TW202411161A - 經金屬摻雜之活性碳 - Google Patents

經金屬摻雜之活性碳 Download PDF

Info

Publication number
TW202411161A
TW202411161A TW112130662A TW112130662A TW202411161A TW 202411161 A TW202411161 A TW 202411161A TW 112130662 A TW112130662 A TW 112130662A TW 112130662 A TW112130662 A TW 112130662A TW 202411161 A TW202411161 A TW 202411161A
Authority
TW
Taiwan
Prior art keywords
activated carbon
building
electrostabilizer
composition
purge gas
Prior art date
Application number
TW112130662A
Other languages
English (en)
Inventor
卓鎮權
厄爾 詹森
馬修 西伯特
Original Assignee
加拿大商碳智財科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加拿大商碳智財科技股份有限公司 filed Critical 加拿大商碳智財科技股份有限公司
Publication of TW202411161A publication Critical patent/TW202411161A/zh

Links

Abstract

一種併入活性碳、電穩定劑及/或潤濕性增強劑的組成物。生產導電性活性碳的方法,其包括將活性碳與電穩定劑及/或潤濕性增強劑合併以形成一活性碳混合物的步驟;及在升溫下將該活性碳混合物曝露於吹掃氣體。該電穩定劑可以是銅。該潤濕性增強劑可以是鋁。

