TWI431300B - Method for parameter identification of induction machine - Google Patents
Method for parameter identification of induction machine Download PDFInfo
- Publication number
- TWI431300B TWI431300B TW100145775A TW100145775A TWI431300B TW I431300 B TWI431300 B TW I431300B TW 100145775 A TW100145775 A TW 100145775A TW 100145775 A TW100145775 A TW 100145775A TW I431300 B TWI431300 B TW I431300B
- Authority
- TW
- Taiwan
- Prior art keywords
- parameter
- impedance
- induction machine
- speed
- time
- Prior art date
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Description
本發明係關於一種感應機參數估測方法,尤其是一種低壓無載啟動狀態之感應機參數估測方法。The invention relates to a method for estimating the parameters of an induction machine, in particular to a method for estimating the parameters of an induction machine with a low-voltage unloaded starting state.
感應電動機廣泛應用於工業領域,其應用層面已由單純的動力提供,逐漸延伸至精確控制(轉速、轉矩及定位),為了提高該感應電動機之控制精確度,該感應電動機之一相關參數是不可或缺的資訊。而該相關參數之取得方法,可利用該感應電動機之等效模型進行估測,其中,常用的等效模型可分成穩態等效模型與動態等效模型二種。Induction motors are widely used in the industrial field. Their application level has been provided by pure power, and gradually extended to precise control (rotation speed, torque and positioning). In order to improve the control accuracy of the induction motor, one of the relevant parameters of the induction motor is Indispensable information. The method for obtaining the relevant parameters can be estimated by using the equivalent model of the induction motor, wherein the commonly used equivalent model can be divided into two types: a steady state equivalent model and a dynamic equivalent model.
在穩態等效模型中,該相關參數中之阻抗參數可由標準測試取得,例如透過堵轉試驗、無載啟動試驗及定子側的直流測試,即可獲得該穩態等效模型之阻抗參數。在該穩態等效模型架構下,使用者雖可分析穩態時之運轉狀況,然而卻因未加入負載的變化與電源端信號變動的暫態考量,使得穩態等效模型在暫態特性上的描述稍嫌不足。In the steady-state equivalent model, the impedance parameter of the relevant parameter can be obtained by standard tests, for example, through the stall test, the no-load start test, and the DC test on the stator side, the impedance parameter of the steady-state equivalent model can be obtained. Under the steady-state equivalent model architecture, the user can analyze the operating conditions at steady state, but the transient characteristics of the steady-state equivalent model are caused by the change of the unloaded load and the transient consideration of the signal change at the power supply end. The description above is a bit lacking.
在動態等效模型中,係考慮電壓、電流、定子頻率及負載變動等暫態效應。常見的估測方式,有頻譜分析技術、參考模型適應技術及最佳化技術等。相關技術所獲得的動態等效模型雖能更完整的描述該暫態特性,然而在該相關參數之估測過程中,須使用變流器等額外之控制電路,藉以激勵出響應,造成估測所需之實施硬體增加。In the dynamic equivalent model, transient effects such as voltage, current, stator frequency, and load variation are considered. Common estimation methods include spectrum analysis technology, reference model adaptation technology and optimization technology. Although the dynamic equivalent model obtained by the related art can describe the transient characteristic more completely, in the estimation process of the relevant parameter, an additional control circuit such as a converter must be used, thereby exciting the response and causing the estimation. The required implementation hardware is increased.
此外,不論是穩態等效模型或動態等效模型,在分析 估測的過程中,皆僅能取得該相關參數中之阻抗參數,無法得到該相關參數中之一機械參數(轉動慣量與摩擦係數)。有鑑於此,必須要有一套兼顧低硬體成本、高估測準度與完整參數求取之感應機參數估測方法,以期符合不同需要。In addition, whether it is a steady-state equivalent model or a dynamic equivalent model, in the analysis In the estimation process, only the impedance parameters in the relevant parameters can be obtained, and one of the related parameters (moment of inertia and friction coefficient) cannot be obtained. In view of this, it is necessary to have a set of induction machine parameter estimation methods that take into account low hardware cost, overestimation of the accuracy and complete parameters, in order to meet different needs.
