TW202413040A - 消費後回收的聚乙烯混色摻合物、其製備方法、由其製成的物品及該摻合物的用途 - Google Patents

消費後回收的聚乙烯混色摻合物、其製備方法、由其製成的物品及該摻合物的用途 Download PDF

Info

Publication number
TW202413040A
TW202413040A TW112110509A TW112110509A TW202413040A TW 202413040 A TW202413040 A TW 202413040A TW 112110509 A TW112110509 A TW 112110509A TW 112110509 A TW112110509 A TW 112110509A TW 202413040 A TW202413040 A TW 202413040A
Authority
TW
Taiwan
Prior art keywords
polyethylene
blend
mixed color
stream
measured
Prior art date
Application number
TW112110509A
Other languages
English (en)
Inventor
端英 陳
安德烈亞斯 納格
多麗絲 梅爾
劉毅
彼得 丹尼弗
基利安 皮埃特
克里斯汀 戈茨洛夫
凱勒 麥可 海特里希
薩米爾 維杰
漢斯 尤根 普利斯特斯
奧立佛 蘭伯茨
Original Assignee
奧地利商柏列利斯股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奧地利商柏列利斯股份公司 filed Critical 奧地利商柏列利斯股份公司
Publication of TW202413040A publication Critical patent/TW202413040A/zh

Links

Abstract

一種聚乙烯混色摻合物,具有:(i)0.1至10 g/10 min的熔體流率(ISO1133,5.0 kg;190°C);(ii)950至990 kg/m 3的密度;(iii)至少95.0 wt%的C2餾分,透過d2-四氯乙烯可溶餾分的 13C-NMR測得;(iv)73.0至91.0 wt%的均聚物餾分(HPF)含量,根據由交叉分級層析法(CFC)進行的化學成分分析測得;(v)10.0至22.0 wt%的共聚物餾分(CPF)含量,根據由交叉分級層析法(CFC)進行的化學成分分析測得;(vi)相對於總聚乙烯摻合物不超過100 ppm的選自Cr、 Cd、Hg及Pb的重金屬總含量,透過X射線螢光分析(XRF)測得;以及(vii)至少3.0小時的全缺口蠕變測試 (FNCT)失效時間,根據ISO16770-2019在50°C和6.0 Mpa下在2 wt% Arkopal N100中測得,該聚乙烯混色混合物具有根據DIN EN ISO 11664-4測得的CIELAB色彩空間(L*a*b*):L*為30.0至73.0;a*為-10至25;b*為-5至20。本發明還涉及回收聚乙烯混色材料以獲得上述摻合物的方法、及由上述聚乙烯混色摻合物所製成的物品。