Description

經金屬摻雜之活性碳
交互參照相關申請案
本申請案主張2022年8月17日提申之美國專利臨時申請案第63/398816號案,題名為「經金屬摻雜之活性碳」之優先權及權益,出於所有目的,該案之全部內容係以其全文併入本文以作為參考。 發明領域
一些實施例有關用於製成具有相對高電導之活性碳的方法。一些實施例有關用於製成具有相對低氧含量之活性碳的方法。一些實施例有關用於製成具有金屬摻雜其中且具有相對高離子電導之活性碳的方法。一些實施例有關藉由本文描述之方法製成的活性碳或具有金屬摻雜其中且具有相對低內阻的活性碳。一些實施例有關具有由此類材料製成之電極的超級電容器或電池。
發明背景
電化學能量儲存裝置利用物理及化學性質來充電。舉例而言,超級電容器使用物理儲存機制以生成具長壽命之高功率。電池採用氧還反應來儲存及釋放能量。
能量儲存系統之電極在超級電容器及電池應用(包括鋰硫(LiS)電池應用)中要求高吸附能力與良好的微孔度及低電阻。典型的活性碳具有高吸附能力,但一般不具有適合的電性質。典型的活性碳具有與氧相關的官能基團,該等官能基團係化學地結合在表面上,這可以導致超級電容器及鋰硫電池的使用壽命縮短。
在解決其電性質之缺點的前提下,諸如活性碳的碳材料可以提供用於電極製造的有用材料。舉例而言,碳基材料可以設計成高度多孔的材料,以便具有高表面積。材料中的孔徑可以是微孔的,主要是為了提供高表面積。碳材料亦可以賦予良好的吸附性(即,離子附著在材料表面上)及低電阻(即,在高電流下有效的電子及離子移動)。碳孔徑可以描述成微孔(具有小於2nm的孔寬)、中孔(具有2nm與50nm之間的孔寬)及大孔(具有大於50nm的孔寬)。
活性碳歸因於高表面積(1,000-3,000m 2/g)已被用於電極材料。活性碳廣泛地由許多天然物質生產,諸如煤(褐煤、煙煤及無煙煤)、泥煤、木材及椰子殼。在這些天然原物料中,椰子殼製成良好的活性碳,因為其佔支配地位的小於2nm微孔度是超級電容器碳所要求的。
活性碳的生產主要涉及碳化及用氧化劑或活化劑活化。在還原大氣下碳化將天然物質轉化為炭(碳)。炭被部分氧化以生產活性碳。活化形成活性碳的多孔表面,但這種部分氧化過程不能移除含氧官能基團。當活性碳用於超級電容器之電極材料時,含氧官能基團對超級電容器可以引發削弱初始電容並限制使用壽命的寄生反應。含氧官能基團亦對超級電容器及電池應用(諸如鋰硫應用)引發高電阻。
具經改善電性質之活性碳材料的潛在應用實例包括超級電容器及電池,包括金屬硫(例如鋰硫(LiS))電池。超級電容器,知悉為電化學雙層電容器(EDLC),是可以橋接電解電容器與可充電電池之間之差距的高容量電容器。超級電容器每單位體積或質量潛在地可以比電解電容器儲存更多的功率(例如,典型10到100倍多的功率),並且可以比電池更快地接受及傳遞電荷,因為充電/放電僅涉及離子的物理移動,而不是化學反應。超級電容器亦可以比電池承受更多的充電及放電循環,並且可用於突發功率,舉例而言在再生制動期間於混合動力車中回收及供應,或作為建築或建築組件的一部分用於能量儲存。碳是超級電容器的理想材料,因為其具有高表面積及有利的成本。
可充電電池技術中日益受到關注的領域係鋰硫(Li-S)電池。鋰硫電池具有鋰金屬陽極及硫陰極。硫及鋰分別具有1672或1675mA h g -1的理論容量。因此,Li-S電池組的理論能量密度為2500 Wh kg -1,此係可充電電池組中最高的理論能量密度之一。因此,鋰硫電池為可攜電子產品及電動車提供了一種有前景的電能量儲存系統。
鋰硫(LiS)電池藉由將陰極處的硫還原為硫化鋰而運作: S + 16Li ↔ 8Li 2S (2.4V – 1.7V) 硫還原成硫化鋰之反應是複雜的,且涉及各種多硫化鋰(Li 2S x,8<x<1,例如Li 2S 8、Li 2S 6、Li 2S 4及Li 2S 2)的形成。
在一些鋰硫電池的事例中,陽極可以為純鋰金屬(在放電過程中Li°被氧化為Li +),且在一些事例中,陰極可以是含硫的活性碳(在放電過程中S°被還原為S 2-)。在陽極與陰極之間設有離子可滲透的隔膜,且在此類系統中使用的電解質一般為基於有機溶劑的混合物,諸如含有1莫耳之雙(三氟甲磺醯)亞胺鋰(LiN(SO 2CF 3) 2)及1%的硝酸鋰或之類的環狀醚,諸如1,2-二甲氧基乙烷(DME)及1,3-二氧戊環(DOXL)。
鋰硫電池的潛在優點包括高能量密度(理論上比鋰離子高5倍,但實際上2-3倍),儲存時不要求補足充電(top-up charging) (而鋰離子電池可能要求40%定期充電以防止容量損失),活性材料相較於鋰離子更輕,且用於製造鋰硫電池的材料比鋰離子電池更環境友善且更便宜(因為不要求稀土金屬)。
然而,鋰硫電池系統還有尚未充分解決以使其商業上有用的挑戰。舉例而言,多硫化鋰(Li 2S x,其中x是3及8之間的整數)溶解在電解質中,並進一步還原為在電池系統之陽極上形成的不溶性硫化鋰(例如Li 2S 2至Li 2S)。此類形成會引發活性材料的損失,引致商業上沒有用的短的壽命週期(亦即,更少的放電及充電循環)。
還有,因為硫是電子及離子絕緣的,所以需要將硫嵌入至導電基質中以用於鋰硫電池。碳是一種潛在有用的鋰硫電池電極材料,因為其具有多孔結構,該者支撐多硫化鋰的沈積,並可以幫助最小化放電期間之電極膨脹。鋰硫電池之陰極可以由浸漬硫之活性碳作為活性材料製成,其與來自陽極側鋰金屬的鋰離子反應。電極要求高吸附能力與微孔度及低電阻,以為超級電容器引發高電容,並儲存及減輕陽極側造成縮短LiS電池使用壽命之不溶性多硫化物的形成。
活性碳之許多形式亦包括高百分比的氧,例如在約15%的範圍,一般呈含氧官能基團的形式。氧是一種絕緣材料,且其存在於活性碳中會提高碳產品的電阻。
採用綠色經濟及可再生能源(諸如風能及太陽能)必需採用更好的能量儲存系統。來自可再生能源的電力生產不可以預測控制,且為了使此類能源供應顯著比例的電力到一電網,要求可靠且重大的能量儲存系統來平衡可再生能源提供的不規則發電量。提供有意義的能量儲存系統允許在電力生產期間儲存電力,並允許在由可再生能源生產的電力減少期間供應電力到電網。然而,此類能量儲存系統必須相當大才能夠達成所希望的電網穩定化。
提供可以促進自可再生能源廣泛生產電力之能量儲存系統的一策略是將此類能量儲存系統併入至建築或建築組件中。這種策略可以允許儲存大量能量,而不會為了能量儲存系統產生顯著的單獨佔地面積。然而,用作建築或建築組件之一部分的能量儲存系統需要堅固且可靠(例如,具有涵蓋許多充電及放電循環的長壽命),因為此類系統的更換或維修可能是困難的或對建築物的其他用途有破壞性。更進一步,此類能量儲存系統應該提供高能量密度,以為了最大化能量儲存同時最小化由此類能量儲存系統佔據的空間量。
對於改善超級電容器及/或金屬硫(包括鋰硫)電池系統之容量的技術依舊有需要。相關技藝之前述實例及與其相關之限制意欲例示性而不是排他性的。一旦閱讀說明書且研究該等圖式後,相關技藝之其他限制對熟習本項技藝者將變得顯而易見。
發明概要
以下實施例及其態樣係結合系統、工具及方法來描述及例示,該等系統、工具及方法旨在示例性及例示性的,而不是旨在限制發明範疇。在各種實施例中,已降低或消除上述問題中之一或多者,而其他實施例係指向其他改善。
在一些態樣中,提供了含有活性碳、電穩定劑及/或潤濕性增強劑的組成物。在一些態樣中,提供了一種生產導電活性碳的方法,且涉及將活性碳與電穩定劑及/或潤濕性增強劑合併以形成活性碳混合物,並在升高溫度下將該活性碳混合物曝露於吹掃氣體。
在一些態樣中,該電穩定劑是導電金屬。在一些態樣中,該電穩定劑是過渡金屬。在一些態樣中,該電穩定劑是Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pb、Ag、La、Hf、Ta、W、Re、Os、Ir、Pt、Au 或Ac。在一些態樣中,該電穩定劑是Ni或Cu。在一些態樣中,該電穩定劑是銅。在一些態樣中,該潤濕性增強劑是鋁。在一些態樣中,該潤濕性增強劑是三氧化二鋁或活性三氧化二鋁。
在一些態樣中,該電穩定劑是金屬,且按金屬的元素含量重量計,金屬係以約0.5%至約4.0%的量存在。在一些態樣中,該潤濕性增強劑是金屬,且按金屬的元素含量重量計,以約0.15%至約1.5%的量存在。
在一些態樣中,提供了含有藉由本文所述之方法製成之活性碳組成物或活性碳的電極。在一些態樣中,提供了包含此一電極的超級電容器或電池。
在一態樣中,提供了含有此一電極的鋰硫電池,其中該電極包括含有按重量計濃度在約0.5%至約3.5%範圍內之電穩定劑的活性碳,及/或其中該電極包括含有按重量計濃度在約0.1%至約0.2%範圍內之潤濕性增強劑的活性碳。
在一態樣中,提供了含有此一電極的超級電容器,其中該電極包括含有按重量計濃度在約1%至約3.5%範圍內之電穩定劑的活性碳,及/或其中該電極包括含有按重量計濃度在約0.45%至約1.0%範圍內之潤濕性增強劑的活性碳。
在一些態樣中,提供了含有能量儲存系統之建築或模組化建築組件,該能量儲存系統含有如本文所述之超級電容器或電池。
除了上文所述之示例性態樣及實施例之外,藉由參照至該等圖式及藉由研究下列詳細說明,進一步的態樣及實施例將變得顯而易見。
較佳實施例之詳細說明
貫穿下列說明,具體細節係闡述了,以為熟習此項技術者提供更透徹的理解。然而,熟知元件可能未示出或未詳細描述以避免不必要地模糊本揭露內容。相應地,說明及圖式係以例示性而非侷限性意義看待。
在一示例性實施例中,本發明人已開發一種用於生產具有理想之物理性質之碳的新穎方法。此類碳具有潛在的用途,舉例而言,製造於能量儲存中使用的電極,舉例而言於超級電容器、金屬硫電池、鋰硫電池等等。本發明人已確定,用可充當潤濕性增強劑及電穩定劑的金屬摻雜活性碳可以改善活性碳的導電率及/或物理性質,特別是在活性碳已被處理以降低存在的官能基團數目之後。
在特別的測試示例性實施例中,木質素A(LA)、木質素B(LB)及黑液(BL,其含有溶解在鹼性溶液中的木質素)係用於生產基於木質素的活性碳,其使用氫氧化鉀(KOH)作為示例性氧化劑。使用還原氣體對木質素基活性碳處理以吹掃氣體(SG)處理,用於移除含氧官能基團。YP50F(YPAC,衍自於椰子殼)被選為生物基可再生源活性碳的比較類型。
觀察到實例中測試的經金屬摻雜活性碳顯示顯著改善的吸附能力及電學性質,這在測試的超級電容器應用中引致高的電容值。經金屬摻雜之活性碳適用於超級電容器及電池應用 (諸如金屬硫,包括鋰硫電池)中的電極材料。
如本文所用,活性碳的可再生源是指可以自然補充自身的碳源(例如,衍自生物基來源諸如木質素或椰子),與活性碳的不可再生源(諸如煤或石油副產品)相反。
如本文所用,木質素是指木質素A、木質素B兩者及黑液。木質素A及B分別是具低灰分(按質量計<2%)及高灰分(按質量計<25%)的牛皮紙木質素。沼氣消化後餘留的紙漿及紙類生物固形物(也稱為「活性污泥」)是另一種含有高水平木質素的原料。在製備沼氣時,可生物降解的生物固形物透過消化轉化為沼氣,然後留下不可降解的部分。不可降解部分的主要組分是木質素。高木質素原料是指含有顯著比例之木質素的材料(例如65%至98%之間或更高的木質素乾物質含量,包括其間的任何子範圍,例如按重量計至少65%、70%、75%、80% 、 85%、90%、95%、96%、97%、98%或大於98%的木質素乾物質含量),或來自製漿過程中獲得的黑液(其典型地在其濕物質含量含有10-15%之間的木質素,包括其間的任何值,包括按重量計11、12、13或14%的木質素,且其在其乾物質含量中可含有按重量計至少20-35%或更高的可回收木質素,包括其間的任何子範圍,例如按乾物質基重量計至少20%、21%、22%、23%、24%、25%、26%、27%、28% 、29%、30%、31%、32%、33%、34% 或35% 可回收木質素)。在一些實施例中,該高木質素原料按乾基重量計具有65%及98%之間或更高的可回收木質素含量,包括其間的任何子範圍,例如按乾基重量計至少65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或大於98%的可回收木質素)。
在一示例性實施例中,將活性碳研磨並與電穩定劑的溶解鹽及/或潤濕性增強劑的溶解鹽混合。乾燥所得製劑,讓金屬鹽物理地嵌入活性碳中。將乾燥的碳經受吹掃氣體處理,以從材料中移除氧並將金屬鹽轉化為其氧化物形式及/或元素形式,留下摻雜在碳中的金屬。電穩定劑可藉由在快速放電時提供高電容來幫助改善電容值。潤濕性增強劑可改善活性碳與溶劑及電解質的交互作用。
更具體地且不受理論所束縛,典型的活性碳含有高量含氧官能基團,其與極性溶劑具有有利的交互作用。氧係化學結合至活性碳,且當用作電極材料時會引致高電阻。如本文所述使用缺氧氣體或在還原條件下進行的吹掃氣體處理可以用於從活性碳中還原(並從而移除)氧基官能基團,引致活性碳的碳含量提高。脫氧活性碳變成與極性溶劑高度不交互作用的,包括用作超級電容器及鋰硫電池中電解質的極性溶劑。
大多數高效能超級電容器含有有機電解質。舉例而言,電解質可含有溶解在乙腈溶劑(極性溶劑)中的導電鹽(例如四氟硼酸四乙銨或TEABF 4)。透過本文所述之吹掃氣體方法生產的活性碳(即具有最少量氧基官能基團的高純碳)與極性溶劑高度不交互作用。電解質與活性碳非極性表面之間的潤濕性(交互作用)不足。不足的潤濕性引發TEABF 4在活性碳基電極中較差的離子移動率,引致活性碳基超級電容器不足的內阻(或離子阻抗或擴散電阻,其與電阻不同)。不受理論所束縛,添加潤濕性增強劑(諸如用鋁或其他適合的潤濕性增強劑摻雜活性碳)可以改善電解質的離子移動率(例如藉由改善電極與電解質之間的離子交互作用)。
不受理論所束縛,據信,如本文所述經金屬氧化物、金屬或金屬複合物摻雜的活性碳將為超級電容器提供具有低內阻的高電容,且多硫化鋰的遷移及​​隨後不溶性硫化鋰沉積到鋰硫電池的陽極中將最小化。此外,觀察到金屬摻雜降低了將活性碳漿料塗佈在鋁箔上以形成超級電容器之電極時所要求的溶劑量,並改善了活性碳漿料在鋁箔上的塗佈性質。
在一些實施例中,電穩定劑及/或潤濕性增強劑是不可燃的。
使用木質素或高木質素原料製備活性碳係於,舉例而言2022年2月15日提申之PCT申請案號PCT/CA2022/050218號案中描述,該者之全部內容係以其全文併入本文以作為參考。
參照圖1,例示了用於製備經金屬摻雜之活性碳之方法100的示例性實施例。在102處,如下文進一步描述將一或多種電穩定劑及/或潤濕性增強劑與活性碳合併以實行混合。在一些實施例中,電穩定劑及/或潤濕性增強劑作為溶液提供,並且將該溶液與活性碳混合並攪拌一段時間,例如½小時至1小時。在一些態樣中,可以使用球磨機或其他適合的設備合併該等物質以實行混合。在一些態樣中,可以在102處實行微研磨。在一些態樣中,在使用行星式球磨機或其他適合的設備混合一段時間(例如½小時至1小時)後,進一步研磨該等經合併物質。假若希望的話,可以在102處進一步加工該經混合及/或研磨/微研磨的物質。在104處,乾燥該混合物。在106處,將該混合物經受吹掃氣體處理,舉例而言如PCT/CA2022/050218中所述。
在一示例性實施例中,在104乾燥之後,於106處將活性碳於升高溫度下經受吹掃氣體處理。在一些實施例中,吹掃氣體處理係使用還原氣體與惰性氣體組合來實行。可用作還原氣體之氣體實例包括氫、氨、一氧化碳、合成氣體(forming gas)、合成氣或之類。合成氣體是本技藝已知的氫及氮之混合物。合成氣是本技藝已知的一氧化碳及氫之混合物。惰性氣體之實例包括氮氣、氦氣及氬氣。
在一些實施例中,用於實行吹掃氣體處理的氣體含有約80%至約98%之間的惰性氣體,包括其間的任何值或子範圍,例如 82、84、86、88、90、91、92、93、94、95、96或97%的惰性氣體,及約2%至約20%之間的還原氣體,包括其間的任何值或子範圍,例如 3、4、5、6、7、8、9、10、11、12、13、14、15、16、17或18%。在一些實施例中,用於實行吹掃氣體處理的氣體含有90-96%的惰性氣體及4-10%的還原氣體。在一些實施例中,吹掃氣體含有96%的氬及4%的氫。
在一些實施例中,活性碳混合物係以一固體薄層(舉例而言鋪展在托盤上)提供至吹掃氣體處理。在一些實施例中,活性碳混合物在吹掃氣體處理期間保持靜止。
在一些實施例中,於大氣壓下在6”管式爐中以大約0.25至1L/分鐘的流速施加吹掃氣體,包括其間的任何值,例如0.30、0.35、0.40、0.45、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90 或 0.95L/分鐘。熟習本項技藝者可以依據用於實行該方法之設備類型來調整施加之吹掃氣體的流速。步驟106可以在任何適合的設備中實行,例如,在各種實施例中可以使用管式爐、迴轉窯、流化床反應器或其他適合的設備。
在一些實施例中,於步驟106處,將吹掃氣噴灑在活性碳材料上或穿過活性碳材料。在一些實施例中,供應足夠量的吹掃氣體至活性碳材料,使得相對於活性碳中氧官能基團的數目有莫耳過剩的氫。在一些實施例中,吹掃氣體相對於活性碳材料之表面具有約0.25cm/min及7.0cm/min之間的表觀速度,包括其間的任何值,例如0.50、0.75、1.0、1.25、1.50、1.75、2.0、2.25、2.50、2.75、3.0、3.25、3.50、3.75、4.0、4.25、4.50、4.75、5.0、5.25、5.50、 5.75、6.0、6.25、6.50或6.75cm/min。
在一些實施例中,106處的吹掃氣體處理係在升高溫度下進行,且該升高溫度是在約750℃及約950℃之間之範圍內的溫度,包括其間的任何值或子範圍,例如775、800、825、850、875、900、925或950℃。在一些實施例中,吹掃氣體處理進行約0.5小時及約9小時之間的時間,包括其間的任何值或子範圍,例如 0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0或8.5小時。
在一些實施例中,於102處,將適合的活性碳源與電穩定劑及/或潤濕性增強劑合併。活性碳可以被研磨至相對小的粒徑。在一些實施例中,將活性碳研磨至約1μm至約10μm範圍內的大小,包括其間的任何值或子範圍,例如2、3、4、5、6、7、8 或9μm。在一實施例中,將活性碳研磨至約1μm至約10μm範圍內的大小,平均大小為6μm。
