TWI760946B - A motor measuring system and method thereof - Google Patents
A motor measuring system and method thereof Download PDFInfo
- Publication number
- TWI760946B TWI760946B TW109141898A TW109141898A TWI760946B TW I760946 B TWI760946 B TW I760946B TW 109141898 A TW109141898 A TW 109141898A TW 109141898 A TW109141898 A TW 109141898A TW I760946 B TWI760946 B TW I760946B
- Authority
- TW
- Taiwan
- Prior art keywords
- motor
- inductance value
- measurement
- current
- value
- Prior art date
Links
Images
Landscapes
- Control Of Ac Motors In General (AREA)
- Control Of Electric Motors In General (AREA)
- Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
Abstract
一種馬達量測系統及其方法,係應用在同步磁阻馬達之電感量測的環境中,利用本發明之馬達量測系統及馬達量測方法,透過為馬達測試平台系統之馬達量測系統,而量測同步磁阻馬達輸入與輸出之電氣與機械特性,將其代入馬達演算法,而分別得到實際電機運轉時之 - 軸電感值,且本發明之馬達量測系統及其方法可不侷限於估算單一操作點,而是可精準及快速估算馬達在任一操作點之電感值,且可在電機能效標準認證中一同進行,無須額外之量測設備,即可精準及快速得到馬達的 - 軸電感值。 A motor measurement system and method thereof are applied in the environment of inductance measurement of synchronous reluctance motor, using the motor measurement system and motor measurement method of the present invention, through the motor measurement system which is a motor test platform system, Then measure the electrical and mechanical characteristics of the input and output of the synchronous reluctance motor, and substitute them into the motor algorithm to obtain the actual motor running characteristics. - shaft inductance value, and the motor measurement system and method of the present invention are not limited to estimating a single operating point, but can accurately and quickly estimate the inductance value of the motor at any operating point, and can be carried out together in the motor energy efficiency standard certification, Without additional measuring equipment, the motor can be accurately and quickly obtained - shaft inductance value.
Description
本發明係有關於馬達量測系統及其方法,更詳而言之,係有關於一種應用在同步磁阻馬達之電感量測之環境中的馬達量測系統及其方法,量測同步磁阻馬達輸入與輸出之電氣與機械特性並代入馬達演算法,而分別得到實際馬達運轉時之 - 軸電感值,可不侷限於估算單一操作點,而是可精準及快速估算馬達在任一操作點之電感值。 The present invention relates to a motor measurement system and a method thereof. More specifically, it relates to a motor measurement system and a method used in the inductance measurement environment of a synchronous reluctance motor. Measuring synchronous reluctance The electrical and mechanical characteristics of the motor input and output are substituted into the motor algorithm to obtain the actual motor operation. - The shaft inductance value is not limited to estimating a single operating point, but can accurately and quickly estimate the inductance value of the motor at any operating point.
全球為了統一馬達能效等級,以促進競爭性的馬達市場轉型,各國實施最低能源效率標準(Minimum Energy Performance Standard, MEPS ),主要參考國際電工委員會(The International Electrotechnical Commission, IEC)馬達能效分級標準。其中變頻馬達效率規範為IEC60034-30-2,其範圍包含0.12-1,000kW,額定轉速在1-6,000RPM。馬達效率標準分為5個等級,分別為標準效率(Standard Efficiency, IE1)、優級效率(High Efficiency, IE2)、超高效率(Premium Efficiency, IE3) 、超優級效率(Super Premium Efficiency, IE4)與特超優級效率(Gold Standard Efficiency, IE5),IE5能效標準已成為未來馬達目標。In order to unify motor energy efficiency levels and promote the transformation of the competitive motor market, countries around the world implement Minimum Energy Performance Standard (MEPS), mainly referring to the International Electrotechnical Commission (The International Electrotechnical Commission, IEC) Motor energy efficiency classification standards. Among them, the efficiency specification of the variable frequency motor is IEC60034-30-2, its range includes 0.12-1,000kW, and the rated speed is 1-6,000RPM. The motor efficiency standard is divided into 5 grades, namely Standard Efficiency (IE1), Superior Efficiency (High Efficiency, IE2), Premium Efficiency (IE3), Super Premium Efficiency (IE4) ) and super-superior efficiency (Gold Standard Efficiency, IE5), IE5 energy efficiency standard has become the goal of future motors.
IEC60034-30-2馬達分級標準依照IEC61800-9-2變頻馬達系統能效規範進行測試,在IEC61800-9-2中,效率規範的範疇分別為完整驅動模組(Complete Drive Modules, CDM)及電力驅動系統(Power Drive System, PDS),前者指單一變頻器,後者為變頻器及馬達。將功率範圍為0.12 kW至1,000 kW,進行效率等級的定義,並依照馬達轉矩與轉速不同,定義八個操作點,分別對各操作點計算損失評估能效。馬達電感值會隨操作點不同而有所差異,因此在做電機的參數鑑別時,不能只針對額定點進行量測。The IEC60034-30-2 motor classification standard is tested in accordance with the IEC61800-9-2 energy efficiency specification for variable frequency motor systems. In IEC61800-9-2, the categories of efficiency specifications are Complete Drive Modules (CDM) and electric drives. System (Power Drive System, PDS), the former refers to a single inverter, the latter is an inverter and a motor. The power range is 0.12 kW to 1,000 kW, and the efficiency class is defined, and eight operating points are defined according to the different motor torque and speed, and the loss is calculated for each operating point to evaluate the energy efficiency. The motor inductance value will vary with the operating point, so when doing the parameter identification of the motor, it cannot be measured only at the rated point.
一般在選購市售馬達時,無法得知其相關的電機參數,若操作者需要此資訊,必須藉由相關規範及精確的量測設備來得知。目前,針對感應馬達的參數鑑別已有許多廣泛的研究,但針對同步馬達參數鑑別的技術及相關文獻較少。Generally, when purchasing a commercially available motor, it is impossible to know its related motor parameters. If the operator needs this information, he must obtain it through relevant specifications and accurate measuring equipment. At present, there have been many extensive studies on parameter identification of induction motors, but there are few technologies and related literatures for parameter identification of synchronous motors.
電感是影響馬達功率因數與轉矩,極為重要的參數之一,且馬達電感並非為一常數值,主要與電流大小、電機的動態響應與穩態特性息息相關,換言之,電感之大小會隨著電流大小而不同,再者,先前技術需額外之設備,且易受設備的限制(尤其當馬達輸出功率增加時,電源供應器體積不但大,且成本非常高),無法以馬達真實運轉下之操作點進行測試,因此,如何能在馬達真實運轉下,進行 - 軸電感值量測並取得 - 軸電感值的精確性至關重要。 Inductance is one of the most important parameters affecting the power factor and torque of the motor, and the inductance of the motor is not a constant value. In addition, the prior art requires additional equipment, and is easily limited by the equipment (especially when the output power of the motor increases, the power supply is not only large, but also very expensive), and it cannot operate under the actual operation of the motor. point to test, therefore, how can the actual operation of the motor, - The shaft inductance value is measured and obtained - The accuracy of the shaft inductance value is critical.
於目前的習知技術,以LCR meter量測方法而言,在馬達上選擇任兩相的定子繞組,利用LCR meter量測馬達的 - 端、 - 端以及 - 端。每個端點在測試過程依照轉子角度的不同,可量測到定子線電感最大值與最小值 。將線電感最大值除以二可以得到 軸電感 ,將線電感最小值除以二可以得到 軸電感 。此LCR meter量測方法為多數人採用,然其缺點為,只能量到電流10~100mA以下之電感值,並不符合馬達正常操作之條件,無法獲得完整的電流對電感的曲線。 In the current conventional technology, in terms of the LCR meter measurement method, any two-phase stator windings are selected on the motor, and the LCR meter is used to measure the motor. - end, - end and - end. The maximum and minimum values of the stator wire inductance can be measured at each end point according to the rotor angle during the test process. Divide the maximum line inductance by two to get Shaft inductance, which can be obtained by dividing the minimum line inductance by two shaft inductance. This LCR meter measurement method is used by most people, but its disadvantage is that it can only measure the inductance value of the current below 10~100mA, which does not meet the normal operation conditions of the motor, and cannot obtain a complete current versus inductance curve.