Description

消費後回收的有色聚乙烯組成物、其製備方法及由其製成的物品
本發明是關於一種來自消費後回收物(PCR)的混色聚乙烯摻合物 。
處置堆積的塑膠廢棄物的挑戰及對應的環境問題已受到公眾和產業界的廣泛關注。因此,塑膠材料的回收已成為一個重要的課題,塑膠廢棄物可以轉化為有價值的資源,用於生產新的塑膠產品。因此,環境和經濟方面可以結合塑膠材料的回收和再利用。
儘管塑膠材料的回收在90年代中期已經透過實施收集系統開始,該系統允許更有目標性地收集塑膠材料並將其與其他家庭廢棄物材料分開,但來自塑膠廢棄物的塑膠材料的再利用仍然有限。所謂的消費後回收(PCR)塑膠材料通常包括不同塑膠和多種汙染材料的混合物。已經開發出進一步純化消費後回收(PCR)塑膠材料的方法。
已經進行了許多嘗試來純化來自消費後塑膠廢棄物的回收料流。在這些措施中,可以提到洗滌、篩分、通氣、蒸餾等。例如,WO2018/046578 A1揭露一種由包含包裝廢棄物的混色聚烯烴廢棄物生產聚烯烴回收物的方法,包括用水冷洗滌廢棄物,然後在60°C下用鹼性介質洗滌,隨後進行片材顏色分選,以獲得經顏色分選的富含單一聚烯烴的部分。
US 5767230A描述一種方法,包括使含有揮發性雜質的PCR聚烯烴粒與加熱的氣體在足以 顯著減少揮發性雜質如氣味活性物質的表觀速度下接觸。然而,到目前為止,苯的殘留量所造成的汙染已成為一個問題。消費後回收物中苯的殘留量的來源仍然是不確定的,對醫療包裝、食品包裝等領域的最終用途構成了阻礙。殘留量,即苯的痕量,構成了一個特別的問題,因為透過嗅探實驗進行氣味測試變得不可能。因此,阻礙了對氣味有特定要求的最終用途。
另一個已知的問題是回收物僅具有中等的均勻性,這可從射出成型產品中出現的表面汙染中反映出來。
因此,對於回收材料而言,仍然有盡可能接近原生樹脂的特性的強烈需求。尤其是,本發明的目的是提供一種PE-PCR材料,其在以下方面優於現有材料:產品在聚乙烯含量方面的高純度、低汙染物含量、更亮的灰色調、高顏色一致性、高均勻性、改良的機械特性,例如,即使在低溫下也能保持韌性性能、良好的拉伸特性和衝擊特性、以及良好的可加工性。
本發明的目的是提供一種解決上述需求和缺點的消費後回收聚乙烯組成物。
這些目的透過提供一種解決上述需求和缺點的消費後回收聚乙烯組成物來完成。
因此,本發明提供一種聚乙烯混色摻合物,其具有: (i)0.1至10 g/10 min的熔體流率(ISO1133,5.0 kg;190°C); (ii)950至990 kg/m 3的密度(ISO1183); (iii)至少95.0 wt%的C2餾分,其透過d2-四氯乙烯可溶餾分的 13C-NMR測得; (iv)在73.0至91.0 wt%的範圍內的均聚物餾分(HPF)含量,其根據透過交叉分級層析法(CFC)進行的化學成分分析測得; (v)在10.0至22.0 wt%的範圍內的共聚物餾分(CPF)含量,其根據透過交叉分級層析法(CFC)進行的化學成分分析測得; (vi)相對於總聚乙烯摻合物不超過100 ppm的選自Cr、Cd、Hg以及Pb的重金屬的總含量,其如本文所述透過X射線螢光分析法(XRF)測得;以及 (vii)至少3.0小時的全缺口蠕變測試(FNCT)的失效時間,其如本文所述根據ISO16770-2019在50°C和6.0 Mpa下在2 wt% Arkopal N100中測得, 該聚乙烯混色摻合物具有如本文所述根據DIN EN ISO 11664-4測得的CIELAB色彩空間(L*a*b*)如下: L*為30.0至73.0; a*為-10至25; b*為-5至20。
上述目的進一步透過一種回收聚乙烯混色材料的方法來實現,該方法包括以下步驟; a) 提供混合塑膠廢棄物料流(A); b) 篩分該混合塑膠廢棄物料流(A),以產生僅具有最長尺寸在30至400 mm的範圍內的物體的經篩分的混合塑膠廢棄物料流(B); c) 藉助於一個或多個配備有近紅外光(NIR)感測器和光學感測器的分選系統,對該經篩分的混合塑膠廢棄物料流(B)進行分選,其中,至少透過聚合物的種類和顏色以及可選的物體形式對該經篩分的混合塑膠廢棄物料流(B)進行分選,從而產生經分選的混色聚乙烯回收料流(CM),該經分選的混色聚乙烯回收料流(CM)單獨進行步驟d)及後續步驟; d) 將該經分選的混色聚乙烯回收料流(CM)切碎,以形成片狀混色聚乙烯回收料流(D); e) 在不輸入熱能的情況下,用第一洗滌水溶液(W1)洗滌該片狀混色聚乙烯回收料流(D),從而產生第一懸浮聚乙烯回收料流(E); f) 從該第一懸浮聚乙烯回收料流(E)中去除至少一部分的該第一洗滌水溶液(W1),以獲得第一經洗滌的聚乙烯回收料流(F); g) 用第二洗滌水溶液(W2)洗滌該第一經洗滌的聚乙烯回收料流(F),從而產生第二懸浮聚乙烯回收料流(G),其中,將足夠的熱能引入該第二懸浮聚乙烯回收料流(G),以在洗滌期間提供在65至95°C的範圍內的溫度; h) 從該第二懸浮聚乙烯回收料流(G)中去除該第二洗滌水溶液(W2)和任何不漂浮在該第二洗滌水溶液(W2)的表面上的物質,以獲得第二經洗滌的聚乙烯回收料流(H); i) 乾燥該第二經洗滌的聚乙烯回收料流(H),從而獲得經乾燥的聚乙烯回收料流(I),該經乾燥的聚乙烯回收料流(I)包含如前述請求項中任一項所述之聚乙烯混色摻合物。
根據本發明的聚乙烯混色摻合物可根據上述方法獲得。
本發明進一步提供一種由本發明的聚乙烯混色摻合物製成的或根據上述方法獲得的物品。
本發明進一步提供本發明的聚乙烯混色摻合物用於包裝應用、旋轉成型應用、汽車應用、或電線及電纜應用的用途。
對於本發明說明書和隨後的申請專利範圍的目的,術語「回收料流」是指與原生聚合物和/或材料對比的由消費後廢棄物加工而成的材料。消費後廢棄物是指至少完成第一個使用週期(或生命週期)的目標物,即,已達成它們的第一個目的。術語「原生」表示新生產的材料和/或尚未經回收的首次使用前的目標物。如本文所用的術語「回收材料」表示由消費後廢棄物或回收料流再次加工的材料。
摻合物表示兩種或更多種成分的混合物,其中至少一種成分是聚合物。一般來說,摻合物可以透過混合兩種或更多種成分來製備。合適的混合程序在所屬技術領域中是已知的。如果這種摻合物包括原生材料,則所述原生材料較佳地是包含至少90 wt%的反應器製造的聚乙烯材料以及可選的碳黑的聚乙烯。原生材料是尚未經回收的聚合物材料。
對於本發明說明書和隨後的申請專利範圍的目的,術語「聚乙烯混色摻合物」是指主要包含除了任意性質的其他聚合物成分之外的衍生自乙烯的單元的聚合物材料。此類其他聚合物成分可以是例如源自衍生自以下的單體單元:α-烯烴如丙烯、丁烯、辛烯等;苯乙烯衍生物如乙烯基苯乙烯;被取代和未被取代的丙烯酸酯;以及被取代和未被取代的甲基丙烯酸酯。
在聚乙烯混色摻合物中的所述其他聚合物材料可以透過本文所述的定量 13C{ 1H} NMR測量來鑑定。在本文中使用的定量 13C{ 1H} NMR測量和下文所述的測量方法中,可以區分並定量聚合鏈中的不同單元。這些單元是乙烯單元(C2單元)和具有3、4、6或7個碳原子的單元。因此,具有2個碳原子的單元(C2單元)可以在NMR光譜中區分為獨立的C2單元和連續的C2單元,這表示該聚合物材料包含基於乙烯的聚合物。根據本發明的聚乙烯混色摻合物通常包括少量的基於丙烯的聚合物成分,特別是少量的源自同排聚丙烯(iPP)的單元,這可以透過如下文實驗部分所述的可溶餾分的 13C-NMR分析測定。
術語「C2餾分」表示衍生自乙烯的-[C 2H 4]-重複單元,其存在於直鏈主鏈和短鏈分支中,透過定量 13C{ 1H} NMR光譜測量,其中重複意指至少有兩個單元。
C2餾分(C2 fraction)可計算為: wt C2fraction= fC C2total* 100 / (fC C2total+ fC PP) 其中, fC C2total= (Iddg –ItwoB4) + (IstarB1*6) + (IstarB2*7) + (ItwoB4*9) + (IthreeB5*10) + ((IstarB4plus-ItwoB4-IthreeB5)*7) + (I3s*3) 並且, fC PP= Isαα * 3
下文的實驗部分給出了詳細資訊。
本發明的回收摻合物中可以存在HDPE、LDPE或LLDPE、均聚及共聚的聚乙烯。聚乙烯可以透過分析性分離來進行特性分析。透過交叉分級層析法(CFC)進行的化學成分分析是一種合適的方法。Polymer Char, Valencia Technology Par, Gustave Eiffel 8, Paterna E-46980 Valencia, Spain已經敘述並成功實施了該方法。透過交叉分級層析法(CFC)進行的化學成分分析允許分離成均聚物餾分(HPF)和共聚物餾分(CPC)以及可能存在的同排聚丙烯餾分(IPPF)。均聚物餾分(HPF)是類似於均聚物-HDPE的包含聚乙烯的餾分。共聚物餾分(CPC)是類似於聚乙烯HDPE共聚物的餾分,但也可以包含LDPE和LLDPE的餾分。同排聚丙烯餾分(IPPF)包含同排聚丙烯,並定義為在104°C及以上的溫度洗提出來的聚合物餾分。均聚物餾分(HPF)、共聚物餾分(CPC)以及可能存在的同排聚丙烯餾分(IPPF)的總合為100 wt%。不言而喻,100 wt%是指在交叉分級層析(CFC)實驗中可溶的材料。
除了透過交叉分級層析法(CFC)進行的化學成分分析之外,根據本發明的聚乙烯摻合物的特徵還在於,C2餾分的量至少為95 wt%,較佳地至少為97 wt%,其透過d2-四氯乙烯可溶餾分的 13C-NMR測得。該百分比是指用於NMR實驗的d2-四氯乙烯可溶部分。術語「C2餾分」等於可從乙烯單體單元獲得的聚合物餾分,即,不是從丙烯單體單元獲得的聚合物餾分。
「C2餾分」的上限為100 wt%。
通常,本發明的聚乙烯混色摻合物中可以存在其他成分,諸如填料,包括有機和無機填料,例如滑石、白堊、碳黑、和其他顏料如TiO 2、以及紙和纖維素。
根據本發明的聚乙烯混色摻合物通常具有0.1至10 g/10 min的熔體流率(ISO1133,5.0 kg;190°C)。可透過將消費後塑膠廢棄物料流進行分流來影響熔體流率,所述廢棄物料流例如但不限於源自延伸生產者責任計畫,例如來自德國DSD,或由城市固體廢棄物分選成大量經預分選的部分,並以適當的方式重新將其等組合。較佳地,MFR 5的範圍為0.5至5.0 g/10 min,較佳地為0.7至4.0 g/10 min,更佳地為1.0至3.0 g/10 min。