任何適合形式的活性碳可以用於各種實施例中。適合的活性碳源包括碳化的生物質,包括椰子、堅果殼、木質素或高木質素原料、煤、泥炭、木材及之類,其等可以以任何希望的方式轉化為活性碳。
在一些實施例中,電穩定劑是導電金屬。在一些實施例中,電穩定劑是過渡金屬。在一些實施例中,電穩定劑是Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pb、Ag、La、 Hf、Ta、W、Re、Os、Ir、Pt、Au或Ac。在一些實施例中,電穩定劑是Cu。在一些實施例中,電穩定劑是Ti、V、Ni、Cr、Co、Cu、Fe、Zn、Mn或Mo。在一些實施例中,電穩定劑是導電金屬。在一些實施例中,電穩定劑是在超級電容器中具有非法拉第反應的金屬。在一些實施例中,電穩定劑是通常用作超級電容器之集流體的銅(Cu)或鎳(Ni)。在一些實施例中,電穩定劑是Cu。在其中電穩定劑是Fe的一些實施例中,使用活性碳製作的電極中Fe的水平小於50ppm。
在一些實施例中,潤濕性增強劑是鋁。在一些實施例中,潤濕性增強劑是氧化鋁,例如AlO(氧化鋁(II))或Al 2O 3(氧化鋁(III),即三氧化二鋁)、活性三氧化二鋁(γ-Al 2O 3)或任何其他可以在極性與非極性物質之間提供更好交互作用的化合物。
在一些實施例中,電穩定劑及/或潤濕性增強劑在102處以金屬鹽的溶液供應,例如金屬與氯化物、氫氧化物、硝酸鹽、硫酸鹽或之類的鹽,例如硝酸銅、硫酸銅、硝酸鋁、硫酸鋁或之類。在一些實施例中,在102中,金屬鹽於水溶液中提供,或於具有任何可接受溶劑(例如水、甲醇、乙醇及/或任何其他極性溶劑)之溶液中提供。在一示例性實施例中,電穩定劑是銅,且銅是以硫酸銅供應(例如CuSO 4·5H 2O)。在一示例性實施例中,潤濕性增強劑是鋁,且鋁是以硝酸鋁(例如Al(NO 3) 3·9H 2O)供應。
在一些實施例中,與活性碳合併之電穩定劑的量在成品中按重量計在約0.5%至約4.0%元素含量的範圍內,包括其間的任何值或子範圍,例如 0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8 或 3.9%。在一些實施例中,與活性碳合併之電穩定劑的量按金屬的元素含量重量計在約1%至約3.5%元素含量的範圍內,包括其間的任何值或子範圍,例如 1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4或3.5%。在一些實施例中,與活性碳合併之電穩定劑的量按金屬的元素含量重量計小於約4.0%,包括例如按重量計小於約 3.9、3.8、3.7、3.6、3.5、3.4、3.3、3.2、3.1、3.0、2.9、2.8、2.7、2.6、2.5、2.4、2.3、2.2、2.1、2.0、1.9、1.8、1.7 、1.6、 1.5、1.4、1.3、1.2、1.1、1.0、0.9、0.8、0.7、0.6或0.5%。
在一些實施例中,於102處供應之潤濕性增強劑的量在成品中重量按金屬的元素含量重量計在約0.15%至約1.50%的範圍內,包括其間的任何值或子範圍,例如0.20、0.25、0.30、0.35、0.40、0.45、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95、1.0、1.05、1.10、1.15、1. 20、1.25、1.30、1.35、1.40或1.45%。在一些實施例中,於102處供應之潤濕性增強劑的量按金屬的元素含量重量計在約0.45%至約1.00%的範圍內,包括其間的任何值或子範圍,例如0.45、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95或1.0%。
在其中活性碳由木質素生產的一些實施例中,電穩定劑按重量計以約2.75%及3.25%之間的量存在,包括其間的任何值,例如按重量計2.80、2.85、2.90、2.95、3.0、3.05、3.10、3.15或3.20%,且潤濕性增強劑按重量計以約0.50%及1.25%之間的量存在,包括其間的任何值,例如按重量計0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95、1.0、1.05、1.10、1.15或1.20%。
在其中活性碳由椰子殼生產的一些實施例中,電穩定劑按重量計以約2.75%及3.25%之間的量存在,包括其間的任何值,例如按重量計2.80、2.85、2.90、2.95、3.0、3.05、3.10、3.15或3.20 %,且潤濕性增強劑按重量計以約0.25%及1.00%之間的量存在,包括其間的任何值,例如按重量計0..30、0.35、0.40、0.45、0.50、0.55、0.60、0.65、0.70、0.75、0.80、0.85、0.90或0.95%。
在一些實施例中,任何其他希望的添加劑或組分可以在102處以與針對電穩定劑及潤濕性增強劑所描述之類似的方式添加。舉例而言,在一些實施例中,在102處或在106的吹掃氣體處理完成之後添加導電率增強添加劑,諸如石墨烯、石墨或之類。
在一些實施例中,在活性碳已與金屬鹽合併之後,於104處乾燥所得混合物。可以使用任何適合的乾燥條件來實行步驟104,包括環境條件。在一些僅當作實例的實施例中,在約70℃範圍中的溫度下實行乾燥,例如於約60°C及80°C之間在對流烘箱中達大約48小時時間。在一些實施例中,在大氣壓下實行乾燥。在一些實施例中,在真空下實行乾燥,例如在約10至約760mmHg範圍內的壓力下,包括其間的任何值,例如20、50、100、150、200、250、300、350、400、450、500、550、600、650、700或750mmHg。乾燥後,於106處,在升高溫度下將混合物經受吹掃氣體處理。
在一示例性實施例中,用鋁作為潤濕性增強劑來實行活性碳的鋁摻雜。鋁鹽諸如硝酸鋁在活性碳表面上被轉化成一層薄薄的氧化鋁。作為電極材料的典型活性碳與含有用於超級電容器及鋰硫電池之有機電解質的極性溶劑係高度不交互作用。不受理論所束縛,據信如本文所述以氧化鋁摻雜的活性碳與極性物質具有交互作用及吸附性質,引致在快速放電速率下經改善的電容。經摻雜活性碳中的氧化鋁含量(其可以表達為元素鋁含量,例如按重量計組成物中的金屬元素含量)可以被優化以提供薄且導電的氧化鋁層。
更具體且進一步地,不受理論所束縛,據信用吹掃氣體處理來自鋁(例如,以硝酸鋁形式提供)之Al-O之最終產物以活性三氧化二鋁形式存在,且已知活性三氧化二鋁對於硫化合物的吸附是高度有效的以及其是親水性的。進一步已知的是活性三氧化二鋁對於吸附氟化物是高度有效的。在下面描述的實例中,超級電容器中使用的電解質含有氟硼酸根離子(BF - 4),這可以解釋所觀察到的這些電極的性質。本文實例中描述的結果暗示,透過吹掃氣體處理形成的經Al摻雜及經Al與Cu摻雜的活性碳可最小化鋰硫電池應用的陽極側中多硫化鋰的形成,並同時提供改良的電容。
進一步,不受理論所束縛,據信摻雜在活性碳中的銅以純銅金屬形式存在,其不具有任何吸附及親水性質。銅摻雜提供活性碳改善的導電率。然而,銅摻雜濃度過高的電極可能會降低超級電容器的電容,因為銅可能會堵塞活性碳上及活性碳中的微孔。所以,中等水平的電穩定劑(如銅)可能是有益的。
在一示例性實施例中,活性碳的銅摻雜是用銅作為電穩定劑來實行的。諸如硫酸銅的銅鹽可以轉化為金屬(即元素)銅以減少超級電容器的內阻,並同時最小化活性碳微孔被元素銅的堵塞。經摻雜活性碳中的銅含量可以表達為元素銅含量,例如按重量計組成物中的銅元素含量。
在一示例性實施例中,活性碳的鋁及銅摻雜是用鋁擔任潤濕性增強劑及銅擔任電穩定劑而實行。
在一些實施例中,所得活性碳產物具有至少約95%的碳含量,包括約90%及約99%之間,包括其間的任何值,例如96、97或98%。
在一些實施例中,使用氮氣吸附測定,所得活性碳產物具有至少2500m 2/g的BET表面積,包括至少2600、2700、2800、2900、3000、3100、3200或3300m 2/g。在一些實施例中,使用氮氣吸附測定,所得活性碳產物具有至少0.8cc/g的孔體積,包括至少0.85、0.90、0.95、1.00、1.05、1.10、1.15或1.20cc/g。在一些實施例中,所得活性碳產物具有至少2500mg/g的碘值,包括至少2550、2600、2650、2700、2750、2800、2850、2900、2950、3000、3050、3100、3150或3200mg/g。在一些實施例中,所得活性碳產物在未微粉化下具有小於15μm的平均粒徑,包括例如未微粉化下小於14、13、12、11或10μm,或微粉化下具有小於7μm的平均粒徑,包括例如微粉化下小於6或小於7μm。在一些實施例中,所得活性碳產物具有0.25g/cc或更高的總體密度,包括例如0.26、0.27、0.28、0.29、0.30、0.31、0.32、0.33、0.34或0.35g/cc或更高。
在一些實施例中,本文所述之活性碳產物被併入電極中。圖2顯示使用活性碳用於製作電極之方法200的示例性實施例。在202處,使用活性碳及黏合劑(例如PVF、聚偏二氟乙烯)在適合的溶劑(例如N-甲基吡咯烷酮、NMP)中製備活性碳漿料。任選地添加諸如石墨之導電率增強劑。在204處,以任何適合的方式均質化漿料,舉例而言藉由超音波震盪。在206處,以任何適合的方式(例如使用塗佈機)將所得漿料塗佈在適合的箔片上,例如鋁箔。
在208處,從經塗佈箔片上切下電極,並且在210處使用任何適合的設備(例如,Carver實驗室壓機)將電極熱壓縮,例如首先將電極加熱到諸如200°C的適合溫度,然後壓縮電極,例如在100 MPa下。在212處,電極被預適應,舉例而言藉由於150℃下在真空中放置過夜。在214處,於惰性大氣中(例如充滿氬氣的手套箱)中組裝電極,舉例而言使用氣密鈕扣型電池(例如具有Swagelok的CR2032硬幣型電池)。可以將二個電極放置在電池中,在其之間置放適合的隔膜,並且可以添加電解質(溶解在乙腈中之1.5M四氟硼酸四乙銨(TEABF 4))。
其他製作電極的方法對於熟習此項技術者係已知的且可以用於其他實施例中,並且前面的描述提供了關於製作電極的一種示例性方法的指導而不是限制性的。
藉由參照圖3,例示了製備用於鋰硫電池之活性碳陰極之方法300的示例性實施例。在302處,將活性碳與鋁(例如硝酸鋁(Al(NO 3) 3•9H 2O))及銅(例如硫酸銅(CuSO 4•5H 2O))混合。在304處,乾燥經合併材料,並且在306處將該材料經受如上所述的吹掃氣體處理。最後,在308處,將活性碳用硫浸漬,舉例而言,如PCT公開案號WO 2021/0248245號案中所述使用液態氨,該者係以其全文併入本文以作為參考,儘管任何適合的浸漬活性碳方法都可以使用,且其他方法是熟習本項技藝者已知的。
圖4例示了製作用於鋰硫電池之陰極之方法400的示例性實施例。圖4中例示之方法僅是示例性的,且熟習本項技藝者可以以任何適合的方式製作用於鋰硫電池之陰極。在402處,使用黏合劑(例如聚偏二氟乙烯)及導電劑(例如石墨)在適合的溶劑(例如N-甲基-2-吡咯烷酮)中製備碳-硫複合糊劑。在404處將混合物均質化(例如藉由超音波震盪),然後在406處將其塗佈到鋁箔上,例如使用一刮刀塗佈機。在408處,乾燥經塗佈之箔片,並且在410處將經塗佈的箔片依希望成形(例如,切割成所希望的形狀)以形成陰極,該者在412處係以任何適合的方式將其壓縮,例如使用Carver實驗室壓機。將陰極與鋰金屬陽極組合,然後在414處組裝電極並併入電解質(例如在1,2-二甲氧基乙烷(DME)及1,3-二氧戊環(DOXL)中之1M雙(三氟甲磺醯)亞胺鋰(LiN(SO 2CF 3) 2)及1%硝酸鋰)。
在一些實施例中,提供了具有併入活性碳之電極的鋰硫電池,其中該電極包含含有按重量計濃度在約0.5%至約3.5%範圍內之電穩定劑的活性碳,及/或其中該電極包含含有按重量計濃度在約0.1%至約0.2%範圍內之潤濕性增強劑的活性碳。
在一些實施例中,提供了具有併入活性碳之電極的超級電容器,其中該電極包含含有按重量計濃度在約1%至約3.5%範圍內之電穩定劑的活性碳,及/或其中該電極包含含有按重量計濃度在約0.45%至約1.0%範圍內之潤濕性增強劑的活性碳。
在一些實施例中,將由如本文所述之活性碳材料製作之電極併入至固態鋰電池中,例如鋰硫電池。在一些實施例中,將如本文所述之活性碳材料併入至電容器或超級電容器中。
在一些實施例中,將由如本文所述之活性碳材料製作之電極併入至建築結構之結構及/或組件中用於能量儲存。在一些實施例中,併入如本文所述製備之活性碳的能量儲存系統比由常規活性碳製作之材料可賦予更高的能量密度,比由常規活性碳製作之材料可在建築組件或建築結構內賦予更低的熱量積聚風險,比由常規活性碳製作之材料可賦予更多次數的充電及放電循環,及/或比由常規活性碳製作之材料可賦予更快的充電速率。
在一些實施例中,使用如本文所述之活性碳製作的能量儲存系統係嵌入於模組化建築組件中,舉例而言可用作建築內部或外部覆層、地板、屋頂、檯面、樓梯或樓梯間、櫥櫃或其他建築組件的面板。在一些實施例中,模組化建築組件併入具有由如本文所述之活性碳材料製作之電極的至少一個超級電容器或至少一個電池。
在一些實施例中,能量儲存系統係永久地併入至模組化建築組件中,舉例而言藉由在製作模組化建築組件時整體澆鑄在模組化建築組件內或藉由永久固定在其中。在一些實施例中,能量儲存系統係可移除地併入至模組化建築組件中,舉例而言藉由插入模組化建築組件內的隔間內,該隔間可經由檢修門、檢修面板或其他可拆卸或可移除的覆蓋結構進入。
在一些實施例中,使用如本文所述之活性碳製作的能量儲存系統是在建築結構建造或搭建期間安裝在建築結構內。能量儲存系統可以在建造期間併入至建築結構的任何希望部件內,舉例而言將最小化對建築結構日常使用之干擾的建築結構部分,例如牆壁、地板、天花板或其內部組件。
提供可移除併入之能量儲存系統允許在故障事件或一旦能量儲存系統已達到其有用使用壽命之終點時移除系統以維修或更換。在永久安裝能量儲存系統的實施例中,假若特定能量儲存系統故障或達到其有用使用壽命的終點,則可停止使用該特定能量儲存系統及/或可將該特定能量儲存系統與其他能量儲存系統斷開,而物理能量儲存單元依舊原位留在建築結構內。
在一些實施例中,能量儲存系統或併入能量儲存系統的模組化建築組件是安裝在倉庫或其他具有相對大的大小但一般沒有大量集中的人員位於其中之建築結構內(例如,就像辦公大樓或住宅建築結構的情況一樣)。
整合至模組化建築組件或直接至建築中的個別能量儲存系統可以任何方式彼此互連並與主供電網互連。舉例而言,可以將適當的連接器及電纜併入至模組化建築組件或建築結構中,以允許個別能量儲存系統互連。
依能量儲存系統部署的特定情況,可以選擇併入能量儲存系統之模組化建築組件或建築的部分的熱性質。舉例而言,在能量儲存系統部署在亦起到隔熱功能的模組化建築面板中的實施例中,模組化建築面板或建築組件的材料可以選擇熱隔絕的。在替代實施例中,模組化建築面板或建築組件的材料可選擇熱傳導的,以允許熱量從含括在其中的能量儲存系統轉移走。
在其中併入能量儲存系統之模組化建築組件或建築的部分之表面將曝露於外部自然環境的實施例中,則至少曝露於外部自然環境的模組化建築組件或建築的部分之表面應是防風雨的(即能夠承受雨、雪、風、陽光及其他可能曝露的天氣條件)。
在能量儲存系統被併入模組化建築組件的實施例中,則模組化建築組件可以設有任何適當的表面構造、連接器及/或緊固件,以允許將模組化建築組件組裝至建築結構中。任何種類的可用模組化建築系統都可以用於此目的。在一些實施例中,併入至模組化建築組件中的連接器或緊固件亦充當電連接器,以將所含括的能量儲存系統連接至建築結構的主電氣系統。 實例
藉由參照至下列該等實例進一步說明某些實施例,這些實例意欲例示性而不是限制發明範疇。 實例1—評價活性碳之金屬摻雜
將作為潤濕性增強劑的鋁(Al)及/或作為電穩定劑的銅(Cu)添加到商業購買的活性碳(YP50F,Calgon Carbon公司,表示為YPAC)中。將所得經Al-及Cu-摻雜的YPAC用吹掃氣體(含有10%氫氣及90%氮氣)在800-900℃下處理3-6小時。測試用這些經鋁及銅摻雜電極製作的超級電容器。
為了進行這些研究,使用從Calgon Carbon公司獲得且在本說明中表示為YPAC的活性碳YP50F。使用了本質上參照圖1所描述的方法。在這個研究中,製作並測試了具有下列組成物之超級電容器。(1)摻鋁活性碳:將鋁鹽(本研究中的硝酸鋁)轉化為在所得活性碳上一薄層之導電Al-O。不受束縛地,據信經Al-O摻雜活性碳將具有與極性物質的離子交互作用及吸附性質,引致在快速放電速率下改善的電容。測定經摻雜活性碳中的最優Al-O含量(在本實施例中表達為按重量計之元素Al含量)以找到薄且導電的Al-O層。(2)摻銅活性碳:將銅鹽(本研究中的硫酸銅)轉化為金屬(元素)銅。不受束縛地,據信這改善了超級電容器的內阻,伴隨YPAC之微孔上最小的元素銅堵塞程度。在本研究中,測定了經摻雜活性碳中的最優銅含量(在本實施例中表達為按重量計之元素銅含量)。(3)活性碳之Al-Cu複合摻雜:Al及Cu摻雜之組合可為超級電容器提供超脫單獨Al或Cu摻雜所提供之改善的性質。 材料及方法
使用YP50F(Calgon Carbon公司,表示為YPAC)用於Al、Cu及Al-Cu複合摻雜測試。收到的YP50F(表示為YPAC)是一種商業用活性碳,廣泛用於活性碳基超級電容器應用,因為其具有高表面積、低灰分、低電阻。本發明人用吹掃氣體處理YPAC(沒有金屬摻雜)以除去化學結合到YPAC上的氧。未經處理之YPAC及經吹掃氣體處理之YPAC(表示為YPAC+SG)係用作基線(分別為基線1及基線2),用於與經金屬摻雜及吹掃氣體處理之YPAC比較測試。