以定電壓量測方法而言,其係利用交流電壓供應器,採定電壓方式量測 - 軸電感。測試過程中馬達以轉速1RPM之速度緩慢轉動,將馬達順時鐘運轉360度,即可繪製出角度對電感的曲線圖。此定電壓量測方法可得知轉子角度對應之電感,然其缺點為,需要一部大容量之可變電壓的電源供應器(如欲測量較大電流下之電感值),無法同時得到該電流下之 - 軸電感,亦無法獲得完整的電流對電感的曲線。 In terms of the constant voltage measurement method, it uses an AC voltage supply to measure the constant voltage - shaft inductance. During the test, the motor rotates slowly at a speed of 1RPM, and rotates the motor 360 degrees clockwise to draw a graph of angle versus inductance. This constant voltage measurement method can obtain the inductance corresponding to the rotor angle. However, the disadvantage is that a large-capacity variable voltage power supply is required (if the inductance value is to be measured at a large current), and the inductance value cannot be obtained at the same time. under current - shaft inductance, and a complete current versus inductance curve cannot be obtained.
以有限元素分析方法而言,其係將電機之幾何形狀、材料特性及繞線參數匯入有限元素分析軟體,利用電腦進行計算,可得到 - 軸之電感值。此有限元素分析方法可計算出各操作點下之電感,然其缺點為,需事先知道馬達的幾何結構尺寸,及其材料特性,且計算量大會消耗大量時間。 In terms of the finite element analysis method, the geometric shape, material properties and winding parameters of the motor are imported into the finite element analysis software, and the computer is used for calculation to obtain - The inductance value of the shaft. This finite element analysis method can calculate the inductance at each operating point. However, the disadvantage is that the geometrical structure size of the motor and its material properties need to be known in advance, and the calculation amount will consume a lot of time.
台灣公開/公告號I533591「一種適用於內嵌式永磁同步馬達及同步磁阻馬達以延伸型反電動勢估測為基礎的預測電流控制方法」係提出一種以延伸型反電動勢估測為基礎的預測電流控制方法,可適用於內嵌式永磁同步馬達及同步磁阻馬達。首先,馬達的三相延伸型反電動勢可經由量測的電流和電壓,並利用q軸電感參數及定子電阻參數估算求得。接著,使用馬達的離散時間模型以計算在下一次取樣時間的定子電流值。然後,定義成本函數以計算變頻器在下一次取樣時間,所有可能的開關切換狀態下,對應的成本函數值。藉由選擇有最小成本函數值的電壓向量,決定下一次取樣時間的開關切換狀態,以直接控制變頻器的閘級訊號。相較於傳統的電流磁滯控制,所提的預測電流控制可有效地提升馬達驅動系統的電流追蹤能力。Taiwan Publication/Announcement No. I533591 "A predictive current control method based on extended back-EMF estimation for embedded permanent magnet synchronous motors and synchronous reluctance motors" proposes a method based on extended back-EMF estimation. The predictive current control method can be applied to embedded permanent magnet synchronous motors and synchronous reluctance motors. First, the three-phase extended back EMF of the motor can be estimated and obtained by using the measured current and voltage, and using the q-axis inductance parameter and the stator resistance parameter. Next, a discrete time model of the motor is used to calculate the stator current value at the next sampling time. Then, define the cost function to calculate the corresponding cost function value of the inverter at the next sampling time under all possible switching states. By selecting the voltage vector with the smallest cost function value, the switching state of the next sampling time is determined to directly control the gate signal of the inverter. Compared with the traditional current hysteresis control, the proposed predictive current control can effectively improve the current tracking capability of the motor drive system.
台灣公開/公告號I473413「電流向量控制的同步磁阻馬達驅動方法」係揭露一種電流向量控制的同步磁阻馬達及其驅動方法,該馬達之定子單元於各定子齒部上以相同方向繞設有線圈,該些線圈構成一U相繞組、一V相繞組與一W相繞組,該些線圈分別接收平衡三相弦波電流而產生磁力線,使得同相繞組線圈所圍繞的定子齒部產生相同的磁極性,並令相鄰的定子齒部和轉子之間形成短磁路;馬達製造成本低廉,該驅動方法是同時在三相繞組施加平衡三相電流,使馬達達到高運轉效率,適用於廣泛節能的家電及自動化產業等相關應用產品上。Taiwan Publication/Announcement No. I473413 "Current Vector Controlled Synchronous Reluctance Motor Driving Method" discloses a current vector controlled synchronous reluctance motor and its driving method. The stator units of the motor are wound in the same direction on each stator tooth. There are coils, these coils constitute a U-phase winding, a V-phase winding and a W-phase winding, and these coils respectively receive balanced three-phase sine wave currents to generate magnetic lines of force, so that the stator teeth surrounded by the same-phase winding coils generate the same magnetic polarity, and form a short magnetic circuit between adjacent stator teeth and rotors; the motor is cheap to manufacture, and the driving method is to apply balanced three-phase currents to the three-phase windings at the same time, so that the motor achieves high operating efficiency, and is suitable for a wide range of applications. Energy-saving home appliances and automation industry and other related application products.
台灣公開/公告號I543521「以電流變化偵測技術的預測電流控制法應用於內嵌式永磁同步電動機及同步磁阻電動機驅動系統」係提出以電流變化偵測技術的預測電流控制方法,該方法可應用於內嵌式永磁同步電動機及同步磁阻電動機驅動系統。為了實現所提出的預測電流控制方法,首先,分別在每次取樣間隔內的開關切換的前後,進行電流取樣。接著,使用簡單的減法運算,計算電動機在開關切換間隔內所對應的定子電流變化。然後,透過簡單的加法運算,可預測電動機在下一次所有可能的開關切換模式下所對應的定子電流。接下來,設計一成本函數以量化電流預測值和參考值之間的電流誤差。藉由選擇具有最小成本函數的開關切換模式,在下一次取樣間隔內輸出對應的閘級訊號至變頻器。另外,在實施例中,內嵌式永磁同步電動機是連接一個四開關三相變頻器,該變頻器能產生四種不同的開關切換模式。相較於傳統的電流磁滯控制,所提出的預測電流控制可有效地改善電動機驅動系統的電流諧波。Taiwan Publication/Announcement No. I543521 "Application of Predictive Current Control Method Using Current Variation Detection Technology to Embedded Permanent Magnet Synchronous Motor and Synchronous Reluctance Motor Drive System" is a predictive current control method using current variation detection technology. The method can be applied to embedded permanent magnet synchronous motor and synchronous reluctance motor drive system. In order to implement the proposed predictive current control method, first, current sampling is performed before and after the switch switching in each sampling interval, respectively. Next, using a simple subtraction operation, calculate the corresponding change in stator current of the motor over the switching interval. Then, through a simple addition operation, the corresponding stator current of the motor can be predicted for all possible switching modes of the next switching. Next, a cost function is designed to quantify the current error between the current predicted value and the reference value. By selecting the switching mode with the smallest cost function, the corresponding gate signal is output to the inverter in the next sampling interval. In addition, in the embodiment, the built-in permanent magnet synchronous motor is connected to a four-switch three-phase inverter, and the inverter can generate four different switching modes. Compared with the traditional current hysteresis control, the proposed predictive current control can effectively improve the current harmonics of the motor drive system.
台灣公開/公告號 I360287「一種使用延伸型磁通估測技術用於內嵌式永磁同步電動機之轉子角度/速度估測方法」係提出一種使用延伸型磁通估測技術以適用於內嵌式永磁同步電動機之數位化轉子角/速度估測方法。藉由量測馬達的電流和電壓訊號經由數位信號處理器進行計算,以估測出延伸型磁通,將三相延伸型磁通利用座標轉換得到兩相延伸型磁通,接著計算其反正切,以獲得角度資訊。特點為不須要複雜的數學運算,並可估測出相當精確的轉子角度。轉子角度經差分運算即得轉子速度。可適用於電動機中、高速運轉時之轉子角度估測。Taiwan Publication/Announcement No. I360287 "A Rotor Angle/Speed Estimation Method for Embedded Permanent Magnet Synchronous Motors Using Extended Flux Estimation Technology" proposes a method for using extended magnetic flux estimation technology for embedded permanent magnet synchronous motors. Digital rotor angle/speed estimation method for permanent magnet synchronous motor. By measuring the current and voltage signals of the motor, the digital signal processor is used for calculation to estimate the extended magnetic flux, and the three-phase extended magnetic flux is converted to the two-phase extended magnetic flux by coordinates, and then its arctangent is calculated. to obtain angle information. The characteristic is that it does not require complicated mathematical operations, and can estimate a fairly accurate rotor angle. The rotor angle is obtained by differential operation to obtain the rotor speed. It can be used to estimate the rotor angle when the motor is running at medium or high speed.
台灣公開/公告號I315602「三相交流永磁同步馬達及同步磁阻馬達電流控制型變頻器切換方法」係揭露一種三相交流永磁同步馬達及同步磁阻馬達電流控制型變頻器切換方法,此方法係根據變頻器在不同的切換模式下所構成的數學模型,並經由量測電動機的電流斜率變化,事先預估變頻器每一個切換狀態的電流變化率,因此變頻器可藉由電動機電流命令與實際電流的誤差,以及電動機轉軸位置,決定最佳的變頻器切換模式,免除複雜的電流控制迴路與額外的硬體電路。由於變頻器具有最佳的切換模式,因此不但可減少電動機電流的諧波成分而且可降低變頻器的切換頻率,進一步減少電力開關的切換損失。Taiwan Publication/Announcement No. I315602 "Switching method of three-phase AC permanent magnet synchronous motor and synchronous reluctance motor current-controlled inverter" discloses a three-phase AC permanent magnet synchronous motor and synchronous reluctance motor current-controlled inverter switching method, This method is based on the mathematical model formed by the inverter in different switching modes, and by measuring the change of the current slope of the motor, the current change rate of each switching state of the inverter is estimated in advance, so the inverter can use the motor current. The error between the command and the actual current, as well as the position of the motor shaft, determines the optimal inverter switching mode, eliminating the need for complicated current control loops and additional hardware circuits. Since the inverter has the best switching mode, it can not only reduce the harmonic components of the motor current but also reduce the switching frequency of the inverter, further reducing the switching loss of the power switch.
台灣公開/公告號I469501「同步磁阻電動機的控制方法」係揭露一種同步磁阻電動機的控制方法,該同步磁阻電動機包括一定子、一轉軸、一直軸及一交軸,轉軸具有一位置及一速度,該同步磁阻電動機的控制方法包括:提供一位置控制程式、一速度控制程式及一電流控制程式;選擇執行位置控制程式或執行速度控制程式以產生一交軸電流;執行電流控制程式;偵測同步磁阻電動機,以得到第一相電流、第二相電流及第三相電流,並將三相電流轉換為一數位訊號;利用三相電流及交軸電流計算出一直軸電流;將交軸電流及直軸電流轉換為直軸電壓命令及交軸電壓命令;將直軸電壓命令及交軸電壓命令執行脈波寬度調變,得到一觸發訊號來控制同步磁阻電動機。此控制方法係利用適應性估測方法及非線性規劃最佳化技術來控制同步磁阻電動機的電流、位置及速度,以有效提升同步磁阻電動機的性能。Taiwan Publication/Announcement No. I469501 "Control Method of Synchronous Reluctance Motor" discloses a control method of synchronous reluctance motor. The synchronous reluctance motor includes a stator, a rotating shaft, a straight shaft and a quadrature shaft. The rotating shaft has a position and A speed, the control method of the synchronous reluctance motor includes: providing a position control program, a speed control program and a current control program; selecting to execute the position control program or executing the speed control program to generate a quadrature axis current; executing the current control program ; Detect the synchronous reluctance motor to obtain the first-phase current, the second-phase current and the third-phase current, and convert the three-phase current into a digital signal; use the three-phase current and the quadrature-axis current to calculate the straight-axis current; Convert the quadrature axis current and the quadrature axis current into the quadrature axis voltage command and the quadrature axis voltage command; execute the pulse width modulation on the quadrature axis voltage command and the quadrature axis voltage command to obtain a trigger signal to control the synchronous reluctance motor. The control method utilizes the adaptive estimation method and the nonlinear programming optimization technique to control the current, position and speed of the synchronous reluctance motor, so as to effectively improve the performance of the synchronous reluctance motor.
所以,如何能解決,可不侷限於估算單一操作點,而是可精準及快速估算馬達在任一操作點之電感值,且可在電機能效標準認證中一同進行,無須額外之量測設備,即可精準及快速得到馬達的 - 軸電感值,獲得完整的負載電流對電感的曲線;可配合IEC60034-30-2法規,獲得適用額定電流6.25%~300%的範圍與量測範圍廣且非單點提供之完整的負載電流對電感的曲線;可在進行馬達能效測試認證(馬達販售必要階段)中一同得到結果;另,可針對不同負載條件下的同步磁阻馬達電感進行量測,均是待解決的議題;在此,以上種種所述,均是待解決的問題。 Therefore, how to solve the problem is not limited to estimating a single operating point, but can accurately and quickly estimate the inductance value of the motor at any operating point, and can be carried out together in the certification of the motor energy efficiency standard without additional measurement equipment. Accurate and fast access to the motor - The shaft inductance value can obtain the complete curve of load current versus inductance; it can cooperate with IEC60034-30-2 regulations to obtain the range of 6.25%~300% of the rated current and the complete load current pair that is not provided by a single point with a wide measurement range. The curve of the inductance; the results can be obtained together in the motor energy efficiency test certification (a necessary stage of motor sales); in addition, the inductance measurement of the synchronous reluctance motor under different load conditions is an issue to be solved; here , all of the above are problems to be solved.
本發明之主要目的便是在於提供一種馬達量測系統及其方法,係應用在同步磁阻馬達之電感量測的環境中,利用本發明之馬達量測系統及馬達量測方法,透過為馬達測試平台系統之馬達量測系統,而量測同步磁阻馬達輸入與輸出之電氣與機械特性,將其代入馬達演算法,而分別得到實際電機運轉時 - 軸電感值,且本發明之馬達量測系統及其方法可不侷限於估算單一操作點,而是可精準及快速估算馬達在任一操作點之電感值,且可在電機能效標準認證中一同進行,無須額外之量測設備,即可精準及快速得到馬達的 - 軸電感值。 The main purpose of the present invention is to provide a motor measurement system and a method thereof, which are applied in the environment of inductance measurement of synchronous reluctance motors. By using the motor measurement system and motor measurement method of the present invention, the motor The motor measurement system of the test platform system measures the electrical and mechanical characteristics of the input and output of the synchronous reluctance motor, and substitutes them into the motor algorithm to obtain the actual motor running time. - shaft inductance value, and the motor measurement system and method of the present invention are not limited to estimating a single operating point, but can accurately and quickly estimate the inductance value of the motor at any operating point, and can be carried out together in the motor energy efficiency standard certification, Without additional measuring equipment, the motor can be accurately and quickly obtained - shaft inductance value.
本發明之再一目的便是在於提供一種馬達量測系統及其方法,係應用在同步磁阻馬達之電感量測的環境中,利用本發明之馬達量測系統以進行馬達量測方法時,首先,進行參數取得動作,在此,參數將包含電壓、電流、電阻、功率因數、轉矩、轉速與馬達極數,其中,馬達極數不需透過量測取得,其餘皆由量測結果取得;接著,進行迭代演算動作,利用所取得的該些參數,利用馬達演算法進行迭代;進而,得出得到 - 軸電感值,在此,分別得到實際電機運轉時之 - 軸電感值,可不侷限於估算單一操作點,而是可精準及快速估算馬達在任一操作點之電感值,可精準及快速得到馬達的 - 軸電感值。 Another object of the present invention is to provide a motor measurement system and a method thereof, which are applied in the environment of inductance measurement of synchronous reluctance motors. When the motor measurement system of the present invention is used to perform the motor measurement method, First, perform parameter acquisition. Here, the parameters include voltage, current, resistance, power factor, torque, rotational speed and the number of motor poles. The number of motor poles does not need to be obtained through measurement, and the rest are obtained from the measurement results. ; Next, perform the iterative calculation action, use the obtained parameters, and use the motor algorithm to iterate; and then, obtain - shaft inductance value, here, the actual motor running time is obtained respectively - The shaft inductance value is not limited to estimating a single operating point, but can accurately and quickly estimate the inductance value of the motor at any operating point, and can accurately and quickly obtain the motor's inductance value. - shaft inductance value.
本發明之又一目的便是在於提供一種馬達量測系統及其方法,係應用在同步磁阻馬達之電感量測的環境中,能在馬達真實運轉下,進行 - 軸電感值量測、並取得 - 軸電感值的精確性;可不侷限於估算單一操作點,而是可精準及快速估算馬達在任一操作點之電感值,且可在電機能效標準認證中一同進行,無須額外之量測設備,即可精準及快速得到馬達的 - 軸電感值,獲得完整的負載電流對電感的曲線;可配合IEC60034-30-2法規,獲得適用額定電流6.25%~300%的範圍與量測範圍廣且非單點提供之完整的負載電流對電感的曲線;可在進行馬達能效測試認證(馬達販售必要階段)中一同得到結果;另,可針對不同負載條件下的同步磁阻馬達電感進行量測。 Another object of the present invention is to provide a motor measurement system and a method thereof, which are applied in the environment of inductance measurement of synchronous reluctance motors, and can be used for real operation of the motor. - The shaft inductance value is measured and obtained - The accuracy of the shaft inductance value; it is not limited to estimating a single operating point, but can accurately and quickly estimate the inductance value of the motor at any operating point, and can be carried out together in the motor energy efficiency standard certification without additional measurement equipment, namely Accurate and fast access to the motor - The shaft inductance value can obtain the complete curve of load current versus inductance; it can cooperate with IEC60034-30-2 regulations to obtain the range of 6.25%~300% of the rated current and the complete load current pair that is not provided by a single point with a wide measurement range. The curve of the inductance; the results can be obtained together in the motor energy efficiency test certification (a necessary stage of motor sales); in addition, the inductance of the synchronous reluctance motor can be measured under different load conditions.
根據以上所述之目的,本發明提供一種馬達量測系統,該馬達量測系統包含量測模組、馬達演算法模組以及資料庫。According to the above-mentioned purpose, the present invention provides a motor measurement system, which includes a measurement module, a motor algorithm module and a database.
馬達測試平台整機系統包含供電系統、功率計、電阻計、轉速感測器、轉矩感測器及測試載台等。測試過程利用馬達對心儀,將待測馬達與負載(伺服)馬達以聯軸器進行水平接合。透過輸入側功率計及輸出側功率計量測待測馬達之電壓、電流、功率因數及透過電阻計量測電阻。經由系統控制負載馬達施加負載,並利用轉速感測器、轉矩感測器偵測待測馬達之轉速與轉矩。最後透過中央控制系統自動化程式與工業通訊系統,將各類訊號資料集中與運算成馬達效率、功率等輸出特性等。The complete system of the motor test platform includes a power supply system, a power meter, a resistance meter, a speed sensor, a torque sensor and a test stage. In the test process, the motor to be tested is used to match the heart, and the motor to be tested and the load (servo) motor are connected horizontally with a coupling. Measure the voltage, current, power factor of the motor to be tested through the input side power meter and output side power meter, and measure the resistance through the resistance meter. The system controls the load motor to apply the load, and uses the rotational speed sensor and the torque sensor to detect the rotational speed and torque of the motor to be tested. Finally, through the central control system automation program and the industrial communication system, all kinds of signal data are concentrated and calculated into output characteristics such as motor efficiency and power.
量測模組,該量測模組將量測並取得待測馬達之參數,該待測馬達之該些參數包含電壓、電流、電阻、功率因數、轉矩、轉速與馬達極數,其中,馬達極數不需透過量測取得,其餘皆由量測結果取得;該量測模組將該待測馬達之該些參數傳送至馬達演算法模組,以進行迭代演算動作。Measurement module, the measurement module will measure and obtain the parameters of the motor to be tested, and the parameters of the motor to be tested include voltage, current, resistance, power factor, torque, rotational speed and the number of motor poles, wherein, The number of motor poles does not need to be obtained through measurement, and the rest are obtained from the measurement results; the measurement module transmits the parameters of the motor to be measured to the motor algorithm module for iterative calculation operations.
馬達演算法模組,該馬達演算法模組利用該量測模組所取得的該些參數,利用馬達演算法進行迭代,以得出得到 - 軸電感值,在此,分別得到實際電機運轉時之 - 軸電感值,可不侷限於估算單一操作點,而是可精準及快速估算馬達在任一操作點之電感值,可精準及快速得到馬達的 - 軸電感值。 A motor algorithm module, the motor algorithm module uses the parameters obtained by the measurement module, and uses the motor algorithm to iterate to obtain a - shaft inductance value, here, the actual motor running time is obtained respectively - The shaft inductance value is not limited to estimating a single operating point, but can accurately and quickly estimate the inductance value of the motor at any operating point, and can accurately and quickly obtain the motor's inductance value. - shaft inductance value.
資料庫,該資料庫除可儲存馬達演算法模組之馬達演算法所需之待測馬達之包含電壓、電流、電阻、功率因數、轉矩、轉速與馬達極數的參數之外,尚可儲存經馬達演算法模組之馬達演算法所得之待測馬達的 - 軸電感值。 The database can store the parameters of the motor to be tested including voltage, current, resistance, power factor, torque, rotational speed and the number of motor poles required by the motor algorithm module of the motor algorithm module. Store the motor under test obtained by the motor algorithm of the motor algorithm module - shaft inductance value.
利用本發明之馬達量測系統以進行馬達量測方法時,首先,進行參數取得動作;量測模組將量測並取得待測馬達之參數,該待測馬達之該些參數包含電壓、電流、電阻、功率因數、轉矩、轉速與馬達極數,其中,馬達極數不需透過量測取得,其餘皆由量測結果取得;另,該量測模組將該待測馬達之該些參數傳送至馬達演算法模組。When using the motor measurement system of the present invention to perform the motor measurement method, firstly, the parameter acquisition operation is performed; the measurement module will measure and acquire the parameters of the motor to be tested, and the parameters of the motor to be tested include voltage and current , resistance, power factor, torque, rotational speed and the number of motor poles, among which, the number of motor poles does not need to be obtained through measurement, and the rest are obtained from the measurement results; The parameters are sent to the motor algorithm module.
接著,進行迭代演算動作;馬達演算法模組利用量測模組所取得的該些參數,利用馬達演算法進行迭代。Next, an iterative calculation operation is performed; the motor algorithm module uses the parameters obtained by the measurement module to iterate by using the motor algorithm.
進而,得出得到 - 軸電感值;在此,分別得到實際電機運轉時之 - 軸電感值,可不侷限於估算單一操作點,而是可精準及快速估算馬達在任一操作點之電感值,可精準及快速得到馬達的 - 軸電感值。 Thus, it is obtained that - shaft inductance value; here, the actual motor running time is obtained respectively - The shaft inductance value is not limited to estimating a single operating point, but can accurately and quickly estimate the inductance value of the motor at any operating point, and can accurately and quickly obtain the motor's inductance value. - shaft inductance value.