本發明之主要目的係提供一種感應機參數估測方法,該參數估測方法具有較低之硬體成本負擔與簡易的架構。The main object of the present invention is to provide an induction machine parameter estimation method, which has a low hardware cost burden and a simple architecture.
本發明之另一目的係提供一種感應機參數估測方法,該參數估測方法可估測感應機較準確之一相關參數。Another object of the present invention is to provide an induction machine parameter estimation method, which can estimate one of the relevant parameters of the induction machine.
本發明之另一目的係提供一種感應機參數估測方法,該參數估測方法可取得較完整之相關參數。Another object of the present invention is to provide an induction machine parameter estimation method, which can obtain relatively complete related parameters.
為達到前述發明目的,本發明之感應機參數估測方法,係包含:一轉速上升率降低步驟,係降低無載啟動之一感應機之輸入電壓,使該感應機啟動之轉速上升率降低;一阻抗轉差率曲線求取步驟,係利用一量測儀器量測並記錄該感應機由啟動至穩態轉速期間之一時變電壓、一時變電流及一時變轉速,並藉由一時域分析求得一阻抗轉差率曲線;一初值求取步驟,係利用定子側之直流測試搭配該阻抗轉差率曲線,以最小平方法來計算阻抗參數之初值;一阻抗參數最佳化步驟,係藉由該阻抗參數的初值為基礎,以一最小均方根法結合一粒子群演算法進行該阻抗參數之最佳化處理;及一機械參數計算步驟,係將該阻抗參數 代入穩態等效電路中,並搭配由啟動至穩態轉速期間的時變電壓、轉速信號與機械方程式求得該機械參數。In order to achieve the foregoing object, the method for estimating the parameter of the induction machine of the present invention comprises: a step of lowering the rate of increase of the speed of rotation, which is to reduce the input voltage of one of the induction machines of the unloaded start, and to reduce the rate of increase of the speed of starting the induction machine; An impedance slip curve obtaining step is to measure and record a time varying voltage, a time varying current and a time varying speed of the induction machine from a start to a steady state speed, and obtain a time domain analysis Obtaining an impedance slip curve; an initial value obtaining step is to use the DC test of the stator side to match the impedance slip curve, and calculate the initial value of the impedance parameter by the least square method; an impedance parameter optimization step, Based on the initial value of the impedance parameter, a minimum root mean square method is combined with a particle swarm algorithm to optimize the impedance parameter; and a mechanical parameter calculation step is used to determine the impedance parameter. It is substituted into the steady-state equivalent circuit, and the mechanical parameters are obtained by using the time-varying voltage, the speed signal and the mechanical equation from the start-up to the steady-state speed.
本發明之感應機參數估測方法,其中該輸入電壓係降低至待測之該感應機的最低啟動電壓。The sensor parameter estimation method of the present invention, wherein the input voltage is reduced to a minimum starting voltage of the induction machine to be tested.
本發明之感應機參數估測方法,其中該最小均方根法係用以定義一目標函數,且該目標函數具有數梯度量。The sensor parameter estimation method of the present invention, wherein the minimum root mean square method is used to define an objective function, and the objective function has a number of gradient amounts.
本發明之感應機參數估測方法,其中該數梯度量係作為該粒子群演算法之一修正量的修正分量。The sensor parameter estimation method of the present invention, wherein the number gradient amount is used as a correction component of a correction amount of the particle group algorithm.
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下: 本發明所述之「梯度量」,係指目標函數的一次微分。The above and other objects, features and advantages of the present invention will become more <RTIgt; The "gradient amount" in the present invention refers to a first derivative of the objective function.
本發明所述之「無載」,係指該感應機之動力輸出端無連接任何傳動構件,為無負載狀態之運轉。The term "no load" as used in the present invention means that the power output end of the induction machine is not connected to any transmission member, and is operated in an unloaded state.