為了製備經金屬摻雜活性碳,將硝酸鋁(Al(NO 3) 3•9H 2O)及硫酸銅(CuSO 4•5H 2O)溶解在R.O.(逆滲透)水中,分別用於添加鋁及銅至YPAC。製備的溶液每升分別落在0.075%至2.5% w/w元素鋁(或0.14% 至4.85%水合硝酸鋁)及1%至9.2% w/w 元素銅(或0.53%至5.36% 硫酸銅水合物)範圍。具體地,製備下列鹽溶液用於摻雜:0.14% Al(NO 3) 3•9H 2O(98%)為0.075%;0.28% Al(NO 3) 3•9H 2O(98%)為0.15% Al;0.57% Al(NO 3) 3•9H 2O(98%)為0.3% Al;0.85% Al(NO 3) 3•9H 2O(98%)為0.45% Al;1.44% Al(NO 3) 3•9H 2O(98%)為0.75% Al;1.91% Al(NO 3) 3•9H 2O(98%)為1% Al;4.85% Al(NO 3) 3•9H 2O(98%)為2.5%;0.53% CuSO 4•5H 2O(99%)為1% Cu; 1.92% CuSO 4•5H 2O(99%)為3.5% Cu;2.71% CuSO 4•5H 2O (99%)為4.9% Cu;5.36% CuSO 4•5H 2O(99%)為9.2% Cu。
將質量6g YPAC於室溫下在45mL的製備溶液中在恆定攪拌條件下浸泡1小時,以分別添加希望的Al及Cu含量到YPAC。將浸泡的YPAC溶液放置於70°C烘箱中乾燥以移除水(直到沒有可觀察到的質量變化)。使用與Al添加相同的方法,亦使用Al(45mL)及Cu(45mL)鹽溶液製備了用於Al-Cu複合摻雜的YPAC(6g)。各種樣品的生產如下: ● 基線1:收到時的YPAC(基線 1,未用吹掃氣體處理)。 ● 基線2:使用吹掃氣體處理製備收到之YPAC(未經金屬摻雜)。 ● 摻Al活性碳:將Al鹽(硝酸鋁)添加到YPAC中,以在YPAC中分別製備0.075%、0.15%、0.3%、0.45%、1%、及2.5%的Al含量(按元素Al含量重量計)。Al源(吹掃氣體處理後轉化為Al 2O 3)係用作極化劑(即潤濕性增強劑),以改善所得活性碳的離子交互作用。 ● 摻Cu活性碳:將硫酸銅添加到YPAC中,以在YPAC中分別製備按重量計1%、3.5%及4.87%的Cu。Cu源(吹掃氣體處理後轉化為金屬銅)係用作導電劑以進一步穩定電極。 ● Al-Cu複合摻雜活性碳:將硝酸鋁及硫酸銅添加到YPAC中,以在YPAC中分別製備按重量計0.45%Al-3.51%Cu及0.75%Al-3.51%Cu之活性碳。這些濃度是基於用經鋁摻雜及經銅摻雜YPAC製作的測試超級電容器之最佳結果來選擇。
將乾燥的YPAC+Al、YPAC+Cu及YPAC+Al-Cu產物用流速為1L/min的吹掃氣體處理,其用含有90%氮及10%氫之氣體混合物在800 - 900°C沖洗經乾燥的YPAC+Al、YPAC+Cu及YPAC+Al-Cu複合物達3-6小時。在本實驗中使用的具有6英吋(15.24cm)直徑及182cm 2表面積之爐子中,1L/min的流速得到大約5.5cm/min的通過處理之產物的流速。在此期間,相對於活性碳的估計氧含量(約11%),經處理的產物曝露於莫耳過量的氫中。不受束縛地,據信這種吹掃氣體處理移除了化學地結合到活性碳上的氧基團,並分別將導電Al、Cu及Al-Cu鹽轉化成活性碳中的導電Al-O、Cu及Al-Cu複合物。舉例而言,可能發生Al(NO 3) 3熱分解成Al 2O 3及CuSO 4熱分解成金屬Cu。前者反應潛在地可能涉及與所供應之還原氣體的部分反應。進一步且不受理論所束縛,據信還原氣體可防止在此過程期間銅轉化回氧化銅。繼活性碳產物之乾燥及吹掃氣體處理後,活性碳中一(1)莫耳Al(NO 3) 3•9H 2O及CuSO 4•5H 2O分別變成0.5莫耳Al 2O 3(或1莫耳Al,表達為元素Al)及1莫耳金屬Cu。
圖2顯示了本實例中測試之超級電容器所用電極的製作方法。使用80%活性碳、10%石墨及10%黏合劑(聚偏二氟乙烯)且N-甲基吡咯烷酮(NMP)作為溶劑(標準活性碳的質量比為1固體:2.5NMP或經金屬摻雜活性碳1固體:2NMP)透過高能超音波震盪製備活性碳漿料。使用塗佈機將活性碳漿料塗佈在鋁箔上。將塗佈的鋁箔在真空烘箱中於80℃下乾燥過夜。將乾燥的鋁箔圓形化至直徑15.0mm。於200℃下壓延所得電極2分鐘並立即在100MPa下壓縮。在真空烘箱中於150°C 下預適應該經壓縮電極過夜,且然後將電極放置在充氬手套箱中用於超級電容器總成。使用氣密鈕扣型電池(CR2032) 在充滿Ar的手套箱中組裝電極。在電池中放置兩個一致的電極。將隔膜(Celgard,25μm)放置在兩個電極之間。此電池總成的電解質(100μL)含有溶解在乙腈中之1.5M四氟硼酸四乙銨。
據觀察,當相較於反映了標準活性碳之性質的活性碳對照組,使用經金屬摻雜活性碳製作的電極要求大約少20%的溶劑來製備適合塗佈在用於製作電極之鋁箔上的漿料,且進一步該經金屬摻雜的活性碳漿料在塗佈鋁箔上展現出更好的物理性質。具體地,當使用手指擠壓測試評估時,觀察到鋁箔上之經金屬摻雜活性碳塗層比單獨活性碳者更強。
進行電充放電(GCD)測試以測定超級電容器的比電容(測試從0.5A/g的慢速充放電(CD)到5A/g的快速CD)。GCD量測於落在0.5A/g至5A/g 範圍內之各種電流密度下使用落在0至2.3V範圍內之電位。電容保持率(%)及內阻(毫歐)係基於下列公式計算: IR 壓降值是在0.5–5A/g之電流密度下測量的。內阻(毫歐)係基於IR壓降及電流密度之間的校正計算得出。 結果 摻Al活性碳
表1中具有基線及摻鋁和吹掃氣體處理之YPAC之超級電容器(SC)的初始效能結果係在慢速放電速率及快速放電(其電流密度分別為0.5A/g及5A/g)下測試的。表1顯示了具有下列基線及摻Al YPAC(+SG處理)之SC的效能: ● YPAC(基線1):按收到狀態 ● YPAC+3hSG(基線2):收到之YPAC在800°C下用SG處理3hrs ● YPAC+Al-摻雜+3hSG:YPAC分別摻雜0.075%、0.15%、0.3%、0.45%、0.75%及1%Al(使用硝酸鋁),且然後在 800°C下用SG處理3hrs。
為每個YPAC基之SC組製作SC的四個電池(CR2032)。在每個摻Al及SG處理組中選擇最佳的三個電池用於與基線比較。表1中註記的電池並不用於比較以測定最優的Al摻雜含量。如表1中所顯示,基線1及基線2 SC在0.5A/g電流密度(慢速放電)下達到80–84F/g,且在5A/g電流密度(快速放電)下達到8至20F/g,而摻鋁及SG處理之YPAC組(#36、#34及#21)在0.5A/g下表現出81–92F/g,且在5A/g下表現出41–71F/g。這些使用按元素形式重量計摻有0.45%至1%之間之Al之YPAC的YPAC組(#36、#43及#21),表明在這些特定測試條件下Al摻雜劑含量的最優範圍。基線SC具有落在44至94毫歐範圍之內阻。摻鋁及SG處理之YPAC組具有23至62毫歐之內阻,引致比基線高的電容保持率。 表1.使用0.075%至2.5%Al摻雜Al及SG處理之SC的初始效能。
碳類型 電池ID 具體施加電流(A/g) IR-壓降 (V) 內阻 (mΩ-g) 電容 (F/g) 電容保持率 註記
#17, Y1, YP-AR (基線1) #17-5 0.5 0.219 133 76 100% 未使用
5 2.614 0 0%
#17-6 0.5 0.169 92 83 100%
5 1.820 10 13%
#17-7 0.5 0.138 75 84 100% 最佳
5 1.492 20 24%
#17-8 0.5 0.168 94 80 100%
5 1.863 8 10%
#20, 基線2 YP-SG #20-13 10.5 0.155 74 77 100%
5 1.492 18 24%
#20-14 0.5 0.203 69 76 100% 未使用
5 1.449 18 24%
#20-15 0.5 0.239 47 76 100%
5 1.081 33 44%
#20-16 0.5 0.090 44 81 100% 最佳
5 0.883 44 55%
#23-2, YP+0.075%Al+3hSG #23-2-5 0.5 0.521 63 68 100%
5 1.650 22 32%
#23-2-6 0.5 N/A 0 不可充電/未使用
5 1.746 12
#23-2-7 0.5 0.110 82 89 100%
5 1.290 29 32%
#23-2-8 0.5 0.103 66 88 100%
5 1.584 19 22%
#29, 0.15%Al+3hSG #29-5 0.5 0.403 93 69 100% 未使用
5 2.081 3 4%
#29-6 0.5 0.152 47 78 100%
5 0.913 40 52%
#29-7 0.5 0.157 42 77 100%
5 1.082 37 47%
#29-8 0.5 0.102 51 79 100%
5 0.940 46 58%
#25,YP+0.3%Al+3hSG #25-5 0.5 0.069 31 79 100% 未使用
5 0.632 55 69%
#25-6 0.5 0.085 40 83 100%
5 0.796 49 59%
#25-7 0.5 0.109 53 83 100%
5 1.055 40 48%
#25-8 0.5 0.187 62 87 100%
5 1.302 34 39%
#36, YP+0.45%Al+3hSG #36-5 0.5 0.075 33 88 100%
5 0.658 58 66%
#36-6 0.5 0.082 32 90 100% 最佳
5 0.812 56 63%
#36-7 0.5 0.071 41 85 100% 未使用
5 0.812 57 66%
#36-8 0.5 0.065 41 92 100%
5 0.650 62 67%
#43,YP+0.75%Al+3hSG #43-1 0.5 0.094 44 86 100%
5 0.883 50 59%
#43-2 0.5 0.098 46 74 100% 未使用
5 0.933 40 54%
#43-3 0.5 0.054 23 90 100% 最佳
5 0.470 71 79%
#43-4 0.5 0.070 33 90 100%
5 0.654 61 68%
#21,YP+1%Al+3hSG #21-5 0.5 0.090 46 80 100% 未使用
5 0.910 44 55%
#21-6 0.5 0.098 49 82 100%
5 0.982 41 50%
#21-7 0.5 0.094 45 83 100%
5 0.897 45 55%
#21-8 0.5 0.069 31 86 100% 最佳
5 0.618 62 72%
#35,YP+2.5%Al+3hSG #35-5 0.5 0.122 58 81 100% 最佳
5 1.173 30 38%
#35-6 0.5 0.124 56 55 100%
5 1.124 25 46%
#35-7 0.5 0.151 73 82 100%
5 1.465 18 22%
#35-8 不可充電/未使用
表2顯示摻Al組中最佳的超級電容器(SC)相較於基線1及2 SC的效能結果。每個SC在0.5A/g循環300 次,並在5A/g下循環300次。摻Al YPAC SC表現(0.5A/g時為80–86F/g,5A/g時為30–51,30–79毫歐)比基線SC(1A/g時為79–82F/g及5A/g時為19-34及56-74毫歐)為佳。 表2.使用0.45%至1%Al之Al摻雜及SG處理的最佳SC在600次循環後的長循環效能(0.5A/g下300 次循環及5A/g下300次循環)
碳類型 電池ID 具體施加電流 (A/g) IR-壓降 (V) 內阻 (mΩ-g) 電容 (F/g) 電容保持率
#17, Y1, YP-AR (基線1) #17-7 0.5 0.141 74 82 98%
5 1.471 19 23%
#20, 基線2 (YP+3h SG) #20-16 0.5 0.129 56 79 97%
5 1.137 34 42%
#36, YP+0.45%Al+3hSG #36-6 0.5 0.097 42 86 95%
5 0.855 51 57%
#43,YP+0.75%Al+3hSG #43-3 0.5 0.074 27 86 96%
5 0.553 64 71%
#21,YP+1%Al+3hSG #21-8 0.5 0.104 71 80 93%
5 1.373 30 36%
摻銅活性碳
表3顯示摻銅及吹掃氣體處理之超級電容器(SC)相較於基線SC的初始效能結果。表3總結了具有下列基線及摻Al YPAC(+SG處理)之SC的效能結果: ● YPAC(基線1):按收到狀態 ● YPAC+3hSG(基線2):收到之YPAC在800°C下用SG處理3小時 ● YPAC+Cu摻雜+3hSG:YPAC分別摻雜1.0%、3.51%、4.87%及9.2%Cu,且然後用SG在800℃下處理3小時。
表3表明在YPAC中具有最優Cu摻雜劑含量(1%至3.5% Cu,#22及#32)的電池,其表現(在0.5A/g下為77-84F/g及在5A/g下為35-56及56–74毫歐)比基線SC(0.5A/g時為79–82F/g,5A/g時為19至34及56–74毫歐)為佳。 表 3. 使用1%至9.2% Cu 摻雜Cu及SG處理之SC的初始效能。
碳類型 電池ID 具體施加電流 (A/g) IR-壓降 (V) 內阻 (mΩ-g) 電容 (F/g) 電容保持率 註記
#17, Y1, YP-AR (基線1) #17-5 0.5 0.219 133 76 100% 未使用
5 2.614 0 0%
#17-6 0.5 0.169 92 83 100%
5 1.820 10 13%
#17-7 0.5 0.138 75 84 100% 最佳
5 1.492 20 24%
#17-8 0.5 0.168 94 80 100%
5 1.863 9 10%
#20, 基線2 #20-13 0.5 0.155 74 77 100%
5 1.492 18 24%
#20-14 0.5 0.203 69 76 100% 未使用
5 1.449 18 24%
#20-15 0.5 0.239 47 76 100%
5 1.081 33 44%
#20-16 0.5 0.090 44 81 100% 最佳
5 0.883 44 55%
#22,YP+1%Cu+3hSG #22-5 0.5 0.11036 52 78 100%
5 1.04634 35 45%
#22-6 0.5 0.10426 46 91 100% 最佳
5 0.92793 44 48%
#22-7 0.5 0.12837 68 73 100% 未使用
5 1.35304 22 30%
#22-8 0.5 0.13325 60 86 100%
5 1.20625 37 44%
#32,YP+3.51%Cu+3hSG #32-5 0.5 0.096 59 81 100%
5 1.153 36 44%
#32-6 0.5 0.062 30 81 100% 最佳
5 0.593 56 69%
#32-7 0.5 0.097 48 77 100%
5 0.958 43 56%
#32-8 0.5 0.177 83 75 100% 未使用
5 1.676 16 21%
#31,YP+4.87%Cu+3hSG #31-5 0.5 0.233 68 7 100%
5 1.463 25 33%
#31-6 0.5 0.113 55 80 100% 最佳
5 1.096 36 45%
#31-7 0.5 0.149 79 75 100%
5 1.564 16 21%
#31-8 0.5 0.426 34 66 100% 未使用
5 1.030 43 65%
#30,YP+9.20%Cu+3hSG #30-5 0.5 0.109 75 79 100%
5 1.093 34 43% 最佳
#30-6 0.5 0.118 65 75 100%
5 1.291 27 36%
#30-7 0.5 0.143 55 79 100%
5 1.495 21 27%
#30-8 0.5 0 不穩定且不可充電。 未使用
5 0
表4顯示摻Cu組中最佳的超級電容器(SC)相較於基線1及2 SC的長循環效能結果。每個SC在0.5A/g 循環300 次,並在5A/g下循環300次。摻Cu YPAC SC表現比基線SC為佳,如下列所示: ● 摻Cu及SG 處理組(#22及#32):0.5A/g時為78 –78F/g,5A/g時為42–51,31 – 46毫歐 ● 基線 SC:0.5A/g時為79-82 F/g及5A/g時為19- 34以及56–74 毫歐 表4. 使用1%至4.87% Al之Cu摻雜及SG處理的最佳SC在600次循環後的長循環效能(0.5A/g下300次循環及5A/g下300次循環)
碳類型 電池ID 具體施加電流 (A/g) IR-壓降 (V) 內阻 (mΩ-g) 電容 (F/g) 電容保持率
#17, Y1, YP-AR (基線1) #17-7 0.5 0.14119 74 82 98%
5 1.471448 19 23%
#20, 基線2 #20-16 0.5 0.129 56 79 97%
5 1.137 34 42%
#22,YP+1%Cu+3hSG #22-6 0.5 0.079 46 78 91%
5 0.899 42 49%
#32,YP+3.51%%Cu+3hSG #32-6 0.5 0.079 31 78 97%
5 0.634 51 64%
#31,YP+4.87%Cu+3hSG #31-6 0.5 0.098 53 78 97%
5 1.047 34 42%
Al-Cu複合摻雜之活性碳
Al及Cu摻雜分別具有優點。不受理論的束縛,低Al摻雜提供電極與極性物質更佳的交互作用及吸附性質。高銅摻雜給予SC應用之電極經改善的導電率。表5顯示將Al-Cu混合物轉化為導電性Al-Cu複合物的吹掃氣體處理。最初,將各45mL的體積添加到坩堝中,並將準備好的坩堝(總共90mL)放置在70°C 烘箱中,直到所有水分移除。於800-900℃下用吹掃氣體處理該乾燥的固體混合物3-6 hrs。這些試驗僅用混合物溶液(不含活性碳)進行,以確定在金屬摻雜活性碳之前的最優溫度及停留時間。