根據本發明的聚乙烯混色摻合物的密度為950至990 kg/m 3,較佳地為955至987 kg/m 3,更佳地為957至985 kg/m 3,其根據ISO1183測定。
根據本發明的聚乙烯摻合物具有至少95.0 wt%,較佳地至少97.0 wt%,更佳地至少98.0 wt%的C2餾分,其透過d2-四氯乙烯可溶餾分的 13C-NMR測得。
一般而言,根據本發明的聚乙烯摻合物是回收材料。
通常,回收性質可以透過以下一項或多項來評估: (1) 無機殘留物含量(透過TGA測得)高於0.1 wt%; (2) 檸檬烯含量為1 mg/m 3以上,其透過使用結合氣相層析儀和質譜儀的靜態頂空取樣器(HS/GC-MS)測定; 選項(1)與(2)為可替代地或組合地評估。
應當理解,選項(2)是較佳的。
不言而喻,無機殘留物、凝膠以及檸檬烯的量應越低越好。
本發明的聚乙烯混色摻合物的均聚物餾分(HPF)含量在73.0至91.0 wt%的範圍內,較佳地在75.0至90.0 wt%的範圍內,更佳地在77.0至89.0 wt%的範圍內,甚至更佳地在79.0至88.0 wt%的範圍內,其根據透過交叉分級層析法(CFC)進行的化學成分分析測定。
進一步地,本發明的聚乙烯混色摻合物的共聚物餾分(CPF)含量在10.0至22.0 wt%的範圍內,較佳地在12.0至22.0 wt%的範圍內,更佳地在13.0至21.0 wt%的範圍內,最佳地在14.0至20.0 wt%的範圍內,其根據透過交叉分級層析法(CFC)進行的化學成分分析測定。
進一步地,本發明的聚乙烯混色摻合物的選自Cr、Cd、Hg以及Pb的重金屬的總含量相對於總聚乙烯摻合物不超過100 ppm,較佳地不超過80 ppm,更佳地不超過50 ppm,其如下文實驗部分所述透過X射線螢光分析法(XRF)測得。
進一步地,本發明的聚乙烯混色摻合物的全缺口蠕變測試的環境應力開裂抗性(FNCT)表現出為至少3.0小時,較佳地為至少3.5小時,更佳地為至少4.0小時,甚至更佳地為至少5.0小時的失效時間,其如下文實驗部分所述根據ISO16770-2019在50°C和6.0 Mpa下在2 wt% Arkopal N100中測定。
本發明的聚乙烯混色摻合物進一步具有如下文實驗部分所述根據DIN EN ISO 11664-4測量的CIELAB色彩空間(L*a*b*)如下: L*為30.0至73.0; a*為-10至25; b*為-5至20。
較佳地,CIELAB色彩空間(L*a*b*)界定為: L*為32.0至71.0; a*為-9至23; b*為-5至18。
更佳地,CIELAB色彩空間(L*a*b*)界定為: L*為35.0至70.0; a*為-7至20; b*為-5至15。
本發明的聚乙烯混色摻合物的特徵在於,化學純度比常規回收材料更高,尤其是C3單元(丙烯單元)如同排聚丙烯(iPP)的含量較低。較佳地,根據本發明的聚乙烯混色摻合物含有不超過0.1至3.0 wt%,較佳地不超過0.1至2.5 wt%,更佳地不超過0.2至2.0 wt%的源自同排聚丙烯(iPP)的單元,其如下文實驗部分所述透過可溶餾分的 13C-NMR分析測定。
較佳地,根據本發明的聚乙烯混色摻合物的大振幅振盪剪切-非線性因子(LAOS-NLF)在2.0至4.0的範圍內,其如下文實驗部分所述在190°C、0.628 rad/s的角頻率、以及1000%的應變下測定。
LAOS - NLF是長鏈分支含量的流變量度,定義為: LAOS – NLF = 其中, G 1′是一階傅立葉係數(first order Fourier Coefficient), G 3′是三階傅立葉係數(third order Fourier Coefficient)。
LAOS - NLF進一步表示非線性聚合物結構。較高的LAOS-NLF值表示較高的長鏈分支含量。
較佳地,根據本發明的聚乙烯混色摻合物的剪切稀化因子(STF)值在30至60的範圍內,更佳地在32至57的範圍內,甚至更佳地在33至55的範圍內,其如下文實驗部分所述根據ISO6721-1和6721-10在190°C下在0.01至600 rad/s的頻率範圍內測定,定義為複變黏度eta(0.05)和eta(300)的比值。剪切稀化因子(STF)表示聚乙烯材料的可加工性。
較佳地,根據本發明的聚乙烯混色摻合物具有低於偵測極限的苯含量,其如下文實驗部分所述根據靜態頂空層析質譜法(HS/GC-MS)在100°C/2小時下測定。
根據本發明的聚乙烯混色摻合物較佳地具有5.0或更低,更佳地4.0或更低的氣味等級(VDA270-B3)。應該理解的是,由於根據VDA270的氣味測試因存在有問題物質而被禁止,所以許多未報告氣味等級的商業回收等級實際上更糟。
較佳地,根據本發明的聚乙烯混色摻合物的夏比缺口衝擊強度至少為5.0 kJ/m 2,更佳地至少為5.5 kJ/m 2,甚至更佳地至少為6.0 kJ/m 2,其根據ISO 179-1 eA在-20°C下對根據EN ISO 1873-2製備的80 x 10 x 4 mm的射出成型試樣進行測定。
較佳地,根據本發明的聚乙烯混色摻合物的拉伸模數在600至1300 MPa的範圍內,更佳地在700至1200 MPa的範圍內,其根據ISO 527-2並如下文實驗部分所述測得。
較佳地,根據本發明的聚乙烯混色摻合物的彎曲模數在600至1300 MPa範圍內,更佳地在700至1100 MPa範圍內,其根據ISO 178並如下文實驗部分所述測得。
較佳地,根據本發明的聚乙烯混色摻合物具有在0°C下的1公升瓶子落下試驗中的平均落下高度為至少3.0公尺,更佳地至少3.5公尺,甚至更佳地至少4.0公尺的衝擊強度,其如下文實驗部分所測定,其中,該瓶子也如下文實驗部分所述生產。
較佳地,根據本發明的聚乙烯混色摻合物從消費後回收物(PCR)中獲得,較佳地為100% PCR材料。此類PCR材料通常從消費後廢棄物料流中獲得,所述廢棄物料流例如是源自常規收集系統的廢棄物料流,例如在歐盟實施的收集系統(例如,延伸生產者責任計畫、EPR計畫)中實施的廢棄物料流。PCR材料也可以源自EPR收集系統以外的城市固體廢棄物。
用於獲得根據本發明的聚乙烯混色摻合物的原料可以選自從城市固體廢棄物(MSW,通常也稱為殘餘廢棄物、黑垃圾箱廢棄物(black bin waste))到基於延伸生產者責任(EPR)的原料產生的廣泛範圍的部分,例如來自Altstoff Recycling Austria的ARA 402部分或來自德國生產者責任組織,例如DSD - Duales System Holding, Interzero, Reclay的DSD 329部分。
較佳地,根據本發明的聚乙烯混色摻合物包括至少95.0 wt%,更佳地至少96.0 wt%,甚至更佳地至少97.0 wt%的源自消費後廢棄物的成分。
上述目的也可以透過上述回收聚乙烯混色材料的方法來實現,該方法包括步驟a)至i)。換句話說,根據本發明的聚乙烯混色摻合物較佳地可透過上述方法或以下所述的較佳方法獲得。
根據步驟c),可以較佳地進一步透過物體形式對經篩分的混合塑膠廢棄物料流(B)進行分選。在這種情況下,也可根據應用類型(MFR)或特定目標使用人工智慧分選系統(其為可商購的,例如來自Tomra Systems)來進行分選。在分選步驟c)中,較佳地分選出白色和天然色廢棄物材料,使得基本上只有非白色和/或非天然色的廢棄物材料保留在一個或多個經分選的混色聚乙烯回收料流(CM)中。
透過分選步驟c),較佳地產生一種或多種經分選的混色聚乙烯回收料流(CM)。這可以較佳地透過去除白色和天然色聚乙烯目標物和非聚乙烯目標物來完成。在此上下文中,「天然色」表示目標物具有天然顏色。這意味著目標物中基本上不含顏料(包括碳黑)或諸如染料或油墨的著色劑。另一方面,「白色」表示目標物中包含白色顏料。相同的邏輯適用於下文步驟k)中描述的片狀物分選。術語「混色」是指給定的材料包含除了已被有意地盡可能去除的白色和天然色之外的所有顏色。
在步驟f)中,較佳地從第一懸浮聚乙烯回收料流(E)中去除基本上所有的第一洗滌水溶液(W1),以獲得所述第一經洗滌的聚乙烯回收料流(F)。
在步驟h)中,較佳地透過密度分離步驟來實現去除第二洗滌水溶液(W2)和任何不漂浮在第二洗滌水溶液(W2)表面上的物質。
本發明的方法可以進一步包括以下步驟中的至少一個: j) 將從步驟i)中獲得的經乾燥的聚乙烯回收料流(I)分離成輕餾分和重餾分聚乙烯回收料流(J); k) 藉助於一個或多個具有NIR感測器和/或可選的光學感測器的光學分選機,透過去除任何包含一種或多種目標聚乙烯以外的材料的片狀物或具有不期望顏色(例如黑色等)的片狀物,進一步對重餾分聚乙烯回收料流(J)進行分選,或者在不存在步驟j)的情況下進一步對經乾燥的聚乙烯回收料流(I)進行分選,以分選出該一種或多種目標聚乙烯,從而產生純化的聚乙烯回收料流(K); l) 對純化的聚乙烯回收料流(K)進行熔融擠出,較佳地進行造粒,較佳地,其中,在熔融態中添加添加劑(Ad),以形成經擠出的,較佳地經造粒的回收聚乙烯產物(L); m) 對回收聚乙烯產物(L)進行通氣,或者在不存在步驟l)的情況下對純化的聚乙烯回收料流(K)進行通氣,以去除揮發性有機化合物,從而產生經通氣的回收聚乙烯產物(M),經通氣的回收聚乙烯產物(M)是經通氣擠出的,較佳地經造粒的回收聚乙烯產物(M1),或是經通氣的回收聚乙烯片狀物(M2), 其中,步驟l)和m)的順序可以互換,使得純化的聚乙烯回收料流(K)先被通氣以形成經通氣的回收聚乙烯片狀物(M2)隨後被擠出,較佳地,其中,在熔融態中添加添加劑(Ad),以形成經擠出的,較佳地經造粒的、經通氣的回收聚乙烯產物(M3),經通氣的回收聚乙烯產物(M3)是根據本發明的聚乙烯混色摻合物。
在步驟j)中,較佳地,可以透過風選機進行分離。或者,也可以根據顆粒的空氣動力學特性進行分離(所述顆粒例如片狀物,例如,將輕薄且具可撓性的片狀物與厚重且具剛性的片狀物分離)。
在上述步驟j)之後,可以進行篩選步驟j1),其中,將經乾燥的聚乙烯回收料流(I)進行篩分以去除細屑,從而產生經篩分的聚乙烯回收料流(J1),經篩分的聚乙烯回收料流(J1)可以接著進行上述可選的步驟k)。在篩選步驟j1)中,去除尺寸較佳為2.5 mm或更小的細屑。
本發明還涉及一種由如上所述的聚乙烯混色摻合物製成的物品。根據本發明的聚乙烯摻合物較佳地佔用於製造該物品的總組成物的至少85 wt%,更佳地至少90 wt%,甚至更佳地至少93 wt%。剩餘成分可以包括添加劑,例如抗氧化劑、穩定劑、可選地為母料形式的碳黑、顏料、著色劑,如染料或油墨。
該物品較佳地是瓶子或用於其他包裝應用的物品。本發明的摻合物也可以用於旋轉成型應用、汽車應用、或電線及電纜應用。在較佳的態樣中,根據本發明的聚乙烯摻合物佔用於製造該物品的總組成物的95 wt%至98 wt%的範圍內的量。較佳地,該物品僅由根據本發明的聚乙烯摻合物和添加劑製成。所述添加劑可以較佳地選自由紫外線穩定劑、抗氧化劑和/或酸清除劑所組成的群組。
本發明的聚乙烯混色摻合物也可以與至少一種原生聚烯烴和/或回收聚烯烴摻合。例如,可以與原生乙烯均聚物或共聚物摻合。 測量方法
除非另有定義,否則以下術語的定義和確定方法適用於本發明的上述廣義描述及以下實施例。 a )熔體流率
熔體流率(MFR)是根據ISO 1133測定並以g/10 min表示。MFR是流動性的指標,因此也是聚合物的可加工性的指標。熔體流率越高,聚合物的黏度越低。在本文中,MFR在190°C的溫度和2.16 kg、5.0 kg或21.6 kg的負載下測定。 b 密度
密度是根據ISO 1183-1測定。 c NMR 光譜和包括「連續 C3 」以及短鏈分支的一般微觀結構測定的 C2
使用Bruker AVNEO 400MHz NMR光譜儀,針對 1H和 13C分別在400.15和100.62 MHz下操作,記錄溶液狀態下的定量 13C{ 1H} NMR光譜。所有光譜都是使用 13C優化的10 mm延伸溫度探頭在125°C下記錄,所有氣動裝置均使用氮氣。將大約200 mg的材料溶解在大約3 ml的1,2-四氯乙烷-d 2(TCE-d 2)中,同時加入大約3 mg的BHT(2,6-二丁基-4甲酚 CAS 128-37-0)和乙醯丙酮鉻(III)(Cr(acac) 3),產生弛緩劑在溶劑{singh09}中的60 mM溶液。為確保溶液均勻,在加熱區中進行初始樣品製備後,將NMR管在旋轉烘箱中進一步加熱至少1小時。插入磁鐵後,將NMR管以10 Hz旋轉。在沒有NOE的情況下使用標準單脈衝激發,使用優化的尖端角度、1秒的循環延遲、以及雙階WALTZ16去耦合方案{zhou07,busico07}。每個光譜總共獲得6144(6k)個瞬態。
使用專用電腦程式對定量 13C{ 1H} NMR光譜進行處理、積分,並由積分確定相關的定量特性。所有化學位移都使用溶劑的化學位移間接參考在30.00 ppm處的乙烯嵌段(EEE)的中心亞甲基。觀察到對應於具有不同短鏈分支(B1、B2、B4、B5、B6plus)的聚乙烯和聚乙烯{randall89, brandolini00}的特徵信號。
觀察到對應於含有獨立的B1分支(starB1 33.3 ppm)、獨立的B2分支(starB2 39.8 ppm)、獨立的B4分支(twoB4 23.4 ppm)、獨立的B5分支(threeB5 32.8 ppm)、所有長於4個碳的分支(starB4plus 38.3 ppm)以及來自飽和脂肪鏈末端的第三碳(3s 32.2 ppm)的聚乙烯存在的特徵信號。如果一個或另一個結構元素無法被觀察到,則將其排除在方程式之外。含有聚乙烯主鏈碳(dd 30.0 ppm)、γ-碳(g 29.6 ppm)、4s以及threeB4碳(稍後待補償)的組合的乙烯主鏈次甲基碳(ddg)的強度介於30.9 ppm和29.3 ppm之間,排除了來自聚乙烯的Tββ。根據以下方程式使用所有提到的信號對與C2相關的碳進行定量: fC C2total= (Iddg –ItwoB4) + (IstarB1*6) + (IstarB2*7) + (ItwoB4*9) + (IthreeB5*10) + ((IstarB4plus-ItwoB4-IthreeB5)*7) + (I3s*3)
當在46.7 ppm、29.0 ppm以及22.0 ppm處觀察到對應於聚丙烯(PP,連續C3)的存在的特徵信號時,使用46.6 ppm處的Sαα的積分對與PP相關的碳進行定量: fC PP= Isαα * 3
C2餾分和聚丙烯的重量百分比可以根據以下方程式定量: wt C2fraction= fC C2total* 100 / (fC C2total+ fC PP) wt PP= fC PP* 100 / (fC C2total+ fC PP)
觀察到對應於各種短鏈分支的特徵信號,並且對其重量百分比進行定量,由於相關分支會是α-烯烴,首先定量每個分支的重量分率: fwtC2 = fC C2total– (IstarB1*3) – (IstarB2*4) – (ItwoB4*6) – (IthreeB5*7) fwtC3 (獨立的C3) = IstarB1*3 fwtC4 = IstarB2*4 fwtC6 = ItwoB4*6 fwtC7 = IthreeB5*7
所有重量分率的歸一化得到所有相關分支的重量百分比的量: fsum wt% total= fwtC2 + fwtC3 + fwtC4 + fwtC6 + fwtC7 + fC PPwtC2total = fwtC2 * 100 / fsum wt%totalwtC3total = fwtC3 * 100 / fsum wt%totalwtC4total = fwtC4 * 100 / fsum wt%totalwtC6total = fwtC6 * 100 / fsum wt%totalwtC7total = fwtC7 * 100 / fsum wt%total zhou07 Zhou, Z., Kuemmerle, R., Qiu, X., Redwine, D., Cong, R., Taha, A., Baugh, D. Winniford, B., J. Mag. Reson. 187 (2007) 225 busico07 Busico, V., Carbonniere, P., Cipullo, R., Pellecchia, R., Severn, J., Talarico, G., Macromol. Rapid Commun. 2007, 28, 1128 singh09 Singh, G., Kothari, A., Gupta, V., Polymer Testing 28 5 (2009), 475 randall89 J. Randall, Macromol. Sci., Rev. Macromol. Chem. Phys. 1989, C29, 201. brandolini00 A. J. Brandolini, D. D. Hills, NMR Spectra of Polymers and Polymer Additives, Marcel Dekker Inc., 2000c)       Crystex analysis, crystalline fraction (CF) and soluble fraction (SF) d 交叉分級層析法
透過全自動交叉分級層析法(CFC)確定在特定洗提溫度(溶液中的聚合物結晶度)下的化學組成分佈以及分子量分佈和相應平均分子量(Mn、Mw以及Mv)的測定,其如Ortin A., Monrabal B., Sancho-Tello J., Macromol. Symp., 2007, 257, 13-28所述。
使用CFC儀器(PolymerChar, Valencia, Spain)執行交叉分級層析(TREF x SEC)。使用四波段IR5紅外線偵測器(PolymerChar, Valencia, Spain)監測濃度。使聚合物在160°C下以約1 mg/ml的濃度溶解150分鐘。
為避免注入可能存在的在160°C下不溶於TCB的凝膠和聚合物,如PET和PA,將秤重的樣品裝入不鏽鋼網MW 0,077/D 0,05mm中。
一旦樣品完全溶解,將0.5 ml的等分試樣裝載到TREF管柱中並在110°C下穩定一段時間。透過施加0.1°C/min的恆定冷卻速率,使聚合物結晶並沉澱至30°C的溫度。使用以下溫度步驟執行不連續洗提過程:(35、40、50、55、60、65、70、75、80、85、90、95、100、103、106、109、112、115、117、119、121、123、125、127、130、135和140)。
在二維中,GPC分析使用來自Agilent (Church Stretton, UK)的3根PL Olexis管柱和1根Olexis Guard管柱作為固定相。將1,2,4-三氯苯(TCB,經250 mg/L 2,6-二丁基對甲酚穩定化)在150°C下以1 mL/min的恆定流速施加作為洗提液。使用通用校準(根據ISO 16014-2:2003),用在0.5 kg/mol至11500 kg/mol的範圍內的至少15種窄MWD的聚苯乙烯(PS)標準品對管柱組進行校準。使用以下Mark Houwink常數將PS分子量轉換為PP分子量當量。 K PS= 19 x 10 -3mL/g,     α PS= 0.655 K PP= 19 x 10 -3mL/g,     α PP= 0.725
將三階多項式擬合用於擬合校準資料。使用PolymerChar提供的軟體和CFC儀器進行資料處理。 e 環境應力開裂抗性( FNCT
環境應力開裂抗性透過全缺口蠕變測試 (FNCT)進行評估。根據全缺口蠕變測試方法(FNCT)ISO 16770-2019在50°C下,以缺口深度為1 mm,且試樣尺寸為 6 mm x 6 mm x 90 mm(4 mm x 4 mm)的條件來測量FNCT失效時間。使用的溶劑是在去離子水中的2 wt% Arkopal N100。樣品製備根據ISO 16670-2019(壓縮成型和退火)進行。
使測試試樣在水溶液中承受6.0 MPa的應力。對於每個樣品,測試3至4個試樣。使用所有測量的平均失效時間值以小時為單位來報告失效時間。 f 瓶子落下試驗
如WO 2020/148319 A1中所述,透過在具有單螺桿擠出機的B&W機器上使用190°C的熔體溫度和15°C的模具溫度進行擠出吹氣成型,生產出外徑為90 mm、壁厚為0.6 mm、總高為204 mm且圓柱罩高為185 mm的1L瓶子。
如WO 2020/148319 A1中所述進行漸進式落下試驗。使如上所述界定的每個瓶子從逐漸增加的高度連續落下數次。對於每個瓶子,當發生破裂時停止測試。
對如上所述的擠出吹氣成型的1L瓶子進行落下試驗。用水將瓶子裝滿至其肩部。
每個測試系列至少需要12個瓶子。使4個瓶子同時從根據下表選擇的起始高度落下,其中,預期的破裂落下高度已在預測試中測定或已根據經驗選擇:
預期的破裂落下高度 (m) 0.3至1.0 1.0至2.5 2.5至5.0
起始落下高度 (m) 0.2 0.5 2.0
將那些顯示破裂的瓶子丟棄,並將其餘的瓶子在高度增加的情況下繼續測試。增加高度的步長(size of the steps)取決於起始高度。起始高度低於0.5 m,則步長為0.1 m;而始高度等於或大於0.5 m,則步長為0.25 m。紀錄每個瓶子的破裂落下高度,並根據以下公式由該些單一值來計算平均破裂落下高度: 其中, h p= 平均破裂落下高度, h i= 個體破裂落下高度, n g= 落下容器的總數。 g 拉伸模數和斷裂拉伸應變
拉伸模數和斷裂拉伸應變根據ISO 527-2(十字頭速度=1 mm/min;測試速度50 mm/min,在23°C下)使用EN ISO 1873-2中所述的射出成型試樣(狗骨頭形狀,4 mm厚)測得。在試樣經過96小時的調節時間後進行測量。 h 彎曲模數
彎曲模數根據ISO 178方法A(3點彎曲測試)在80 mm x 10 mm x 4 mm的試樣上測定。按照標準,使用2 mm/min的測試速度和16倍厚度的跨距長度。測試溫度為23±2°C。射出成型根據ISO 17855-2進行。 i 衝擊強度(夏比 NIS
衝擊強度根據ISO 179-1 eA在+23°C和-20°C下,在根據EN ISO 1873-2製備的80 x 10 x 4 mm射出成型試樣上測定,作為缺口夏比衝擊強度(1eA)(非儀器式,ISO 179-1,在0°C下)。 j CIELAB 色彩空間( L*a*b*
在CIE L*a*b*均匀色彩空間中,色度座標為:L*-明度座標;a*-紅/綠座標,其中+a*表示紅色,-a*表示綠色;b*-黃/藍座標,其中+b*表示黃色,-b*表示藍色。L*、a*以及b*座標軸界定三維CIE色彩空間。使用標準Konica/Minolta色度計CM-3700A。 k 重金屬含量
包括Cr、Cd、Hg以及Pb的重金屬的含量透過X射線螢光分析(XRF)測定。
用於XRF測量的儀器是Malvern Panalytical的波長色散光譜儀Zetium(2,4kW)。該儀器使用Malvern Panalytical的基於聚烯烴的標準品套組,即Toxel進行校準。
在真空下在直徑為40 mm且厚度為2 mm的板上進行分析。
使用該方法在此標準品限定的範圍內測定聚烯烴基質中Cr、Cd、Hg以及Pb的定量含量。 l 頂空氣相層析 / 質譜法( HS/GC-MS
苯和檸檬烯的測定基於靜態頂空(HS)方法。該分析將HS取樣器與氣相層析儀(GC)和質譜儀(MS)結合使用以用於篩選目的。
將樣品用密封的鋁塗層聚乙烯(PE)袋運送到實驗室。在分析之前,對樣品進行冷凍研磨,將2.000±0.100 g的部分秤重於20ml HS小瓶中並緊閉。對每個樣品進行二重複測定。 1.1 HS/GC/MS 參數
HS參數(Agilent G1888頂空取樣器) 小瓶平衡時間:         120 min(樣品),5 min(標準品) 烘箱溫度:                100°C(樣品),200°C(標準品) 迴路溫度:                110°C(樣品),205°C(標準品) 轉移管線溫度:         120°C(樣品),210°C(標準品) 低振盪
GC參數(Agilent 7890A GC系統) 管柱:                        ZB-WAX 7HG-G007-22(30 m x 250 µm x 1 µm) 載流氣體:                氦氣5.0 流量:                       2 ml/min 分流:                       5:1 GC烘箱程序:           35°C持續0.1 min 10°C/min直到250°C 250°C持續1 min
MS參數(Agilent 5975C inert XL MSD) 採集方式:                掃描 掃描參數: 低質量:   20 高質量:   200 閾值:         10
軟體/資料評估 MSD ChemStation E.02.02.1431 MassHunter GC/MS Acquisition B.07.05.2479 AMDIS GC/MS Analysis Version 2.71 NIST/EPA/NIH Mass Spectral Library (2011 version) NIST Mass Spectral Search Program Version 2.0 g
AMDIS反摺積參數 最小匹配因數:            80 閾值:                           低 掃描方向:                    高到低 資料檔案格式:            Agilent檔案 儀器類型:                    四極桿 組件寬度:                    20 相鄰峰減除:                二個 解析度:                        高 靈敏度:                        非常高 形狀要求:                    中等 溶劑拖尾:                    91 m/z 管柱流失(bleed):    207 m/z 最小模型峰數:            2 最小S/N:                     10 最小特定峰數:            0.5
MSD ChemStation積分參數 積分器:                               ChemStation 初始面積排除(reject):   0 初始峰寬:                           0.005 肩部檢測:                           關 初始閾值:                           10.5
在本研究中,「低於偵測極限(< LOD)」的敘述描述了匹配因數低於80(AMDIS)或樣品運行中的峰的訊雜比(Pk-pk S/N =校準後的訊號/Pk-pk雜訊,MSD ChemStation訊號對雜訊報告)低於3的情況。該結果僅與所測量的樣品、測量時間以及應用的參數有關。 1.2 標準溶液
為了主動識別並與(最低)氣味偵測閾值(ODT)進行比較,分別使用苯標準品和檸檬烯標準品(見表1)。
對於HS/GC/MS分析,將5 µl的各個標準品注入20ml HS小瓶中,緊閉並測量。
假設標準品物質完全汽化,則HS 中苯(或在其他情況下為檸檬烯)的濃度估算如表1中所列。
1 :校準標準品和 ODT
分析物 溶劑 c G / mg m -3 目標離子 (m/z) ( 最低 ) ODT / mg m -3[1]
甲醇 25 78 1.5
檸檬烯 2-丁醇 75 68 0.21
1.3 資料評估
HS中的分析物濃度 是透過考慮物質的量 和可用的HS體積 計算得出(方程式1)。 方程式 1
為了估算聚合物樣品上方的HS中的分析物濃度,需要單點校準的感應因子 Rf(方程式2)。透過對所萃取離子的層析圖(EIC)進行積分,可獲得分析物的峰面積。對應的目標離子列於表1。 方程式 2
聚合物樣品上方的HS中的分析物濃度 透過將感應因子乘以樣品的EIC峰面積計算得出(方程式3)。 方程式 3
此外,透過氣味活性值(OAV)估算聚合物樣品上方的HS中的分析物的氣味相關性。因此,將聚合物樣品上方的HS中的分析物濃度 與文獻[1]中發現的(最低)氣味偵測閾值(ODT)進行比較(方程式4)。高於1的值表示在給定的HS溫度下分析物與氣味相關。 方程式 4 1.4 注意事項和限制
必須考慮到某些物質的ODT低於該方法的偵測極限(LOD)。因此,低於LOD的成分可能會被遺漏,但其仍與整體氣味相關。
OAV是基於HS參數在某種程度上與ODT測定的測量條件相關的假設。當然,這並不完全適用,因為此類實驗不一定選擇100°C的溫度設定,因此實用價值有限。儘管如此,這種方法至少可以表示指定的標記物質的氣味相關性。
考慮到所有提到的假設和限制,樣品上方的HS中測定的濃度和氣味活性值只能用作粗略估算。 1.5 參考文獻[1] Van Gemert L. J., Odour Thresholds: Compilations of odour threshold values in air, water and other media, Utrecht, Oliemans Punter & Partners BV, 2011。 m 氣味等級( VDA270-B3
VDA270是測定機動車輛中的裝潢材料的氣味特性的測定方法。在本研究中,氣味等級是依據VDA 270(2018)版本B3測得的。在盡可能少次地掀起廣口瓶的蓋子後,每個評審員根據VDA 270評分標準評估各個樣品的氣味。六級評分標準由以下等級所組成:等級1:無法察覺;等級2:可察覺,但不干擾;等級3:清晰可察覺,但不干擾;等級4:干擾;等級5:強烈干擾;等級6:不可接受。評審員在評審過程中保持冷靜,並且不允許在測試期間討論各自的結果而使彼此產生偏見。他們也不允許在測試另一樣品後調整他們的評定。出於統計原因(並且被VDA 270所接受),強制評審員在評估中使用所有的步驟。因此,氣味等級是基於所有單獨評定的平均值,並且四捨五入為整數。 n 動態流變測量
透過動態剪切測量對聚合物熔體進行的特性分析符合ISO標準6721-1和6721-10。在配備有25 mm平行板幾何結構的Anton Paar MCR501應力控制旋轉流變儀上進行測量。所述測量在壓縮成型的板上進行,使用氮氣環境並設定在線性黏彈性範圍內的應變。對於PE和PP分別在190°C和200°C下應用0.01和600 rad/s之間的頻率範圍並設定1.3 mm的間隙,以進行振盪剪切測試。
在動態剪切實驗中,探針在正弦變化的剪切應變或剪切應力(分別為應變和應力控制模式)下受到均勻變形。在受控應變實驗中,探針受到正弦應變的影響,其可以表示為: (t) = γ 0sin(ωt)                                           (1) 如果施加的應變在線性黏彈性範圍內,則產生的正弦應力響應可以由下式得出: (t) = σ 0sin(ωt + δ)                                     (2) 其中, σ 0和γ 0分別是應力和應變的振幅, ω是角頻率, δ是相移(所施加的應變與應力響應之間的損耗角), t是時間。
動態測試結果通常透過幾種不同的流變函數表示,即,剪切儲存模數G’、剪切損耗模數G”、複變剪切模數G*、複變剪切黏度η*、動態剪切黏度η’、複變剪切黏度的異相分量η”、以及損耗正切tan δ,可表示如下: (3) (4) (5) (6) (7) (8)
如方程式9所述確定所謂的剪切稀化因子(STF)。 (9)
這些值是透過Rheoplus軟體定義的單點內插法程序確定的。在實驗上未達到給定G*值的情況下,使用與之前相同的程序透過外插法確定該值為10。在這兩種情況下(內插或外插),都應用了Rheoplus中的選項「由參數將y值插值到x值」和「對數插值類型」。
這些測試在用冷凍研磨的粉末製成的壓縮成型圓盤上進行。 o LAOS 非線性黏彈性比
借助大振幅振盪剪切進行剪切流下的非線性黏彈性行為的研究。該方法需要在給定時間t內在施加給定角頻率ω的情況下施加正弦應變振幅γ 0。如果施加的正弦應變足夠高,則會產生非線性響應。在這種情況下,應力σ是所施加的應變振幅、時間和角頻率的函數。在這些條件下,非線性應力響應仍然是週期函數;但是,其不能再用單一的諧波正弦曲線來表示。非線性黏彈性響應[1-3]產生的應力可以用傅立葉級數表示,其包括高次諧波貢獻: 其中,σ為應力響應, t為時間, ω為頻率, γ 0為應變振幅, n為諧波次數, G′ n為n階彈性傅立葉係數, G′′ n為n階黏性傅立葉係數。
應用大振幅振盪剪切(LAOS)分析了非線性黏彈性響應[4-6]。在耦接有標準雙錐形模具的Alpha Technologies的RPA 2000流變儀上進行時間掃描測量。在測量過程中,測試室是密封的,並施加約6 MPa的壓力。LAOS測試在190°C的溫度、0.628 rad/s的角頻率、以及1000%的應變下進行。為了確保達到穩態條件,非線性響應僅在每次測量完成至少20個週期後才測定。大振幅振盪剪切非線性因子(LAOS_NLF)定義為: 其中,G′ 1是一階傅立葉係數, G′ 3是三階傅立葉係數。
這些測試在冷凍研磨的粉末上進行。
[1] J. M. Dealy, K. F. Wissbrun, Melt Rheology and Its Role in Plastics Processing: Theory and Applications; edited by Van Nostrand Reinhold, New York (1990) [2] S. Filipe, Non-Linear Rheology of Polymer Melts, AIP Conference Proceedings 1152, pp. 168-174 (2009) [3] M. Wilhelm, Macromol. Mat. Eng. 287, 83-105 (2002) [4] S. Filipe, K. Hofstadler, K. Klimke, A. T. Tran, Non-Linear Rheological Parameters for Characterisation of Molecular Structural Properties in Polyolefins, Proceedings of Annual European Rheology Conference, 135 (2010) [5] S. Filipe, K. Klimke, A. T. Tran, J. Reussner, Proceedings of Novel Non-Linear Rheological Parameters for Molecular Structural Characterisation of Polyolefins, Novel Trends in Rheology IV, Zlin, Check Republik (2011) [6] K. Klimke, S. Filipe, A. T. Tran, Non-linear rheological parameters for characterization of molecular structural properties in polyolefins, Proceedings of European Polymer Conference, Granada, Spain (2011) p )無機殘留物
根據DIS ISO 1172:1996使用Perkin Elmer TGA 8000透過TGA測量無機殘留物。將大約10至20 mg的材料放入鉑盤中。將溫度在50°C平衡10分鐘,然後在氮氣下以20°C/min的加熱速率升溫至950°C。灰分含量在850°C計算為重量%。 實施例
IE1的原料是從希臘和波蘭的城市固體廢棄物(MSW)中分選出的混合塑膠部分獲得的。
IE2的原料是從法國和瑞士市場上商購的消費後廢棄物(PCW)多層牛奶瓶的原料中分選出的聚乙烯。
CE1是HDPE回收物的商業產品。它以主要包括預分選的社區垃圾的消費後廢棄物(PCW)的原料為基礎。
透過包括以下步驟的回收方法獲得IE1和IE2組成物的HDPE混合回收物: a)提供成包的消費後塑膠廢棄物部分(如上所述); b)篩選材料以去除尺寸過小的部分(且根據需求去除尺寸過大的部分); c)透過顏色分選步驟分選出白色和透明/天然色者(例如白色瓶子、透明洗髮精瓶、優格杯),並透過近紅外線(NIR)感測器和光學感測器分選出其他聚合物種類(PP、PS、PA)以及紙張、木材等汙染物。 d)將由彩色HDPE目標物組成的剩餘部分進行研磨,並在鹼性水溶液中用各種洗滌劑洗滌,然後進行乾燥、風選以及篩選。 e)將得到的塑膠片狀材料進一步分選以去除非聚烯烴片狀物; f)擠出該材料並產生顆粒形式的根據本發明的HDPE摻合物。
獲得的回收聚乙烯混色摻合物的特性如下表2所示。
2
IE1 IE2 CE1
原料 PCW (MSW) PCW (牛奶瓶) PCW
MFR (190°C/2.16kg), g/10min 0.4 0.6 0.8
MFR (190°C/5.0 kg), g/10min 1.7 2.5 3.3
MFR (190°C/21.6 kg), g/10min 34 44 65
密度, kg/m 3(ISO-1183) 961.5 980.4 955.9
iPP (IR), % 0.8 n.d. 12.1
重金屬 (XRF), %
Cr 13 ppm <0.5 ppm <0.5 ppm
Cd <6 ppm n.d. 80 ppm
Hg <0.5 ppm <0.5 ppm <0.5 ppm
Pb 10 ppm <1 ppm 87.1 ppm
灰分含量 (TGA), wt% 0.8 2.7 1.2
可溶餾分的C2餾分(NMR), wt% 98.5 99.7 < 90
可溶餾分的C4餾分 (NMR), wt% 0.15 0.2 0.37
可溶餾分的C6餾分 (NMR), wt% 0.17 n.d. 0.33
可溶餾分的C7及以上餾分 (NMR), wt% n.d. n.d. n.d.
可溶餾分的同排PP餾分 (NMR), wt% 1.45 0.3 22.2
結晶度 (計算值, DSC), % 68.4 69.1
Mn (GPC), wt% 9505 12000
Mw (GPC), wt% 138500 132500
Mz (GPC), wt% 826500 842500
MWD (Mw/Mn), GPC 14.5 11
在60°C的可溶餾分(CFC), % 7.31 4.78
HPF-均聚物PE餾分(HF)  (CFC), wt% 81.33 84.78
IE1 IE2 CE1
原料 PCW (MSW) PCW (牛奶瓶) PCW
CPF-共聚物PE餾分 (HF) (CFC), wt% 18.67 15.22
氣味等級 (VDA270-B3) 3.7 3.3 4.2
苯 (HS GC-MS), mg/m 3 低於偵測極限 低於偵測極限 有,偵測到苯
檸檬烯 (HS GC-MS), mg/m 3 67 3
LAOS - NLF 1000% 190°C 2.3 3.9 3
色彩CIELAB:
L* 50.1 ± 0.02 41.8 ± 0.08 37
a* -2.8 ± 0.02 -0.5 ± 0.01 -2
b* 1.8 ± 0.02 -3.7 ± 0.01 0.8
Eta (0.5 rad/s), Pa.s. 35295 28033 30358
Eta (300 rad/s), Pa.s. 745 718 597
剪切稀化因子 (STF), Eta (0.5) /Eta (300) 47.4 39.0 50.9
拉伸模數, MPa (ISO 527-2, -1A) 872 958 934
夏比缺口衝擊強度 (NIS), +23°C, kJ/m 2 23.2 19.8 15.8
夏比缺口衝擊強度 (NIS), -20°C, kJ/m 2 6.5 12.3 4.3
彎曲模數 (ISO 178), MPa 866 980 875
n.d.-無法確定
對上述IE1、IE2以及CE1的樣品,根據ISO 16770-2019在50°C和6.0 MPa下在2 wt% Arkopal N100中進行根據FNCT測試的環境應力開裂抗性測試,並根據實驗部分所述的瓶子落下試驗的進行衝擊強度測試。結果如下表3所示。
3
IE1 IE2 CE
FNCT (50°C, 6.0 MPa) - 失效時間, 小時 11.2 3.9 3.2
1L瓶子落下試驗- 在0°C的平均落下高度, 公尺 5.2 5.3 1.1
1L瓶子落下試驗- 在-20°C的平均落下高度, 公尺 3.4 4.7 0.7
上述結果顯示,根據IE1和IE2的聚乙烯混色摻合物在各種特性上均比商業回收物有所改進,例如: -(非常)高純度的rHDPE混合回收物(少量的iPP); - HS GC-MS未檢測到苯; -(非常)低的重金屬汙染(Cr、Cd、Pb、Hg); - 即便在低溫下也具有良好的韌性性能(夏比缺口衝擊強度); - 瓶子的良好機械性能(例如瓶子落下試驗) - 更好的環境應力開裂抗性(FNCT)
IE1的iPP含量僅為0.8 wt%,顯示化學純度有所提高,而根據CE1的常規回收物顯示出12.1 wt%的不純度。同時,實施例IE1和IE2的重金屬和苯含量均降低至低於偵測極限的程度,然而CE1不滿足這些要求。
根據IE1和IE2的混色摻合物在機械性能方面比CE1的摻合物得到進一步的改進。本發明的兩個實施例都顯示出優異的夏比缺口衝擊強度(表2)、優異的ESCR(FNCT)及瓶子落下試驗中的韌性(表3)。

Claims (14)

  1. 一種聚乙烯混色摻合物,具有: (i)0.1至10 g/10 min的熔體流率(ISO1133,5.0 kg;190°C); (ii)950至990 kg/m 3的密度(ISO1183); (iii)至少95.0 wt%的C2餾分,其透過d2-四氯乙烯可溶餾分的 13C-NMR測得; (iv)在73.0至91.0 wt%的範圍內的均聚物餾分(HPF)含量,其根據透過交叉分級層析法(CFC)進行的化學成分分析測得; (v)在10.0至22.0 wt%的範圍內的共聚物餾分(CPF)含量,其根據透過交叉分級層析法(CFC)進行的化學成分分析測得; (vi)相對於總聚乙烯摻合物不超過100 ppm的選自Cr、Cd、Hg以及Pb的重金屬的總含量,其如本文所述透過X射線螢光分析法(XRF)測得;以及 (vii)至少3.0小時的全缺口蠕變測試(FNCT)的失效時間,其如本文所述根據ISO16770-2019在50°C和6.0 Mpa下在2 wt% Arkopal N100中測得, 該聚乙烯混色摻合物具有如本文所述根據DIN EN ISO 11664-4測得的CIELAB色彩空間(L*a*b*)如下: L*為30.0至73.0; a*為-10至25; b*為-5至20。
  2. 如請求項1所述之聚乙烯混色摻合物,其中,該聚乙烯混色摻合物具有0.1至3.0 wt%的源自同排聚丙烯(iPP)的單元,其如本文所述透過上述可溶餾分的 13C-NMR分析測得。
  3. 如前述請求項中任一項所述之聚乙烯混色摻合物,其中,該聚乙烯混色摻合物具有在2.0至4.0的範圍內的大振幅振盪剪切-非線性因子(LAOS-NLF),其如本文所述在190°C、0.628 rad/s的角頻率、以及1000%的應變下測得, LAOS – NLF = 其中,G 1′是一階傅立葉係數, G 3′是三階傅立葉係數。
  4. 如前述請求項中任一項所述之聚乙烯混色摻合物,其中,該聚乙烯混色摻合物具有在30至60的範圍內的剪切稀化因子(STF)值,其如本文所述根據ISO 6721-1和6721-10在190°C下在0.01至600 rad/s的頻率範圍內測得,定義為複變黏度eta(0.05)和eta(300)的比值。
  5. 如前述請求項中任一項所述之聚乙烯混色摻合物,其中,該聚乙烯混色摻合物具有低於偵測極限的苯含量,其如本文所述根據靜態頂空層析質譜法(HS/GC-MS)在100°C/2小時下測得。
  6. 如前述請求項中任一項所述之聚乙烯混色摻合物,其中,該聚乙烯混色摻合物具有至少5.0 kJ/m 2的夏比缺口衝擊強度,其根據ISO 179-1 eA在-20°C下對根據EN ISO 1873-2製備的80 x 10 x 4 mm的射出成型試樣進行測定。
  7. 如前述請求項中任一項所述之聚乙烯混色摻合物,其中,該聚乙烯混色摻合物具有如本文所述的在0°C下在1公升瓶子落下試驗中的平均落下高度為至少3.0公尺的衝擊強度,其中,該瓶子如本文所述地生產。
  8. 一種回收聚乙烯混色材料的方法,包括以下步驟: a) 提供混合塑膠廢棄物料流(A); b) 篩分該混合塑膠廢棄物料流(A),以產生僅具有最長尺寸在30至400 mm的範圍內的物體的經篩分的混合塑膠廢棄物料流(B); c) 藉助於一個或多個配備有近紅外光(NIR)感測器和光學感測器的分選系統,對該經篩分的混合塑膠廢棄物料流(B)進行分選,其中,至少透過聚合物的種類和顏色以及可選的物體形式對該經篩分的混合塑膠廢棄物料流(B)進行分選,從而產生經分選的混色聚乙烯回收料流(CM),該經分選的混色聚乙烯回收料流(CM)單獨進行步驟d)及後續步驟; d) 將該經分選的混色聚乙烯回收料流(CM)切碎,以形成片狀混色聚乙烯回收料流(D); e) 在不輸入熱能的情況下,用第一洗滌水溶液(W1)洗滌該片狀混色聚乙烯回收料流(D),從而產生第一懸浮聚乙烯回收料流(E); f) 從該第一懸浮聚乙烯回收料流(E)中去除至少一部分的該第一洗滌水溶液(W1),以獲得第一經洗滌的聚乙烯回收料流(F); g) 用第二洗滌水溶液(W2)洗滌該第一經洗滌的聚乙烯回收料流(F),從而產生第二懸浮聚乙烯回收料流(G),其中,將足夠的熱能引入該第二懸浮聚乙烯回收料流(G),以在洗滌期間提供在65至95°C的範圍內的溫度; h) 從該第二懸浮聚乙烯回收料流(G)中去除該第二洗滌水溶液(W2)和任何不漂浮在該第二洗滌水溶液(W2)的表面上的物質,以獲得第二經洗滌的聚乙烯回收料流(H); i) 乾燥該第二經洗滌的聚乙烯回收料流(H),從而獲得經乾燥的聚乙烯回收料流(I),該經乾燥的聚乙烯回收料流(I)包含如前述請求項中任一項所述之聚乙烯混色摻合物。
  9. 如請求項8所述之方法,進一步包括以下步驟中的至少一個: j) 將從步驟i)中獲得的該經乾燥的聚乙烯回收料流(I)分離成輕餾分和重餾分聚乙烯回收料流(J); k) 藉助於一個或多個光學分選機,透過去除任何包含一種或多種目標聚乙烯以外的材料的片狀物,進一步對該重餾分聚乙烯回收料流(J)進行分選,或者在不存在步驟j)的情況下進一步對該經乾燥的聚乙烯回收料流(I)進行分選,以分選出該一種或多種目標聚乙烯,從而產生純化的聚乙烯回收料流(K); l) 對該純化的聚乙烯回收料流(K)進行熔融擠出,較佳地進行造粒,較佳地,其中,在熔融態中添加添加劑(Ad),以形成經擠出的,較佳地經造粒的回收聚乙烯產物(L);以及 m) 對該回收聚乙烯產物(L)進行通氣,或者在不存在步驟l)的情況下對該純化的聚乙烯回收料流(K)進行通氣,以去除揮發性有機化合物,從而產生經通氣的回收聚乙烯產物(M),該經通氣的回收聚乙烯產物(M)是經通氣擠出的,較佳地經造粒的回收聚乙烯產物(M1),或是經通氣的回收聚乙烯片狀物(M2), 其中,步驟l)和m)的順序可以互換,使得該純化的聚乙烯回收料流(K)先被通氣以形成該經通氣的回收聚乙烯片狀物(M2)隨後被擠出,較佳地,其中,在熔融態中添加添加劑(Ad),以形成經擠出的,較佳地經造粒的、經通氣的回收聚乙烯產物(M3),該回收聚乙烯產物(M3)是如請求項1至7中任一項所述之聚乙烯混色摻合物。
  10. 如請求項1至7中任一項所述之聚乙烯混色摻合物,其中,該聚乙烯混色摻合物可根據如請求項8或9所述之方法獲得。
  11. 一種由如請求項1至7和10中任一項所述之聚乙烯混色摻合物所製成的物品。
  12. 如請求項11所述之物品,其中,該物品是瓶子。
  13. 一種包含如請求項1至7和10中任一項所述之聚乙烯混色摻合物與至少一種原生聚烯烴和/或回收聚烯烴的摻合物。
  14. 一種如請求項1至7和10中任一項所述之聚乙烯混色摻合物用於包裝應用、旋轉成型應用、汽車應用、或電線及電纜應用的用途。
TW112110509A 2022-03-22 2023-03-21 消費後回收的聚乙烯混色摻合物、其製備方法、由其製成的物品及該摻合物的用途 TW202413040A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP22163635.0 2022-03-22
EP22208347.9 2022-11-18

Publications (1)

Publication Number Publication Date
TW202413040A true TW202413040A (zh) 2024-04-01

Family

ID=

Similar Documents

Publication Publication Date Title
EP4090690A1 (en) Heterophasic polypropylene compositions comprising a recycled material as modifier with an improved balance of mechanical properties
CA3214308C (en) Mixed-plastics-polypropylene blend
EP3947554A1 (en) Compatibilization of recycled polyethylene-polypropylene blends
TW202413040A (zh) 消費後回收的聚乙烯混色摻合物、其製備方法、由其製成的物品及該摻合物的用途
WO2023110745A1 (en) Polyolefin composition comprising polypropylene homopolymer and recycled plastic material
EP4063452A1 (en) Mixed-plastics-polypropylene blend
WO2023180258A1 (en) Post-consumer recyclated colored polyethylene composition, method for its preparation and articles made therefrom
TW202407026A (zh) 消費後回收的聚丙烯混色摻合物、其製備方法、由其製成的物品及該摻合物的用途
TWI822065B (zh) 聚乙烯摻合物,由該聚乙烯摻合物製成之物件,含有該聚乙烯摻合物之摻合物及該聚乙烯摻合物之用途
EP4269498A1 (en) A flexible mixed-plastic polypropylene blend (pp-flex)
JP2024520448A (ja) ポリエチレンブレンド
US20240101802A1 (en) Upgraded polyolefin for electrical components
US20240043649A1 (en) Upgraded polyolefin for electrical components
TWI839887B (zh) 升級的高光澤回收組成物
WO2023104762A1 (en) Recyclate-containing polypropylene compositions with excellent surface quality
TW202323422A (zh) 升級的高光澤回收組成物
WO2024074319A1 (en) Polyethylene composition for a film layer
WO2023025711A1 (en) High melt flow polypropylene composition
WO2023217709A1 (en) Recyclate based thermoforming composition
CN117083337A (zh) 混合塑料聚丙烯共混物
WO2024068906A1 (en) Polyolefin composition comprising polypropylene homopolymer, polypropylene block copolymer and recycled plastic material