本發明所述之「轉差率」,係指一轉差值與定子旋轉磁場之一同步轉速的比值,其中,該轉差值為該同步轉速和實際轉速之差值。The "slip" as used in the present invention refers to a ratio of a slip difference to a synchronous speed of one of the rotating magnetic fields of the stator, wherein the slip value is the difference between the synchronous speed and the actual speed.
請參照第1圖所示,本發明之感應機參數估測方法係包含:一轉速上升率降低步驟S1、一阻抗轉差率曲線求取步驟S2、一初值求取步驟S3、一阻抗參數最佳化步驟S4及一機械參數計算步驟S5,並以一量測儀器記錄一感應機於低壓無載啟動時,由啟動至穩態轉速期間的時變電壓、 時變電流與時變轉速,再透過一電腦等運算處理器進行該感應機之相關參數估測。Referring to FIG. 1 , the sensor parameter estimation method of the present invention comprises: a rotation speed increase rate reduction step S1, an impedance slip rate curve determination step S2, an initial value determination step S3, and an impedance parameter. Optimizing step S4 and a mechanical parameter calculation step S5, and recording, by a measuring instrument, a time varying voltage during start-up to steady state speed when the induction machine is started at low voltage and no load, The time-varying current and the time-varying speed are further estimated by a computing processor such as a computer.
該轉速上升率降低步驟S1,係降低無載啟動之該感應機之輸入電壓,使該感應機啟動之轉速上升率降低。在該感應機正常啟動狀態下,該感應機之動態等效模型與穩態等效模型具有不同特性。更詳言之,在定子參考模型下,該動態等效模型可表示為:
其中i qs ,i ds 為定子電流、i qr ,i dr 為轉子電流、v qs ,v ds 為定子電壓、v qr ,v dr 為轉子電壓、R s 為定子電阻、R r 為轉子電阻、L m 為互感、L s 為定子電感、L r 為轉子電感、ω r 為轉子轉速及p 為微分因子。Where i qs , i ds is the stator current, i qr , i dr is the rotor current, v qs , v ds is the stator voltage, v qr , v dr is the rotor voltage, R s is the stator resistance, R r is the rotor resistance, L m is the mutual inductance, L s is the stator inductance, L r is the rotor inductance, ω r is the rotor speed, and p is the differential factor.
在方程式(1)中阻抗矩陣的部分項與轉速相依,為轉速的函數,在轉速變動的情況下,方程式組為非線性。若轉速為定值或是零,則方程式組為線性。當降低該感應機啟動之輸入電壓,使該感應機處於低壓無載啟動狀態時,可使該感應機之轉速上升率在單位時間內變化的幅度較小,即dω r /dt 0
,使轉速變動所產生之暫態效應降至最低,便可忽略該暫態效應,即可利用穩態等效模型來進行該感應機之阻抗參數估測,且不需額外之控制電路。該動態等效模型所近似之該穩態等效模型可如第2圖所示,且該穩態等效電路可表示為轉速的函數,並具有一等效電阻
與一等效電抗,該等效電阻與等效電抗分別為:
其中,該R s 為定子電阻、R r 為轉子等效電阻、X m 為磁激電抗、X s 為定子等效電抗、X r 為轉子等效電抗、s (n )為轉差率、ω s 為同步轉速及ω r (n )為轉速,其中n =0,1,2ΛN -1,該N為正整數之一取樣(sample)數目。Wherein, R s is stator resistance, R r is rotor equivalent resistance, X m is magnetic excitation reactance, X s is stator equivalent reactance, X r is rotor equivalent reactance, s ( n ) is slip ratio , ω s is the synchronous speed and ω r ( n ) is the rotational speed, where n =0, 1, 2 Λ N -1, which is the number of samples of one of the positive integers.
在本實施例中,該輸入電壓欲降低之底限在此並不設限,可根據各個不同規格之感應機進行調整,較佳可將該輸入電壓降低至待測之該感應機的最低啟動電壓,使該感應機之轉速可於啟動時緩慢上升。In this embodiment, the bottom limit of the input voltage to be reduced is not limited herein, and may be adjusted according to different specifications of the induction machine, preferably the input voltage is lowered to the minimum start of the induction machine to be tested. The voltage allows the speed of the induction machine to rise slowly at startup.