試驗1及2顯示在800°C下用吹掃氣體處理混合物3hrs及6hrs。試驗1(800°C,3hrs)所得產物係非導電性的,而試驗2產物在800°C SG處理6hrs後變成導電性的。試驗3(900°C,3hrs)所得產物是導電性的。基於MTI石墨,試驗3產物具有323%之相對電阻。試驗4產物在900°C吹掃氣體處理6hrs後達成更高的導電率,並且具有180%的相對電阻。 表5.吹掃氣體處理後Al-Cu複合物之導電度。
製程條件 試驗1 試驗2 試驗3 試驗4
溶液類型及混合體積 45mL 0.45%-Al與45mL 3.51% Cu之混合 45mL 0.45%-Al與45mL 3.51% Cu之混合 45mL 0.45%-Al與45mL 3.51% Cu之混合 45mL 0.45%-Al與45mL 3.51% Cu之混合
乾燥溫度 70°C 70°C 70°C 70°C
乾燥後SG處理之溫度 800°C 800°C 900°C 900°C
SG處理停留時間 3hr 6hr 3hr 6hr
使用萬用電錶測試導電度
基於MTI石墨之相對電阻 未測試 未測試 323% 180%
表6檢查該混合物溶液的質量平衡。表6將試驗4產物之收集質量與基於完全轉化為Al-Cu複合物(不受理論所束縛,據信是與元素銅均勻摻混的Al 2O 3)之硝酸鋁及硫酸銅之初始質量的理論質量做比較。表6顯示產物的計算質量與試驗4產物的收集質量相符。 表6.吹掃氣體處理後Al-Cu複合物的質量平衡。
使用的鹽類型 添加於坩堝中的溶(g) 溶液中之鹽濃度(wt.%) 基於添加溶液計算之理論質量(g) SG處理收集之質量
脫水後(乾燥) SG處理後
水合鹽(坩堝中Al (NO 3) 3-9H 2O 或 CuSO 4-5H 2O 之g數) 無水鹽(坩堝中Al(NO 3) 3或CuSO 4之g數) 產物質量(Al-Cu複合物之g數)
Al-鹽溶液 45.02 0.83% 0.375 0.213 0.051 不適用
Cu-鹽溶液 45.027 3.07% 1.381 0.597 0.351 不適用
坩堝中總和(g) 90.047 不適用 1.755 0.810 0.402 0.407
表7總結經Al及Cu摻雜以及吹掃氣體處理之超級電容器(SC)之初始效能結果與基線SC的比較。表7顯示下列試驗產生之初始效能結果: ● YPAC(基線1,#17):按收到狀態。 ● YPAC+3hSG(基線2,#20):收到之YPAC在800°C下用SG處理3hrs。 ● YPAC+0.45%Al+3.51%Cu摻雜+3hSG900 (#38-1):使用0.45% Al及3.51% Cu摻雜YPAC,然後在900°C下用SG處理3hrs。 ● YPAC+0.45%Al+3.51%Cu摻雜+6hSG900(#42):使用0.45% Al及3.51% Cu摻雜YPAC,然後分別在900°C下用SG處理6hrs。 ● YPAC+0.75%Al+3.51%Cu 摻雜+6hSG900 (#46):使用0.75% Al及3.51% Cu摻雜YPAC,然後分別在900°C下用SG處理6hrs。
組#42及#46達成比基線1及2更佳的下列結果。 ● 經鋁及銅摻雜以及SG處理組(#42及#46):87–92F/g(0.5A/g)、37 – 64(5A/g)、29–51毫歐。 ● 基線SC:0.5A/g時為79-82 F/g及5A/g時為19-34,以及56 -74毫歐。 #38-1組得到與基線2類似的結果,暗示在測試條件下3hrs的吹掃氣體處理時間對於YPAC中摻雜Al-Cu來說不夠長。 表7.具Al-Cu摻雜及吹掃氣體處理之SC的初始效能。
碳類型 電池ID 具體施加電流 (A/g) IR-壓降 (V) 內阻 (mΩ-g) 電容 (F/g) 電容保持率 註記
#17, Y1, YP-AR (基線1) #17-5 0.5 0.219 133 76 100% 未使用
5 2.614 0 0%
#17-6 0.5 0.169 92 83 100%
5 1.820 10 13%
#17-7 0.5 0.138 75 84 100% 最佳
5 1.492 20 24%
#17-8 0.5 0.168 94 80 100%
5 1.863 8 10%
#20, 基線2 #20-13 0.5 0.155 74 77 100%
5 1.492 18 24%
#20-14 0.5 0.203 69 76 100% 未使用
5 1.449 18 24%
#20-15 0.5 0.239 47 76 100%
5 1.081 33 44%
#20-16 0.5 0.090 44 81 100% 最佳
5 0.883 44 55%
#38-1, 0.45%Al+3.51%Cu+3hSG900 #38-1-1 0.5 0.100 65 78 100%
5 1.201 32 41%
#38-1-2 0.5 0.091 36 78 100%
5 0.741 48 61%
#38-1-3 0.5 0.095 61 77 100% 未使用
5 1.265 29 37%
#38-1-4 0.5 0.102 50 77 100% 最佳
5 0.999 40 52%
#42, 0.45%Al+3.51%Cu+6hSG900 #42-1 0.5 0.181 N/A 87 100% 未使用
5 Note 1 0 0%
#42-2 0.5 0.098 50 92 100%
5 0.998 49 53%
#42-3 0.5 0.077 42 92 100% 最佳
5 0.837 56 60%
#42-4 0.5 0.064 29 96 110%
5 0.590 64 73%
#46, 0.75%Al+3.51%Cu+6hSG900 #46-1 0.5 0.115 51 88 100%
5 1.028 44 51%
#46-2 0.5 0.076 34 91 100% 最佳
5 0.692 58 64%
#46-3 0.5 0.097 42 71 100% 未使用
5 0.860 47 67%
#46-4 (Note 2) 0.5 0.066 51 102 100% 不穩定
5 0.546 74 46%
註記: 1.#42-1電池在初始測試時未充電;且其休息2天後,於0.5A/g下表現97F/g且在5A/g下57F/g。 2. #46-4 電池在初始測試中不穩定。休息1週後其變得穩定,並在0.5A/g下達到111F/g及在5A/g下64F/g(內阻為51mΩ)。
表8顯示Al及Cu摻雜組中最佳的SC相較於基線1及2 SC的長循環效能結果。每個SC組在1A/g下循環300 次並在10A/g下循環300次後達成下列結果。經Al及Cu摻雜之YPAC SC表現比基線SC為佳,如下列所示: ● 摻雜Al及Cu並經吹掃氣體處理組(#42-2及#46-2):0.5A/g時為86–90F/g,5A/g 時為53–57,36–38毫歐。 ● 基線SC:0.5A/g時為79-82 F/g及5A/g時為19-34,以及56-74 毫歐。 表8.使用最優Al及Cu含量摻雜Al及Cu並以吹掃氣體處理之最佳超級電容器在600次循環(0.5A/g下300次循環及5A/g下300次循環)後的長循環效能。
碳類型 電池ID 具體施加電流 (A/g) IR-壓降 (V) 內阻 (mΩ-g) 電容 (F/g) 電容保持率
#17, Y1, YP-AR (基線1) #17-7 0.5 0.14119 74 82 98%
5 1.471448 19 23%
#20, 基線2 #20-16 0.5 0.129 56 79 97%
5 1.137 34 42%
#38-1, 0.45%Al+3.51%Cu+3hSG900 #38-1-4 0.5 0.131 59 66 86%
5 1.194 31 41%
#42, 0.45%Al+3.51%Cu+6hSG900 #42-2 0.5 0.078 38 92 101%
5 0.766 53 58%
#46, 0.75%Al+3.51%Cu+6hSG900 #46-2 0.5 0.073 36 90 98%
5 0.727 57 62%
綜上所述,藉由前述實例證實了下列效能數據: ● 基於基線2之的超級電容器在0.5A/g慢速放電(低安培數負載)下達成與基1相似的效能,而基於基線2的超級電容器在5A/g快速放電(高安培數負載)下表現比基線1顯著為佳。 ● 基於YPAC+Al+SG之SC達成比基線1及2更佳的效能。 ● 基於YPAC+Cu+SG之SC在10A/g快速放電下比基線1及2表現更佳的效能。 ● 基於YPAC+Al+Cu+SG之SC在比較的SC之中達成最佳的結果。 ● YPAC中 Al-Cu混合物之最優含量是按質量計0.45-1% Al及1-3.5% Cu最優範圍內的任何濃度。
表9總結了各種實驗樣品的結果,以證明用吹掃氣體處理及鋁和銅的嵌入如何增強所測試電容器的電容。經金屬摻雜活性碳生產的電容器被發現比由普通活性碳製作的電容器具有大2.9倍的面積及體積電容。 表9.選定實驗實例之面積及體積電容。
電池ID 面積電容 快速放電(5A/g)時電容提高(%)  
0.5A/g時 (F/cm 2) 5A/g時 (F/cm 2)
基準YPAC(基線1,表8中#17-7電池) 57.3 13.3 100%
基準YPAC+SG(基線2,表8中#20-16電池) 61.1 26.3 197%
YPAC+0.75%Al+3.51%CuSG900 (表8中#46-2電池) 62.8 39.7 298%
電池ID 體 積 電容 快速放電(5A/g)時電容提高(%)
0.5A/g時 (F/cm 2) 5A/g時 (F/cm 2)
基準YPAC(基線1,表8中#17-7電池) 19.1 4.4 100%
基準YPAC+SG(基線2,表8中#20-16電池) 20.4 8.8 197%
YPAC+0.75%Al+3.51%CuSG900 (表8中#46-2電池) 20.9 13.2 298%
總之,前述實例證明吹掃氣體處理與Al和Cu摻雜一起改善了由活性碳(YPAC)製作之超級電容器的效能。不受束縛地,據信伴隨Al摻雜(Al 2O 3摻雜)及Cu摻雜之吹掃氣體處理可以改善離子交互作用並為具高電容及高穩定性的活性碳基超級電容器提供改善的電阻性質。低Al摻雜藉由提供電極改善的親水性及吸附性質來改善電極的潤濕性。高銅摻雜給予用於超級電容器應用之電極改善的導電率。不受理論所束縛,在這些實例中用於測試超級電容器的電解質含有溶解在親水性溶劑乙腈中的導電性鹽四氟硼酸四乙銨TEABF 4。藉由吹掃氣體處理生產的活性碳歸因於移除了氧基官能基團是高度疏水的。因此,歸因於活性碳的疏水性表面,電極的潤濕性(即親水性)不足。 這種不足的潤濕性據信導致TEABF 4在活性碳電極中較差的離子遷移率,引致活性碳基超級電容器不足的內阻。摻雜被認為轉化成Al 2O 3或AlO形式的鋁改善了電解質與活性碳電極表面的潤濕性,從而改善了超級電容器的效能。
在不限制下,實施例可以包括下列態樣: ● 一種以鋁摻雜並在升高溫度下用吹掃氣體方法處理的活性碳產物,其中活性碳中元素鋁濃度按重量計落在0.45%至1%範圍內(例如以Al 2O 3形式存在)。 ● 一種以銅摻雜並在升高溫度下用吹掃氣體方法處理的活性碳產物,其中元素銅濃度按重量計落在1%至3.5%範圍。 ● 一種以鋁及銅兩者摻雜並在升高溫度下用吹掃氣體方法處理的活性碳產物,其中鋁及銅的元素濃度分別為按重量計從0.45%至1%及按重量計少於3.5%(或其中銅的元素濃度為按重量計1%至3.5%之間)。 ● 當用作電極材料時,摻雜潤濕性增強劑之活性碳在鋁箔上用於電極製作之塗層需要的溶劑比典型活性碳少20%。 實例2–用經金屬摻雜及SG處理之LAAC製備的超級電容器
用吹掃氣體處理對由木質素-A(“LAAC”)(微粉化)製成的活性碳進行處理,且將吹掃氣體處理之LAAC用作超級電容器效能測試的基線,與具經金屬摻雜+SG處理之LAAC的超級電容器比較。基於使用YP50AC的最佳摻雜劑量,LAAC係以範圍從0.45%至1.5%之Al的Al源及3%Cu摻雜,接著吹掃氣體(SG)處理。
用基線LAAC及經金屬摻雜+SG處理之LAAC組裝超級電容器。每組組裝四(4)個電池,並在0.5A/g低安培數負載及5A/g高安培數負載下測試。針對初始電容及內阻測試每個電池。基於高電容及低內阻,選擇每組中最佳的電池用於600次循環測試。
表10顯示SG-LAAC(微粉化)的性質。經研磨LAAC之平均大小為5.8μm。研磨的LAAC係用於金屬摻雜及SG處理。經研磨 LAAC具有97.5%的碳含量及0.29%的灰分含量。經研磨LAAC之碘值為3,050mg/g,在研磨前略有減小。使用從先前活性樣品碳測量的碘值與BET表面積值(基於氮吸附)之間的相關性(y=0.9374x+47.781,R²=0.9416)推斷經研磨LAAC之BET表面積為2,900 m 2/g。經研磨LAAC之相對電阻在典型值(225%) 內。 表10.用於摻雜金屬及SG處理之SG-LAAC(微粉化)的性質。
碳(%) 灰分(%) 碘(mg/g) 使用碘值計算之表面積(m 2/g)  (註) 相對電阻 (%) 平均粒徑(μm)
97.5 0.29 3,050  2,900 225% 5.8
註:表面積(m 2/g)係使用碘值與BET表面積值之間的相關性計算。
表11總結超級電容器(SC)之初始電容及初始內阻。#111組是具SG處理LAAC之基線SC。#112、#113、#124、#122及#123組是具經金屬摻雜及SG處理LAAC的SC,其係與基線SC比較。排除每組中最差的電池,以基於內阻及電容選擇最佳電池。
在低安培數負載(0.5A/g)下,基線SC(具經SG處理LAAC)達成最佳效能(144-155F/g),相較於具經摻雜及SG處理LAAC之SC(127至155F/g,來自#112、#113、#124、#122及#123組),而#113及#124組SC在高安培數負載下始終表現較基線SC(106-123F/g)為佳。#113及#124組SC具有基於LAAC之電極,其分別摻有按重量計0.75%Al+3%Cu及1%Al+3%Cu。這些經摻雜LAAC在SC組裝之前以SG處理。
具經金屬摻雜及SG處理LAAC之SC組的初始內阻值(28-62mΩ-g)據測試係比基線SC(43-62mΩ-g)更低(或更佳),除了#112組(30 – 92 mΩ-g)外。經摻雜及SG處理之SC組的這些低內阻值是在高安培數負載下達成比基線SC更高電容值的原因。
這些結果亦暗示,摻雜的Al及Cu源可能部分地堵塞SG處理之LAAC的表面,引致在低安培數負載下比基線SC稍低的電容。基於電容及內阻一致的結果,從基線及其他組中選擇最佳的電池供600次循環測試,除了#112組具不足的內阻表現不一致外。 表11. SG處理之LAAC與經摻雜及SG處理之LAAC的初始效能比較。
LAAC類型 電池ID 安培數負載 (A/g) IR壓降 (V) 內阻 (mΩ-g) 電容 (F/g) 註記
#111 (基線,SG-處理LAAC) #111-5 0.5 0.057 52 155
5 0.525 120
#111-6 0.5 0.077 72 155 最差並排除的
5 0.726 102
#111-7 0.5 0.067 62 144
5 0.624 106
#111-8 0.5 0.050 43 152 最佳並選擇用於600循環測試
5 0.443 123
#112: 0.45%Al+3%Cu+SG+LAAC #112-5 0.5 0.175 79 98 最差並排除的
5.0 0.890 64
#112-6 0.5 0.111 92 141
5.0 0.941 78
#112-7 0.5 0.038 30 139
5.0 0.305 121
#112-8 0.5 0.064 51 133
5.0 0.522 104
#113: 0.75%Al+3%Cu+LAAC #113-5 0.5 0.050 38 129
5.0 0.394 105
#113-6 0.5 未測試 未測試 最差並排除的 (不足地組裝)
5.0 未測試 未測試
#113-7 0.5 0.048 40 155
5.0 0.408 128
#113-8 0.5 0.044 36 135 最佳並選擇用於600循環測試
5.0 0.366 112
#124: 1%Al+3%Cu+SG+LAAC #124-1 0.5 0.039 33 128
5 0.337 107
#124-2 0.5 0.066 62 129 最差並排除的
5 0.621 93
#124-3 0.5 0.039 30 154
5 0.309 133
#124-4 0.5 0.034 26 135 最佳並選擇用於600循環測試
5 0.266 115
#122: 1.25%Al+3%Cu+SG+LAAC #122-1 0.5 0.034 30 121 最差並排除的
5.0 0.304 106
#122-2 0.5 0.036 28 127
5.0 0.288 113
#122-3 0.5 0.037 26 129 最佳並選擇用於600循環測試
5.0 0.267 113
#122-4 0.5 0.031 21 157
5.0 0.224 135
#123: 1.5%Al+3%Cu+SG+LAAC #123-1 0.5 0.043 32 142
5.0 0.327 123
#123-2 0.5 0.042 34 128
5.0 0.352 105
#123-3 0.5 0.044 30 123 最差並排除的
5.0 0.342 103
#123-4 0.5 0.038 33 138 最佳並選擇用於600循環測試
5.0 0.310 113
表12顯示除#112組外,從基線及其他組中選擇之最佳SC,然後在低安培數負載下300個循環及在高安培數負載下300個循環後所測試的電容及內阻。在低安培數下基線SC(150F/g)比其他組(117–126F/g)表現更佳,而在高安培數負載下基線SC(97F/g)比#113及#124組(109–113F/g)達成更低的電容。
#112、#113及#124組SC之內阻落在28至33mΩ-g範圍,其遠低於基線SC(78mΩ-g)。#112、#113及 #124組SC在600次循環後之內阻具有小的變化,而基線SC的內阻變得更差,表明基線SC在高安培數負載下不穩定。
