineers) Standard 114.

較佳地,該雜散損𝑷𝑳𝑳係依據本專利建議之公式進行計算,本專利建議之計算公式為:該雜散損𝑷𝑳𝑳 = 雜散因素× Preferably, the spurious loss 𝑷𝑳𝑳 is calculated according to the formula suggested by the patent, which is: the spurious loss 𝑷𝑳𝑳 = spurious factor × .

[發明功效] 由上述內容可知,本發明提供一種可更精確地分析單相感應馬達中各項損失在不同的負載點下的數值及占比的全新計算方法。再者,本發明進一步發現鐵損與負載率、主輔線電流相位差及輔線電壓平方有密切的關係,包括鐵損與負載率成負相關、鐵損與主線、輔線電流的夾角之總和成正相關以及鐵損與輔線電壓平方成正相關。本發明的計算方法以及鐵損與負載率、主輔線電流相位差及輔線電壓平方之間的相關性能有效地協助設計者、製造業者更精準量測單相感應馬達(電動機)的各項損失,並進而做為進一步設計優化改善的依據。 [Effect of the invention] From the above content, it can be seen that the present invention provides a new calculation method that can more accurately analyze the values and proportions of various losses in a single-phase induction motor at different load points. Furthermore, the present invention further discovered that iron loss is closely related to the load rate, the phase difference between the main and auxiliary line currents, and the square of the auxiliary line voltage, including that iron loss is negatively correlated with the load rate, iron loss is positively correlated with the sum of the angles between the main and auxiliary line currents, and iron loss is positively correlated with the square of the auxiliary line voltage. The calculation method of the present invention and the correlation between iron loss and load factor, main-auxiliary line current phase difference and auxiliary line voltage square effectively assist designers and manufacturers to more accurately measure the various losses of single-phase induction motors (motors), and further serve as a basis for further design optimization and improvement.

以下配合圖式及元件符號對本發明之實施方式做更詳細的說明,俾使熟習該項技藝者在研讀本說明書後能據以實施。The following is a more detailed description of the implementation of the present invention with reference to the drawings and component symbols, so that those skilled in the art can implement the invention accordingly after reading this specification.

圖1為一流程圖,用以說明本發明一實施例的單相感應馬達的總損失的計算方法。請參照圖1,本發明的單相感應馬達的總損失的計算方法包括步驟S10-步驟S50,步驟S10為:計算一定子銅損𝑷𝒔;步驟S20為:計算一鐵損及一機械損之總和,該鐵損及該機械損之總和的公式為:空載輸入功率𝑷𝟎 - 空載定子銅損𝑷𝒔𝟎;步驟S30為:計算一轉子銅損,該轉子銅損的公式為:(輸入功率𝑷𝟏-該定子銅損𝑷𝒔-該空載輸入功率𝑷𝟎 + 該空載定子銅損𝑷𝒔𝟎) × 滑差S;步驟S40為:計算一雜散損𝑷𝑳𝑳;以及步驟S50為:計算該總損失,該總損失的公式為:該定子銅損𝑷𝒔 + (該空載輸入功率𝑷𝟎 – 該空載定子銅損𝑷𝒔𝟎) + (該輸入功率𝑷𝟏-該定子銅損𝑷𝒔-該空載輸入功率𝑷𝟎 + 該空載定子銅損𝑷𝒔𝟎) × 該滑差S + 該雜散損𝑷𝑳𝑳;其中,該單相感應馬達在輸入電壓不變的條件下,該鐵損與該單相感應馬達的一負載率成負相關。FIG. 1 is a flow chart for illustrating a method for calculating the total loss of a single-phase induction motor according to an embodiment of the present invention. Referring to FIG. 1 , the method for calculating the total loss of a single-phase induction motor of the present invention includes steps S10 to S50. Step S10 is to calculate a stator copper loss 𝑷𝒔; Step S20 is to calculate the sum of an iron loss and a mechanical loss, the sum of which is calculated as follows: no-load input power 𝑷𝟎 - no-load stator copper loss 𝑷𝒔𝟎; Step S30 is to calculate a rotor copper loss, the rotor copper loss is calculated as follows: (input power 𝑷𝟏 - the stator copper loss 𝑷𝒔 - the no-load input power 𝑷𝟎 + The no-load stator copper loss 𝑷𝒔𝟎) × slip S; step S40 is to calculate a stray loss 𝑷𝑳𝑳; and step S50 is to calculate the total loss, the total loss formula is: the stator copper loss 𝑷𝒔 + (the no-load input power 𝑷𝟎 – the no-load stator copper loss 𝑷𝒔𝟎) + (the input power 𝑷𝟏-the stator copper loss 𝑷𝒔-the no-load input power 𝑷𝟎 + the no-load stator copper loss 𝑷𝒔𝟎) × the slip S + The stray loss 𝑷𝑳𝑳; wherein, when the input voltage of the single-phase induction motor remains unchanged, the iron loss is negatively correlated with a load rate of the single-phase induction motor.