該阻抗轉差率曲線求取步驟S2,係利用該量測儀器量測並記錄該感應機由啟動至穩態轉速期間之一時變電壓、一時變電流及一時變轉速,並藉由一時域分析求得一阻抗轉差率曲線。The impedance slip curve is determined by step S2, and the measuring instrument is used to measure and record a time varying voltage, a time varying current and a time varying speed of the induction machine from the start to the steady state speed, and by a time domain analysis Obtain an impedance slip curve.
當該感應機已藉由降低啟動電壓,致使該感應機之轉速可於啟動時緩慢上升後,該感應機之阻抗參數便可利用穩態等效模型描述,並具有該等效電阻與該等效電抗。為準確求得該等效電阻與等效電抗與轉差率之關係,可利用該量測儀器記錄該感應機由啟動至穩態轉速期間之時變電壓、時變電流及時變轉速,且該時變電壓、時變電流及時變轉速具有相同之取樣刻度。其中,該時變電壓與時變電 流可經由時域分析解析出每一取樣刻度之振幅與相位,並藉此獲得各取樣點相對應之一次側等效電阻與等效電抗;該轉差率可藉由各個取樣點之該轉速求得,並藉此獲得各取樣點相對應之轉差率。在具有相同取樣刻度之條件下,可得到該阻抗轉差率曲線,在本實施例中,該阻抗轉差率曲線如第3圖所示。When the induction machine has lowered the starting voltage, so that the speed of the induction machine can be slowly increased at the time of starting, the impedance parameter of the induction machine can be described by a steady-state equivalent model, and has the equivalent resistance and the same Effective reactance. In order to accurately obtain the relationship between the equivalent resistance and the equivalent reactance and the slip ratio, the measuring instrument can be used to record the time-varying voltage and the time-varying current of the induction machine from the start to the steady-state speed, and the speed is changed in time. The time-varying voltage and the time-varying current have the same sampling scale in time. Where the time varying voltage and time varying electricity The stream can analyze the amplitude and phase of each sampling scale through time domain analysis, and thereby obtain the primary side equivalent resistance and the equivalent reactance corresponding to each sampling point; the slip rate can be obtained by each sampling point Obtained, and thereby obtain the corresponding slip rate of each sampling point. The impedance slip curve can be obtained under the condition of having the same sampling scale. In the present embodiment, the impedance slip curve is as shown in FIG.
該初值求取步驟S3,係利用定子側之直流測試搭配阻抗轉差率曲線,以最小平方法來計算阻抗參數之初值。阻抗參數的最佳化必須以一組初值作為搜尋的出發點,而適當合理的初值將有助於提升收斂效率。在本實施例中,係於該感應機操作於一額定電流時,利用該量測儀器量測該感應機之操作電壓與操作電流,並求得該定子電阻R s
,若定子繞組為Y接型式,則該方程式為:
其中,V DC 為該操作電壓,I DC 為該操作電流。Where V DC is the operating voltage and I DC is the operating current.
當該定子電阻為已知時,可運用該操作電壓、操作
電流及轉速計算得該s
(n
)與該R
(s
(n
)),透過將該定子電阻代入方程式(2)整理可得:
其中
在最小平方法中,令一誤差平方和為:In the least squares method, the sum of squared errors is:
其中最小化的必要條件為:The necessary conditions for minimization are:
經整理可得:After finishing, you can get:
當轉差率s (n )與Q (s (n ))為已知的情況,代入方程式(8)即可計算得到K 1 與K 2 。在該阻抗參數中,由於磁激電抗X m >>X s 且X m >>X r ,故在方程式(3)中假設X r =X s ,並代入方程式(3):When the slip ratios s ( n ) and Q ( s ( n )) are known, substituting equation (8) can calculate K 1 and K 2 . In the impedance parameter, since the magneto-impact reactance X m >> X s and X m >> X r , X r = X s is assumed in equation (3) and substituted into equation (3):
其中,among them,
同理,令一誤差平方和為:Similarly, the sum of squared errors is:
其中,K (n )=(1+(s (n ))2 K 1 ),同理可得:Where K ( n )=(1+( s ( n )) 2 K 1 ), the same reason:
在此定義K 5 =K 4 /K 3 =,則其他阻抗參數之初值為:Here K 5 = K 4 / K 3 = , the initial value of other impedance parameters is:
X s =X r =K 3 -X m (14) X s = X r = K 3 - X m (14)
透過上述計算過程可決定該阻抗參數之初值,該阻抗參數之初值可作為後續之阻抗參數最佳化處理之基礎,以取得較佳之該阻抗參數。The initial value of the impedance parameter can be determined through the above calculation process, and the initial value of the impedance parameter can be used as the basis for the subsequent optimization of the impedance parameter to obtain the preferred impedance parameter.