爲使熟悉該項技藝人士瞭解本發明之目的、特徵及功效,茲藉由下述具體實施例,並配合所附之圖式,對本發明詳加說明如後:For those who are familiar with the art to understand the purpose, features and effects of the present invention, hereby by following specific embodiment, and in conjunction with the accompanying drawings, the present invention is described in detail as follows:
第1圖為一系統示意圖,用以顯示說明本發明之馬達量測系統之系統架構、以及運作情形。如第1圖中所示之,馬達量測系統1包含量測模組2、馬達演算法模組3以及資料庫4。FIG. 1 is a schematic diagram of a system for illustrating the system structure and operation of the motor measurement system of the present invention. As shown in FIG. 1 , the
馬達測試平台整機系統包含供電系統、 功率計、電阻計、轉速感測器、轉矩感測器及測試載台等。測試過程利用馬達對心儀,將待測馬達與負載(伺服)馬達以聯軸器進行水平接合。透過輸入側功率計及輸出側功率計量測待測馬達之電壓、電流、功率因數及透過電阻計量測電阻。經由系統控制負載馬達施加負載,並利用轉速感測器、轉矩感測器偵測待測馬達之轉速與轉矩。最後透過中央控制系統自動化程式與工業通訊系統,將各類訊號資料集中與運算成馬達效率、功率等輸出特性等。The complete system of the motor test platform includes a power supply system, a power meter, a resistance meter, a rotational speed sensor, a torque sensor and a test stage. In the test process, the motor to be tested is used to match the heart, and the motor to be tested and the load (servo) motor are connected horizontally with a coupling. Measure the voltage, current, power factor of the motor to be tested through the input side power meter and output side power meter, and measure the resistance through the resistance meter. The system controls the load motor to apply the load, and uses the rotational speed sensor and the torque sensor to detect the rotational speed and torque of the motor to be tested. Finally, through the central control system automation program and the industrial communication system, all kinds of signal data are concentrated and calculated into output characteristics such as motor efficiency and power.
量測模組2,該量測模組2將量測並取得待測馬達之參數,該待測馬達之該些參數包含電壓、電流、電阻、功率因數、轉矩、轉速與馬達極數,其中,馬達極數不需透過量測取得,其餘皆由量測結果取得;該量測模組2將該待測馬達之該些參數傳送至馬達演算法模組3,以進行迭代演算動作。
馬達演算法模組3,該馬達演算法模組3利用該量測模組2所取得的該些參數,利用馬達演算法進行迭代,以得出
-
軸電感值,在此,分別得到實際待測馬達之電機運轉時之
-
軸電感值,可不侷限於估算單一操作點,而是可精準及快速估算待測馬達在任一操作點之電感值,可精準及快速得到待測馬達的
-
軸電感值。
資料庫4,該資料庫4除可儲存馬達演算法模組3之馬達演算法所需之待測馬達之包含電壓、電流、電阻、功率因數、轉矩、轉速與馬達極數的參數之外,尚可儲存經馬達演算法模組3之馬達演算法所得之待測馬達的
-
軸電感值。
在此,本發明之馬達量測系統係可為一電機自動測試系統( Automatic motor test system)或是位於一電機自動測試系統中,而量測模組及/或馬達演算法模組係為硬體、韌體、及軟體的至少其中之一,配合電機自動測試系統的處理器(未圖示之)而進行動作;馬達量測系統之資料庫可配合電機自動測試系統的處理器(未圖示之)、以及顯示螢幕(未圖示之),而將所得之待測馬達的 - 軸電感值展現於顯示螢幕上,端視實際施行情況而定。 Here, the motor measurement system of the present invention can be an automatic motor test system or is located in an automatic motor test system, and the measurement module and/or the motor algorithm module are hard At least one of the body, firmware, and software works in conjunction with the processor (not shown) of the motor automatic test system; the database of the motor measurement system can cooperate with the processor of the motor automatic test system (not shown in the figure). shown), and a display screen (not shown), and the obtained motor under test - The shaft inductance value is displayed on the display screen, depending on the actual implementation.
第2圖為一流程圖,用以顯示說明利用如第1圖中之本發明之馬達量測系統以進行馬達量測方法的流程步驟。如第2圖中所示之,首先,於步驟101,首先,進行參數取得動作;量測模組2將量測並取得待測馬達之參數,該待測馬達之該些參數包含電壓、電流、電阻、功率因數、轉矩、轉速與馬達極數,其中,馬達極數不需透過量測取得,其餘皆由量測結果取得;該量測模組2將該待測馬達之該些參數傳送至馬達演算法模組3,並進到步驟102。FIG. 2 is a flow chart for illustrating the flow steps of a motor measurement method using the motor measurement system of the present invention as shown in FIG. 1 . As shown in FIG. 2, firstly, in
於步驟102,進行迭代演算動作;馬達演算法模組3利用量測模組2所取得的該些參數,利用馬達演算法進行迭代,並進到步驟103。In
在此,利用馬達演算法進行迭代時;利用量測之功率因數( 計算出凸極比 ,再透過 - 軸電感估測方法,假設一電流相位角( )與量測之電流( )、轉矩( )、凸極比 及馬達極數( )共5個參數,一同代入 - 軸電感計算式,可得該電流相位角下的 - 軸電感值( )。由於無法得知量測時馬達實際的電壓、電流相位角,因此,將所得之電感值及電阻( )、電流、轉速( )、電流相位角,共5個參數,代入方程式,得到一電壓計算值( )。若計算出的電壓與量測所得之電壓( )匹配,此時電壓、電流相位角與電感值即為量測時之實際值。如兩者電壓不相符,需重新假設電流相位角並以迴圈的方式檢驗,直至電壓相符合。 Here, when using the motor algorithm to iterate; using the measured power factor ( Calculate the saliency ratio , then through - shaft inductance estimation method, assuming a current phase angle ( ) and the measured current ( ), torque ( ), salient pole ratio and the number of motor poles ( ) has a total of 5 parameters, which are substituted together - The shaft inductance calculation formula can be obtained under the current phase angle - Shaft inductance value ( ). Since it is impossible to know the actual voltage and current phase angle of the motor during measurement, the obtained inductance value and resistance ( ), current, speed ( ), the current phase angle, a total of 5 parameters, into the equation, get a voltage calculation value ( ). If the calculated voltage and the measured voltage ( ) matching, at this time the voltage, current phase angle and inductance value are the actual values during measurement. If the two voltages do not match, it is necessary to re-assume the current phase angle and check it in a loop until the voltages match.
於步驟103,得出
-
軸電感值;在此,分別得到實際待測馬達之電機運轉時之
-
軸電感值,可不侷限於估算單一操作點,而是可精準及快速估算待測馬達在任一操作點之電感值,可精準及快速得到待測馬達的
-
軸電感值。
In
第3圖為一流程圖,用以顯示說明於第2圖中之馬達量測方法的迭代演算動作之過程的詳細步驟。如第3圖中所示之,首先,於步驟1021,得出凸極比
;利用量測之功率因數(
計算出凸極比
,並進到步驟1022。
FIG. 3 is a flow chart showing the detailed steps of the iterative operation process of the motor measurement method described in FIG. 2 . As shown in Fig. 3, first, in
於步驟1022,得出初估電感值;透過量測之電流(
)、轉矩(
)及由步驟1021得到之凸極比
與已知的馬達極數(
),並假設一電流相位角
,共5個參數,一同代入
-
軸電感計算式,得到一
-
軸電感值(
),並進到步驟1023。
In
於步驟1023,得出電壓計算值;將步驟1022所得之電感值及電阻(
)、電流、轉速(
)、電流相位角,共5個參數,代入方程式得到一電壓計算值(
),並進到步驟1024。
In
於步驟1024,檢驗計算電壓值(
)是否等於量測電壓值(
);若計算電壓值(
)不等於量測電壓值(
),需重新假設一電流相位角,例如,將假設之電流相位角
減0.5,在此,此數值視實際施行情況而可自行變更,並回到步驟1022,開始重複步驟1022、1023、1024,直至計算電壓值(
)與量測電壓值(
)相符合;若計算電壓值(
)等於量測電壓值(
),即可確定其電壓、電流相位角與電感值,並進到步驟103。
In
第4圖為一示意圖,用以顯示說明利用本發明之馬達量測系統的一實施例的系統架構、以及運作情形。如第4圖中所示之,馬達量測系統1包含量測模組2、馬達演算法模組3以及資料庫4,其中,馬達量測系統1係為一電機自動測試系統(Automatic motor test system),而量測模組2及/或馬達演算法模組3係為硬體、韌體、及軟體的至少其中之一,配合電機自動測試系統的處理器(未圖示之)而進行動作;馬達量測系統1之資料庫4可配合電機自動測試系統的處理器(未圖示之)、以及顯示螢幕(未圖示之),而將所得之待測馬達15的
-
軸電感值展現於顯示螢幕上。
FIG. 4 is a schematic diagram for illustrating the system structure and operation of an embodiment of the motor measurement system using the present invention. As shown in FIG. 4, the
馬達測試平台整機系統包含供電系統110、功率計(輸出側功率計16、輸入側功率計19)、動力計控制器11、電阻計18、轉速感測器13、轉矩感測器14及測試載台等。測試過程利用馬達對心儀,將待測馬達15與負載(伺服)馬達12以聯軸器進行水平接合。透過輸入側功率計19及輸出側功率計16量測待測馬達15之電壓、電流、功率因數及透過電阻計18量測電阻。經由系統控制負載馬達12施加負載,並利用轉速感測器13、轉矩感測器14偵測待測馬達15之轉速與轉矩。最後透過中央控制系統自動化程式與工業通訊系統,將各類訊號資料集中與運算成馬達效率、功率等輸出特性等。The complete system of the motor test platform includes a
量測模組2,該量測模組2將量測並取得待測馬達15之參數,該待測馬達15之該些參數包含電壓、電流、電阻、功率因數、轉矩、轉速與馬達極數,其中,馬達極數不需透過量測取得,其餘皆由量測結果取得,在此,例如, 電壓為馬達測試電壓有效值(
)、電流為馬達測試電流有效值(
)、電阻為定子線電阻(
)、功率因數 (
、轉矩為(
)、轉速為轉子電氣轉速(
)與馬達極數為(
);該量測模組2將該待測馬達15之該些參數傳送至馬達演算法模組3,以進行迭代演算動作。
在此,為同步磁阻馬達之待測馬達15的規格為:極數(
)為4、額定功率為20 HP、額定電壓為380 V、額定轉速2000 RPM、額定電流36 A、轉矩為71 Nm。
Here, the specification of the
馬達演算法模組3,該馬達演算法模組3利用該量測模組2所取得的該些參數,利用馬達演算法進行迭代,以得出
-
軸電感值,在此,分別得到實際待測馬達15之電機運轉時之
-
軸電感值,可不侷限於估算單一操作點,而是可精準及快速估算待測馬達15在任一操作點之電感值,可精準及快速得到待測馬達15的
-
軸電感值。在此,馬達演算法模組3中的馬達演算法如下:
功率因數方程式:
最大功率因數
與激磁條件之關係式
在此,必須強調的是,以上之轉矩最大化為技術建立基礎且(10)式為馬達演算法的技術特徵之一;而計算式(13)式~(14)式、(17)式~(19)式為馬達演算法的必要計算式;而計算式(17)~(19)式為進行迭代運算所需之計算式。Here, it must be emphasized that the above torque maximization is the foundation of the technology and the formula (10) is one of the technical characteristics of the motor algorithm; ~(19) is the necessary calculation formula for the motor algorithm; and the calculation formula (17)~(19) is the calculation formula required for the iterative operation.
於馬達演算法中,各符號的意義為:
於馬達演算法中,利用量測之功率因數( 代入(3)式計算出凸極比 ,再透過 - 軸電感估測方法,假設一電流相位角( )與量測之電流( )、轉矩( )、凸極比 及馬達極數( )共5個參數,一同代入 - 軸電感計算式(13)式~(14)式,可得該電流相位角下的 - 軸電感值( )。由於無法得知量測時馬達實際的電壓、電流相位角,因此,將所得之電感值及電阻( )、電流、轉速( )、電流相位角,共5個參數,代入電壓方程式(17)式~(18)式,再將其值代入(19)式,得到一電壓計算值( )。若計算出的電壓與量測所得之電壓( )匹配,此時電壓、電流相位角與電感值即為量測時之實際值。如兩者電壓不相符,亦即,若計算出電壓與實際量測電壓不匹配,需重新假設電流相位角並以迴圈的方式檢驗,例如,以斜率-0.5調整相位角,直至計算電壓與量測電壓相符合。 In the motor algorithm, the measured power factor ( Substitute into (3) to calculate the salient pole ratio , then through - shaft inductance estimation method, assuming a current phase angle ( ) and the measured current ( ), torque ( ), salient pole ratio and the number of motor poles ( ) has a total of 5 parameters, which are substituted together - Shaft inductance calculation formula (13) ~ (14), we can get the current phase angle under the - Shaft inductance value ( ). Since it is impossible to know the actual voltage and current phase angle of the motor during measurement, the obtained inductance value and resistance ( ), current, speed ( ), the current phase angle, a total of 5 parameters, into the voltage equation (17) ~ (18), and then substitute its value into (19) to obtain a voltage calculation value ( ). If the calculated voltage and the measured voltage ( ) matching, at this time the voltage, current phase angle and inductance value are the actual values during measurement. If the two voltages do not match, that is, if the calculated voltage does not match the actual measured voltage, it is necessary to re-assume the current phase angle and check it in a loop, for example, adjust the phase angle with a slope of -0.5 until the calculated voltage matches The measured voltages match.
經由馬達演算法,可以將能效測試所得到的實驗數據,不用增加額外設備與儀器下,獲得完整的負載電流對電感的曲線。從電流對 - 軸電感與電感差值的影響,可分別看出 - 軸電感與電流大小之關係,藉此可觀察電感飽和狀態與 軸電感會明顯受到電流大小變化而影響,如第6圖中所示。 Through the motor algorithm, the experimental data obtained from the energy efficiency test can be obtained without adding additional equipment and instruments to obtain a complete curve of load current versus inductance. from the current pair - The influence of shaft inductance and inductance difference can be seen separately - The relationship between the inductance of the shaft and the magnitude of the current can be used to observe the saturation state of the inductance and the The shaft inductance can be significantly affected by changes in the magnitude of the current, as shown in Figure 6.