由於#113及#124組始終得到比基線SC更佳的電容(109-113F/g或高12%-16%)及更低的內阻,對於這種特定活性碳來說在測試條件下最優金屬摻雜劑含量似乎對LAAC為0.75%Al+3%Cu及1%Al+3%Cu。此最優含量略高於 YP50AC所測定的最佳摻雜劑含量(0.45%Al+3%Cu及0.75%Al+3%Cu)。
亦注意到的是,SG處理之LAAC具有低電阻(225%)及超高表面積(2,900m 2/g),是比YP50AC(SG處理之YP50AC具有434%及1,876m 2/g) 好很多的材料效能。不受理論所束縛,用金屬摻雜增強電極可比LAAC改善YP50AC效能更多地,在低安培數負載下LAAC已經具有足以用於超級電容器(SC)應用的相對低電阻及高表面積(或高離子吸附能力)。 表12.SG處理之LAAC與經摻雜及SG處理之LAAC的600次循環效能比較。
LAAC類型 電池ID 安培數負載 (A/g) IR壓降 (V) 內阻 (mΩ-g) 電容 (F/g)
基線:SG-處理LAAC #111-8 0.5 0.088 78 150
5 0.789 97
0.75%Al+3%Cu+SG+LAAC #113-8 0.5 0.039 32 126
5 0.326 109
1%Al+3%Cu+SG+LAAC #124-4 0.5 0.034 28 127
5.0 0.284 113
1.25%Al+3%Cu+SG+LAAC #122-3 0.5 0.049 31 121
5.0 0.457 98
1.5%Al+3%Cu+SG+LAAC #123-4 0.5 0.043 32 117
5.0 0.334 101
基於本研究找到下列發現: ● 在測試條件下,LAAC最優Al及Cu摻雜劑含量測定為0.75%Al+3%Cu及1%Al+3%Cu,略高於YP50AC之摻雜劑含量(0.45%Al+3%Cu及0.75%Al+3%Cu)。 ● 在高安培數負載下,具經最優Al-Cu摻雜及SG處理LAAC之SC的電容被證明比基線SC(具經SG處理LAAC之SC)高12% - 16%,這對於高安培數SC (5A/g)非常重要。 ● 最優的經Al-Cu摻雜及SG處理LAAC電極在低安培數負載(0.5A/g)下不會改善電容。
不受理論所束縛,據信用金屬摻雜增強電極可比LAAC改善YP50AC效能更多地,因為(在低安培數負載下)LAAC已經具有足以用於SC應用的低電阻及高表面積(或高離子吸附能力)。 實例3–具經金屬摻雜、SG處理及S浸漬LAAC之LiSB
LiS電池使用硫作為陰極中的活性材料,其在放電模式期間被還原成多硫化物中間體。這些極性且在電解質中高度可溶之多硫化物從陰極洩漏到陽極(知悉為穿梭效應)。 擴散的多硫化物進一步還原為低階硫化物並以鈍化固體沉積,這是不可逆的。結果,LiS電池無法提供理論能量密度。本研究採用具微孔(寬度<2nm)之高度離子吸附性AC及金屬摻雜技術來捕獲陰極中的多硫化物,以克服穿梭效應。
本研究之主要目的是優化含有非導電硫之LiS電池之陰極中的Al-Cu混合物含量。為了改善LiSB系統中木質素基活性碳陰極與極性基電解質的交互作用,同時最小化摻雜及SG處理後由硫浸漬造成的導電率損失,LAAC以比用於超級電容器之最優Al-Cu混合物低的Al-Cu混合物含量摻雜用於LiSB。不受理論所束縛,據信活性碳的硫浸漬以生成LiS電池之陰極可進一步提高陰極的電阻。硫是電絕緣的,而活性碳的微孔空間被浸漬的硫佔據。
木質素基活性碳或LAAC係用於Al-Cu混合物摻雜。LAAC係使用從加拿大艾伯塔省的木質素回收廠獲得的木質素A生產的,木質素A具有高表面積、低灰分及低電阻。遵循圖3中例示的程序將活性碳摻雜金屬,乾燥係在60-80℃溫度下進行。
對於此實例,LAAC係以落在0至0.45%Al範圍之Al摻雜及3% Cu摻雜。為了摻雜希望的Al-Cu混合物含量,亦分別將LAAC(6g)添加到45mL硝酸鋁(0.28% Al(NO 3) 3•9H 2O(98%)用於0.15% w/w Al;0.57% Al(NO 3) 3•9H 2O(98%)用於0.3% w/w Al;0.85% Al(NO 3) 3•9H 2O(98%)用於0.45% w/w Al)及45mL硫酸銅溶液(1.63% CuSO 4•5H 2O(99%)用於3% w/w Cu) 中。將浸泡的LAAC溶液放置於70°C烘箱中以移除水,直到觀察不到進一步的質量變化。製備下列經金屬摻雜LAAC樣品用於SG處理: ● 基線:用 SG處理 之 LAAC ● Al-Cu混合物摻雜:在LAAC中添加硝酸鋁及硫酸銅,以製備下列含量的Al-Cu混合物 o 0.15% Al加上3% Cu(w/w) o 0.3% Al加上3% Cu(w/w) o 0.45% Al加上3% Cu(w/w)
將乾燥的LAAC及經Al-Cu摻雜之LAAC產物用含有90%氮氣及10%氫氣的吹掃氣體處理。在6英吋管爐中於900℃溫度下以100mL/min的流速用吹掃氣體沖洗乾燥的LAAC及Al-Cu摻雜之LAAC產物6小時。這種吹掃氣體處理移除了化學地結合到活性碳的氧基團,並將Al-Cu鹽轉化成活性碳中的導電 Al-Cu混合物。透過這種處理,一(1)莫耳Al(NO 3) 3•9H 2O及CuSO 4•5H 2O分別變成0.5莫耳Al 2O 3(或1莫耳Al,表達為元素Al)及1莫耳金屬Cu。
浸漬過程涉及在氨蒸氣壓(室溫下大約110psig)下將粒狀S°(元素硫)溶解在液態氨(LNH 3)中,舉例而言如PCT公開案WO 2021/248245號案中所描述。藉由簡單地將碳浸入溶液中,溶解在LNH 3中的 S°然後係吸附到 LAAC 上。從加壓環境中移除樣品後,然後可收集經S浸漬的活性碳,且此時LHN 3在室溫 (RT) 下發生汽化。汽化後留下硫,而經浸漬碳準備用作LiS電池的陰極材料。製備了下列陰極材料: ● 基線: 經SG處理之含有63.12%硫的LAAC ● 經0.15% Al及3.0% Cu摻雜及SG處理之LAAC,含71.0% 硫 w/w ● 經0.3% Al及3.0% Cu摻雜及SG處理之LAAC,含67.3% 硫 w/w ● 經0.45% Al及3.0% Cu摻雜及SG處理之LAAC,含65.97% 硫 w/w LiSB總成
在用於LiSB陰極的製作方法中(根據如圖4中所例示之一示例性方法),使用60:20:20 的質量比分別將經S°-浸漬的活性碳、聚偏二氟乙烯(PVDF)(黏合劑)及石墨(作為導電劑)懸浮在使用N-甲基-2-吡咯烷酮(NMP)的糊劑中。使用超音波震盪20分鐘將碳-硫(C-S)複合糊劑均質化,然後使用刮刀塗佈機將其塗佈到鋁箔上。將如今薄薄地塗有C-S 複合材料之鋁箔於60°C在真空下乾燥24h以移除NMP。衝壓出直徑15mm的圓盤作為陰極。在充氬手套箱中從鋰條(40mm寬、0.6mm厚)沖壓出用作陽極材料之直徑15mm的鋰圓盤,並在充氬手套箱中使用CR2032(一種swagelock式硬幣電池)組裝電極。陰極中每mg硫使用落在40至115μL範圍的電解質體積,將電解質(含有1M雙(三氟甲磺醯)亞胺鋰((LiN(SO 2CF 3) 2)及1%硝酸鋰的1,2-二甲氧基乙烷(DME)及1,3-二氧戊環(DOXL))添加到每個電池中。 LiSB的效能測試
測試電充放電(GCD)以測定具木質素陰極鋰硫電池的比電容(mAh/g)。GCD量測於1.0庫侖(C)/g或1,675mA/g之電流密度下使用範圍落在1.7至3.0V(100% DoD,放電深度)之電位。為了可循環性,亦使用GCD方法對LiS電池循環500 次。使用下公列式計算容量及容量保持率: ● 源自GCD之容量(mAh/g) = 施加電流(A) x 放電時間(秒)/60x60x陰極中硫的質量(g) ● 容量保持率(%) = 用100% DoD測試之多個循環的容量/用100% DoD測試之第一個循環的初始容量 用於硫浸漬之經SG處理之LAAC的性質
表13顯示LAAC之主要化學及吸附性質(碘值及表面積)。經SG處理之LAAC具有98.1%的碳含量、3,140mg/g的碘值、3,203m 2/g之表面積、1.13nm的平均孔徑、14.3μm之平均粒徑。 表13.LAA之性質比較。
碳ID 碳含量(%) 碘值(mg/g) BET表面積 (m 2/g) 平均孔徑 (nm) 平均粒徑 (μm)
經SG-處理LAAC 98.10% 3,140 3,203 1.13 14.3
使用下列基於硫浸漬之LAAC的陰極材料組裝LiSB: ● 電池 LC21-27-5:0%Al+0%Cu+SG+63.12%S(基線) ● 電池LC21-25-9:0.15%Al+3.0%Cu+SG+71.0%S ● 電池LC21-23-16:0.3%Al+3.0%Cu+SG+67.30%S ● 電池LC21-26-7:0.45%Al+3.0%Cu+SG+65.97%S
這些電池(CR2032,直徑15mm)具有下列組件: ● 陰極:塗佈在鋁箔上之60(AC-S):20(石墨):20 (PVDF) ● 電解質:在1,2-二甲氧基乙烷(DME)及1,3-二氧戊環(DOXL)中之1M雙(三氟甲磺醯)亞胺鋰((LiN(SO 2CF 3) 2)及1%硝酸鋰。 ● 電解液用量:陰極中每1mg活性硫40 – 52μL ● 隔膜:Celgard 25微米薄膜 ● 陽極:0.2mm鋰金屬 具硫浸漬LAAC陰極之LiSB的效能
表14顯示具基線LAAC及具經摻雜及SG處理之LAAC之LiSB的效能結果,其中LACC含有63–71%的硫含量。所有電池使用100%放電深度於1C/g下循環500次(1.7 – 3.0V)。
具基線陰極之LiSB(LC21-27-5)的第二次循環容量為590mAh/g,下降大約是第一次循環容量(622 mAh/g)的5%。基線LiSB的容量持續下降到第500次循環。500次循環後,LC21-27-5的容量保持率為55.9%(基於第1次循環容量)。 有趣的是,具0.15%Al+3%Cu+SG陰極(LC21-25-9)之LiSB的第二次循環容量為665mAh/g,比第一次循環容量(594mAh/g)提高了10%。LC 21-25-9的容量保持率(%)係基於第二次容量計算。LC21-25-9的500次循環容量保持率為74.4%,當相較於基線LiSB時係顯著改善。
具其他經金屬摻雜及SG處理之陰極的LiSB(0.3%Al+3%Cu+SG的LC21-23-16及0.45%Al+3%Cu+SG的LC21-26-7)分別具有601mAh/g及570mAh/g的初始容量。這兩種電池具有比基準電池更不足的容量保持率(分別為36.1%及33.7%)。 表14.在1C/g及100% DoD下測試具硫浸漬LAAC之LiS電池之500次循環。
電池ID 參數 # 循環
1 2 50 100 200 300 400 500
LC21-27-5 (基線): 0%Al+0%Cu+SG+63.12%S 容量 (mAh/g) 622 590 581 512 458 403 373 348
容量保持率 (%) 100.0% 94.9% 93.3% 82.3% 73.6% 64.7% 60.0% 55.9%
LC21-25-9: 0.15%Al+3.0%Cu+SG+71.0%S 容量 (mAh/g) 594 655 608 566 556 531 516 487
容量保持率 (%) 90.6% 100.0% 92.8% 86.4% 84.9% 81.0% 78.7% 74.4%
LC21-23-16: 0.3%Al+3.0%Cu+SG+67.30%S 容量 (mAh/g) 601 536 536 507 369 323 258 217
容量保持率 (%) 100.0% 89.2% 89.2% 84.4% 61.4% 53.8% 42.9% 36.1%
LC21-26-7: 0.45%Al+3.0%Cu+SG+65.97%S 容量 (mAh/g) 570 540 491 422 368 319 242 192
容量保持率 (%) 100.0% 94.8% 86.2% 74.1% 64.5% 56.0% 42.6% 33.7%
測試具基線(LC21-27-8)及具0.15%+3%Cu+SG(LC21-25-10)之兩個最佳的LiSB,以確認摻雜+SG處理在LiSB之容量保持率改善上的效果。經測試,具基線陰極之LiSB測試的第一次循環容量為696mAh/g,且500次循環後容量保持率為55.7%(388 mAh/g),而具0.15%+3%Cu+SG陰極之LiSB(LC21-25-10)達成的第一次循環及第二次循環容量分別為462mAh/g及578mAh/g。基於第二次容量值,LC21-25-10的500次循環容量保持率為70.5%(407mAh/g)。如表14中觀察到,表15中LC21-25-10的第二次循環容量亦比初始容量值有所提高。在第一次容量之後的這種容量提高在如下文進一步討論的圖5-12中顯示出。 表15.具基線陰極與具最佳摻雜及SG處理之陰極之LiS電池(LiSB)在1C/g及100% DoD下測試500次循環的比較。
電池ID 參數 # 循環
1 2 50 100 200 300 400 500
基線-LC21-27-8: 0%Al+0%Cu+SG+63.12%S 容量 (mAh/g) 696 663 637 532 471 430 390 388
容量保持率 (%) 100.0% 95.3% 91.5% 76.5% 67.7% 61.8% 56.1% 55.7%
LC21-25-10: 0.15%Al+3.0%Cu+SG+71.0%S 容量 (mAh/g) 462 578 619 557 528 494 455 407
容量保持率 (%) 80.0% 100.0% 107.2% 96.4% 91.3% 85.5% 78.7% 70.5%
圖5-8例示具基線LAAC(LC21-27-5及LC21-27-8)之LiS電池的500次循環效能,而圖9-12例示具0.15%Al+3%Cu+SG LAAC之LiS電池(LC21-25-9及LC21-25-10)的500次循環效能。圖7、8、11及12各自顯示僅前50個循環之容量保持率的放大圖。即圖7顯示圖5之僅前50個循環的容量保持率的放大圖,圖8顯示圖6之僅前50個循環的容量保持率的放大圖,圖11顯示圖9之僅前50個循環的容量保持率的放大圖,及圖12顯示圖10之僅前50個循環的容量保持率的放大圖。圖5-8顯示,具基線(SG處理之LAAC,未摻雜金屬)之LiS電池的容量及容量保持率在前50個循環中略有提高(LC21-27-5最大提高4.3%,LC21-27-8逐漸減小)並在第100到500個循環之間不斷衰退。圖7-8顯示基線LiSB在前50個循環中的容量保持率。
圖9-12顯示,具0.15%Al+3%Cu+SG之LiS電池(LC21-25-9及LC21-25-10)在50次循環中容量及容量保持率顯著提高(基於第2次循環容量LC21-25-9最大提高8.2%,而基於第二次循環容量LC21-25-10最大提高10.8%),然後在第100次及第500次循環之間逐漸衰退。圖11-12顯示具0.15%Al及3%Cu+SG之LiS電池在前50個循環中的容量保持率。
用 0.15%Al+3%Cu+SG陰極製作之LiS電池的測試結果暗示,在LiSB放電模式期間,由陰極中之活性硫引發(還原)的多硫化鋰(極性)有效地在經摻雜及SG處理之LAAC中交互作用,並且比基準LiS電池(經SG處理之LAAC陰極)更好地捕獲在陰極中。
總結,具基線及具經金屬摻雜電池及SG-LAAC之LiS電池的比較結果顯示,當LAAC摻雜0.15% Al及3% Cu並用吹掃氣體處理時,LiSB之容量及容量保持率值顯著改善。
儘管上面已經討論眾多的示例性態樣及實施例,熟習本項技藝者將認可其某些修改、變更、添加及子組合。所以,其係意欲的是下列隨附之申請專利範圍及此後引進的申請專利範圍解釋為包括與整個專利說明書之最寬廣詮釋一致的所有此等修改、變更、添加及子組合。 參考文獻
下列參考文獻係關注關於本文所述之專利標的。下列參考文獻中之每一者係以其全文併入本文以做為參考。 •   Quach, Nguyen Khanh Nguyen et al. (2017) The Influence of the Activation Temperature on the Structural Properties of the Activated Carbon Xerogels and Their Electrochemical Performance, Advances in Materials Science and Engineering, 2017, 8308612, doi.org/10.1155/2017/8308612.
100,200,300,400:方法 102,104,106,202,204,206,208,210,212,214,302,304,306,308,402,404,406,408,410,412,414:步驟
示例性實施例係在圖式的參考圖中例示出。意欲的是,本文中所揭露之實施例及圖表被視為例示性而非侷限性的。
圖1顯示用於製備根據一實施例之經摻雜活性碳之方法的示例性實施例。
圖2顯示用於製作超級電容器中使用之電極之方法的示例實施例。
圖3顯示用於製備用於鋰硫電池之活性碳陰極之方法的示例實施例。
圖4顯示用於組裝用於鋰硫電池之陰極與鋰金屬陽極之方法的示例實施例。
圖5顯示具有第一基線LAAC之LiS電池的500次循環效能。
圖6顯示具有第二基線LAAC之LiS電池的500次循環效能。
圖7顯示具有第一基線LAAC之LiS電池的500次循環效能的前50次循環。
圖8顯示具有第二基線LAAC之LiS電池的500次循環效能的前50次循環。
圖9顯示具有經第一金屬摻雜LAAC之LiS電池的500次循環效能。
圖10顯示具有經第二金屬摻雜LAAC之LiS電池的500次循環效能。
圖11顯示具有經第一金屬摻雜LAAC之LiS電池的500次循環效能的前50次循環。
圖12顯示具有經第二金屬摻雜LAAC之LiS電池的500次循環效能的前50次循環。
(無)

Claims (46)

  1. 一種組成物,其包含活性碳、一電穩定劑及一潤濕性增強劑。
  2. 一種組成物,其包含活性碳、一電穩定劑及/或一潤濕性增強劑。
  3. 一種生產活性碳的方法,其包含: 將活性碳與一電穩定劑及一潤濕性增強劑合併以形成一活性碳混合物;及 在一升高溫度下將該活性碳混合物曝露於一吹掃氣體。
  4. 一種生產活性碳的方法,其包含: 將活性碳與一電穩定劑及/或一潤濕性增強劑合併以形成一活性碳混合物; 及 在一升高溫度下將該活性碳混合物曝露於一吹掃氣體。
  5. 如請求項3或4中任一項或本文任何其他請求項之方法,其中該吹掃氣體包含一惰性氣體及一還原氣體的組合。
  6. 如請求項3至5中任一項或本文任何其他請求項之方法,其中該惰性氣體包含氮、氬或氦;且其中該還原氣體包含氫、氨、一氧化碳、合成氣體(forming gas)或合成氣。
  7. 如請求項3至6中任一項或本文任何其他請求項之方法,其中該吹掃氣體包含約80%和約98%之間的惰性氣體及約2%和約20%之間的還原氣體。
  8. 如請求項3至7中任一項或本文任何其他請求項之方法,其中該第一升高溫度在約750℃及約950℃之間。
  9. 如請求項3至8中任一項或本文任何其他請求項之方法,其中在將該活性碳曝露於該吹掃氣體之步驟期間,該吹掃氣體係以0.25至1.0L/分鐘之間的流速供應。
  10. 如請求項3至9中任一項或本文任何其他請求項之方法,其中在將該活性碳曝露於該吹掃氣體之步驟期間,該吹掃氣體係噴灑於該活性碳之上或噴灑穿過該活性碳。
  11. 如請求項10或本文任何其他請求項之方法,其中該吹掃氣體係以0.25cm/min至7.0cm/min之間之相對於該活性碳表面的表觀速度噴灑於該活性碳之上或噴灑穿過該活性碳。
  12. 如請求項3至11中任一項或本文任何其他請求項之方法,其中將該活性碳曝露於該吹掃氣體之步驟係於大氣壓下進行。
  13. 如請求項3至12中任一項或本文任何其他請求項之方法,其中將該活性碳曝露於該吹掃氣體之步驟進行達0.5小時及9小時之間的時間。
  14. 如請求項3至13中任一項或本文任何其他請求項之方法,包含在將該活性碳混合物曝露於該吹掃氣體之步驟之前乾燥該活性碳混合物。
  15. 如請求項3至14中任一項或本文任何其他請求項之方法,包含在將該活性碳混合物曝露於該吹掃氣體之步驟之前微粉化該活性碳。
  16. 一種組成物,其係藉由如請求項3至15中任一項或本文任何其他請求項之方法製成。
  17. 如請求項1至16中任一項或本文任何其他請求項之組成物或方法,其中該電穩定劑包含一導電金屬。
  18. 如請求項1至17中任一項或本文任何其他請求項之組成物或方法,其中該電穩定劑包含一過渡金屬。
  19. 如請求項1至18中任一項或本文任何其他請求項之組成物或方法,其中該電穩定劑包含Sc、Ti、V、Cr、Mn、Co、Ni、 Cu、Zn、Y 、Zr、Nb、Mo、Tc、Ru、Rh、Pb、Ag、La、Hf、Ta、W、Re、Os、Ir、Pt、Au或Ac。
  20. 如請求項1至19中任一項或本文任何其他請求項之組成物或方法,其中該電穩定劑包含銅。
  21. 如請求項1至20中任一項或本文任何其他請求項之組成物或方法,其中該潤濕性增強劑包含鋁。
  22. 如請求項1至21中任一項或本文任何其他請求項之組成物或方法,其中該潤濕性增強劑包含三氧化二鋁或活性三氧化二鋁(γ-Al 2O 3)。
  23. 如請求項1至22中任一項或本文任何其他請求項之組成物或方法,其中該潤濕性增強劑包含提供極性物質與非極性物質之間增強之交互作用的一化合物。
  24. 如請求項1至23中任一項或本文任何其他請求項之組成物或方法,其中按該電穩定劑之元素含量重量計,該電穩定劑係以約0.5%至約4.0%的量存在,任選地按該電穩定劑之元素含量重量計約1%至約3.5%。
  25. 如請求項1至24中任一項或本文任何其他請求項之組成物或方法,其中按該潤濕性增強劑之元素含量重量計,該潤濕性增強劑係以約0.15%至約1.5%的量存在,任選地按該潤濕性增強劑之元素含量重量計約0.45%至約1.0%。
  26. 如請求項1至25中任一項或本文任何其他請求項之組成物或方法,其中該活性碳係由木質素生產,其中該電穩定劑按重量計以約2.75%及約3.25%之間的量存在,且其中該潤濕性增強劑按重量計以約0.50%及1.25%之間的量存在。
  27. 如請求項1至25中任一項或本文任何其他請求項之組成物或方法,其中該活性碳係由椰子殼生產,其中該電穩定劑按重量計以約2.75%及3.25%之間的量存在,且其中該潤濕性增強劑按重量計以約0.25%及1.0%之間的量存在。
  28. 如請求項1至27中任一項或本文任何其他請求項之組成物或方法,其中該電穩定劑及該潤濕性增強劑是不可燃的。
  29. 如請求項1至2或16至28中任一項或本文任何其他請求項之組成物,或如藉由請求項3至28中任一項或本文任何其他請求項之方法生產的組成物,其中: 該活性碳係由木質素或高木質素原料生產並且具有至少2500m 2/g的BET表面積; 該活性碳具有至少1cc/g的孔體積,其以微孔為主; 該活性碳由木質素或高木質素原料生產,並且在沒有微粉化下具有小於約15μm之平均粒徑,或在微粉化下小於約7μm;及/或 該活性碳具有至少約0.25g/cc的總體密度。
  30. 一種設備,其用於實行如請求項3至28中任一項或本文任何其他請求項中所界定之方法。
  31. 一種活性碳,其係藉由如請求項3至28中任一項或本文任何其他請求項之方法製成的。
  32. 一種電極,其包含如請求項1至2或16至29中任一項之組成物或藉由如請求項3至28中任一項或本文任何其他請求項之方法製成的組成物。
  33. 一種超級電容器或電池,其包含如請求項32或本文任何其他請求項所界定之電極。
  34. 一種鋰硫電池,其包含如請求項32或本文任何其他請求項所界定之電極,其中該電極包含含有按重量計濃度在約0.5%至約3.5%範圍內之電穩定劑的活性碳,及/或其中該電極包含含有按重量計濃度在約0.1%至約0.2%範圍內之潤濕性增強劑的活性碳。
  35. 一種超級電容器,其包含如請求項32或本文任何其他請求項所界定之電極,其中該電極包含含有按重量計濃度在約1%至約3.5%範圍內之電穩定劑的活性碳,及/或其中該電極包含含有按重量計濃度在約0.45%至約1.0%範圍內之潤濕性增強劑的活性碳。
  36. 一種建築或模組化建築組件,其含有一能量儲存系統,該能量儲存系統包含含有如請求項32或本文任何其他請求項所界定之電極的超級電容器或電池。
  37. 一種建築或模組化建築組件,其含有一能量儲存系統,該能量儲存系統包含如請求項31或本文任何其他請求項所界定之活性碳。
  38. 如請求項36至37中任一項或本文任何其他請求項所界定之建築或模組化建築組件,其中併入該能量儲存系統之模組化建築組件或建築的部分是熱隔絕的。
  39. 如請求項36至38中任一項或本文任何其他請求項所界定之建築或模組化建築組件,其中併入該能量儲存系統之模組化建築組件或建築的部分是熱傳導的。
  40. 如請求項36至39中任一項或本文任何其他請求項所界定之建築或模組化建築組件,其中併入該能量儲存系統之模組化建築組件或建築的部分是防風雨的。
  41. 如請求項36至40中任一項或本文任何其他請求項所界定之模組化建築組件,其中該模組化建築組件包含內部或外部覆層面板、地板面板、屋頂面板、檯面、樓梯間或櫥櫃。
  42. 如請求項36至40中任一項或本文任何其他請求項所界定之建築,其中該能量儲存系統係併入該建築之牆壁、地板、天花板及/或內部組件中。
  43. 如請求項36至42中任一項或本文任何其他請求項所界定之建築或模組化建築組件,其中該能量儲存系統係永久地併入該模組化建築組件中或該建築中。
  44. 如請求項36至43中任一項或本文任何其他請求項所界定之建築或模組化建築組件,其中該能量儲存系統係可移除地併入該模組化建築組件中或該建築中,任選地藉由含括在可經由檢修門、檢修面板或可拆卸覆蓋結構進入的一隔間之內。
  45. 如請求項36至44中任一項或本文任何其他請求項所界定之建築或模組化建築組件,其包含用於將該能量儲存系統耦合到該建築或含有該模組化建築組件之建築之電氣系統的連接器。
  46. 如請求項36至40或42至45中任一項或本文任何其他請求項所界定之建築,或含有請求項36至45中任一項或本文任何其他請求項所界定之模組化建築組件之建築,其中該建築是倉庫。
TW112130662A 2022-08-17 2023-08-15 經金屬摻雜之活性碳 TW202411161A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US63/398,816 2022-08-17

Publications (1)

Publication Number Publication Date
TW202411161A true TW202411161A (zh) 2024-03-16

Family

ID=

Similar Documents

Publication Publication Date Title
Ajuria et al. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits
EP3299337B1 (en) Method for preparing graphene using coal as raw material
EP2638584B1 (en) Sulfur containing nanoporous materials, nanoparticles, methods and applications
Nagamuthu et al. Non-lithium-based metal ion capacitors: recent advances and perspectives
JP2008066342A (ja) リチウムイオンキャパシタ
JP2012074467A (ja) 正極材料及びその製造方法並びに蓄電素子
US20240140807A1 (en) Sweeping gas process for production of activated carbon-based electrode materials
Xu et al. Sorghum core-derived carbon sheets as electrodes for a lithium-ion capacitor
JP2006286923A (ja) リチウムイオンキャパシタ
Hao et al. S, O dual-doped porous carbon derived from activation of waste papers as electrodes for high performance lithium ion capacitors
Sui et al. Highly dispersive CoSe 2 nanoparticles encapsulated in carbon nanotube-grafted multichannel carbon fibers as advanced anodes for sodium-ion half/full batteries
EP4235720A1 (en) Nonaqueous alkali metal power storage element and positive electrode coating liquid
US20190006122A1 (en) Electrochemical energy storage devices
KR20150016072A (ko) 리튬이온 커패시터용 양극 및 이를 포함하는 리튬이온 커패시터
JP2007269551A (ja) 活性炭およびその製造方法
TW202411161A (zh) 經金屬摻雜之活性碳
Lv et al. High performance cathode materials for lithium-ion batteries based on a phenothiazine-based covalent triazine framework
JP2006310412A (ja) リチウムイオンキャパシタ
Wang et al. Graphitized porous carbon prepared from pyrolysis of Sterculia scaphigera and its application in lithium ion batteries
KR20220167669A (ko) 리튬 이차전지 음극재
WO2024036400A1 (en) Metal-doped activated carbon
Raavi et al. Performances of dual carbon multi-ion supercapacitors in aqueous and non-aqueous electrolytes
Anand et al. Corn Husk‐Derived Activated Carbon as High‐Performance Anode Constituent for Rechargeable Aqueous Zn/α‐MnO2 Batteries
KR20200077177A (ko) 리튬 이온 커패시터용 리튬코발트산화물-탄소 복합체, 이를 포함하는 양극 활물질, 이를 포함하는 리튬 이온 커패시터, 및 그 제조방법
Wachtler et al. Carbon and Graphite for Electrochemical Power Sources