該阻抗參數最佳化步驟S4,係藉由阻抗參數的初值為基礎,以一最小均方根法(Least Mean Square,LMS)結合一粒子群演算法(Particle Swarm Optimization,PSO)進行該阻抗參數之最佳化處理,以搜尋該阻抗參數的廣域最佳解。首先詳述最小均方根法的部份,最小均方根法可處理多變數非線性函數的最小化搜尋。將步驟S2所得之阻抗轉差率曲線表示為R (s (n ))、X (s (n ))及s (n ),n =0,1,2…N -1。在LMS可將其目標函數ER 與EX 表示為:The impedance parameter optimization step S4 is performed by a minimum root mean square method (LMS) combined with a Particle Swarm Optimization (PSO) algorithm based on the initial value of the impedance parameter. The parameter is optimized to search for the wide-area optimal solution of the impedance parameter. First, the part of the minimum root mean square method is described in detail. The minimum root mean square method can handle the minimization search of multivariable nonlinear functions. The impedance slip curve obtained in step S2 is expressed as R ( s ( n )), X ( s ( n )), and s ( n ), n =0, 1, 2... N -1. The LMS can express its objective functions ER and EX as:
其中,among them,
M (n )=(R r /s (n ))2 +(X m +X r )2 (20) M ( n )=( R r / s ( n )) 2 +( X m + X r ) 2 (20)
該目標函數ER 與EX 皆為具有一極小值之函數,在該極小值時,該二函數對每個阻抗參數的梯度量均為0。本發明以R s 、R r 搜尋目標函數ER 的最小值,以X s 、X r 及X m 搜尋目標函數EX 的最小值,該電阻的誤差量可表示為:The objective functions ER and EX are both functions having a minimum value, and at the minimum value, the magnitude of the gradient of the two functions for each impedance parameter is zero. The present invention searches for the minimum value of the objective function ER with R s , R r , and searches for the minimum value of the objective function EX with X s , X r and X m , and the error amount of the resistance can be expressed as:
因此該目標函數ER 與目標函數EX 最小值的數梯度量可表示為:Therefore, the number gradient of the objective function ER and the minimum value of the objective function EX can be expressed as:
最小均方根法在本發明中可強化局部搜尋能力,再配合粒子群演算法,即可完成廣域搜尋的最佳化。在此為達到整體最佳化的目的,其適應函數可定義表示為:In the present invention, the minimum root mean square method can enhance the local search ability, and then cooperate with the particle swarm algorithm to complete the optimization of the wide area search. Here, for the purpose of overall optimization, the adaptation function can be defined as:
FIT =ER +EX (28) FIT = ER + EX (28)
因本發明於步驟S3中提供一組合理的初值,在粒子群演算法中的族群觀念下,僅需將粒子以亂數形式散佈於初值附近的參數空間上,以便針對適當區域進行廣域搜尋,每個粒子在在參數空間可表示為:Since the present invention provides a reasonable set of initial values in step S3, in the concept of group in the particle swarm algorithm, the particles need only be scattered in a random number in the parameter space near the initial value, so as to be wide for the appropriate region. Domain search, each particle can be represented in the parameter space as:
該粒子群演算法之粒子位置更新方式如下所示:The particle position update method of the particle swarm algorithm is as follows:
其中,代表更新後之粒子位置,代表更新前之粒子位置,代表粒子位置更新之一修正量。其中,該修正量具有梯度量,且該梯度量係作為該修正量之修正分量,該修正量如下所示:among them, Represents the updated particle position, Represents the particle position before the update, Represents one of the particle position update corrections. Wherein, the correction amount has a gradient amount, and the gradient amount is used as a correction component of the correction amount, and the correction amount is as follows:
其中,C 1 為粒子自身經驗之認知參數,C 2 為粒子群體經驗之認知參數,為粒子本身在k 次疊代過程中之最佳位置,為族群中k 次疊代過程中之最佳位置,▽E i 為該目標函數ER 與EX 之數梯度量,即為方程式(23)至(27),α k 為加速因子,iter max 為設定之疊代次數,α max 為設定之最大加速因子,α min 為設定之最小加速因子,rand為介於0~1之間的隨機值。Among them, C 1 is the cognitive parameter of the particle's own experience, and C 2 is the cognitive parameter of the particle group experience. Is the best position of the particle itself in the k- time iteration process, It is the optimal position in the k- time iteration process in the group, ▽ E i is the gradient amount of the objective function ER and EX , which is the equations (23) to (27), α k is the acceleration factor, and iter max is the setting The number of iterations, α max is the set maximum acceleration factor, α min is the set minimum acceleration factor, and rand is a random value between 0 and 1.
在本實施例中,係設定該C 1 =C 2 =1,設定該α max =0.5,設定該α min =0.3,且當該粒子位置之更新次數到達該疊代次數時,便結束該阻抗參數最佳化步驟S4。更詳言之,在阻抗參數搜尋的過程中,由於粒子群演算法的特性,使參數最佳化的過程避開收斂性的問題。對粒子群演算法而言,其本身具有於廣域中搜尋最佳解之特性,但當其粒子身處最佳解附近時,因其本身鄰近搜尋能力較差,有時候可能會遺漏掉最佳解,故在該粒子群演算法中加入該梯度量,以該梯度量做為該粒子群演算法之修正量的修正分量,可使該最佳化演算法同時兼具廣域與鄰近搜尋的能力,以求得最佳之該阻抗參數。In this embodiment, the C 1 = C 2 =1 is set, the α max = 0.5 is set, the α min = 0.3 is set, and when the number of updates of the particle position reaches the number of iterations, the impedance is ended. Parameter optimization step S4. More specifically, in the process of impedance parameter search, due to the characteristics of the particle swarm algorithm, the process of parameter optimization avoids the problem of convergence. For the particle swarm algorithm, it has the characteristics of searching for the best solution in the wide area. However, when the particle is in the vicinity of the optimal solution, it may miss the best because of its poor proximity search ability. Solution, so the gradient amount is added to the particle swarm algorithm, and the gradient amount is used as the correction component of the correction amount of the particle swarm algorithm, so that the optimization algorithm can simultaneously have wide-area and adjacent search. Ability to find the best impedance parameter.
該機械參數計算步驟S5,係將該阻抗參數代入穩態等效電路中,並搭配由啟動至穩態轉速期間的時變電壓、轉速信號與機械方程式求得一機械參數。請參照第2圖所示,更詳言之,將阻抗參數代入穩態等效電路中,並搭配由啟動至穩態轉速期間的時變電壓與轉速,可計算一時變的氣隙功率P AG
,該氣隙功率可表示為:
一機械功率P m
可表示為:
其中該P RCL 為轉子電路的等效銅損。Wherein the P RCL is the equivalent copper loss of the rotor circuit.
一電磁轉矩T e
可表示為:
在動態等效模型中,該感應機之該機械方程式可表示為:
其中ω m
為轉子的機械轉速,即ω m
=2ω r
/P。P
為該感應機的極數,J
為轉動慣量,B
為摩擦係數,在無載啟動的條件下,令T Load
=0,整理上式可得:
在無載啟動的條件下,當轉子轉速由靜止狀態逐漸加速至穩態轉速時,考慮在穩態的狀況下,轉速為固定,即dω m
/dt
=0。將該條件代入方程式(36),可得該摩擦係數B
為:
當該摩擦係數為已知時,可藉由下列方程式求得該轉動慣量J :When the coefficient of friction is known, the moment of inertia J can be obtained by the following equation:
其中,該轉動慣量J 之平均值可由轉速自靜止狀態加速至穩態轉速之區間求得。The average value of the moment of inertia J can be obtained from the range in which the rotational speed is accelerated from the stationary state to the steady-state rotational speed.