資料庫4,該資料庫4除可儲存馬達演算法模組3之馬達演算法所需之待測馬達15之包含電壓、電流、電阻、功率因數、轉矩、轉速與馬達極數的參數之外,尚可儲存經馬達演算法模組3之馬達演算法所得之待測馬達15的
-
軸電感值。
在此,於本實施例中,雖馬達量測系統1係為一電機自動測試系統(Automatic motor test system),惟,對於馬達量測系統1係位於一電機自動測試系統中而言,其理相同、類似於本實施例,是故,在此不再贅述。Here, in the present embodiment, although the
第5圖為一示意圖,用以顯示說明於第4圖中的實施例的馬達演算法中的為同步磁阻馬達之待測馬達15的電壓與電流向量的關係。如第5圖中所示,當同步磁阻馬達數學方程式建立於電流大小不變轉換,可知計算式(4),而由第5圖可以得知電流與其分量關係,且於計算式(5),若電流相位角為
(即
),其
與
的乘積將最大,所得之轉矩亦最大,由上述可將計算式(5)整理而得出計算式(6)。
FIG. 5 is a schematic diagram showing the relationship between the voltage and the current vector of the motor under
第6圖為一示意圖,用以顯示說明於第4圖中之實施例為同步磁阻馬達之待測馬達15利用馬達演算法所得出的電感對電流的曲線。如第6圖中所示之,為於第4圖中之為同步磁阻馬達的待測馬達15之馬達規格利用馬達演算法,所得到之電感對電流曲線。FIG. 6 is a schematic diagram showing a curve of inductance versus current of the motor under
第7圖為一流程圖,用以顯示說明利用如第4圖中之本發明之馬達量測系統的一實施例以進行馬達量測方法的一流程步驟。如第7圖中所示之,首先,於步驟201,首先,進行參數取得動作;量測模組2將量測並取得待測馬達15之參數,該待測馬達15之該些參數包含電壓、電流、電阻、功率因數、轉矩、轉速與馬達極數,其中,電壓為馬達測試電壓有效值(
)、電流為馬達測試電流有效值(
)、電阻為定子線電阻(
)、功率因數 (
、轉矩為(
)、轉速為轉子電氣轉速(
)與馬達極數為(
),為同步磁阻馬達之待測馬達15的規格為:極數(P)為4、額定功率為20 HP、額定電壓為380 V、額定轉速2000 RPM、額定電流36 A、轉矩為71 Nm;該量測模組2將該待測馬達15之該些參數傳送至馬達演算法模組3,並進到步驟202。
FIG. 7 is a flowchart for illustrating a process step of a motor measurement method using an embodiment of the motor measurement system of the present invention as shown in FIG. 4 . As shown in FIG. 7, firstly, in
於步驟202,進行迭代演算動作;馬達演算法模組3利用量測模組2所取得的該些參數,利用馬達演算法進行迭代,並進到步驟203。In
在此,利用馬達演算法進行迭代時;利用量測之功率因數( 代入計算式(3)計算出凸極比 ,再透過 - 軸電感估測方法,假設一電流相位角( )與量測之電流( )、轉矩( )、凸極比 及馬達極數( )共5個參數,一同代入 - 軸電感計算式(13)式~(14)式,可得該電流相位角下的 - 軸電感值( )。由於無法得知量測時馬達實際的電壓、電流相位角,因此,將所得之電感值及電阻( )、電流、轉速( )、電流相位角,共5個參數,代入電壓方程式(17)式~(18)式,再將其值代入計算式(19)式,得到一電壓計算值( )。若計算出的電壓與量測所得之電壓( )匹配,此時電壓、電流相位角與電感值即為量測時之實際值。如兩者電壓不相符,需重新假設電流相位角並以迴圈的方式檢驗,直至電壓相符合。 Here, when using the motor algorithm to iterate; using the measured power factor ( Substitute into formula (3) to calculate the salient pole ratio , then through - shaft inductance estimation method, assuming a current phase angle ( ) and the measured current ( ), torque ( ), salient pole ratio and the number of motor poles ( ) has a total of 5 parameters, which are substituted together - Shaft inductance calculation formula (13) ~ (14), we can get the current phase angle under the - Shaft inductance value ( ). Since it is impossible to know the actual voltage and current phase angle of the motor during measurement, the obtained inductance value and resistance ( ), current, speed ( ), the current phase angle, a total of 5 parameters, into the voltage equation (17) ~ (18), and then substitute its value into the calculation formula (19) to obtain a voltage calculation value ( ). If the calculated voltage and the measured voltage ( ) matching, at this time the voltage, current phase angle and inductance value are the actual values during measurement. If the two voltages do not match, it is necessary to re-assume the current phase angle and check it in a loop until the voltages match.
於步驟203,得出
-
軸電感值;在此,分別得到實際待測馬達15之電機運轉時之
-
軸電感值,可不侷限於估算單一操作點,而是可精準及快速估算待測馬達15在任一操作點之電感值,可精準及快速得到待測馬達15的
-
軸電感值。
In
第8圖為一流程圖,用以顯示說明於第7圖中之馬達量測方法的迭代演算動作之過程的詳細步驟。如第8圖中所示之,首先,於步驟2021,得出凸極比
;利用量測之功率因數(
代入計算式(3)以計算出凸極比
,並進到步驟2022。
FIG. 8 is a flow chart showing the detailed steps of the iterative operation process of the motor measurement method described in FIG. 7 . As shown in Fig. 8, first, in
於步驟2022,得出初估電感值;透過量測之電流(
)、轉矩(
)及由步驟2021得到之凸極比
與已知的馬達極數(
),並假設一電流相位角
,共5個參數,一同代入
-
軸電感計算式(13)式~(14)式,得到一
-
軸電感值(
),並進到步驟2023。
In
於步驟2023,得出電壓計算值;將步驟2022所得之電感值及電阻(
)、電流、轉速(
)、電流相位角,共5個參數,代入電壓方程式(17)式~(18)式,再將其值代入(19)式,得到一電壓計算值(
),並進到步驟2024。
In
於步驟2024,檢驗計算電壓值(
)是否等於量測電壓值(
);若計算電壓值(
)不等於量測電壓值(
),需重新假設一電流相位角,例如,將假設之電流相位角
減0.5,在此,此數值視實際施行情況而可自行變更,並回到步驟2022,開始重複步驟2022、2023、2024,直至計算電壓值(
)與量測電壓值(
)相符合;若計算電壓值(
)是否等於量測電壓值(
),即可確定其電壓、電流相位角與電感值,並進到步驟203。
In
綜合以上之該些實施例,我們可以得到本發明之一種馬達量測系統及其方法,係應用在同步磁阻馬達之電感量測的環境中,利用本發明之馬達量測系統及馬達量測方法,透過為馬達測試平台系統之馬達量測系統,而量測同步磁阻馬達輸入與輸出之電氣與機械特性,將其代入馬達演算法,而分別得到實際電機運轉時之 - 軸電感值,且本發明之馬達量測系統及其方法可不侷限於估算單一操作點,而是可精準及快速估算馬達在任一操作點之電感值,且可在電機能效標準認證中一同進行,無須額外之量測設備,即可精準及快速得到馬達的 - 軸電感值。 Combining the above embodiments, we can obtain a motor measurement system and method of the present invention, which are applied in the environment of inductance measurement of synchronous reluctance motors, using the motor measurement system and motor measurement of the present invention The method is to measure the electrical and mechanical characteristics of the input and output of the synchronous reluctance motor through the motor measurement system, which is a motor test platform system, and substitute them into the motor algorithm to obtain the actual motor operation. - shaft inductance value, and the motor measurement system and method of the present invention are not limited to estimating a single operating point, but can accurately and quickly estimate the inductance value of the motor at any operating point, and can be carried out together in the motor energy efficiency standard certification, Without additional measuring equipment, the motor can be accurately and quickly obtained - shaft inductance value.
本發明之馬達量測系統及其方法的優點如下: 1. 透過為馬達測試平台系統之馬達量測系統,而量測同步磁阻馬達輸入與輸出之電氣與機械特性,將其代入馬達演算法,而分別得到實際電機運轉時之 - 軸電感值,且本發明之馬達量測系統及其方法可不侷限於估算單一操作點,而是可精準及快速估算馬達在任一操作點之電感值,且可在電機能效標準認證中一同進行,無須額外之量測設備,即可精準及快速得到馬達的 - 軸電感值。 2. 分別得到實際電機運轉時之 - 軸電感值,可不侷限於估算單一操作點,而是可精準及快速估算馬達在任一操作點之電感值,可精準及快速得到馬達的 - 軸電感值。 3. 能在馬達真實運轉下,進行 - 軸電感值量測、並取得行 - 軸電感值的精確性;可不侷限於估算單一操作點,而是可精準及快速估算馬達在任一操作點之電感值,且可在電機能效標準認證中一同進行,無須額外之量測設備,即可精準及快速得到馬達的 - 軸電感值,獲得完整的負載電流對電感的曲線;可配合IEC60034-30-2法規,獲得適用額定電流6.25%~300%的範圍與量測範圍廣且非單點提供之完整的負載電流對電感的曲線;可在進行馬達能效測試認證(馬達販售必要階段)中一同得到結果;另,可針對不同負載條件下的同步磁阻馬達電感進行量測。 The advantages of the motor measurement system and method of the present invention are as follows: 1. The electrical and mechanical characteristics of the input and output of the synchronous reluctance motor are measured through the motor measurement system, which is a motor test platform system, and are substituted into the motor algorithm , and get the actual motor running time respectively - shaft inductance value, and the motor measurement system and method of the present invention are not limited to estimating a single operating point, but can accurately and quickly estimate the inductance value of the motor at any operating point, and can be carried out together in the certification of the motor energy efficiency standard, Without additional measuring equipment, the motor can be accurately and quickly obtained - shaft inductance value. 2. Obtain the actual motor running time respectively - The shaft inductance value is not limited to estimating a single operating point, but can accurately and quickly estimate the inductance value of the motor at any operating point, and can accurately and quickly obtain the motor's inductance value. - shaft inductance value. 3. It can be carried out under the real operation of the motor. - Shaft inductance value measurement, and obtain line - The accuracy of the shaft inductance value; it is not limited to estimating a single operating point, but can accurately and quickly estimate the inductance value of the motor at any operating point, and can be carried out together in the motor energy efficiency standard certification without additional measurement equipment, namely Accurate and fast access to the motor - The shaft inductance value can obtain a complete load current versus inductance curve; it can cooperate with IEC60034-30-2 regulations to obtain a range of 6.25%~300% of the rated current and a wide measurement range and a complete load current pair that is not provided by a single point. The curve of the inductance; the results can be obtained together in the motor energy efficiency test certification (a necessary stage of motor sales); in addition, the inductance of the synchronous reluctance motor under different load conditions can be measured.
以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之範圍;凡其它未脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之專利範圍內。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; all other equivalent changes or modifications accomplished without departing from the spirit disclosed in the present invention shall be included in the following patents within the range.
1:馬達量測系統
2:量測模組
3:馬達演算法模組
4:資料庫
11:動力計控制器
12:負載馬達
13:轉速感測器
14:轉矩感測器
15:待測馬達
16:輸出側功率計
17:控制器
18:電阻計
19:輸入側功率計
101 102 103:步驟
201 202 203:步驟
1021 1022 1023 1024:步驟
2021 2022 2023 2024:步驟
1: Motor measurement system
2: Measurement module
3: Motor algorithm module
4: Database
11: Dynamometer Controller
12: Load motor
13: Speed sensor
14: Torque sensor
15: Motor to be tested
16: Output side power meter
17: Controller
18: Resistance meter
19: Input
第1圖為一系統示意圖,用以顯示說明本發明之馬達量測系統之系統架構、以及運作情形;
第2圖為一流程圖,用以顯示說明利用如第1圖中之本發明之馬達量測系統以進行馬達量測方法的流程步驟;
第3圖為一流程圖,用以顯示說明於第2圖中之馬達量測方法的迭代演算動作之過程的詳細步驟;
第4圖為一示意圖,用以顯示說明利用本發明之馬達量測系統的一實施例的系統架構、以及運作情形;
第5圖為一示意圖,用以顯示說明於第4圖中的實施例的馬達演算法中的為同步磁阻馬達之待測馬達的電壓與電流向量的關係;
第6圖為一示意圖,用以顯示說明於第4圖中之實施例為同步磁阻馬達之待測馬達15利用馬達演算法所得出的電感對電流的曲線;
第7圖為一流程圖,用以顯示說明利用如第4圖中之本發明之馬達量測系統的一實施例以進行馬達量測方法的一流程步驟;以及
第8圖為一流程圖,用以顯示說明於第7圖中之馬達量測方法的迭代演算動作之過程的詳細步驟。
Figure 1 is a schematic diagram of a system for illustrating the system structure and operation of the motor measurement system of the present invention;
Fig. 2 is a flow chart for illustrating the flow steps of a motor measuring method using the motor measuring system of the present invention as shown in Fig. 1;
Fig. 3 is a flowchart showing the detailed steps of the iterative operation process of the motor measurement method described in Fig. 2;
FIG. 4 is a schematic diagram for illustrating the system structure and operation of an embodiment of the motor measurement system using the present invention;
Fig. 5 is a schematic diagram showing the relationship between the voltage and the current vector of the motor to be tested, which is a synchronous reluctance motor, in the motor algorithm of the embodiment described in Fig. 4;
Fig. 6 is a schematic diagram showing the inductance versus current curve obtained by the motor algorithm for the motor under
101,102,103:步驟 101, 102, 103: Steps
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109141898A TWI760946B (en) | 2020-11-27 | 2020-11-27 | A motor measuring system and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109141898A TWI760946B (en) | 2020-11-27 | 2020-11-27 | A motor measuring system and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI760946B true TWI760946B (en) | 2022-04-11 |
TW202221351A TW202221351A (en) | 2022-06-01 |
Family
ID=82198803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109141898A TWI760946B (en) | 2020-11-27 | 2020-11-27 | A motor measuring system and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI760946B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116068396A (en) * | 2023-03-29 | 2023-05-05 | 深圳市昱森机电有限公司 | Method and related device for testing motor performance based on artificial intelligence |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201326861A (en) * | 2011-12-30 | 2013-07-01 | Delta Electronics Shanghai Co | Device and an inductance parameter measuring device of the permanent motor and the method thereof |
TW201820769A (en) * | 2016-09-05 | 2018-06-01 | 日商東芝股份有限公司 | Inverter control device and motor drive system |
-
2020
- 2020-11-27 TW TW109141898A patent/TWI760946B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201326861A (en) * | 2011-12-30 | 2013-07-01 | Delta Electronics Shanghai Co | Device and an inductance parameter measuring device of the permanent motor and the method thereof |
TW201820769A (en) * | 2016-09-05 | 2018-06-01 | 日商東芝股份有限公司 | Inverter control device and motor drive system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116068396A (en) * | 2023-03-29 | 2023-05-05 | 深圳市昱森机电有限公司 | Method and related device for testing motor performance based on artificial intelligence |
CN116068396B (en) * | 2023-03-29 | 2023-06-20 | 深圳市昱森机电有限公司 | Method and related device for testing motor performance based on artificial intelligence |
Also Published As
Publication number | Publication date |
---|---|
TW202221351A (en) | 2022-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Romeral et al. | Modeling of surface-mounted permanent magnet synchronous motors with stator winding interturn faults | |
JP5150585B2 (en) | Permanent magnet synchronous motor drive device | |
TWI468711B (en) | Device and an inductance parameter measuring device of the permanent motor and the method thereof | |
CN103472394B (en) | AC magnetoelectric machine mechanical characteristic test method | |
CN103472312B (en) | Testing method for iron core loss of alternating-current permanent magnet motors | |
Zhang et al. | Online diagnosis of slight interturn short-circuit fault for a low-speed permanent magnet synchronous motor | |
Rallabandi et al. | Inductance testing for IPM synchronous machines according to the new IEEE std 1812 and typical laboratory practices | |
CN104052360B (en) | Controller for motor | |
CN107425774B (en) | Permanent magnet synchronous motor d-axis inductance discrimination method and device | |
TWI760946B (en) | A motor measuring system and method thereof | |
CN110212832A (en) | For the Flux Observation Method of asynchronous machine, system and medium | |
TW201710924A (en) | Method for estimating parameters of the induction machine by the polynomial regression | |
JPWO2013018349A1 (en) | Motor constant calculation method and motor constant calculation apparatus for permanent magnet type synchronous motor | |
CN109873589A (en) | A kind of permanent-magnetic synchronous motor rotor zero testing method | |
CN106602953A (en) | Method for verifying induction motor rotor time constant based on magnetic field orientation accuracy | |
TWI720657B (en) | Method for estimating d-q axis inductance of permanent magnet synchronous motor | |
CN110620534B (en) | Method for controlling rotating speed stability of permanent magnet synchronous motor by nonlinear flexible and variable structure sliding mode | |
Caruso et al. | Experimental study on efficiency enhancement in Interior Permanent Magnet Synchronous machines | |
Lu et al. | Determination of High-Frequency $ d $-and $ q $-axis Inductances for Surface-Mounted Permanent-Magnet Synchronous Machines | |
CN104808148B (en) | A kind of method of testing of multiphase multiple-unit magneto temperature rise | |
Yamamoto et al. | Maximum efficiency drives of synchronous reluctance motors by a novel loss minimization controller considering cross-magnetic saturation | |
Babel et al. | Parametric sensitivity in the analysis and control of permanent magnet synchronous machines | |
TWI815313B (en) | A single optimal performance measurement system and method for a synchronous motor | |
CN111030543B (en) | Zero-speed closed-loop starting method of direct-current variable-frequency air conditioner compressor | |
CN117578936B (en) | Method and device for measuring dq axis inductance saturation curve of permanent magnet synchronous motor |