現將詳細描述每個步驟的計算實施方式,其中,本發明的計算方法係依據習知方法(IEEE Std 114)的背景來進行進一步的計算。在步驟S10中係計算一定子銅損𝑷𝒔,其公式為 = ,其中, = 主線電流, = 主線電阻, = 輔線電流, = 輔線電阻。 The calculation implementation of each step will now be described in detail, wherein the calculation method of the present invention is further calculated based on the background of the known method (IEEE Std 114). In step S10, the stator copper loss 𝑷𝒔 is calculated, and its formula is = ,in, = Mains current, = Mains resistance, = Auxiliary current, = Auxiliary line resistance.

在步驟S20中,係計算一鐵損及一機械損之總和。鐵損 的公式為: = - - ,將鐵損 的公式做調整之後即可得到 = ,其中, = 空載輸入功率, = 空載定子銅損, = 機械損,因此鐵損 及機械損 之總和的公式即為: = 。值得一提的是,因為本發明為了要進一步發現鐵損與單相感應馬達總損失之間的關係,所以是將單相感應馬達中的散熱風扇拆除,而散熱風扇是單相感應馬達中機械損的主要來源。因此在將散熱風扇拆除後,機械損 可忽略不計,而鐵損 及機械損 之總和的公式即為:空載輸入功率𝑷𝟎 - 空載定子銅損𝑷𝒔𝟎。在本發明其他實施例中,亦可加裝散熱風扇並將機械損計算進去。 In step S20, the sum of an iron loss and a mechanical loss is calculated. The formula is: = - - , will damage the iron After adjusting the formula, we can get = ,in, = no-load input power, = No-load stator copper loss, = Mechanical damage, therefore iron damage and mechanical damage The formula for the sum of is: = It is worth mentioning that, in order to further discover the relationship between iron loss and total loss of single-phase induction motor, the heat dissipation fan in the single-phase induction motor is removed, and the heat dissipation fan is the main source of mechanical loss in the single-phase induction motor. Therefore, after the heat dissipation fan is removed, the mechanical loss can be ignored, and iron loss and mechanical damage The formula for the sum of the above is: no-load input power 𝑷𝟎 - no-load stator copper loss 𝑷𝒔𝟎. In other embodiments of the present invention, a heat dissipation fan may be installed and the mechanical loss may be taken into account.

在步驟S30中,係計算一轉子銅損,本發明中轉子銅損 的計算公式有做改變,在習知技術中轉子銅損 公式為: = - - - ) ,其中, = 輸入功率, = 定子銅損, = 鐵損, = 機械損, = 滑差。在本發明中是先進一步將上述的公式 = 帶入習知技術的轉子銅損 公式,因此可得到本發明的轉子銅損 公式: = ( - ) ,即(輸入功率𝑷𝟏-定子銅損𝑷𝒔-空載輸入功率𝑷𝟎 + 空載定子銅損𝑷𝒔𝟎) × 滑差S。 In step S30, the rotor copper loss is calculated. The calculation formula has been changed. In the conventional technology, the rotor copper loss The formula is: = - - - ) ,in, = Input power, = stator copper loss, = Iron loss, = Mechanical damage, = slip. In the present invention, the above formula is further = Bringing in knowledge and technology to rotor copper loss Formula, thus the rotor copper loss of the present invention can be obtained formula: = ( - ) , that is, (input power 𝑷𝟏-stator copper loss 𝑷𝒔-no-load input power 𝑷𝟎 + no-load stator copper loss 𝑷𝒔𝟎) × slip S.

在步驟S40中,係計算一雜散損𝑷𝑳𝑳,其中,雜散損𝑷𝑳𝑳可由下表二進行估算。其中,基本上不屬於銅損、 鐵損及機械損者都歸類在雜散損,而雜散因素由單相感應馬達中的氣隙磁場高次諧波所產生的負載損耗所決定,包括表面損耗、橫向電流損耗、 脈振損耗、高頻損耗、漏磁通損耗等。  = 雜散因素  =輸入功率 表二 In step S40, a stray loss 𝑷𝑳𝑳 is calculated, wherein the stray loss 𝑷𝑳𝑳 can be estimated from the following Table 2. Among them, those that are basically not copper loss, iron loss and mechanical loss are all classified as stray losses, and the stray factor is determined by the load loss generated by the high-order harmonics of the air gap magnetic field in the single-phase induction motor, including surface loss, lateral current loss, pulse loss, high-frequency loss, leakage flux loss, etc. = Scattering factor =Input Power Table II

在步驟S50中,係計算單相感應馬達的總損失 ,而在習知技術中總損失 的公式為 + + + + ,而在經過本發明的重新計算,將上述(鐵損+機械損)的公式 = 以及轉子銅損的公式 = ( - ) 帶入習知技術的總損失 公式後,即可得到本發明的總損失 的公式: - + ( - ) + ,即定子銅損𝑷𝒔 + (空載輸入功率𝑷𝟎 – 空載定子銅損𝑷𝒔𝟎) + (輸入功率𝑷𝟏-定子銅損𝑷𝒔-空載輸入功率𝑷𝟎 + 空載定子銅損𝑷𝒔𝟎) × 滑差S + 雜散損𝑷𝑳𝑳,即,總損失=定子銅損 + (鐵損+機械損) + (轉子銅損) + 雜散損。再者,如同上文所描述的,本發明是將機械損排除,因此總損失=定子銅損 + (鐵損) + (轉子銅損) + 雜散損。 In step S50, the total loss of the single-phase induction motor is calculated. , and the total loss in learning technology The formula is + + + + , and after the recalculation of the present invention, the above formula (iron loss + mechanical loss) is = And the formula for rotor copper loss = ( - ) Total loss of knowledge technology The total loss of the present invention can be obtained by using the formula The formula is: - + ( - ) + , that is, stator copper loss 𝑷𝒔 + (no-load input power 𝑷𝟎 – no-load stator copper loss 𝑷𝒔𝟎) + (input power 𝑷𝟏-stator copper loss 𝑷𝒔-no-load input power 𝑷𝟎 + no-load stator copper loss 𝑷𝒔𝟎) × slip S + stray loss 𝑷𝑳𝑳, that is, total loss = stator copper loss + (iron loss + mechanical loss) + (rotor copper loss) + stray loss. Furthermore, as described above, the present invention eliminates mechanical losses, so the total loss = stator copper loss + (iron loss) + (rotor copper loss) + stray loss.

在本發明中,是進一步藉由本發明的公式來計算單相感應馬達的總損失,並將所計算出來的總損失來與動力計實際量測之總損失做比較,比較表如下表三所示。 負載率 % 0% 25% 50% 75% 100% 115% 電壓 (V) 主線 115.13 115.09 115.13 115.14 115.10 115.13 輔線 141.64 139.48 135.92 132.75 129.18 126.93 電容 192.62 189.95 184.52 179.09 174.08 171.25 電流 (A) 輸入 1.34 1.68 2.20 2.86 3.67 4.16 主線 2.99 2.58 2.40 2.54 2.98 3.34 輔線 2.61 2.57 2.49 2.42 2.35 2.31 輸入功率 Watt 88.55 161.83 236.98 316.85 410.57 466.78 功因 % 57.57 83.62 93.57 96.06 97.22 97.56 轉矩 Kg-cm 0.00 2.29 4.55 6.74 9.18 10.60 轉速 RPM 3600 3564 3531 3496 3453 3425 馬達效率 % 0.00 51.89 69.60 76.38 79.27 79.91 主線電阻 Ohm 2.05 2.05 2.05 2.05 2.05 2.05 輔線電阻+電容等效電阻 2.96 2.96 2.96 2.96 2.96 2.96 空載定子銅損 Watt 38.54 鐵損 Watt 50.01 39.68 32.55 28.89 26.00 23.90 定子銅損 Watt 33.23 30.22 30.58 34.57 38.67 轉子銅損 Watt 0.89 3.34 7.44 14.29 19.54 雜散損 Watt 4.05 5.92 7.92 10.26 11.67 依據本發明計算之總損失 Watt 77.85 72.04 74.83 85.12 93.78 實際量測總損失 Watt 77.85 72.04 74.83 85.12 93.78 表三 In the present invention, the total loss of a single-phase induction motor is further calculated by the formula of the present invention, and the calculated total loss is compared with the total loss actually measured by the dynamometer. The comparison table is shown in Table 3 below. Load factor % 0% 25% 50% 75% 100% 115% Voltage(V) Main Story 115.13 115.09 115.13 115.14 115.10 115.13 Auxiliary line 141.64 139.48 135.92 132.75 129.18 126.93 Capacitance 192.62 189.95 184.52 179.09 174.08 171.25 Current(A) Input 1.34 1.68 2.20 2.86 3.67 4.16 Main Story 2.99 2.58 2.40 2.54 2.98 3.34 Auxiliary line 2.61 2.57 2.49 2.42 2.35 2.31 Input power Watt 88.55 161.83 236.98 316.85 410.57 466.78 Cause % 57.57 83.62 93.57 96.06 97.22 97.56 Torque Kg-cm 0.00 2.29 4.55 6.74 9.18 10.60 Speed RPM 3600 3564 3531 3496 3453 3425 Motor efficiency % 0.00 51.89 69.60 76.38 79.27 79.91 Main line resistance Ohm 2.05 2.05 2.05 2.05 2.05 2.05 Auxiliary line resistance + capacitor equivalent resistance 2.96 2.96 2.96 2.96 2.96 2.96 No-load stator copper loss Watt 38.54 Iron damage Watt 50.01 39.68 32.55 28.89 26.00 23.90 Stator copper loss Watt 33.23 30.22 30.58 34.57 38.67 Rotor copper loss Watt 0.89 3.34 7.44 14.29 19.54 Dispersion loss Watt 4.05 5.92 7.92 10.26 11.67 Total losses calculated according to this invention Watt 77.85 72.04 74.83 85.12 93.78 Actual measured total loss Watt 77.85 72.04 74.83 85.12 93.78 Table 3

由上表三可看出,相較於先前技術的計算方法,本發明的計算方法更可明確的計算出單相感應馬達的實際總損失,避免產生計算出來的數值與真實損失不相符的問題。As can be seen from Table 3 above, compared with the calculation method of the prior art, the calculation method of the present invention can more accurately calculate the actual total loss of the single-phase induction motor, thus avoiding the problem that the calculated value is inconsistent with the actual loss.

圖2為一示意圖,用以說明本發明一實施例的鐵損與負載率之間的關係。請參照圖2及上表三,由上表三可進一步得知,單相感應馬達的鐵損其實並不是如本發明先前技術中表一所述的是一個定值。由本發明的鐵損公式 = 計算可得知,鐵損在負載率為25%、50%、75%、100%以及115%時分別為39.68W、32.55W、28.89W、26.00W以及23.90W,由圖2的關係圖可看出,單相感應馬達在輸入電壓不變的條件下,鐵損與負載率呈負相關,在此數值下其相關係數落於0.8-1之間,較佳為0.9618。 FIG2 is a schematic diagram for explaining the relationship between iron loss and load rate of an embodiment of the present invention. Please refer to FIG2 and Table 3 above. It can be further known from Table 3 above that the iron loss of a single-phase induction motor is not a fixed value as described in Table 1 in the prior art of the present invention. According to the iron loss formula of the present invention, = Calculations show that the iron loss is 39.68W, 32.55W, 28.89W, 26.00W and 23.90W at load rates of 25%, 50%, 75%, 100% and 115% respectively. From the relationship diagram in Figure 2, it can be seen that when the input voltage of a single-phase induction motor remains unchanged, the iron loss is negatively correlated with the load rate. At this value, the correlation coefficient falls between 0.8-1, and the best value is 0.9618.

圖3為一電路圖,用以說明本發明一實施例的單相感應馬達的等效電路。請參照圖3,在本發明計算方法的一實施例中,會進一步量測計算單相感應馬達的一主線電流夾角以及一輔線電流夾角,而在本發明中會藉由等效電路以及相位角關係圖來量測、計算該些夾角的角度。單相感應馬達的等效電路1包括一轉子10、一線電壓101、一主繞組感抗201、一主繞組電阻203、一輔繞組感抗301、一輔繞組電阻303以及一輔繞組電容401。其中,線電壓101即為輸入電壓,輸入電流 會分流成一主繞組電流 以及一輔繞組電流 ,主繞組的線路部分沒有串接電容,因此主繞組的主繞組電流 會落後於線電壓101。輔繞組則因為有輔繞組電容401的存在,使流經輔繞組的輔繞組電流 會領先線電壓101。此外,線電壓101、主繞組感抗201、主繞組電阻203、輔繞組感抗301、輔繞組電阻303以及輔繞組電容401亦可分別表示為線電壓 、主繞組感抗 、主繞組電阻 、輔繞組感抗 、輔繞組電阻 以及輔繞組電容 FIG3 is a circuit diagram for illustrating an equivalent circuit of a single-phase induction motor of an embodiment of the present invention. Referring to FIG3, in an embodiment of the calculation method of the present invention, a main line current angle and an auxiliary line current angle of the single-phase induction motor are further measured and calculated, and in the present invention, the angles of these angles are measured and calculated by using an equivalent circuit and a phase angle relationship diagram. The equivalent circuit 1 of the single-phase induction motor includes a rotor 10, a line voltage 101, a main winding inductance 201, a main winding resistance 203, an auxiliary winding inductance 301, an auxiliary winding resistance 303, and an auxiliary winding capacitance 401. Among them, the line voltage 101 is the input voltage, the input current Will be split into a main winding current and an auxiliary winding current There is no series capacitor in the main winding circuit, so the main winding current will lag behind the line voltage 101. The auxiliary winding has an auxiliary winding capacitor 401, so the auxiliary winding current flowing through the auxiliary winding will lead the line voltage 101. In addition, the line voltage 101, the main winding inductance 201, the main winding resistance 203, the auxiliary winding inductance 301, the auxiliary winding resistance 303 and the auxiliary winding capacitance 401 can also be expressed as the line voltage , Main Winding Inductive Reactance , Main Winding Resistance , Auxiliary Winding Inductive Reactance , Auxiliary Winding Resistance And auxiliary winding capacitance .

圖4為一示意圖,用以說明本發明一實施例的等效電路中的相位角關係。請參照圖3及圖4,圖4為等效電路1的各分支電流大小與相位的關係圖。經由上述關於主繞組電流 以及輔繞組電流 的分析可知,主繞組電流 會落後於線電壓 ,因此主線電流夾角 即為線電壓 與主繞阻電流 之間的夾角,而輔繞組電流 會領先於線電壓 ,因此輔線電流夾角 即為線電壓 與輔繞阻電流 之間的夾角。此外,輸入電流夾角 為線電壓 與輸入電流 之間的夾角。其中,各電流的相角可經由功率計量測得知。 FIG4 is a schematic diagram for explaining the phase angle relationship in the equivalent circuit of an embodiment of the present invention. Please refer to FIG3 and FIG4, FIG4 is a diagram showing the relationship between the magnitude and phase of each branch current of the equivalent circuit 1. and auxiliary winding current From the analysis, we can see that the main winding current Will lag behind the line voltage , so the main line current angle Line voltage and main winding current The angle between the auxiliary winding current Will lead the line voltage , so the auxiliary line current angle Line voltage Auxiliary winding current In addition, the input current angle Line voltage and input current The phase angle of each current can be measured by a power meter.

進一步地,主線電流夾角 以及輔線電流夾角 之總和與鐵損之間的關係如下表四所示。 主、輔線電流夾角之總和 deg 141.92 126.56 109.62 93.82 86.97 鐵損 Watt 39.68 32.55 28.89 26.00 23.90 表四 Furthermore, the main line current angle and auxiliary line current angle The relationship between the sum of and iron loss is shown in Table 4 below. The sum of the main and auxiliary line current angles deg 141.92 126.56 109.62 93.82 86.97 Iron damage Watt 39.68 32.55 28.89 26.00 23.90 Table 4

圖5為一示意圖,用以說明本發明一實施例的鐵損與主、輔線電流夾角之總和之間的關係。請參照圖5及上表四,在本發明一實施例中,當鐵損為39.68W、32.55W、28.89W、26.00W以及23.90W時,主、輔線電流夾角之總和( )為141.92度、126.56度、109.62度、93.82度以及86.97度。換言之,單相感應馬達在輸入電壓不變的條件下,鐵損與主、輔線電流夾角之總和成正相關,在此數值下其相關係數落於0.8-1之間,較佳為0.9638。 FIG5 is a schematic diagram for explaining the relationship between the iron loss and the sum of the main and auxiliary line current angles of an embodiment of the present invention. Please refer to FIG5 and Table 4 above. In an embodiment of the present invention, when the iron loss is 39.68W, 32.55W, 28.89W, 26.00W and 23.90W, the sum of the main and auxiliary line current angles ( ) are 141.92 degrees, 126.56 degrees, 109.62 degrees, 93.82 degrees and 86.97 degrees. In other words, when the input voltage of a single-phase induction motor remains unchanged, the iron loss is positively correlated with the sum of the main and auxiliary line current angles. Under this value, the correlation coefficient falls between 0.8-1, and the best is 0.9638.

另一方面,輔線電壓平方與鐵損之間的關係如下表五所示: 主線電壓 Volt 115.09 115.13 115.14 115.10 115.13 輔線電壓 Volt 139.48 135.92 132.75 129.18 126.93 輔線電壓平方 Volt 19454.67 18474.25 17622.56 16687.47 16111.22 鐵損 Watt 39.68 32.55 28.89 26.00 23.90 表五 On the other hand, the relationship between the square of the auxiliary line voltage and the iron loss is shown in Table 5 below: Mains voltage Volt 115.09 115.13 115.14 115.10 115.13 Auxiliary line voltage Volt 139.48 135.92 132.75 129.18 126.93 Auxiliary line voltage square Volt 19454.67 18474.25 17622.56 16687.47 16111.22 Iron damage Watt 39.68 32.55 28.89 26.00 23.90 Table 5

圖6為一關係圖,用以說明本發明一實施例的鐵損與輔線電壓平方之間的關係。請參照圖6及上表五,在本發明一實施例中,會進一步量測單相感應馬達的輔線電壓,進而找出輔線電壓平方與鐵損之間的關係。當鐵損為39.68W、32.55W、28.89W、26.00W以及23.90W時,輔線電壓平方分別為19454.67V、18474.25V、17622.56V、16687.47V以及16111.22V。換言之,單相感應馬達在輸入電壓不變的條件下,鐵損與輔線電壓平方成正相關。FIG6 is a relationship diagram for illustrating the relationship between iron loss and auxiliary line voltage square of an embodiment of the present invention. Referring to FIG6 and Table 5 above, in an embodiment of the present invention, the auxiliary line voltage of the single-phase induction motor is further measured to find the relationship between the auxiliary line voltage square and iron loss. When the iron loss is 39.68W, 32.55W, 28.89W, 26.00W and 23.90W, the auxiliary line voltage square is 19454.67V, 18474.25V, 17622.56V, 16687.47V and 16111.22V respectively. In other words, when the input voltage of a single-phase induction motor remains constant, the iron loss is positively correlated with the square of the auxiliary line voltage.

由上述說明可知,本發明解決了現行法規各損失之和大於輸入功率扣除輸出功率的矛盾。針對單相感應馬達的損失量測,本發明提供了一種全新的計算方法,本發明的計算方法可更精確的分析各項損失在不同的負載點下的數值及占比。From the above description, it can be seen that the present invention solves the contradiction that the sum of the losses in the current regulations is greater than the input power minus the output power. For the loss measurement of single-phase induction motors, the present invention provides a new calculation method, which can more accurately analyze the value and proportion of each loss at different load points.

再者,本發明進一步針對鐵損提出了三種量測計算方法以進行更精準的量測,並發現鐵損分別與負載率,主輔線電流相位差及輔線電壓平方有密切的關係,包括鐵損與負載率成負相關、鐵損與主線、輔線電流夾角之總和成正相關以及鐵損與輔線電壓平方成正相關。本發明的計算方法以及鐵損與負載率、主輔線電流相位差及輔線電壓平方之間的相關性,能有效地協助設計者、製造業者更精準量測單相感應馬達(電動機)的各項損失,並進而做為進一步設計優化改善的依據。Furthermore, the present invention further proposes three measurement calculation methods for iron loss for more accurate measurement, and finds that iron loss is closely related to load factor, main-auxiliary current phase difference, and auxiliary voltage square, including that iron loss is negatively correlated with load factor, iron loss is positively correlated with the sum of main-auxiliary current angles, and iron loss is positively correlated with auxiliary voltage square. The calculation method of the present invention and the correlation between iron loss and load factor, main-auxiliary current phase difference, and auxiliary voltage square can effectively assist designers and manufacturers to more accurately measure various losses of single-phase induction motors (motors), and further serve as a basis for further design optimization and improvement.

1:等效電路 10:轉子 101:線電壓 201:主繞組感抗 203:主繞組電阻 301:輔繞組感抗 303:輔繞組電阻 401:輔繞組電容 :輸入電流 :主繞組電流 :輔繞組電流 :線電壓 :主繞組感抗 :主繞組電阻 :輔繞組感抗 :輔繞組電阻 :輔繞組電容 :主線電流夾角 :輔線電流夾角 :輸入電流夾角 S10-S50:步驟 1: Equivalent circuit 10: Rotor 101: Line voltage 201: Main winding inductance 203: Main winding resistance 301: Auxiliary winding inductance 303: Auxiliary winding resistance 401: Auxiliary winding capacitance :Input current :Main winding current :Auxiliary winding current :Line voltage :Main Winding Inductive Reactance :Main winding resistance :Auxiliary winding inductive reactance :Auxiliary Winding Resistance :Auxiliary winding capacitance :Main line current angle :Auxiliary line current angle : Input current angle S10-S50: Step

本領域中具有通常知識者在參照附圖閱讀下方的詳細說明後,可以對本發明的各種態樣以及其具體的特徵與優點有更良好的了解,其中,該些附圖包括: 圖1係本發明一實施例的單相感應馬達的總損失的計算方法的流程圖。 圖2係本發明一實施例的鐵損與負載率之間的關係示意圖。 圖3係本發明一實施例的單相感應馬達的等效電路圖。 圖4係本發明一實施例的等效電路中的相位角關係的示意圖。 圖5係本發明一實施例的鐵損與主、輔線電流夾角之總和之間的關係示意圖。 圖6係本發明一實施例的鐵損與輔線電壓平方之間的關係示意圖。 After reading the detailed description below with reference to the attached figures, a person with ordinary knowledge in the field can have a better understanding of the various aspects of the present invention and its specific features and advantages, wherein the attached figures include: FIG. 1 is a flow chart of a method for calculating the total loss of a single-phase induction motor of an embodiment of the present invention. FIG. 2 is a schematic diagram of the relationship between iron loss and load rate of an embodiment of the present invention. FIG. 3 is an equivalent circuit diagram of a single-phase induction motor of an embodiment of the present invention. FIG. 4 is a schematic diagram of the phase angle relationship in the equivalent circuit of an embodiment of the present invention. FIG. 5 is a schematic diagram of the relationship between iron loss and the sum of the main and auxiliary line current angles of an embodiment of the present invention. Figure 6 is a schematic diagram showing the relationship between iron loss and the square of the auxiliary line voltage in an embodiment of the present invention.

S10-S50:步驟 S10-S50: Steps

Claims (7)

一種單相感應馬達的總損失的計算方法,包括: 計算一定子銅損𝑷𝒔; 計算一鐵損及一機械損之總和,該鐵損及該機械損之總和的公式為:空載輸入功率𝑷𝟎 - 空載定子銅損𝑷𝒔𝟎; 計算一轉子銅損,該轉子銅損的公式為:(輸入功率𝑷𝟏-該定子銅損𝑷𝒔-該空載輸入功率𝑷𝟎 + 該空載定子銅損𝑷𝒔𝟎)× 滑差S; 計算一雜散損𝑷𝑳𝑳;以及 計算該總損失,該總損失的公式為:該定子銅損𝑷𝒔 + (該空載輸入功率𝑷𝟎 – 該空載定子銅損𝑷𝒔𝟎) + (該輸入功率𝑷𝟏-該定子銅損𝑷𝒔-該空載輸入功率𝑷𝟎 + 該空載定子銅損𝑷𝒔𝟎) × 該滑差S + 該雜散損𝑷𝑳𝑳; 其中,該單相感應馬達在輸入電壓不變的條件下,該鐵損與該單相感應馬達的一負載率成負相關。 A method for calculating the total loss of a single-phase induction motor includes: Calculating a stator copper loss 𝑷𝒔; Calculating the sum of an iron loss and a mechanical loss, the formula for the sum of the iron loss and the mechanical loss is: no-load input power 𝑷𝟎 - no-load stator copper loss 𝑷𝒔𝟎; Calculating a rotor copper loss, the formula for the rotor copper loss is: (input power 𝑷𝟏-the stator copper loss 𝑷𝒔-the no-load input power 𝑷𝟎 + the no-load stator copper loss 𝑷𝒔𝟎)× slip S; Calculate a stray loss 𝑷𝑳𝑳; and Calculate the total loss, the total loss formula is: the stator copper loss 𝑷𝒔 + (the no-load input power 𝑷𝟎 – the no-load stator copper loss 𝑷𝒔𝟎) + (the input power 𝑷𝟏-the stator copper loss 𝑷𝒔-the no-load input power 𝑷𝟎 + the no-load stator copper loss 𝑷𝒔𝟎) × the slip S + the stray loss 𝑷𝑳𝑳; Among them, when the input voltage of the single-phase induction motor remains unchanged, the iron loss is negatively correlated with a load rate of the single-phase induction motor. 如請求項1的計算方法,其中,該負相關的相關係數落於0.8-1之間。As in the calculation method of claim 1, wherein the negative correlation coefficient is between 0.8 and 1. 如請求項1的計算方法,其中,在該單相感應馬達的一等效電路的相位關係中,進一步量測該單相感應馬達的一主線及一輔線的電流夾角之總和,該主線的電流夾角為該等效電路的該相位關係中一線電壓與一主繞組電流之間的夾角,該輔線的電流夾角為該等效電路的該相位關係中該線電壓與一輔繞組電流之間的夾角,該鐵損與該主線及該輔線的電流夾角之總和成正相關。As in the calculation method of claim 1, in the phase relationship of an equivalent circuit of the single-phase induction motor, the sum of the current angles of a main line and an auxiliary line of the single-phase induction motor is further measured, the current angle of the main line is the angle between a line voltage and a main winding current in the phase relationship of the equivalent circuit, the current angle of the auxiliary line is the angle between the line voltage and an auxiliary winding current in the phase relationship of the equivalent circuit, and the iron loss is positively correlated with the sum of the current angles of the main line and the auxiliary line. 如請求項3的計算方法,其中,該正相關的相關係數落於0.8-1之間。As in the calculation method of claim 3, wherein the positive correlation coefficient falls between 0.8 and 1. 如請求項1的計算方法,其中,在該單相感應馬達的一等效電路中,進一步量測該單相感應馬達的一輔線電壓,該鐵損與該輔線電壓的平方成正相關。As in the calculation method of claim 1, in an equivalent circuit of the single-phase induction motor, an auxiliary line voltage of the single-phase induction motor is further measured, and the iron loss is positively correlated with the square of the auxiliary line voltage. 如請求項1的計算方法,其中,該計算方法係依據IEEE(Institute of Electrical and Electronic Engineers)標準114的規範。The calculation method of claim 1, wherein the calculation method is based on the specification of IEEE (Institute of Electrical and Electronic Engineers) standard 114. 如請求項1的計算方法,其中,該雜散損𝑷𝑳𝑳的計算公式為:該雜散損𝑷𝑳𝑳 = 雜散因素× For example, the calculation method of item 1, where the calculation formula of the spurious loss 𝑷𝑳𝑳 is: the spurious loss 𝑷𝑳𝑳 = spurious factor × .
TW111136239A 2022-09-23 Calculation method of total loss of single-phase induction motor TWI840967B (en)

Publications (2)

Publication Number Publication Date
TW202413982A true TW202413982A (en) 2024-04-01
TWI840967B TWI840967B (en) 2024-05-01

Family

ID=

Similar Documents

Publication Publication Date Title
Bhowmick et al. Estimation of equivalent circuit parameters of transformer and induction motor from load data
Radimov et al. Inductance measurements in switched reluctance machines
Fratila et al. Iron loss calculation in a synchronous generator using finite element analysis
JP2016073200A (en) Method and system for determining core losses in permanent magnet synchronous motor
Donolo et al. Derating of induction motors due to power quality issues considering the motor efficiency class
CN109270358B (en) Method for measuring equivalent rotor copper consumption of squirrel-cage asynchronous motor
Boglietli et al. Induction motor efficiency measurements in accordance to IEEE 112-B, IEC 34-2 and JEC 37 international standards
CN103869245B (en) Magnetic co-energy correction-based switched reluctance motor (SRM) flux linkage curve test method
Jiang et al. Experimental study on the influence of high frequency PWM harmonics on the losses of induction motor
TWI840967B (en) Calculation method of total loss of single-phase induction motor
TW202413982A (en) Calculation method of total loss of single-phase induction motor
Deda et al. Induction motor efficiency test methods: A comparison of standards
Donolo et al. Impact of voltage waveform on the losses and performance of energy efficiency induction motors
CN104808148B (en) A kind of method of testing of multiphase multiple-unit magneto temperature rise
Wciślik et al. Core losses model of switched reluctance motor
Serrano-Iribarnegaray et al. Critical review of the analytical approaches accounting for interbar currents and experimental study of ageing in two-speed asynchronous motors for elevator drives
Cao et al. Evaluation of additional loss in induction motors consequent on repair and rewinding
CN115441798A (en) Induction motor parameter identification method based on factory data and maximum torque formula
Olivo et al. A new method for the accurate prediction of on-load power factor in two-pole induction motors considering shaft eddy currents
TWI760946B (en) A motor measuring system and method thereof
Farah et al. An analytical investigation of induction motor behavior in the case of flicker occurrence using finite element method
Olaleye et al. Modeling of eccentricity and performance of three-phase induction motors
TWI431300B (en) Method for parameter identification of induction machine
Manyage et al. Low voltage high current PM traction motor design using recent core loss results
CN108845258A (en) The analysis method of 60HZ motor load is done based on 50HZ power supply