透過將該感應機操作於低壓無載啟動狀態,可在單位時間內,使該感應機之動態特性近似於穩態特性,令該阻抗參數之取得不需透過額外的控制電路。藉由量測該感應機啟動至穩態轉速期間之時變電壓、時變電流及時變轉速,可求出該感應機之阻抗轉差率曲線,並藉此以最小平方法計算出一組合理的阻抗參數的初值。接著以該初值為基礎,利用該粒子群演算法結合最小均方根法進行最佳解之搜索,且該粒子群演算法之修正量中,含有該梯度量為其修正量之修正分量,使該阻抗參數得以取得最佳解。且在低壓無載啟動狀態下,配合最佳化之該阻抗參數,可逐步獲得較準確之該機械參數。By operating the induction machine in a low-voltage, no-load start-up state, the dynamic characteristics of the induction machine can be approximated to a steady-state characteristic per unit time, so that the impedance parameter is obtained without an additional control circuit. By measuring the time-varying voltage and the time-varying current during the steady-state speed of the induction machine, the impedance slip curve of the induction machine can be obtained, and a reasonable set of calculations can be calculated by the least square method. The initial value of the impedance parameter. Then, based on the initial value, the particle swarm optimization algorithm is combined with the least root mean square method to search for the optimal solution, and the correction amount of the particle swarm algorithm includes the gradient component as the correction component of the correction amount. This impedance parameter is used to obtain the best solution. And in the low-voltage no-load starting state, with the optimized impedance parameter, the more accurate mechanical parameters can be obtained step by step.
本發明之感應機參數估測方法,係降低啟動電壓使該感應機處於低壓無載啟動狀態,以進行後續之相關參數估測,該方式不需設置複雜的控制電路,具有節省額外硬體成本之功效。The method for estimating the parameter of the induction machine of the invention reduces the starting voltage so that the induction machine is in a low-voltage unloaded starting state for subsequent correlation parameter estimation, which does not require complicated control circuit and saves extra hardware cost. The effect.
本發明之感應機參數估測方法,係利用一梯度量結合一粒子群演算法進行阻抗參數之最佳化搜索,具有最佳化阻抗參數之功效。The sensor parameter estimation method of the invention uses a gradient amount combined with a particle swarm algorithm to perform an optimal search of the impedance parameters, and has the effect of optimizing the impedance parameters.
本發明之感應機參數估測方法,係降低啟動電壓使該感應機處於低壓無載啟動狀態,有助於取得一機械參數,具有取得較完整之相關參數功效。The method for estimating the parameter of the induction machine of the invention reduces the starting voltage so that the induction machine is in a low-voltage no-load starting state, which is helpful for obtaining a mechanical parameter and has the effect of obtaining relatively complete related parameters.
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described in connection with the preferred embodiments described above, it is not intended to limit the scope of the invention. The technical scope of the invention is protected, and therefore the scope of the invention is defined by the scope of the appended claims.
[本發明][this invention]
S1...轉速上升率降低步驟S1. . . Speed increase rate reduction step
S2...阻抗轉差率曲線求取步驟S2. . . Impedance slip curve determination step
S3...初值求取步驟S3. . . Initial value step
S4...阻抗參數最佳化步驟S4. . . Impedance parameter optimization step
S5...機械參數計算步驟S5. . . Mechanical parameter calculation step
第1圖:本發明感應機參數估測方法之流程圖。Figure 1: Flow chart of the method for estimating the parameters of the induction machine of the present invention.
第2圖:本發明感應機參數估測方法之穩態等效電路圖。Figure 2: Steady-state equivalent circuit diagram of the sensor parameter estimation method of the present invention.
第3圖:本發明感應機參數估測方法之阻抗轉差率曲線。Fig. 3 is a graph showing the impedance slip rate of the sensor parameter estimation method of the present invention.
S1...轉速上升率降低步驟S1. . . Speed increase rate reduction step
S2...阻抗轉差率曲線求取步驟S2. . . Impedance slip curve determination step
S3...初值求取步驟S3. . . Initial value step
S4...阻抗參數最佳化步驟S4. . . Impedance parameter optimization step
S5...機械參數計算步驟S5. . . Mechanical parameter calculation step
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100145775A TWI431300B (en) | 2011-12-12 | 2011-12-12 | Method for parameter identification of induction machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100145775A TWI431300B (en) | 2011-12-12 | 2011-12-12 | Method for parameter identification of induction machine |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201323902A TW201323902A (en) | 2013-06-16 |
TWI431300B true TWI431300B (en) | 2014-03-21 |
Family
ID=49032903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100145775A TWI431300B (en) | 2011-12-12 | 2011-12-12 | Method for parameter identification of induction machine |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI431300B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106452258B (en) * | 2016-11-11 | 2019-06-11 | 福建睿能科技股份有限公司 | A kind of three-phase induction motor parameter detection method and device |
CN115001353B (en) * | 2022-05-09 | 2023-06-16 | 上海达坦能源科技股份有限公司 | Intelligent control method and control system for variable frequency speed regulation of oil pumping well |
-
2011
- 2011-12-12 TW TW100145775A patent/TWI431300B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201323902A (en) | 2013-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Parameter identification of induction machine with a starting no-load low-voltage test | |
Raca et al. | Robust magnet polarity estimation for initialization of PM synchronous machines with near-zero saliency | |
Lai et al. | Torque ripple minimization for interior PMSM with consideration of magnetic saturation incorporating online parameter identification | |
CN109672383B (en) | Salient pole type permanent magnet synchronous motor online parameter identification method | |
CN103344368B (en) | Based on the squirrel cage asynchronous motor efficiency on-line monitoring method can surveying electric parameters | |
CN110535392B (en) | Permanent magnet synchronous motor parameter identification method based on LM algorithm | |
CN103384129A (en) | Drive motor control method using motor rotor temperature | |
JP2016073200A (en) | Method and system for determining core losses in permanent magnet synchronous motor | |
TW201710924A (en) | Method for estimating parameters of the induction machine by the polynomial regression | |
Grantham et al. | Rapid parameter determination for induction motor analysis and control | |
TWI431300B (en) | Method for parameter identification of induction machine | |
CN103718454B (en) | The motor constant computational methods of permanent magnet synchronous motor and motor constant calculation element | |
CN210111901U (en) | Device for detecting winding temperature and induction motor | |
CN106602953B (en) | The verification method of induction electromotor rotor time constant based on field orientation accuracy | |
CN105699896B (en) | One kind is suitable for rotor Faults Diagnosis for Induction Motors method | |
Knight et al. | Identification of flux density harmonics and resulting iron losses in induction machines with nonsinusoidal supplies | |
Zhang et al. | Prediction and experiment of DC-bias iron loss in radial magnetic bearing for a small scale turbomolecular pump | |
JP2008286779A (en) | Torque estimator for ipm motor | |
CN112083349B (en) | Method for diagnosing turn-to-turn short circuit fault of stator winding of permanent magnet synchronous motor | |
Lee et al. | Airgap flux search coil-based estimation of permanent magnet temperature for thermal protection of PMSMs | |
CN103155400A (en) | Motor constant calculating method for pm motor, and motor constant calculating device | |
CN109932648B (en) | Synchronous motor q-axis inductance saturation characteristic test measurement method | |
Reigosa et al. | Permanent magnet temperature distribution estimation in PMSMs using BEMF harmonics | |
KR101591198B1 (en) | Inductance estimator of permanent magnet synchronous motor, method for estimating inductance of permanent magnet synchronous motor and record media recorded program for implement thereof | |
CN104267243B (en) | The measuring method and device of synchronous generator built-in potential and reactance parameter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |