TW202411092A - Battery module and battery management system - Google Patents

Battery module and battery management system Download PDF

Info

Publication number
TW202411092A
TW202411092A TW111146761A TW111146761A TW202411092A TW 202411092 A TW202411092 A TW 202411092A TW 111146761 A TW111146761 A TW 111146761A TW 111146761 A TW111146761 A TW 111146761A TW 202411092 A TW202411092 A TW 202411092A
Authority
TW
Taiwan
Prior art keywords
battery
switch
controller
configuration
series
Prior art date
Application number
TW111146761A
Other languages
Chinese (zh)
Inventor
周昱佑
吳誠文
陳肇勳
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Publication of TW202411092A publication Critical patent/TW202411092A/en

Links

Images

Abstract

A battery module and a battery management system are provided. The battery management system includes N battery modules and a controller. The battery module includes a battery component set, a first serial switch, a second serial switch, a first parallel switch, a second parallel switch, and a bypass switch. The battery component set has a first terminal and a second terminal. The first serial switch and the fist parallel switch are electrically connected to the first terminal of the battery component set. The second serial switch and the second parallel switch are electrically connected to the second terminal of the battery component set. The first and the second serial switches are synchronically switched on or switched off. The first and the second parallel switches are synchronically switched on of switched off. The bypass switch is electrically connected to the first serial switch and the second serial switch. The first serial switch, the second switch, the first parallel switch, the second switch, and the bypass switched are selectively switched on in response to quality of the battery component set.

Description

電池模組與電池管理系統Battery Modules and Battery Management Systems

本申請是有關於一種電池模組與電池管理系統,且特別是有關於一種使用動態監控與電池重組的電池模組與電池管理系統。The present application relates to a battery module and a battery management system, and more particularly to a battery module and a battery management system using dynamic monitoring and battery reconfiguration.

近年來,車輛的動力來源從傳統的石化燃料,逐漸演變使用電池做為儲能和動力來源。電動車電池(electric-vehicle battery,簡稱為EVB)是電動車最關鍵的技術。且,電動車電池亦為電動車的元件中,最核心且造價最高的一環。In recent years, the power source of vehicles has gradually evolved from traditional fossil fuels to batteries as energy storage and power sources. Electric vehicle batteries (EVB) are the most critical technology for electric vehicles. Moreover, electric vehicle batteries are also the most core and most expensive component of electric vehicles.

為能驅動馬達運轉,電動車需使用多個電池組所組成的電池管理系統。電池管理系統的可靠度與安全性問題是電動車的重要議題。在電池管理系統中,電池產品供電量的誤差、電池的老化速度不均、突發性的電池損壞等現象,將連帶影響電池管理系統中的壽命。因此,期能發展出使電池管理系統的電池組能妥適且均勻化使用,進而延長電池管理系統壽命的作法。In order to drive the motor, electric vehicles need to use a battery management system composed of multiple battery packs. The reliability and safety of the battery management system are important issues for electric vehicles. In the battery management system, the error in the power supply of battery products, the uneven aging speed of batteries, and sudden battery damage will affect the life of the battery management system. Therefore, it is hoped that a method can be developed to enable the battery packs of the battery management system to be used appropriately and evenly, thereby extending the life of the battery management system.

本申請係有關於一種電池模組與電池管理系統,藉由動態監控與重組電池組態的方式,使電池組件之間的電量趨於平衡,並能改善電池品質不一的情況下,對電池管理系統的壽命的影響程度。This application is related to a battery module and a battery management system, which can balance the power between battery components by dynamically monitoring and reorganizing the battery configuration, and can improve the impact of different battery quality on the life of the battery management system.

根據本申請之第一方面,提出一種電池模組。電池模組電連接於控制器,且電池模組包含:電池組件、第一串聯開關、第二串聯開關、第一並聯開關、第二並聯開關,以及旁路開關。電池組件具有第一端與第二端。第一串聯開關電連接於電池組件的第一端。第二串聯開關電連接於電池組件的第二端。其中,第一串聯開關與第二串聯開關同步導通或同步斷開。第一並聯開關電連接於電池組件的第一端。第二並聯開關電連接於電池組件的第二端。其中,第一並聯開關與第二並聯開關同步導通或同步斷開。旁路開關電連接於第一串聯開關與第二串聯開關。其中,控制器根據電池組件的品質而選擇性導通第一串聯開關、第二串聯開關、第一並聯開關、第二並聯開關與旁路開關。According to the first aspect of the present application, a battery module is proposed. The battery module is electrically connected to a controller, and the battery module includes: a battery assembly, a first series switch, a second series switch, a first parallel switch, a second parallel switch, and a bypass switch. The battery assembly has a first end and a second end. The first series switch is electrically connected to the first end of the battery assembly. The second series switch is electrically connected to the second end of the battery assembly. The first series switch and the second series switch are synchronously turned on or synchronously disconnected. The first parallel switch is electrically connected to the first end of the battery assembly. The second parallel switch is electrically connected to the second end of the battery assembly. The first parallel switch and the second parallel switch are synchronously turned on or synchronously disconnected. The bypass switch is electrically connected to the first series switch and the second series switch. The controller selectively turns on the first series switch, the second series switch, the first parallel switch, the second parallel switch and the bypass switch according to the quality of the battery assembly.

根據本申請之第二方面,提出一種電池管理系統。電池管理系統包含:控制器與供電模組。供電模組電連接於控制器,適於產生輸出電壓。供電模組包含N個電池模組。N個電池模組中的第n個電池模組包含:電池組件、第一串聯開關、第二串聯開關、第一並聯開關、第二並聯開關與旁路開關。電池組件具有第一端與第二端。第一串聯開關電連接於電池組件的第一端。第二串聯開關電連接於電池組件的第二端。其中,第一串聯開關與第二串聯開關同步導通或同步斷開。當第一串聯開關與第二串聯開關同步導通時,電池組件提供一部分的輸出電壓。第一並聯開關電連接於電池組件的第一端。第二並聯開關電連接於電池組件的第二端。其中,第一並聯開關與第二並聯開關同步導通或同步斷開。旁路開關電連接於第一串聯開關與第二串聯開關。控制器根據電池組件的品質而選擇性導通該第一串聯開關、第二串聯開關、第一並聯開關、第二並聯開關與旁路開關。其中,n、N為正整數,且n小於或等於N。According to the second aspect of the present application, a battery management system is proposed. The battery management system includes: a controller and a power supply module. The power supply module is electrically connected to the controller and is suitable for generating an output voltage. The power supply module includes N battery modules. The nth battery module among the N battery modules includes: a battery assembly, a first series switch, a second series switch, a first parallel switch, a second parallel switch and a bypass switch. The battery assembly has a first end and a second end. The first series switch is electrically connected to the first end of the battery assembly. The second series switch is electrically connected to the second end of the battery assembly. The first series switch and the second series switch are synchronously turned on or synchronously disconnected. When the first series switch and the second series switch are synchronously turned on, the battery assembly provides a portion of the output voltage. The first parallel switch is electrically connected to the first end of the battery assembly. The second parallel switch is electrically connected to the second end of the battery assembly. The first parallel switch and the second parallel switch are synchronously turned on or off. The bypass switch is electrically connected to the first series switch and the second series switch. The controller selectively turns on the first series switch, the second series switch, the first parallel switch, the second parallel switch and the bypass switch according to the quality of the battery assembly. n and N are positive integers, and n is less than or equal to N.

為了對本申請之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:In order to better understand the above and other aspects of the present application, the following is a detailed description of the embodiments with the accompanying drawings as follows:

請參見第1圖,其係本揭露實施例的電池管理系統之示意圖。電池管理系統10包含控制器11與供電模組(或稱為電池包(pack))13。供電模組13電連接於控制器11,其包含N個電池模組bMD[1]~bMD[N]。控制器11對電池模組bMD[1]~bMD[N]進行組態設定,從電池模組bMD[1]~bMD[N]中,選出其中的M個電池模組,以使供電模組13產生輸出電壓Vout。其中,M、N為正整數,且N>M。為便於說明,本文假設N=6、M=4。在實際應用時,M、N的數量不以此為限。Please refer to Figure 1, which is a schematic diagram of a battery management system of an embodiment of the present disclosure. The battery management system 10 includes a controller 11 and a power supply module (or battery pack) 13. The power supply module 13 is electrically connected to the controller 11, and includes N battery modules bMD[1]~bMD[N]. The controller 11 configures the battery modules bMD[1]~bMD[N] and selects M battery modules from the battery modules bMD[1]~bMD[N] so that the power supply module 13 generates an output voltage Vout. Wherein, M and N are positive integers, and N>M. For ease of explanation, this article assumes that N=6 and M=4. In actual applications, the number of M and N is not limited to this.

電池模組bMD[1]~bMD[6]共同電連接於共用端點Nc1、Nc2。電池模組bMD[1]電連接於輸出端點No1與共用端點Nc_12間;電池模組bMD[2]電連接於共用端點Nc_12、Nc_23間;電池模組bMD[3]電連接於共用端點Nc_23、Nc_34間;電池模組bMD[4]電連接於共用端點Nc_34、Nc_45間;電池模組bMD[5]電連接於共用端點Nc_45、Nc_56間;且,電池模組bMD[6]電連接於共用端點Nc_56與輸出端點No2間。Battery modules bMD[1] to bMD[6] are electrically connected to common terminals Nc1 and Nc2. Battery module bMD[1] is electrically connected between output terminal No1 and common terminal Nc_12; battery module bMD[2] is electrically connected between common terminals Nc_12 and Nc_23; battery module bMD[3] is electrically connected between common terminals Nc_23 and Nc_34; battery module bMD[4] is electrically connected between common terminals Nc_34 and Nc_45; battery module bMD[5] is electrically connected between common terminals Nc_45 and Nc_56; and battery module bMD[6] is electrically connected between common terminal Nc_56 and output terminal No2.

電池模組bMD[1]~bMD[6]的內部元件與連接方式類似。簡言之,電池模組bMD[1]~bMD[6]各自包含一個電池組件(megacell,簡稱為MC)與三種開關。該些開關根據控制器11所發出的開關控制信號swCtl[1]~swCtl[N]而選擇性導通。且,隨著該些開關的導通方式,電池組件MC[1]~MC[6]可供電或停止供電。The internal components and connection methods of the battery modules bMD[1]~bMD[6] are similar. In short, each of the battery modules bMD[1]~bMD[6] includes a battery component (megacell, abbreviated as MC) and three switches. The switches are selectively turned on according to the switch control signals swCtl[1]~swCtl[N] issued by the controller 11. And, depending on the conduction mode of the switches, the battery components MC[1]~MC[6] can be powered or stopped.

此外,電池模組bMD[1]~bMD[6]分別發出電池監控信號mS[1]~mS[6]至控制器11。電池監控信號mS[1]~mS[6]適於反映電池組件MC[1]~MC[6]的品質予控制器11。關於電池監控信號mS[1]~mS[6]的產生方式,以及電池監控信號mS[1]~mS[6]所包含的品質資訊的內容與格式等,可根據應用或系統的不同而變化,本文不予詳述。In addition, the battery modules bMD[1]~bMD[6] respectively send battery monitoring signals mS[1]~mS[6] to the controller 11. The battery monitoring signals mS[1]~mS[6] are suitable for reflecting the quality of the battery components MC[1]~MC[6] to the controller 11. The generation method of the battery monitoring signals mS[1]~mS[6], and the content and format of the quality information contained in the battery monitoring signals mS[1]~mS[6] may vary depending on the application or system, and will not be described in detail in this article.

請參見第2圖,其係本揭露實施例的電池管理系統之操作階段的狀態圖。電池管理系統10的操作階段包含:品質監控階段mntSTG、組態設定階段cfgSTG與失效階段failSTG。通常的情況下,電池管理系統10在品質監控階段mntSTG與組態設定階段cfgSTG輪流切換。第2圖以不同的虛線箭頭stgA1~stgA4代表控制器11切換電池管理系統10之操作階段的情況。Please refer to FIG. 2, which is a status diagram of the operation phase of the battery management system of the disclosed embodiment. The operation phase of the battery management system 10 includes: the quality monitoring phase mntSTG, the configuration setting phase cfgSTG and the failure phase failSTG. Under normal circumstances, the battery management system 10 switches between the quality monitoring phase mntSTG and the configuration setting phase cfgSTG alternately. FIG. 2 uses different dotted arrows stgA1~stgA4 to represent the situation where the controller 11 switches the operation phase of the battery management system 10.

虛線箭頭stgA1的方向代表電池管理系統10維持在品質監控階段mntSTG的情形。在品質監控階段mntSTG,控制器11自電池模組bMD[1]~bMD[6]接收電池監控信號mS[1]~mS[6],並依據電池監控信號mS[1]~mS[6]輪流判斷電池組件MC[1]~MC[6]的品質狀態。第4圖將進一步說明電池管理系統10在品質監控階段mntSTG的流程。The direction of the dashed arrow stgA1 represents the situation where the battery management system 10 maintains the quality monitoring stage mntSTG. In the quality monitoring stage mntSTG, the controller 11 receives the battery monitoring signals mS[1]~mS[6] from the battery modules bMD[1]~bMD[6], and judges the quality status of the battery components MC[1]~MC[6] in turn according to the battery monitoring signals mS[1]~mS[6]. FIG. 4 further illustrates the process of the battery management system 10 in the quality monitoring stage mntSTG.

虛線箭頭stgA2的方向代表電池管理系統10自品質監控階段mntSTG切換至組態設定階段cfgSTG的情形。一旦電池組件MC[1]~MC[6]的品質均確認完成後,電池管理系統10進入組態設定階段cfgSTG。第13圖將進一步說明電池管理系統10在組態設定階段cfgSTG的流程。The direction of the dashed arrow stgA2 represents the switching of the battery management system 10 from the quality monitoring stage mntSTG to the configuration setting stage cfgSTG. Once the quality of the battery components MC[1]~MC[6] is confirmed, the battery management system 10 enters the configuration setting stage cfgSTG. FIG. 13 further illustrates the process of the battery management system 10 in the configuration setting stage cfgSTG.

虛線箭頭stgA3的方向代表電池管理系統10自組態設定階段cfgSTG切換至品質監控階段mntSTG的情形。當控制器11結束組態設定階段cfgSTG後,將再次確認電池組件MC[1]~MC[6]的品質狀態。電池組件MC[1]~MC[6]的品質狀態會隨著時間經過與充放電次數的增加而變化,電池管理系統10需再次切換至品質監控階段mntSTG,以便控制器11掌握電池管理系統10最新的整體品質。The direction of the dashed arrow stgA3 represents the situation where the battery management system 10 switches from the configuration setting stage cfgSTG to the quality monitoring stage mntSTG. When the controller 11 ends the configuration setting stage cfgSTG, it will reconfirm the quality status of the battery components MC[1]~MC[6]. The quality status of the battery components MC[1]~MC[6] will change with the passage of time and the increase in the number of charge and discharge cycles. The battery management system 10 needs to switch to the quality monitoring stage mntSTG again so that the controller 11 can grasp the latest overall quality of the battery management system 10.

虛線箭頭stgA4的方向代表控制器11在組態設定階段cfgSTG發現供電模組13無法產生符合需求的輸出電壓Vout時,電池管理系統10將進入失效階段failSTG並停止運作。此時控制器11應發出警示訊息通知使用者電池管理系統10已無法正常供電。The direction of the dashed arrow stgA4 indicates that when the controller 11 finds that the power supply module 13 cannot generate the required output voltage Vout in the configuration setting stage cfgSTG, the battery management system 10 will enter the failure stage failSTG and stop operating. At this time, the controller 11 should issue a warning message to inform the user that the battery management system 10 can no longer supply power normally.

請參見第3圖,其係本揭露實施例的電池組件MC[n]的品質狀態圖。為便於說明,此處以變數n代表任一個電池組件MC[1]~MC[N],其中n≤N。根據本揭露的構想,電池組件MC[n]的品質狀態可為:正常狀態nmST(以單純白底標示)、準淘汰狀態wkST(以點狀網底標示),或淘汰狀態deadST(以斜格紋狀網底標示)。Please refer to FIG. 3, which is a quality status diagram of a battery component MC[n] of an embodiment of the present disclosure. For ease of explanation, the variable n is used here to represent any battery component MC[1]~MC[N], where n≤N. According to the concept of the present disclosure, the quality status of the battery component MC[n] can be: a normal state nmST (marked with a pure white background), a quasi-obsolete state wkST (marked with a dotted grid background), or an obsolete state deadST (marked with a diagonal grid background).

剛出廠的電池組件MC[n]的品質為正常狀態nmST。經過一段時間的充電、放電操作後,電池組件MC[n]的品質可能從正常狀態nmST變成準淘汰狀態wkST(如虛線箭頭qA2所示)或變成淘汰狀態deadST(如虛線箭頭qA1所示)。品質狀態變成淘汰狀態deadST的電池組件MC[n]將無法再被使用。另一方面,品質狀態變成準淘汰狀態wkST的電池組件MC[n]將暫停使用一段期間。經過一段時間的暫停使用,先前品質狀態被判斷為準淘汰狀態wkST的電池組件MC[n]可能逐漸恢復其荷電狀態(State of Charge,簡稱為SOC)而使其品質狀態再恢復至正常狀態nmST(如虛線箭頭qA3所示)。或者,先前品質狀態被判斷為準淘汰狀態wkST的電池組件MC[n]的SOC也可能趨於惡化,進而使電池組件MC[n]的品質狀態從準淘汰狀態wkST變成淘汰狀態deadST(如虛線箭頭qA4所示)。The quality of a newly manufactured battery module MC[n] is in the normal state nmST. After a period of charging and discharging, the quality of the battery module MC[n] may change from the normal state nmST to the quasi-obsolete state wkST (as indicated by the dotted arrow qA2) or to the obsolete state deadST (as indicated by the dotted arrow qA1). A battery module MC[n] whose quality state changes to the obsolete state deadST cannot be used anymore. On the other hand, a battery module MC[n] whose quality state changes to the quasi-obsolete state wkST will be suspended for a period of time. After a period of suspension of use, the battery component MC[n] whose quality status was previously determined to be a quasi-obsolete state wkST may gradually recover its state of charge (SOC) and restore its quality status to a normal state nmST (as indicated by the dotted arrow qA3). Alternatively, the SOC of the battery component MC[n] whose quality status was previously determined to be a quasi-obsolete state wkST may also tend to deteriorate, thereby changing the quality status of the battery component MC[n] from a quasi-obsolete state wkST to an obsolete state deadST (as indicated by the dotted arrow qA4).

為便於說明,本文以大寫的變數N、K、S、T、M代表不同元件的數量。變數M、N為正整數,K、S、T為大於或等於0的整數。表1彙整部分變數的意涵。For ease of explanation, this article uses capitalized variables N, K, S, T, and M to represent the number of different components. Variables M and N are positive integers, and K, S, and T are integers greater than or equal to 0. Table 1 summarizes the meanings of some variables.

表1 大寫變數 意涵 N 供電模組13所包含之電池組件MC的數量 K 品質狀態為正常狀態nmST的電池組件MC的數量 S 品質狀態為準淘汰狀態wkST的電池組件MC的數量 T 品質狀態為淘汰狀態deadST的電池組件MC的數量 M 產生輸出電壓Vout所需之電池組件MC的數量 Table 1 Uppercase variables Implications N The number of battery modules MC included in the power supply module 13 K The number of battery modules MC with a quality status of normal nmST S The number of battery modules MC whose quality status is semi-obsolete wkST T The number of battery components MC whose quality status is deadST M The number of battery components MC required to generate the output voltage Vout

在本文中,以小寫的變數n、k、s、t代表某類元件的其中一者。例如,電池組件MC[n]代表電池組件MC[1]~MC[N]的其中一者。其中,1≦n≦N、0≦k≦K、0≦s≦S,且0≦t≦T。In this document, lowercase variables n, k, s, and t represent one of a certain type of component. For example, battery component MC[n] represents one of battery components MC[1] to MC[N]. 1≦n≦N, 0≦k≦K, 0≦s≦S, and 0≦t≦T.

請參見第4圖,其係控制器在品質監控階段mntSTG判斷電池組件MC[1]~MC[N]之品質的流程圖。如前所述,在品質監控階段mntSTG,控制器11將循環接收由電池模組bMD[1]~bMD[N]所傳送出之與電池組件MC[1]~MC[N]對應的電池監控信號mS[1]~mS[N],並依據電池監控信號mS[1]~mS[N]輪流判斷電池模組bMD[1]~bMD[N]的品質狀態,而將電池模組bMD[1]~bMD[N]中所包含之電池組件MC[1]~MC[n]標記為正常狀態nmST、準淘汰狀態wkST,或淘汰狀態deadST。在一實施例中,電池監控信號mS[1]~mS[N]包含對應之電池組件MC[1]~MC[N]的健康狀態(state of health,簡稱為SOH)以及荷電狀態(state of charge,簡稱為SOC)其中的至少一者,但不以所列舉者為限。Please refer to FIG. 4, which is a flow chart of the controller judging the quality of battery modules MC[1]~MC[N] in the quality monitoring stage mntSTG. As mentioned above, in the quality monitoring stage mntSTG, the controller 11 will cyclically receive the battery monitoring signals mS[1]~mS[N] corresponding to the battery modules MC[1]~MC[N] transmitted by the battery modules bMD[1]~bMD[N], and judge the quality status of the battery modules bMD[1]~bMD[N] in turn according to the battery monitoring signals mS[1]~mS[N], and mark the battery modules MC[1]~MC[n] included in the battery modules bMD[1]~bMD[N] as normal status nmST, quasi-obsolete status wkST, or obsolete status deadST. In one embodiment, the battery monitoring signals mS[1]-mS[N] include at least one of the state of health (SOH) and state of charge (SOC) of the corresponding battery components MC[1]-MC[N], but are not limited to the listed ones.

首先,初始化變數n、k、s、t(步驟S601)。接著,控制器11接收與電池組件MC[n]對應的電池監控信號mS[n](步驟S603)。控制器11判斷在前一次進行品質監控時,電池組件MC[n]的品質狀態是否被標記為淘汰狀態deadST(步驟S605)。First, initialize variables n, k, s, t (step S601). Then, the controller 11 receives the battery monitoring signal mS[n] corresponding to the battery module MC[n] (step S603). The controller 11 determines whether the quality status of the battery module MC[n] was marked as the obsolete state deadST during the previous quality monitoring (step S605).

若步驟S605的判斷結果為肯定,則將代表品質為淘汰狀態deadST的電池組件MC的計數值t累加(t++)(步驟S611)。若步驟S605的判斷結果為否定,代表在前一次進行品質監控時,電池組件MC[n]的品質狀態被標記為正常狀態nmST或準淘汰狀態wkST。此時,控制器11須重新確認電池組件MC[n]目前的品質(步驟S607)。關於步驟S607的細節,將於第5A、5B圖說明。簡言之,根據步驟S607的判斷結果,電池組件MC[n]的品質狀態可能被標記為正常狀態nmST、準淘汰狀態wkST或淘汰狀態deadST。且,根據標記的結果,將代表品質為正常狀態nmST的電池組件MC的計數值k、代表品質為準淘汰狀態wkST的電池組件MC的計數值s,以及代表品質為淘汰狀態deadST的電池組件MC的計數值t的其中一者累加。If the judgment result of step S605 is positive, the count value t representing the battery component MC in the obsolete state deadST is accumulated (t++) (step S611). If the judgment result of step S605 is negative, it means that the quality status of the battery component MC[n] was marked as the normal state nmST or the quasi-obsolete state wkST during the previous quality monitoring. At this time, the controller 11 must reconfirm the current quality of the battery component MC[n] (step S607). The details of step S607 will be explained in Figures 5A and 5B. In short, according to the judgment result of step S607, the quality status of the battery component MC[n] may be marked as the normal state nmST, the quasi-obsolete state wkST, or the obsolete state deadST. Furthermore, according to the marking result, one of the count value k representing the battery component MC with a normal quality state nmST, the count value s representing the battery component MC with a quasi-obsolete quality state wkST, and the count value t representing the battery component MC with an obsolete quality state deadST is accumulated.

其後,控制器11判斷是否N個電池組件MC[1]~MC[N]均已完成品質標記,即判斷n是否等於N(步驟S613)。若步驟S613的判斷結果為否定,則再累加變數n(步驟S609)後,重新執行步驟S605。若步驟S613的判斷結果為肯定,則利用變數k、s、t更新在此次執行品質監控階段mntSTG中,品質為正常狀態nmST的電池組件MC的數量K(設定K=k)、品質為準淘汰狀態wkST的電池組件MC的數量S(設定S=s),以及品質為淘汰狀態deadST的電池組件MC的數量T(設定T=t)。Thereafter, the controller 11 determines whether the N battery components MC[1]~MC[N] have completed the quality marking, that is, whether n is equal to N (step S613). If the judgment result of step S613 is negative, the variable n is accumulated again (step S609), and step S605 is re-executed. If the judgment result of step S613 is positive, the variables k, s, and t are used to update the number K of battery components MC with a normal quality state nmST (set K=k), the number S of battery components MC with a quasi-elimination quality state wkST (set S=s), and the number T of battery components MC with an eliminated quality state deadST (set T=t) in the current quality monitoring stage mntSTG.

請參見第5A、5B圖,其係說明控制器11如何確認電池組件MC[n]的品質(第4圖的步驟S607)的流程圖。Please refer to Figures 5A and 5B, which are flow charts illustrating how the controller 11 confirms the quality of the battery module MC[n] (step S607 of Figure 4).

首先,控制器11從電池監控信號mS[n]中,得知電池組件MC[n]的健康狀態(State of Health,簡稱為SOH)。且,控制器11利用電池組件MC[n]的SOH和一個預設健康狀態臨界值(例如,0.03%)的比較,判斷電池組件MC[n]是否符合壽命終止(end of life)條件(步驟S607a)。據此,當電池組件MC[n]的SOH低於或等於預設健康狀態臨界值時,控制器11判斷電池組件MC[n]符合壽命終止的條件。若步驟S607a的判斷結果為肯定,控制器11將電池組件MC[n]標記為淘汰狀態deadST,並累加代表品質為淘汰狀態deadST的電池組件MC的數量的計數值t(步驟S607e)。First, the controller 11 obtains the state of health (SOH) of the battery component MC[n] from the battery monitoring signal mS[n]. Furthermore, the controller 11 compares the SOH of the battery component MC[n] with a preset health critical value (e.g., 0.03%) to determine whether the battery component MC[n] meets the end of life condition (step S607a). Accordingly, when the SOH of the battery component MC[n] is lower than or equal to the preset health critical value, the controller 11 determines that the battery component MC[n] meets the end of life condition. If the determination result of step S607a is positive, the controller 11 marks the battery module MC[n] as being in the deadST state, and accumulates the count value t representing the number of battery modules MC having the deadST quality (step S607e).

若步驟S607a的判斷結果為否定,控制器11將進一步從電池監控信號mS[n]中,得知電池組件MC[n]的SOC。且,控制器11利用電池組件MC[n]的SOC和一個預設終止點(cut-off point)的臨界值(例如,15%)的比較,判斷電池組件MC[n]是否符合終止點的條件(步驟S607c)。據此,當電池組件MC[n]的SOC低於或等於預設終止點的臨界值時,控制器11判斷電池組件MC[n]符合終止點條件。若步驟S607c的判斷結果為肯定,控制器11將電池組件MC[n]標記為淘汰狀態deadST,並累加代表品質為淘汰狀態deadST的電池組件MC的數量的計數值t(步驟S607e)。If the judgment result of step S607a is negative, the controller 11 will further learn the SOC of the battery module MC[n] from the battery monitoring signal mS[n]. In addition, the controller 11 compares the SOC of the battery module MC[n] with a preset cut-off point critical value (e.g., 15%) to determine whether the battery module MC[n] meets the cut-off point condition (step S607c). Accordingly, when the SOC of the battery module MC[n] is lower than or equal to the preset cut-off point critical value, the controller 11 determines that the battery module MC[n] meets the cut-off point condition. If the determination result of step S607c is positive, the controller 11 marks the battery module MC[n] as being in the deadST state, and accumulates the count value t representing the number of battery modules MC having the deadST quality (step S607e).

若步驟S607c的判斷結果為否定,控制器11進一步判斷供電模組13的充電次數是否未達到預設次數(例如,預設次數為500次)(步驟S607g)。供電模組13在使用的初期,老化情況並不嚴重,故在充電次數未達預設次數前,可將電池組件MC[n]視為正常狀態nmST。因此,若步驟S607g的判斷結果為肯定,控制器11將電池組件MC[n]標記為正常狀態nmST,並累加代表品質為正常狀態nmST的電池組件MC的數量的計數值k(步驟S607m)。If the judgment result of step S607c is negative, the controller 11 further judges whether the charging times of the power supply module 13 has not reached the preset times (for example, the preset times is 500 times) (step S607g). In the early stage of use, the aging of the power supply module 13 is not serious, so before the charging times do not reach the preset times, the battery module MC[n] can be regarded as a normal state nmST. Therefore, if the judgment result of step S607g is positive, the controller 11 marks the battery module MC[n] as a normal state nmST, and accumulates the count value k representing the number of battery modules MC with a quality of normal state nmST (step S607m).

若步驟S607g的判斷結果為否定,控制器11判斷電池組件MC[n]在前一次的品質監控階段mntSTG是否被標記為準淘汰狀態wkST(步驟S607i)。由於第4圖的步驟S605、S611已經將先前標記為淘汰狀態deadST的電池組件MC[n]排除,在步驟S607i中,僅需考慮在前一次執行品質監控階段mntSTG期間,品質狀態被標記為準淘汰狀態wkST和正常狀態nmST的電池組件MC[n]。If the judgment result of step S607g is negative, the controller 11 judges whether the battery module MC[n] was marked as the quasi-obsolete state wkST in the previous quality monitoring stage mntSTG (step S607i). Since the battery module MC[n] previously marked as the obsolete state deadST has been excluded in steps S605 and S611 of FIG. 4, in step S607i, only the battery module MC[n] whose quality state was marked as the quasi-obsolete state wkST and the normal state nmST during the previous execution of the quality monitoring stage mntSTG needs to be considered.

若步驟S607i的判斷結果為肯定,代表電池組件MC[n]的品質狀態在前一次的品質監控階段mntSTG被標記為準淘汰狀態wkST。此時,控制器11將執行步驟S607k,判斷此次電池組件MC[n]的品質是否維持在準淘汰狀態wkST(步驟S607k判斷為否定的情況);或者,目前電池組件MC[n]的品質獲得改善,可改為將其標記為正常狀態nmST(步驟S607k判斷為肯定的情況)。If the judgment result of step S607i is positive, it means that the quality status of battery component MC[n] was marked as quasi-obsolete status wkST in the previous quality monitoring stage mntSTG. At this time, the controller 11 will execute step S607k to determine whether the quality of battery component MC[n] is maintained in the quasi-obsolete status wkST (if step S607k is negative); or, if the quality of battery component MC[n] is improved, it can be marked as normal status nmST (if step S607k is positive).

S607k的判斷條件可根據應用的不同而調整。例如,控制器11可以將目前判斷的電池組件MC[n]的SOC(SOC MC[n]),和在前一次的品質監控階段mntSTG中,處於使用模式useMD(容後詳述)之品質狀態被標記為正常狀態nmST的K個電池模組的SOC之平均(SOC avgK)相比較。若目前判斷的電池組件MC[n]的SOC(SOC MC[n]),超過在前一次的品質監控階段mntSTG品質狀態中,處於使用模式useMD之被標記為正常狀態nmST的K個電池模組的SOC之平均(SOC avgK)一定程度(例如,兩者的差值(SOC MC[n]-SOC avgK)大於一個預設比例z%(SOC MC[n]-SOC avgK 5%))時,代表電池組件MC[n]的SOC(SOC MC[n])雖然在前一次的品質監控階段mntSTG被標記為準淘汰狀態wkST,但目前其SOC(SOC MC[n])已經恢復至優於其他正常狀態nmST的電池模組的SOC的程度。此時,便可將電池組件MC[n]的品質狀態,標記為正常狀態nmST(步驟S607m)。反之,則仍將電池組件MC[n]的品質狀態標記為準淘汰狀態wkST(步驟S607q)。 The judgment condition of S607k can be adjusted according to different applications. For example, the controller 11 can compare the SOC (SOC MC[n] ) of the currently judged battery module MC[n] with the average SOC (SOC avgK ) of K battery modules whose quality status is marked as normal status nmST in the use mode useMD (described in detail later) in the previous quality monitoring stage mntSTG . If the SOC (SOC MC[n] ) of the currently determined battery module MC[n] exceeds the average SOC (SOC avgK ) of the K battery modules marked as normal state nmST in the use mode useMD in the previous quality monitoring stage mntSTG quality state by a certain degree (for example, the difference between the two (SOC MC[n] -SOC avgK ) is greater than a preset ratio z% (SOC MC[n] -SOC avgK 5%)), it means that although the SOC (SOC MC[n] ) of the battery module MC[n] was marked as the quasi-elimination state wkST in the previous quality monitoring stage mntSTG, its current SOC (SOC MC[n] ) has recovered to a level that is better than the SOC of other battery modules in the normal state nmST. At this time, the quality state of the battery module MC[n] can be marked as the normal state nmST (step S607m). Otherwise, the quality state of the battery module MC[n] is still marked as the quasi-elimination state wkST (step S607q).

若步驟S607i的判斷結果為否定,代表電池組件MC[n]的品質狀態在前一次的品質監控階段mntSTG被標記為正常狀態nmST。此時,控制器11將執行步驟S607o,判斷此次電池組件MC[n]的品質狀態是否仍為正常狀態nmST(步驟S607o判斷為否定的情況);或者,目前電池組件MC[n]的品質狀態已經變差,須將電池組件MC[n]的品質狀態標記為準淘汰狀態wkST(步驟S607o判斷為肯定的情況)。If the judgment result of step S607i is negative, it means that the quality status of battery component MC[n] was marked as normal status nmST in the previous quality monitoring stage mntSTG. At this time, the controller 11 will execute step S607o to determine whether the quality status of battery component MC[n] is still normal status nmST (if the judgment of step S607o is negative); or, the quality status of battery component MC[n] has deteriorated, and the quality status of battery component MC[n] must be marked as quasi-elimination status wkST (if the judgment of step S607o is positive).

S607o的判斷條件可根據應用的不同而調整。以下分別以百分比和標準差為基礎,說明步驟S607o可採用的判斷條件的舉例。在一實施例中,當各電池組件MC[n]的標準差大於一預設標準差(例如為10)時,則以標準差作為S607o的判斷條件。然而,並不以所列舉者為限。The judgment condition of S607o can be adjusted according to different applications. The following is an example of the judgment condition that can be adopted in step S607o based on percentage and standard deviation. In one embodiment, when the standard deviation of each battery module MC[n] is greater than a preset standard deviation (e.g., 10), the standard deviation is used as the judgment condition of S607o. However, it is not limited to the examples listed.

控制器11可採用的一種判斷方式為,將目前判斷的電池組件MC[n]的SOC(SOC MC[n]),和在前一次的品質監控階段mntSTG中,品質狀態被標記為正常狀態nmST且被設為使用模式useMD的電池組件MC的SOC之平均(SOC avgK)相比較。若目前判斷的電池組件MC[n]的SOC(SOC MC[n]),和在前一次的品質監控階段mntSTG中,品質狀態被標記為正常狀態nmST且被設為使用模式useMD的電池組件MC的SOC之平均(SOC avgK)相差太多(例如,兩者的差值大於一個預設比例y%=10%)時,代表電池組件MC[n]的SOC(SOC MC[n])雖然在前一次的品質監控階段mntSTG被標記為正常狀態nmST,但目前電池組件MC[n]的SOC(SOC MC[n])已經太差,不足以和其他正常狀態nmST的電池組件MC的SOC相提並論。此時,便可將電池組件MC[n]的品質狀態標記為準淘汰狀態wkST(步驟S607q)。反之,則仍將電池組件MC[n]的品質狀態標記為正常狀態nmST(步驟S607m)。 One judgment method that the controller 11 can adopt is to compare the SOC (SOC MC[n] ) of the currently judged battery module MC[n] with the average SOC (SOC avgK ) of the battery modules MC whose quality status was marked as the normal state nmST and set to the use mode useMD in the previous quality monitoring stage mntSTG. If the SOC (SOC MC[n] ) of the currently determined battery component MC[n] is too different from the average SOC (SOC avgK ) of the battery components MC whose quality status was marked as the normal status nmST and set to the use mode useMD in the previous quality monitoring stage mntSTG (for example, the difference between the two is greater than a preset ratio y%=10%), it means that although the SOC (SOC MC[n] ) of the battery component MC[n] was marked as the normal status nmST in the previous quality monitoring stage mntSTG, the current SOC (SOC MC[n] ) of the battery component MC[n] is too poor to be compared with the SOC of other battery components MC in the normal status nmST. At this time, the quality status of the battery module MC[n] can be marked as the quasi-rejected state wkST (step S607q). Otherwise, the quality status of the battery module MC[n] is still marked as the normal state nmST (step S607m).

又如,控制器11可採用的另一種判斷方式為,將目前判斷的電池組件MC[n]的SOC(SOC MC[n]),和在前一次的品質監控階段mntSTG中,處於使用模式useMD之品質狀態被標記為正常狀態nmST的K個電池組件MC的SOC之平均(SOC avgK)相比較。若目前判斷的電池組件MC[n]的SOC(SOC MC[n])比前一次的品質監控階段mntSTG,在使用模式useMD被標記為正常狀態nmST的K個電池組件MC的SOC之平均(SOC avgK)低,且超過x個標準差(例如,x=1.281)時,代表電池組件MC[n]的SOC(SOC MC[n])雖然在前一次的品質監控階段mntSTG被標記為正常狀態nmST,但目前其SOC已經太差,不適合和其他正常狀態nmST的電池組件MC一起進行供電。此時,控制器11便可將電池組件MC[n]的品質狀態標記為準淘汰狀態wkST(步驟S607q)。反之,控制器11仍維持將電池組件MC[n]的品質狀態標記為正常狀態nmST(步驟S607m)。 For example, another judgment method that the controller 11 can adopt is to compare the SOC (SOC MC[n] ) of the currently judged battery component MC[n] with the average SOC (SOC avgK ) of K battery components MC whose quality status is marked as normal status nmST in the use mode useMD in the previous quality monitoring stage mntSTG. If the SOC (SOC MC[n] ) of the currently determined battery module MC[n] is lower than the average SOC (SOC avgK ) of the K battery modules MC marked as normal state nmST in the use mode useMD in the previous quality monitoring stage mntSTG, and exceeds x standard deviations (for example, x=1.281), it means that although the SOC (SOC MC[n] ) of the battery module MC[n] was marked as normal state nmST in the previous quality monitoring stage mntSTG, its current SOC is too poor and is not suitable for powering together with other battery modules MC in normal state nmST. At this time, the controller 11 can mark the quality state of the battery module MC[n] as quasi-obsolete state wkST (step S607q). Otherwise, the controller 11 still maintains marking the quality status of the battery module MC[n] as the normal status nmST (step S607m).

若步驟S607k的判斷結果肯定,或步驟S607o的判斷結果為否定,控制器11將電池組件MC[n]的品質狀態標記為正常狀態nmST,並累加代表品質為正常狀態nmST的電池組件MC的計數值k(k++)(步驟S607m)。另一方面,若步驟S607k的判斷結果否定,或步驟S607o的判斷結果為肯定,控制器11將電池組件MC[n]的品質狀態標記為準淘汰狀態wkST,並累加代表品質為準淘汰狀態wkST的電池組件MC的計數值s(s++)(步驟S607q)。If the judgment result of step S607k is positive, or the judgment result of step S607o is negative, the controller 11 marks the quality state of the battery module MC[n] as the normal state nmST, and accumulates the count value k(k++) representing the battery module MC with the quality of the normal state nmST (step S607m). On the other hand, if the judgment result of step S607k is negative, or the judgment result of step S607o is positive, the controller 11 marks the quality state of the battery module MC[n] as the quasi-elimination state wkST, and accumulates the count value s(s++) representing the battery module MC with the quality of the quasi-elimination state wkST (step S607q).

供電模組13中的電池模組bMD[1]~bMD[N]具有類似的元件和連接關係。以下,以電池模組bMD[n]為例,說明其內部元件和連接關係。The battery modules bMD[1] to bMD[N] in the power supply module 13 have similar components and connection relationships. The following uses the battery module bMD[n] as an example to explain its internal components and connection relationships.

請參見第6圖,其係根據本揭露實施例的電池模組bMD[n]之示意圖。此處以變數n亦可代表任一個電池模組bMD[1]~bMD[N],其中n≤N。電池模組bMD[n]電連接於控制器11(見第1圖),電池模組bMD[n]包含:電池組件MC[n]、第一串聯開關s1SW[n]、第二串聯開關s2SW[n]、第一並聯開關p1SW[n]、第二並聯開關p2SW[n]與旁路開關bpSW[n]。電池組件MC[n]具有第一端E1與第二端E2,第一串聯開關s1SW[n]與第一並聯開關p1SW[n]電連接於電池組件MC[n]的第一端E1;第二串聯開關s2SW[n]與第二並聯開關p2SW[n]電連接於電池組件MC[n]的第二端E2。旁路開關bpSW[n]電連接於第一串聯開關s1SW[n]與第二串聯開關s2SW[n]。其中,電池組件MC[n]進一步包含排列為X行與Y列的電池單元(battery cell)BC。位於同行的Y個電池單元BC彼此並聯,且位於同列的X個電池單元彼此串聯。控制器11可根據電池組件MC[n]的品質,發出開關控制信號swCtl[n]至電池模組bMD[n],而選擇性地導通第一與第二串聯開關s1SW[n]、s2SW[n]、第一與第二並聯開關p1SW[n]、p2SW[n]與旁路開關bpSW[n]。基於此,電池模組bMD[n]可因應自控制器11接收的開關控制信號swCtl[n],而被設定為串聯組態(serCFG)、並聯組態(pCFG)或旁路組態(bpCFG)其中之一者(容後詳述)。Please refer to FIG. 6, which is a schematic diagram of a battery module bMD[n] according to an embodiment of the present disclosure. Here, the variable n can also represent any battery module bMD[1]~bMD[N], where n≤N. The battery module bMD[n] is electrically connected to the controller 11 (see FIG. 1), and the battery module bMD[n] includes: a battery component MC[n], a first series switch s1SW[n], a second series switch s2SW[n], a first parallel switch p1SW[n], a second parallel switch p2SW[n] and a bypass switch bpSW[n]. The battery assembly MC[n] has a first end E1 and a second end E2, a first series switch s1SW[n] and a first parallel switch p1SW[n] are electrically connected to the first end E1 of the battery assembly MC[n]; a second series switch s2SW[n] and a second parallel switch p2SW[n] are electrically connected to the second end E2 of the battery assembly MC[n]. A bypass switch bpSW[n] is electrically connected to the first series switch s1SW[n] and the second series switch s2SW[n]. The battery assembly MC[n] further includes battery cells BC arranged in X rows and Y columns. The Y battery cells BC in the same row are connected in parallel, and the X battery cells in the same column are connected in series. The controller 11 can send a switch control signal swCtl[n] to the battery module bMD[n] according to the quality of the battery component MC[n], and selectively turn on the first and second series switches s1SW[n], s2SW[n], the first and second parallel switches p1SW[n], p2SW[n] and the bypass switch bpSW[n]. Based on this, the battery module bMD[n] can be set to one of the series configuration (serCFG), parallel configuration (pCFG) or bypass configuration (bpCFG) in response to the switch control signal swCtl[n] received from the controller 11 (described in detail later).

詳細來說,第一串聯開關s1SW[n]、第一並聯開關p1SW[n]與電池組件MC[n]的一端共同電連接於內部端點Nin1[n]。第一串聯開關s1SW[n]的另一端電連接於共用端點Nc_(n-1)n。第一並聯開關p1SW[n]的另一端電連接於共用端點Nc1。第二串聯開關s2SW[n]、第二並聯開關p2SW[n]與電池組件MC[n]的一端共同電連接於內部端點Nin2[n]。第二串聯開關s2SW[n]的另一端電連接於共用端點Nc_n(n+1)。第二並聯開關p2SW[n]的另一端電連接於共用端點Nc2。旁路開關bpSW[n]的兩端分別電連接於共用端點Nc_(n-1)n、Nc_n(n+1)。Specifically, the first series switch s1SW[n], the first parallel switch p1SW[n], and one end of the battery module MC[n] are electrically connected to the internal terminal Nin1[n]. The other end of the first series switch s1SW[n] is electrically connected to the common terminal Nc_(n-1)n. The other end of the first parallel switch p1SW[n] is electrically connected to the common terminal Nc1. The second series switch s2SW[n], the second parallel switch p2SW[n], and one end of the battery module MC[n] are electrically connected to the internal terminal Nin2[n]. The other end of the second series switch s2SW[n] is electrically connected to the common terminal Nc_n(n+1). The other end of the second parallel switch p2SW[n] is electrically connected to the common terminal Nc2. The two ends of the bypass switch bpSW[n] are electrically connected to the common terminals Nc_(n-1)n and Nc_n(n+1) respectively.

開關控制信號swCtl[n]進一步包含:適於控制第一與第二串聯開關s1SW[n]、s2SW[n]的串聯開關控制信號swCT_s[n]、適於控制第一與第二並聯開關p1SW[n]、p2SW[n]的並聯開關控制信號swCT_p[n],以及適於控制旁路開關bpSW[n]的旁路開關控制信號swCT_bp[n]。其中,第一與第二串聯開關s1SW[n]、s2SW[n]、第一與第二並聯開關p1SW[n]、p2SW[n]與旁路開關bpSW[n]分別根據串聯開關控制信號swCT_s[n]、並聯開關控制信號swCT_p[n]和旁路開關控制信號swCT_bp[n]而選擇性導通。第一與第二串聯開關s1SW[n]、s2SW[n]依據串聯開關控制信號swCT_s[n]同步導通或同步斷開。第一與第二並聯開關p1SW[n]、p2SW[n]依據並聯開關控制信號swCT_p[n]同步導通或同步斷開。The switch control signal swCtl[n] further includes: a series switch control signal swCT_s[n] suitable for controlling the first and second series switches s1SW[n], s2SW[n], a parallel switch control signal swCT_p[n] suitable for controlling the first and second parallel switches p1SW[n], p2SW[n], and a bypass switch control signal swCT_bp[n] suitable for controlling the bypass switch bpSW[n]. The first and second series switches s1SW[n], s2SW[n], the first and second parallel switches p1SW[n], p2SW[n], and the bypass switch bpSW[n] are selectively turned on according to the series switch control signal swCT_s[n], the parallel switch control signal swCT_p[n], and the bypass switch control signal swCT_bp[n], respectively. The first and second series switches s1SW[n] and s2SW[n] are synchronously turned on or off according to the series switch control signal swCT_s[n]. The first and second parallel switches p1SW[n] and p2SW[n] are synchronously turned on or off according to the parallel switch control signal swCT_p[n].

根據本揭露的構想,電池模組bMD[n]包含電池組件MC[n]與多個開關,且藉由該些開關的切換,電池模組bMD[n]的連接組態可被設定為:串聯組態serCFG、並聯組態pCFG,或旁路組態bpCFG。根據電池模組bMD[n]的連接組態不同,第一與第二串聯開關s1SW[n]、s2SW[n]、第一與第二並聯開關p1SW[n]、p2SW[n]與旁路開關bpSW[n]將選擇性導通,且電池組件MC[n]可因此提供或不提供電壓作為輸出電壓Vout的一部分。表2彙整電池模組bMD[n]的各種連接組態,和第一與第二串聯開關s1SW[n]、s2SW[n]、第一與第二並聯開關p1SW[n]、p2SW[n]與旁路開關bpSW[n]的導通狀態之間的關係。According to the concept of the present disclosure, the battery module bMD[n] includes a battery component MC[n] and a plurality of switches, and by switching the switches, the connection configuration of the battery module bMD[n] can be set to: a series configuration serCFG, a parallel configuration pCFG, or a bypass configuration bpCFG. According to the connection configuration of the battery module bMD[n], the first and second series switches s1SW[n], s2SW[n], the first and second parallel switches p1SW[n], p2SW[n], and the bypass switch bpSW[n] will be selectively turned on, and the battery component MC[n] can therefore provide or not provide a voltage as part of the output voltage Vout. Table 2 summarizes the various connection configurations of the battery module bMD[n] and the relationship between the conduction states of the first and second series switches s1SW[n], s2SW[n], the first and second parallel switches p1SW[n], p2SW[n] and the bypass switch bpSW[n].

表2 電池模組bMD[n]的連接組態 第一與第二串聯開關s1SW[n]、s2SW[n] 第一與第二並聯開關p1SW[n]、p2SW[n] 旁路開關bpSW[n] 電池模組bMD[n]的狀態 串聯組態serCFG 導通 斷開 斷開 供電至輸出電壓Vout 並聯組態pCFG 斷開 導通 導通 與其他電池模組並聯進行電荷平衡 旁路組態bpCFG 斷開 斷開 導通 停止供電 Table 2 Connection configuration of battery module bMD[n] The first and second series switches s1SW[n], s2SW[n] The first and second parallel switches p1SW[n], p2SW[n] Bypass switch bpSW[n] Status of battery module bMD[n] Serial configuration serCFG Conductivity Disconnect Disconnect Supply power to output voltage Vout Parallel configuration pCFG Disconnect Conductivity Conductivity Connect in parallel with other battery modules for charge balancing Bypass configuration bpCFG Disconnect Disconnect Conductivity Power outage

請參見第7圖,其係控制器因應電池組件MC[n]的品質而搭配電池模組bMD[n]的連接組態之示意圖。如前所述,在品質監控階段mntSTG,控制器11將對電池組件MC[1]~MC[N]的品質加以標記,並區分為K個正常狀態nmST的電池組件MC、S個準淘汰狀態wkST的電池組件MC,以及T個淘汰狀態deadST的電池組件MC。其中,K、S、T均為大於或等於0的整數,且K+S+T=N。但,K、S、T的數值並非定值,而是隨著供電模組13的使用期間改變。Please refer to Figure 7, which is a schematic diagram of the connection configuration of the controller matching the battery module bMD[n] in response to the quality of the battery component MC[n]. As mentioned above, in the quality monitoring stage mntSTG, the controller 11 will mark the quality of the battery components MC[1]~MC[N] and distinguish them into K battery components MC in the normal state nmST, S battery components MC in the quasi-obsolete state wkST, and T battery components MC in the obsolete state deadST. Among them, K, S, and T are all integers greater than or equal to 0, and K+S+T=N. However, the values of K, S, and T are not fixed values, but change with the use period of the power supply module 13.

再者,在組態設定階段cfgSTG,控制器11將根據電池組件MC[1]~MC[N]的品質,自其中選擇M個電池組件MC作為輸出電壓Vout的供電來源。因此,此處根據電池組件MC[1]~MC[N]是否被選擇用於供電,將電池組件MC[1]~MC[N]區分為:被設為使用模式useMD的電池組件MC,以及被設為停用模式stpMD的電池組件MC。Furthermore, in the configuration setting stage cfgSTG, the controller 11 will select M battery components MC from the battery components MC[1]~MC[N] as the power supply source of the output voltage Vout according to the quality of the battery components MC[1]~MC[N]. Therefore, here, according to whether the battery components MC[1]~MC[N] are selected for power supply, the battery components MC[1]~MC[N] are divided into: a battery component MC set to the use mode useMD, and a battery component MC set to the stop mode stpMD.

根據本揭露的構想,品質為正常狀態nmST的電池組件MC,可能被設為使用模式useMD或停用模式stpMD;品質為準淘汰狀態wkST的電池組件MC,可能被設為使用模式useMD或停用模式stpMD;且,品質為淘汰狀態deadST的電池組件MC,僅能被設為停用模式stpMD。由於正常狀態nmST的電池組件MC與準淘汰狀態wkST的電池組件MC均可能被設為使用模式useMD或停用模式stpMD,此處進一步以右上至左下方向的對角線搭配白底代表未用於供電的正常狀態nmST的電池組件MC;以及,以右上至左下方向的對角線搭配點狀網底代表未用於供電的準淘汰狀態wkST的電池組件MC。According to the concept of the present disclosure, a battery component MC with a quality of normal state nmST may be set to a use mode useMD or a stop mode stpMD; a battery component MC with a quality of quasi-obsolete state wkST may be set to a use mode useMD or a stop mode stpMD; and a battery component MC with a quality of obsolete state deadST can only be set to a stop mode stpMD. Since both a battery component MC with a normal state nmST and a battery component MC with a quasi-obsolete state wkST may be set to a use mode useMD or a stop mode stpMD, a battery component MC with a normal state nmST that is not used for power supply is further represented here by a diagonal line from the upper right to the lower left with a white background; and a battery component MC with a quasi-obsolete state wkST that is not used for power supply is represented by a diagonal line from the upper right to the lower left with a dotted grid background.

承上所述,本文將以單純白底的方框代表品質為正常狀態nmST且處於使用模式useMD的電池組件MC;以具有右上至左下方向的對角線之白底的方框代表品質為正常狀態nmST且被設定為停用模式stpMD的電池組件MC;以單純點狀網底的方框代表品質為準淘汰狀態wkST且被設定為使用模式useMD的電池組件MC;以具有右上至左下方向的對角線之點狀網底的方框代表品質為準淘汰狀態wkST且被設定為停用模式stpMD的電池組件MC;以及,以斜格紋網底代表品質為淘汰狀態deadST且被設定為停用模式stpMD的電池組件MC。As mentioned above, this article will use a simple white background box to represent a battery component MC whose quality is in the normal state nmST and is in the use mode useMD; a white background box with a diagonal line from the upper right to the lower left will represent a battery component MC whose quality is in the normal state nmST and is set to the stop mode stpMD; a simple dotted grid background will represent a battery component MC whose quality is in the quasi-obsolete state wkST and is set to the use mode useMD; a dotted grid background with a diagonal line from the upper right to the lower left will represent a battery component MC whose quality is in the quasi-obsolete state wkST and is set to the stop mode stpMD; and a diagonal checkered grid background will represent a battery component MC whose quality is in the obsolete state deadST and is set to the stop mode stpMD.

如前所述,電池模組bMD[n]的連接組態可根據開關控制信號swCtl[n]而被設定為:串聯組態serCFG、並聯組態pCFG,或旁路組態bpCFG。根據電池模組bMD[n]被設定的連接組態不同,第一與第二串聯開關s1SW[n]、s2SW[n]、第一與第二並聯開關p1SW[n]、p2SW[n]與旁路開關bpSW[n]將選擇性導通,且電池組件MC[n]可能提供或不提供電壓作為輸出電壓Vout的一部分。第7圖右側的三個圖式,由上而下依序為,將電池模組bMD[n]的連接組態設為串聯組態serCFG、並聯組態pCFG與旁路組態bpCFG時,第一與第二串聯開關s1SW[n]、s2SW[n]、第一與第二並聯開關p1SW[n]、p2SW[n]與旁路開關bpSW[n]的導通或斷開狀態。As described above, the connection configuration of the battery module bMD[n] can be set to the series configuration serCFG, the parallel configuration pCFG, or the bypass configuration bpCFG according to the switch control signal swCtl[n]. Depending on the connection configuration set for the battery module bMD[n], the first and second series switches s1SW[n], s2SW[n], the first and second parallel switches p1SW[n], p2SW[n], and the bypass switch bpSW[n] will be selectively turned on, and the battery component MC[n] may or may not provide a voltage as part of the output voltage Vout. The three diagrams on the right side of FIG. 7 show, from top to bottom, the on or off states of the first and second series switches s1SW[n], s2SW[n], the first and second parallel switches p1SW[n], p2SW[n], and the bypass switch bpSW[n] when the connection configuration of the battery module bMD[n] is set to the series configuration serCFG, the parallel configuration pCFG, and the bypass configuration bpCFG.

在第7圖中,以虛線箭頭的方向代表控制器11如何因應電池組件MC[n]的品質狀態,以及電池組件MC[n]是否被用於供電而決定電池模組bMD[n]的連接組態。此處,控制器11判斷電池模組bMD[n]的連接組態的來源可區分為五種品質-連接組態的對應關係MP1~MP5。In FIG. 7 , the direction of the dashed arrow represents how the controller 11 determines the connection configuration of the battery module bMD[n] in response to the quality status of the battery module MC[n] and whether the battery module MC[n] is used for power supply. Here, the source of the connection configuration of the battery module bMD[n] determined by the controller 11 can be divided into five quality-connection configuration correspondences MP1 to MP5.

第一種品質-連接組態的對應關係MP1為,當電池組件MC[n]的品質狀態為正常狀態nmST,且控制器11選取電池組件MC[n]進行供電(將電池組件MC[n]設為使用模式useMD)時,控制器11將電池模組bMD[n]的連接組態設定為串聯組態serCFG。第二種品質-連接組態的對應關係MP2為,當電池組件MC[n]的品質狀態為正常狀態nmST,且控制器11未選取電池組件MC[n]進行供電(將電池組件MC[n]設為停用模式stpMD)時,控制器11將電池模組bMD[n]的連接組態設定為並聯組態pCFG。The first quality-connection configuration correspondence MP1 is that when the quality state of the battery component MC[n] is the normal state nmST, and the controller 11 selects the battery component MC[n] for power supply (setting the battery component MC[n] to the use mode useMD), the controller 11 sets the connection configuration of the battery module bMD[n] to the series configuration serCFG. The second quality-connection configuration correspondence MP2 is that when the quality state of the battery component MC[n] is the normal state nmST, and the controller 11 does not select the battery component MC[n] for power supply (setting the battery component MC[n] to the deactivation mode stpMD), the controller 11 sets the connection configuration of the battery module bMD[n] to the parallel configuration pCFG.

從第一種品質-連接組態的對應關係MP1與第二種品質-連接組態的對應關係MP2可以看出,當電池組件MC[n]的品質狀態為正常狀態nmST時,控制器11可能選取或不選取電池組件MC[n]進行供電。且,控制器11將根據是否選擇電池組件MC[n]進行供電,決定將電池模組bMD[n]的連接組態設為串聯組態serCFG或並聯組態pCFG。It can be seen from the first quality-connection configuration correspondence MP1 and the second quality-connection configuration correspondence MP2 that when the quality state of the battery component MC[n] is the normal state nmST, the controller 11 may select or not select the battery component MC[n] for power supply. Furthermore, the controller 11 will decide to set the connection configuration of the battery module bMD[n] to the series configuration serCFG or the parallel configuration pCFG according to whether the battery component MC[n] is selected for power supply.

第三種品質-連接組態的對應關係MP3為,當電池組件MC[n]的品質狀態為準淘汰狀態wkST,且控制器11選取電池組件MC[n]進行供電(將電池組件MC[n]設為使用模式useMD)時,控制器11將電池模組bMD[n]的連接組態設定為串聯組態serCFG。第四種品質-連接組態的對應關係MP4為,當電池組件MC[n]的品質狀態為準淘汰狀態wkST,且控制器11未選取電池組件MC[n]進行供電(將電池組件MC[n]設為停用模式stpMD)時,控制器11將電池模組bMD[n]的連接組態設定為旁路組態bpCFG。The third quality-connection configuration correspondence MP3 is that when the quality status of the battery component MC[n] is the quasi-obsolete state wkST, and the controller 11 selects the battery component MC[n] for power supply (sets the battery component MC[n] to the use mode useMD), the controller 11 sets the connection configuration of the battery module bMD[n] to the series configuration serCFG. The fourth quality-connection configuration correspondence MP4 is that when the quality status of the battery component MC[n] is the quasi-obsolete state wkST, and the controller 11 does not select the battery component MC[n] for power supply (sets the battery component MC[n] to the deactivation mode stpMD), the controller 11 sets the connection configuration of the battery module bMD[n] to the bypass configuration bpCFG.

從第三種品質-連接組態的對應關係MP3與第四種品質-連接組態的對應關係MP4可以看出,當電池組件MC[n]的品質狀態為準淘汰狀態wkST時,控制器11可能選取或不選取電池組件MC[n]進行供電。且,控制器11將根據是否選擇電池組件MC[n]進行供電,決定將電池模組bMD[n]的連接組態設為串聯組態serCFG或旁路組態bpCFG。It can be seen from the third quality-connection configuration correspondence MP3 and the fourth quality-connection configuration correspondence MP4 that when the quality state of the battery component MC[n] is the quasi-elimination state wkST, the controller 11 may select or not select the battery component MC[n] for power supply. Furthermore, the controller 11 will decide to set the connection configuration of the battery module bMD[n] to the series configuration serCFG or the bypass configuration bpCFG according to whether the battery component MC[n] is selected for power supply.

第五種品質-連接組態的對應關係MP5為,當電池組件MC[n]的品質狀態為淘汰狀態deadST,且控制器11未選取電池組件MC[n]進行供電,並將電池組件MC[n]設為停用模式stpMD時,控制器11將電池模組bMD[n]的連接組態設定為旁路組態bpCFG。從第五種品質-連接組態的對應關係MP5可以看出,當電池組件MC[n]的品質為淘汰狀態deadST時,控制器11不使用電池組件MC[n]進行供電,且將電池模組bMD[n]的連接組態設為旁路組態bpCFG。The fifth quality-connection configuration correspondence MP5 is that when the quality status of the battery component MC[n] is the obsolete status deadST, and the controller 11 does not select the battery component MC[n] for power supply, and sets the battery component MC[n] to the deactivation mode stpMD, the controller 11 sets the connection configuration of the battery module bMD[n] to the bypass configuration bpCFG. It can be seen from the fifth quality-connection configuration correspondence MP5 that when the quality of the battery component MC[n] is the obsolete status deadST, the controller 11 does not use the battery component MC[n] for power supply, and sets the connection configuration of the battery module bMD[n] to the bypass configuration bpCFG.

搭配第7圖的品質-連接組態的對應關係MP1~MP5,控制器11在組態設定階段cfgSTG,根據電池組件MC[1]~MC[N]的品質而決定電池模組bMD[n]的連接組態時,可能因為K、S、T、M的數值改變,使供電模組13出現下述的幾種設定組態setCFG_1~setCF_4。在第8A、8B、8C、9A、9B、9C、10A、10B、11A、11B、12圖中,以粗黑線代表產生供應電壓Vout之電流方向。In conjunction with the quality-connection configuration correspondence MP1~MP5 of FIG. 7, when the controller 11 determines the connection configuration of the battery module bMD[n] according to the quality of the battery components MC[1]~MC[N] in the configuration setting stage cfgSTG, the power supply module 13 may have the following several configurations setCFG_1~setCF_4 due to the change in the values of K, S, T, and M. In FIG. 8A, 8B, 8C, 9A, 9B, 9C, 10A, 10B, 11A, 11B, and 12, the thick black line represents the current direction that generates the supply voltage Vout.

第8A、8B、8C圖為K=M時,控制器11配置電池模組bMD[1]~bMD[N]的舉例;第9A、9B、9C圖為K>M時,控制器11配置電池模組bMD[1]~bMD[N]的舉例;第10A、10B圖為K+S=M時,控制器11配置電池模組bMD[1]~bMD[N]的舉例;第11A、11B圖為K+S>M時,控制器11配置電池模組bMD[1]~bMD[N]的舉例;第12圖為K+S<M時,控制器11配置電池模組bMD[1]~bMD[N]的舉例。實際應用時,在正常狀態nmST、準淘汰狀態wkST與淘汰狀態deadST的電池組件MC的數量、位置,與電池模組bMD[1]~bMD[N]的連接組態等,須由控制器11動態調整,並不限於此處的舉例。Figures 8A, 8B, and 8C show examples of controller 11 configuring battery modules bMD[1] to bMD[N] when K=M; Figures 9A, 9B, and 9C show examples of controller 11 configuring battery modules bMD[1] to bMD[N] when K>M; Figures 10A and 10B show examples of controller 11 configuring battery modules bMD[1] to bMD[N] when K+S=M; Figures 11A and 11B show examples of controller 11 configuring battery modules bMD[1] to bMD[N] when K+S>M; and Figure 12 shows an example of controller 11 configuring battery modules bMD[1] to bMD[N] when K+S<M. In actual application, the number and position of the battery components MC in the normal state nmST, the quasi-eliminated state wkST and the eliminated state deadST, and the connection configuration of the battery modules bMD[1]~bMD[N], etc. must be dynamically adjusted by the controller 11, and are not limited to the examples given here.

請參見第8A、8B、8C圖,其係K=M時,控制器判斷供電模組應採用設定組態setCFG_1產生輸出電壓Vout之示意圖。當K=M時,控制器11直接以K=M個被標記為正常狀態nmST的電池組件MC產生輸出電壓Vout,並將其餘的(N-K)個電池組件MC設為停用模式stpMD,此時品質為準淘汰狀態wkST以及淘汰狀態deadST的電池組件MC均被設為停用模式stpMD。Please refer to Figures 8A, 8B, and 8C, which are schematic diagrams of the controller determining that the power supply module should adopt the setting configuration setCFG_1 to generate the output voltage Vout when K=M. When K=M, the controller 11 directly generates the output voltage Vout with K=M battery components MC marked as normal state nmST, and sets the remaining (N-K) battery components MC to the disabled mode stpMD. At this time, the battery components MC with the quality of the semi-eliminated state wkST and the eliminated state deadST are all set to the disabled mode stpMD.

請同時參見第7、8A圖。在第8A圖中,假定品質為正常狀態nmST的電池組件MC的數量K=4,品質為準淘汰狀態wkST的電池組件MC的數量S=2,品質為淘汰狀態deadST的電池組件MC的數量T=0,且產生輸出電壓Vout所需之電池組件MC的數量M=4。因K=M,代表品質狀態為正常狀態nmST的電池組件MC的數量K,等於產生輸出電壓Vout的電池組件MC的數量M,控制器11使用品質狀態為正常狀態nmST的K=4個電池組件MC[1]、MC[2]、MC[4]、MC[6]產生輸出電壓Vout,並將電池組件MC[1]、MC[2]、MC[4]、MC[6]所屬的電池模組bMD[1]、bMD[2]、bMD[4]、bMD[6]的連接組態設為串聯組態serCFG。另一方面,因電池模組bMD[3]、bMD[5]包含未用於供電的S=2個準淘汰狀態wkST的電池組件MC[3]、MC[5],控制器11將電池組件MC[3]、MC[5]所屬的電池模組bM[3]、bM[5]的連接組態設為旁路組態bpCFG。Please refer to Figures 7 and 8A. In Figure 8A, it is assumed that the number of battery components MC with a normal quality of nmST is K=4, the number of battery components MC with a quasi-obsolete quality of wkST is S=2, the number of battery components MC with an obsolete quality of deadST is T=0, and the number of battery components MC required to generate the output voltage Vout is M=4. Because K=M, the number K of battery components MC whose quality status is normal state nmST is equal to the number M of battery components MC that generate output voltage Vout. The controller 11 uses K=4 battery components MC[1], MC[2], MC[4], MC[6] whose quality status is normal state nmST to generate output voltage Vout, and sets the connection configuration of battery modules bMD[1], bMD[2], bMD[4], bMD[6] to which battery components MC[1], MC[2], MC[4], MC[6] belong to the series configuration serCFG. On the other hand, because the battery modules bMD[3] and bMD[5] contain S=2 quasi-obsolete state wkST battery components MC[3] and MC[5] that are not used for power supply, the controller 11 sets the connection configuration of the battery modules bM[3] and bM[5] to which the battery components MC[3] and MC[5] belong to the bypass configuration bpCFG.

在第8A圖中,以粗黑線箭頭標示的電流依序流經電池模組bMD[1]的第一串聯開關s1SW[1]、電池組件MC[1]和第二串聯開關s2SW[1];電池模組bMD[2]的第一串聯開關s1SW[2]、電池組件MC[2]和第二串聯開關s2SW[2];電池模組bMD[3]的旁路開關bpSW[3];電池模組bMD[4]的第一串聯開關s1SW[4]、電池組件MC[4]和第二串聯開關s2SW[4]、電池模組bMD[5]的旁路開關bpSW[5];以及,電池模組bMD[6]的第一串聯開關s1SW[6]、電池組件MC[6]和第二串聯開關s2SW[6]。因此,在第8A圖中,由品質狀態為正常狀態nmST的K=M=4個電池組件MC[1]、MC[2]、MC[4]、MC[6]共同產生輸出電壓Vout。In FIG. 8A , the current indicated by the thick black arrow flows sequentially through the first series switch s1SW[1], the battery assembly MC[1] and the second series switch s2SW[1] of the battery module bMD[1]; the first series switch s1SW[2], the battery assembly MC[2] and the second series switch s2SW[2] of the battery module bMD[2]; the bypass switch bpSW[3] of the battery module bMD[3]; the first series switch s1SW[4], the battery assembly MC[4] and the second series switch s2SW[4] of the battery module bMD[4], and the bypass switch bpSW[5] of the battery module bMD[5]; and the first series switch s1SW[6], the battery assembly MC[6] and the second series switch s2SW[6] of the battery module bMD[6]. Therefore, in FIG. 8A, the output voltage Vout is jointly generated by K=M=4 battery components MC[1], MC[2], MC[4], and MC[6] whose quality state is the normal state nmST.

請同時參見第7、8B圖。在第8B圖中,假定品質為正常狀態nmST的電池組件MC的數量K=4,品質為準淘汰狀態wkST的電池組件MC的數量S=1,品質為淘汰狀態deadST的電池組件MC的數量T=1,且產生輸出電壓Vout所需之電池組件MC的數量M=4。因K=M,表示品質狀態為正常狀態nmST的電池組件MC的數量K,等於產生輸出電壓Vout的電池組件MC的數量M。因此,控制器11使用K=M個品質狀態為正常狀態nmST的電池組件MC[1]、MC[2]、MC[4]、MC[6]產生輸出電壓Vout,並將電池組件MC[1]、MC[2]、MC[4]、MC[6]所屬的電池模組bMD[1]、bMD[2]、bMD[4]、bMD[6]的連接組態設為串聯組態serCFG。另一方面,因供電模組13包含T=1個淘汰狀態deadST的電池組件MC[3],控制器11將電池組件MC[3]所屬的電池模組bMD[3]的連接組態設為旁路組態bpCFG。此外,因供電模組13還包含未用於供電的準淘汰狀態wkST的S=1個電池組件MC[5],控制器11將電池組件MC[5]所屬的電池模組bMD[5]的連接組態設為旁路組態bpCFG。Please refer to Figures 7 and 8B at the same time. In Figure 8B, it is assumed that the number of battery components MC with a quality of normal state nmST is K=4, the number of battery components MC with a quality of quasi-eliminated state wkST is S=1, the number of battery components MC with a quality of deadST is T=1, and the number of battery components MC required to generate the output voltage Vout is M=4. Because K=M, it means that the number K of battery components MC with a quality of normal state nmST is equal to the number M of battery components MC that generate the output voltage Vout. Therefore, the controller 11 uses K=M battery components MC[1], MC[2], MC[4], MC[6] whose quality status is the normal status nmST to generate the output voltage Vout, and sets the connection configuration of the battery modules bMD[1], bMD[2], bMD[4], bMD[6] to which the battery components MC[1], MC[2], MC[4], MC[6] belong to the series configuration serCFG. On the other hand, because the power supply module 13 includes T=1 battery components MC[3] in the obsolete status deadST, the controller 11 sets the connection configuration of the battery module bMD[3] to which the battery component MC[3] belongs to the bypass configuration bpCFG. In addition, because the power supply module 13 also includes S=1 battery module MC[5] in the quasi-retired state wkST that is not used for power supply, the controller 11 sets the connection configuration of the battery module bMD[5] to which the battery module MC[5] belongs to the bypass configuration bpCFG.

在第8B圖中,以粗黑線箭頭標示的電流依序流經電池模組bMD[1]的第一串聯開關s1SW[1]、電池組件MC[1]和第二串聯開關s2SW[1];電池模組bMD[2]的第一串聯開關s1SW[2]、電池組件MC[2]和第二串聯開關s2SW[2];電池模組bMD[3]的旁路開關bpSW[3];電池模組bMD[4]的第一串聯開關s1SW[4]、電池組件MC[4]和第二串聯開關s2SW[4]、電池模組bMD[5]的旁路開關bpSW[5];以及,電池模組bMD[6]的第一串聯開關s1SW[6]、電池組件MC[6]和第二串聯開關s2SW[6]。因此,在第8B圖中,由品質狀態為正常狀態nmST的K=M=4個電池組件MC[1]、MC[2]、MC[4]、MC[6]共同產生輸出電壓Vout。In FIG. 8B , the current indicated by the thick black arrow flows sequentially through the first series switch s1SW[1], the battery assembly MC[1] and the second series switch s2SW[1] of the battery module bMD[1]; the first series switch s1SW[2], the battery assembly MC[2] and the second series switch s2SW[2] of the battery module bMD[2]; the bypass switch bpSW[3] of the battery module bMD[3]; the first series switch s1SW[4], the battery assembly MC[4] and the second series switch s2SW[4] of the battery module bMD[4], and the bypass switch bpSW[5] of the battery module bMD[5]; and the first series switch s1SW[6], the battery assembly MC[6] and the second series switch s2SW[6] of the battery module bMD[6]. Therefore, in FIG. 8B , the output voltage Vout is jointly generated by K=M=4 battery components MC[1], MC[2], MC[4], and MC[6] whose quality state is the normal state nmST.

請同時參見第7、8C圖。在第8C圖中,假定品質為正常狀態nmST的電池組件MC的數量K=4,品質為準淘汰狀態wkST的電池組件MC的數量S=0,品質為淘汰狀態deadST的電池組件MC的數量T=2,且產生輸出電壓Vout所需之電池組件MC的數量M=4。因K=M,表示品質狀態為正常狀態nmST的電池組件MC的數量K個,等於產生輸出電壓Vout的電池組件MC的數量M個。因此,控制器11使用K=M個品質為正常狀態nmST的電池組件MC[1]、MC[2]、MC[4]、MC[6]產生輸出電壓Vout,並將電池組件MC[1]、MC[2]、MC[4]、MC[6]所屬的電池模組bMD[1]、bMD[2]、bMD[4]、bMD[6]的連接組態設為串聯組態serCFG。另一方面,因供電模組13中還包含T=2個淘汰狀態deadST的電池組件MC[3]、MC[5]的緣故,控制器11將電池組件MC[3]、MC[5]所屬的電池模組bMD[3]、bMD[5]的連接組態設為旁路組態bpCFG。Please refer to Figures 7 and 8C. In Figure 8C, it is assumed that the number of battery components MC with a quality of normal state nmST is K=4, the number of battery components MC with a quality of quasi-eliminated state wkST is S=0, the number of battery components MC with a quality of deadST is T=2, and the number of battery components MC required to generate the output voltage Vout is M=4. Because K=M, it means that the number of battery components MC with a quality of normal state nmST, K, is equal to the number of battery components MC that generate the output voltage Vout, M. Therefore, the controller 11 uses K=M battery components MC[1], MC[2], MC[4], MC[6] of normal quality state nmST to generate the output voltage Vout, and sets the connection configuration of the battery modules bMD[1], bMD[2], bMD[4], bMD[6] to which the battery components MC[1], MC[2], MC[4], MC[6] belong to the series configuration serCFG. On the other hand, because the power supply module 13 also includes T=2 battery components MC[3], MC[5] of obsolete state deadST, the controller 11 sets the connection configuration of the battery modules bMD[3], bMD[5] to which the battery components MC[3], MC[5] belong to the bypass configuration bpCFG.

在第8C圖中,以粗黑線箭頭標示的電流依序流經電池模組bMD[1]的第一串聯開關s1SW[1]、電池組件MC[1]和第二串聯開關s2SW[1];電池模組bMD[2]的第一串聯開關s1SW[2]、電池組件MC[2]和第二串聯開關s2SW[2];電池模組bMD[3]的旁路開關bpSW[3];電池模組bMD[4]的第一串聯開關s1SW[4]、電池組件MC[4]和第二串聯開關s2SW[4]、電池模組bMD[5]的旁路開關bpSW[5];以及,電池模組bMD[6]的第一串聯開關s1SW[6]、電池組件MC[6]和第二串聯開關s2SW[6]。因此,在第8C圖中,由品質狀態為正常狀態nmST的K=M=4個電池組件MC[1]、MC[2]、MC[4]、MC[6]共同產生輸出電壓Vout。In FIG. 8C , the current indicated by the thick black arrow flows sequentially through the first series switch s1SW[1], the battery assembly MC[1] and the second series switch s2SW[1] of the battery module bMD[1]; the first series switch s1SW[2], the battery assembly MC[2] and the second series switch s2SW[2] of the battery module bMD[2]; the bypass switch bpSW[3] of the battery module bMD[3]; the first series switch s1SW[4], the battery assembly MC[4] and the second series switch s2SW[4] of the battery module bMD[4], and the bypass switch bpSW[5] of the battery module bMD[5]; and the first series switch s1SW[6], the battery assembly MC[6] and the second series switch s2SW[6] of the battery module bMD[6]. Therefore, in FIG. 8C , the output voltage Vout is jointly generated by K=M=4 battery components MC[1], MC[2], MC[4], and MC[6] whose quality state is the normal state nmST.

由第8A、8B、8圖C可歸納出,當K=M時,供電模組13可直接使用K=M個品質狀態為正常狀態nmST的電池組件MC產生輸出電壓Vout。控制器11將包含該K個正常狀態nmST的電池組件MC的電池模組bMD的連接組態設為串聯組態serCFG。在此同時,其餘的(N-K)=(S+T)個電池組件MC的品質狀態可能為準淘汰狀態wkST(S個)或淘汰狀態deadST(T個)。控制器11將包含S個準淘汰狀態wkST與T個淘汰狀態deadST的電池組件MC的電池模組bMD的連接組態設為旁路組態bpCFG。此處將供電模組13中,存在K=M個品質狀態為正常狀態nmST的電池組件MC的情況下,控制器11對電池模組bMD[1]~bMD[N]的連接組態的配置方式定義為設定組態setCFG_1。It can be concluded from Figures 8A, 8B, and 8C that when K=M, the power supply module 13 can directly use K=M battery components MC in the normal state nmST to generate the output voltage Vout. The controller 11 sets the connection configuration of the battery module bMD including the K battery components MC in the normal state nmST to the series configuration serCFG. At the same time, the quality status of the remaining (N-K)=(S+T) battery components MC may be the quasi-obsolete state wkST (S components) or the obsolete state deadST (T components). The controller 11 sets the connection configuration of the battery module bMD including S battery components MC in the quasi-obsolete state wkST and T battery components MC in the obsolete state deadST to the bypass configuration bpCFG. Here, when there are K=M battery modules MC in the power supply module 13 whose quality status is the normal status nmST, the controller 11 defines the configuration method of the connection configuration of the battery modules bMD[1]~bMD[N] as the setting configuration setCFG_1.

請參見第9A、9B、9C圖,其係K>M時,控制器11判斷供電模組13應採用設定組態setCFG_2產生輸出電壓Vout之示意圖。當K>M時,供電模組13除了將包含正常狀態nmST的M個電池組件MC的電池模組bMD的連接組態設為串聯組態serCFG外,亦將包含其餘(K-M)個品質狀態同樣為正常狀態nmST的電池組件MC的電池模組bMD的連接組態設為並聯組態pCFG。若(K-M)≥2時,設為並聯組態pCFG的電池模組bMD內的電池組件MC將進行電荷平衡。Please refer to Figures 9A, 9B, and 9C, which are schematic diagrams showing that when K>M, the controller 11 determines that the power supply module 13 should adopt the setting configuration setCFG_2 to generate the output voltage Vout. When K>M, in addition to setting the connection configuration of the battery module bMD including the M battery components MC in the normal state nmST to the series configuration serCFG, the power supply module 13 also sets the connection configuration of the battery module bMD including the remaining (K-M) battery components MC in the normal state nmST to the parallel configuration pCFG. If (K-M) ≥ 2, the battery components MC in the battery module bMD set to the parallel configuration pCFG will be charge balanced.

請同時參見第7、9A圖。在第9A圖中,假定品質為正常狀態nmST的電池組件MC的數量K=6,品質為準淘汰狀態wkST的電池組件MC的數量S=0,品質為淘汰狀態deadST的電池組件MC的數量T=0,且產生輸出電壓Vout所需之電池組件MC的數量M=4,其中K>M。控制器11從K=6個品質狀態為正常狀態nmST的電池組件MC[1]~MC[6]中,選擇其中的M=4個電池組件MC[2]、MC[4]、MC[5]、MC[6]產生輸出電壓Vout。因此,控制器11將電池組件MC[2]、MC[4]、MC[5]、MC[6]所屬的電池模組bMD[2]、bMD[4]、bMD[5]、bMD[6]設為串聯組態serCFG。另一方面,因供電模組13還包含(K-M)=2個未用於供電的正常狀態nmST的電池組件MC[1]、MC[3]的緣故,控制器11將電池組件MC[1]、MC[3]所屬的電池模組bMD[1]、bMD[3]的連接組態設為並聯組態pCFG。Please refer to Figures 7 and 9A. In Figure 9A, it is assumed that the number of battery components MC with a quality of normal state nmST is K=6, the number of battery components MC with a quality of quasi-eliminated state wkST is S=0, the number of battery components MC with a quality of deadST is T=0, and the number of battery components MC required to generate the output voltage Vout is M=4, where K>M. The controller 11 selects M=4 battery components MC[2], MC[4], MC[5], MC[6] from the K=6 battery components MC[1]~MC[6] with a quality of normal state nmST to generate the output voltage Vout. Therefore, the controller 11 sets the battery modules bMD[2], bMD[4], bMD[5], bMD[6] to which the battery components MC[2], MC[4], MC[5], MC[6] belong to the series configuration serCFG. On the other hand, because the power supply module 13 also includes (K-M)=2 battery components MC[1], MC[3] in the normal state nmST that are not used for power supply, the controller 11 sets the connection configuration of the battery modules bMD[1], bMD[3] to which the battery components MC[1], MC[3] belong to the parallel configuration pCFG.

在第9A圖中,以粗黑線箭頭標示的電流依序流經電池模組bMD[1]的旁路開關bpSW[1];電池模組bMD[2]的第一串聯開關s1SW[2]、電池組件MC[2]和第二串聯開關s2SW[2];電池模組bMD[3]的旁路開關bpSW[3];電池模組bMD[4]的第一串聯開關s1SW[4]、電池組件MC[4]和第二串聯開關s2SW[4];電池模組bMD[5]的第一串聯開關s1SW[5]、電池組件MC[5]和第二串聯開關s2SW[5];以及,電池模組bMD[6]的第一串聯開關s1SW[6]、電池組件MC[6]和第二串聯開關s2SW[6]。因此,在第9A圖中,由M=4個品質狀態為正常狀態nmST的電池組件MC[2]、MC[4]、MC[5]、MC[6]共同產生輸出電壓Vout。In FIG. 9A , the current indicated by the thick black arrow flows sequentially through the bypass switch bpSW[1] of the battery module bMD[1]; the first series switch s1SW[2], the battery module MC[2] and the second series switch s2SW[2] of the battery module bMD[2]; the bypass switch bpSW[3] of the battery module bMD[3]; the first series switch s1SW[4], the battery module MC[4] and the second series switch s2SW[4] of the battery module bMD[4]; the first series switch s1SW[5], the battery module MC[5] and the second series switch s2SW[5] of the battery module bMD[5]; and the first series switch s1SW[6], the battery module MC[6] and the second series switch s2SW[6] of the battery module bMD[6]. Therefore, in FIG. 9A , the output voltage Vout is jointly generated by M=4 battery components MC[2], MC[4], MC[5], and MC[6] whose quality state is normal state nmST.

另請留意,在第9A圖中,以粗虛線箭頭標示的電流,流經電池模組bMD[1]的第一並聯開關p1SW[1]、電池組件MC[1]和第二並聯開關p2SW[1],以及電池模組bMD[3]的第二並聯開關p2SW[3]、電池組件MC[3]和第一並聯開關p1SW[3]。因此,電池組件MC[1]、MC[3]之間將形成一個迴路。也因此,當電池組件MC[1]、MC[3]原本的SOC不相等時,儲存在電池組件MC[1]、MC[3]的電荷便可透過此迴路而流動,進而使電池組件MC[1]、MC[3]的SOC達到平衡狀態。Please also note that in FIG. 9A, the current indicated by the thick dashed arrow flows through the first parallel switch p1SW[1], the battery module MC[1] and the second parallel switch p2SW[1] of the battery module bMD[1], and the second parallel switch p2SW[3], the battery module MC[3] and the first parallel switch p1SW[3] of the battery module bMD[3]. Therefore, a loop is formed between the battery modules MC[1] and MC[3]. Therefore, when the original SOC of the battery modules MC[1] and MC[3] are not equal, the charge stored in the battery modules MC[1] and MC[3] can flow through this loop, thereby making the SOC of the battery modules MC[1] and MC[3] reach a balanced state.

請同時參見第7、9B圖。在第9B圖中,假定品質為正常狀態nmST的電池組件MC的數量K=5,品質為準淘汰狀態wkST的電池組件MC的數量S=1,品質為淘汰狀態deadST的電池組件MC的數量T=0,且產生輸出電壓Vout所需之電池組件MC的數量M=4,其中K>M。控制器11從K=5個品質狀態為正常狀態nmST的電池組件MC[1]~MC[4]、MC[6]中,選擇其中的M=4個電池組件MC[1]、MC[2]、MC[4]、MC[6]產生輸出電壓Vout。因此,控制器11將電池組件MC[1]、MC[2]、MC[4]、MC[6]所屬的電池模組bMD[1]、bMD[2]、bMD[4]、bMD[6]的連接組態設為串聯組態serCFG。另一方面,因供電模組13包含未用於供電的(K-M)=1個正常狀態nmST的電池組件MC[3],控制器11將電池組件MC[3]所屬的電池模組bMD[3]的連接組態設為並聯組態pCFG。因供電模組13還包含S=1個品質狀態為準淘汰狀態wkST的電池組件MC[5]的緣故,控制器11將電池組件MC[5]所屬的電池模組bMD[5]的連接組態設為旁路組態bpCFG。Please refer to Figures 7 and 9B. In Figure 9B, it is assumed that the number of battery components MC with a quality of normal state nmST is K=5, the number of battery components MC with a quality of quasi-eliminated state wkST is S=1, the number of battery components MC with a quality of deadST is T=0, and the number of battery components MC required to generate the output voltage Vout is M=4, where K>M. The controller 11 selects M=4 battery components MC[1], MC[2], MC[4], MC[6] from K=5 battery components MC[1]~MC[4], MC[6] with a quality of normal state nmST to generate the output voltage Vout. Therefore, the controller 11 sets the connection configuration of the battery modules bMD[1], bMD[2], bMD[4], bMD[6] to which the battery components MC[1], MC[2], MC[4], MC[6] belong to the series configuration serCFG. On the other hand, because the power supply module 13 includes (K-M)=1 normal state nmST battery components MC[3] that are not used for power supply, the controller 11 sets the connection configuration of the battery module bMD[3] to which the battery component MC[3] belongs to the parallel configuration pCFG. Because the power supply module 13 also includes S=1 battery components MC[5] whose quality status is the quasi-elimination state wkST, the controller 11 sets the connection configuration of the battery module bMD[5] to which the battery component MC[5] belongs to the bypass configuration bpCFG.

在第9B圖中,以粗黑線箭頭標示的電流依序流經電池模組bMD[1]的第一串聯開關s1SW[1]、電池組件MC[1]和第二串聯開關s2SW[1];電池模組bMD[2]的第一串聯開關s1SW[2]、電池組件MC[2]和第二串聯開關s2SW[2];電池模組bMD[3]的旁路開關bpSW[3];電池模組bMD[4]的第一串聯開關s1SW[4]、電池組件MC[4]和第二串聯開關s2SW[4]、電池模組bMD[5]的旁路開關bpSW[5];以及,電池模組bMD[6]的第一串聯開關s1SW[6]、電池組件MC[6]和第二串聯開關s2SW[6]。因此,在第9B圖中,由M=4個品質狀態為正常狀態nmST的電池組件MC[1]、MC[2]、MC[4]、MC[6]共同產生輸出電壓Vout。In FIG. 9B , the current indicated by the thick black arrow flows sequentially through the first series switch s1SW[1], the battery assembly MC[1] and the second series switch s2SW[1] of the battery module bMD[1]; the first series switch s1SW[2], the battery assembly MC[2] and the second series switch s2SW[2] of the battery module bMD[2]; the bypass switch bpSW[3] of the battery module bMD[3]; the first series switch s1SW[4], the battery assembly MC[4] and the second series switch s2SW[4] of the battery module bMD[4], and the bypass switch bpSW[5] of the battery module bMD[5]; and the first series switch s1SW[6], the battery assembly MC[6] and the second series switch s2SW[6] of the battery module bMD[6]. Therefore, in FIG. 9B , the output voltage Vout is jointly generated by M=4 battery components MC[1], MC[2], MC[4], and MC[6] whose quality state is the normal state nmST.

請同時參見第7、9C圖。在第9C圖中,假定品質為正常狀態nmST的電池組件MC的數量K=5,品質為準淘汰狀態wkST的電池組件MC的數量S=0,品質為淘汰狀態deadST的電池組件MC的數量T=1,且產生輸出電壓Vout所需之電池組件MC的數量M=4,其中K>M。控制器11從K=5個品質狀態為正常狀態nmST的電池組件MC[1]~MC[4]、MC[6]中,選擇其中的M=4個電池組件MC[1]、MC[2]、MC[4]、MC[6]進行供電。因此,控制器11將電池組件MC[1]、MC[2]、MC[4]、MC[6]所屬的電池模組bMD[1]、bMD[2]、bMD[4]、bMD[6]的連接組態設為串聯組態serCFG。另一方面,因供電模組13包含(K-M)=1個品質狀態為正常狀態nmST但未用於供電的電池組件MC[3],控制器11將電池組件MC[3]所屬的電池模組bMD[3]的連接組態設為並聯組態pCFG。因供電模組13還包含S=1個品質狀態為淘汰狀態deadST的電池組件MC[5]的緣故,控制器11將電池組件MC[5]所屬的電池模組bMD[5]的連接組態設為旁路組態bpCFG。Please refer to Figures 7 and 9C. In Figure 9C, it is assumed that the number of battery components MC with a quality of normal state nmST is K=5, the number of battery components MC with a quality of quasi-obsolete state wkST is S=0, the number of battery components MC with a quality of obsolete state deadST is T=1, and the number of battery components MC required to generate the output voltage Vout is M=4, where K>M. The controller 11 selects M=4 battery components MC[1], MC[2], MC[4], MC[6] from K=5 battery components MC[1]~MC[4], MC[6] with a quality of normal state nmST for power supply. Therefore, the controller 11 sets the connection configuration of the battery modules bMD[1], bMD[2], bMD[4], bMD[6] to which the battery components MC[1], MC[2], MC[4], MC[6] belong to the series configuration serCFG. On the other hand, because the power supply module 13 includes (K-M)=1 battery component MC[3] whose quality status is the normal state nmST but is not used for power supply, the controller 11 sets the connection configuration of the battery module bMD[3] to which the battery component MC[3] belongs to the parallel configuration pCFG. Because the power supply module 13 also includes S=1 battery component MC[5] whose quality status is the obsolete state deadST, the controller 11 sets the connection configuration of the battery module bMD[5] to which the battery component MC[5] belongs to the bypass configuration bpCFG.

在第9C圖中,以粗黑線箭頭標示的電流依序流經電池模組bMD[1]的第一串聯開關s1SW[1]、電池組件MC[1]和第二串聯開關s2SW[1];電池模組bMD[2]的第一串聯開關s1SW[2]、電池組件MC[2]和第二串聯開關s2SW[2];電池模組bMD[3]的旁路開關bpSW[3];電池模組bMD[4]的第一串聯開關s1SW[4]、電池組件MC[4]和第二串聯開關s2SW[4]、電池模組bMD[5]的旁路開關bpSW[5];以及,電池模組bMD[6]的第一串聯開關s1SW[6]、電池組件MC[6]和第二串聯開關s2SW[6]。因此,在第9C圖中,由M=4個品質狀態為正常狀態nmST的電池組件MC[1]、MC[2]、MC[4]、MC[6]共同產生輸出電壓Vout。In FIG. 9C , the current indicated by the thick black arrow flows sequentially through the first series switch s1SW[1], the battery assembly MC[1] and the second series switch s2SW[1] of the battery module bMD[1]; the first series switch s1SW[2], the battery assembly MC[2] and the second series switch s2SW[2] of the battery module bMD[2]; the bypass switch bpSW[3] of the battery module bMD[3]; the first series switch s1SW[4], the battery assembly MC[4] and the second series switch s2SW[4] of the battery module bMD[4], and the bypass switch bpSW[5] of the battery module bMD[5]; and the first series switch s1SW[6], the battery assembly MC[6] and the second series switch s2SW[6] of the battery module bMD[6]. Therefore, in FIG. 9C , the output voltage Vout is jointly generated by M=4 battery components MC[1], MC[2], MC[4], and MC[6] whose quality state is the normal state nmST.

由第9A、9B、9C圖可歸納出,當K>M時,供電模組13從K個正常狀態nmST的電池組件MC中,選擇其中的M個用於產生輸出電壓Vout。另,其餘的(K-M)個正常狀態nmST的電池組件MC,則被設為並聯組態pCFG。此處將供電模組13中,存在K>M個正常狀態nmST的電池組件MC的情況下,控制器11對電池模組bMD[1]~bMD[N]的連接組態的配置方式定義為設定組態setCFG_2。It can be concluded from Figures 9A, 9B, and 9C that when K>M, the power supply module 13 selects M of the K battery modules MC in the normal state nmST to generate the output voltage Vout. In addition, the remaining (K-M) battery modules MC in the normal state nmST are set to the parallel configuration pCFG. Here, when there are K>M battery modules MC in the normal state nmST in the power supply module 13, the configuration method of the controller 11 for the connection configuration of the battery modules bMD[1]~bMD[N] is defined as the setting configuration setCFG_2.

根據本揭露的構想,當(K-M)≥2時,這些被設為並聯組態pCFG的電池組件MC形成一個並聯迴路,進而使該些電池組件MC之間的電荷量達到平衡狀態。以第9A圖為例,因為將電池組件MC[1]、MC[3]設為並聯組態pCFG的緣故,電池組件MC[1]、MC[3]內的電荷將進行電荷平衡。例如,假設電池組件MC[1]原本的SOC較佳且電池組件MC[3]原本的SOC較差時,可藉由將電池組件MC[1]、MC[3]設為並聯組態pCFG的方式,使電池組件MC[1]、MC[3]的SOC趨於接近。According to the concept disclosed herein, when (K-M) ≥ 2, the battery modules MC that are set to the parallel configuration pCFG form a parallel loop, thereby making the charge between the battery modules MC reach a balanced state. Taking FIG. 9A as an example, because the battery modules MC[1] and MC[3] are set to the parallel configuration pCFG, the charge in the battery modules MC[1] and MC[3] will be charge balanced. For example, assuming that the original SOC of the battery module MC[1] is better and the original SOC of the battery module MC[3] is worse, the SOC of the battery modules MC[1] and MC[3] can be made close by setting the battery modules MC[1] and MC[3] to the parallel configuration pCFG.

接著說明當K>M時,控制器11如何自K個品質狀態為正常狀態nmST的電池組件MC中,選擇其中的M個作為產生輸出電壓Vout使用。根據本揭露的構想,當K>M時,控制器11將根據K個正常狀態nmST的電池組件MC的SOC進行比較,選擇將其中SOC的變異程度較大的(K-M)個電池組件MC設為停止供電。且,控制器11將該(K-M)個品質狀態為正常狀態nmST,但SOC的變異程度較大的電池組件MC的電池模組bMD設為並聯組態pCFG。例如,假設N=6個電池組件MC均為正常狀態nmST,則控制器11可能將包含具最高SOC和最低SOC的電池組件MC的兩個(K-M=6-4=2)電池模組bMD一起設為並聯組態pCFG,並將包含SOC值介於中間的四個(M=4)電池組件MC的電池模組bMD設為串聯組態serCFG,以產生輸出電壓Vout。Next, it is explained how the controller 11 selects M of the K battery modules MC in the normal state nmST to generate the output voltage Vout when K>M. According to the concept of the present disclosure, when K>M, the controller 11 will compare the SOCs of the K battery modules MC in the normal state nmST, and select the (K-M) battery modules MC with a larger SOC variation to stop supplying power. Furthermore, the controller 11 sets the battery module bMD of the (K-M) battery modules MC in the normal state nmST but with a larger SOC variation to a parallel configuration pCFG. For example, assuming that N=6 battery components MC are all in the normal state nmST, the controller 11 may set the two (K-M=6-4=2) battery modules bMD including the battery components MC with the highest SOC and the lowest SOC together to the parallel configuration pCFG, and set the battery module bMD including four (M=4) battery components MC with SOC values in the middle to the series configuration serCFG to generate the output voltage Vout.

根據本揭露的構想,控制器11將從K個品質狀態為正常狀態nmST的電池組件MC的SOC中,選擇其中M個具有較接近之SOC的電池組件MC作為輸出電壓Vout的來源。由於用於產生輸出電壓Vout的電池組件的SOC大小接近,讓電池組件MC在放電時的電量更加均衡。且,藉由將(K-M)個SOC較分歧的電池組件MC並聯的方式,可以降低電池組件MC所含之SOC分歧的幅度,進而使品質狀態為正常狀態nmST,但未被選取用於供電的(K-M)個電池組件MC的電池老化速度更加平均。According to the concept disclosed herein, the controller 11 selects M battery assemblies MC with a relatively close SOC from the SOCs of K battery assemblies MC with a quality state of normal state nmST as the source of the output voltage Vout. Since the SOCs of the battery assemblies used to generate the output voltage Vout are similar, the amount of electricity in the battery assemblies MC is more balanced when discharged. Moreover, by connecting (K-M) battery assemblies MC with relatively different SOCs in parallel, the amplitude of the SOC difference contained in the battery assemblies MC can be reduced, thereby making the battery aging rate of the (K-M) battery assemblies MC with a quality state of normal state nmST but not selected for power supply more uniform.

請參見第10A、10B圖,其係K<M且K+S=M時,控制器11判斷供電模組13應採用設定組態setCFG_3產生輸出電壓Vout之示意圖。K<M且K+S=M時,單以品質狀態為正常狀態nmST的電池組件MC,仍不足以產生輸出電壓Vout。因此,控制器11須同時將K個包含品質狀態為正常狀態nmST的電池組件MC的電池模組bMD,與包含S個品質狀態為準淘汰狀態wkST的電池組件MC的電池模組bMD設為串聯組態serCFG。Please refer to Figures 10A and 10B, which are schematic diagrams showing that when K<M and K+S=M, the controller 11 determines that the power supply module 13 should adopt the setting configuration setCFG_3 to generate the output voltage Vout. When K<M and K+S=M, the battery module MC with the quality state of normal state nmST alone is still insufficient to generate the output voltage Vout. Therefore, the controller 11 must simultaneously set the battery module bMD including K battery modules MC with the quality state of normal state nmST and the battery module bMD including S battery modules MC with the quality state of quasi-elimination state wkST to the series configuration serCFG.

在第10A圖中,假定品質為正常狀態nmST的電池組件MC的數量K=3,品質為準淘汰狀態wkST的電池組件MC的數量S=1,品質為淘汰狀態deadST的電池組件MC的數量T=2,且產生輸出電壓Vout所需之電池組件MC的數量M=4,其中K<M且K+S=M。由於正常狀態nmST的電池組件MC數量不足(K<M),除了使用K=3個品質狀態為正常狀態nmST的電池組件MC[2]、MC[5]、MC[6]產生一部分的輸出電壓Vout外,亦須使用S=1個準淘汰狀態wkST的電池組件MC[3]產生一部分的輸出電壓Vout。因此,控制器11將電池組件MC[2]、電池組件MC[3]、MC[5]、MC[6]所屬的電池模組bMD[2]、bMD[3]、bMD[5]、bMD[6]的連接組態設為串聯組態serCFG。另一方面,因供電模組13包含T=2個淘汰狀態deadST的電池組件MC[1]、MC[4],控制器11將電池組件MC[1]、MC[4]所屬的電池模組bMD[1]、bMD[4]設為旁路組態bpCFG。In FIG. 10A, it is assumed that the number of battery components MC in the normal state nmST is K=3, the number of battery components MC in the quasi-obsolete state wkST is S=1, the number of battery components MC in the obsolete state deadST is T=2, and the number of battery components MC required to generate the output voltage Vout is M=4, where K<M and K+S=M. Since the number of battery components MC in the normal state nmST is insufficient (K<M), in addition to using K=3 battery components MC[2], MC[5], and MC[6] in the normal state nmST to generate part of the output voltage Vout, S=1 battery component MC[3] in the quasi-obsolete state wkST is also required to generate part of the output voltage Vout. Therefore, the controller 11 sets the connection configuration of the battery modules bMD[2], bMD[3], bMD[5], bMD[6] to which the battery modules MC[2], MC[3], MC[5], MC[6] belong to to the series configuration serCFG. On the other hand, because the power supply module 13 includes T=2 battery modules MC[1], MC[4] in the deadST state, the controller 11 sets the battery modules bMD[1], bMD[4] to which the battery modules MC[1], MC[4] belong to to the bypass configuration bpCFG.

在第10A圖中,以粗黑線箭頭標示的電流依序流經電池模組bMD[1]的旁路開關bpSW[1];電池模組bMD[2]的第一串聯開關s1SW[2]、電池組件MC[2]和第二串聯開關s2SW[2];電池模組bMD[3]的第一串聯開關s1SW[3]、電池組件MC[3]和第二串聯開關s2SW[3];電池模組bMD[4]的旁路開關bpSW[4];電池模組bMD[5]的第一串聯開關s1SW[5]、電池組件MC[5]和第二串聯開關s2SW[5];以及,電池模組bMD[6]的第一串聯開關s1SW[6]、電池組件MC[6]和第二串聯開關s2SW[6]。因此,在第10A圖中,由品質狀態為正常狀態nmST的K=3個電池組件MC[2]、MC[5]、MC[6],與品質狀態為準淘汰狀態wkST的S=1個電池組件MC[3]共同產生輸出電壓Vout。In FIG. 10A , the current indicated by the thick black arrow flows sequentially through the bypass switch bpSW[1] of the battery module bMD[1]; the first series switch s1SW[2], the battery module MC[2] and the second series switch s2SW[2] of the battery module bMD[2]; the first series switch s1SW[3], the battery module MC[3] and the second series switch s2SW[3] of the battery module bMD[3]; the bypass switch bpSW[4] of the battery module bMD[4]; the first series switch s1SW[5], the battery module MC[5] and the second series switch s2SW[5] of the battery module bMD[5]; and the first series switch s1SW[6], the battery module MC[6] and the second series switch s2SW[6] of the battery module bMD[6]. Therefore, in FIG. 10A , the output voltage Vout is jointly generated by K=3 battery components MC[2], MC[5], MC[6] whose quality state is the normal state nmST and S=1 battery component MC[3] whose quality state is the quasi-elimination state wkST.

在第10B圖中,假定品質為正常狀態nmST的電池組件MC的數量K=0,品質為準淘汰狀態wkST的電池組件MC的數量S=4,品質為淘汰狀態deadST的電池組件MC的數量T=2,且產生輸出電壓Vout所需之電池組件MC的數量M=4,其中K<M且K+S=M。由於品質狀態為正常狀態nmST的電池組件MC的數量為0(K=0,且K<M),控制器11須使用S=4個準淘汰狀態wkST的電池組件MC[2]、MC[3]、MC[5]、MC[6]提供輸出電壓Vout。因此,控制器11須將電池組件MC[2]、MC[3]、MC[5]、MC[6]所屬的電池模組bMD[2]、bMD[3]、bMD[5]、bMD[6]的連接組態設為串聯組態serCFG。另一方面,因供電模組13還包含T=2個品質狀態為淘汰狀態deadST的電池組件MC[1]、MC[4]的緣故,控制器11將電池組件MC[1]、MC[4]所屬的電池模組bMD[1]、bMD[4]的連接組態設為旁路組態bpCFG。In FIG. 10B , it is assumed that the number of battery components MC with a quality state of normal state nmST is K=0, the number of battery components MC with a quality state of quasi-obsolete state wkST is S=4, the number of battery components MC with a quality state of obsolete state deadST is T=2, and the number of battery components MC required to generate the output voltage Vout is M=4, where K<M and K+S=M. Since the number of battery components MC with a quality state of normal state nmST is 0 (K=0, and K<M), the controller 11 needs to use S=4 battery components MC[2], MC[3], MC[5], MC[6] with a quality state of quasi-obsolete state wkST to provide the output voltage Vout. Therefore, the controller 11 must set the connection configuration of the battery modules bMD[2], bMD[3], bMD[5], bMD[6] to which the battery components MC[2], MC[3], MC[5], MC[6] belong to the series configuration serCFG. On the other hand, because the power supply module 13 also includes T=2 battery components MC[1], MC[4] whose quality status is the obsolete status deadST, the controller 11 sets the connection configuration of the battery modules bMD[1], bMD[4] to which the battery components MC[1], MC[4] belong to the bypass configuration bpCFG.

在第10B圖中,以粗黑線箭頭標示的電流依序流經電池模組bMD[1]的旁路開關bpSW[1];電池模組bMD[2]的第一串聯開關s1SW[2]、電池組件MC[2]和第二串聯開關s2SW[2];電池模組bMD[3]的第一串聯開關s1SW[3]、電池組件MC[3]和第二串聯開關s2SW[3];電池模組bMD[4]的旁路開關bpSW[4];電池模組bMD[5]的第一串聯開關s1SW[5]、電池組件MC[5]和第二串聯開關s2SW[5];以及,電池模組bMD[6]的第一串聯開關s1SW[6]、電池組件MC[6]和第二串聯開關s2SW[6]。因此,在第10B圖中,由品質狀態為準淘汰狀態wkST的S=M-K=4個電池組件MC[2]、MC[3]、MC[5]、MC[6]共同產生輸出電壓Vout。In FIG. 10B , the current indicated by the thick black arrow flows sequentially through the bypass switch bpSW[1] of the battery module bMD[1]; the first series switch s1SW[2], the battery module MC[2] and the second series switch s2SW[2] of the battery module bMD[2]; the first series switch s1SW[3], the battery module MC[3] and the second series switch s2SW[3] of the battery module bMD[3]; the bypass switch bpSW[4] of the battery module bMD[4]; the first series switch s1SW[5], the battery module MC[5] and the second series switch s2SW[5] of the battery module bMD[5]; and the first series switch s1SW[6], the battery module MC[6] and the second series switch s2SW[6] of the battery module bMD[6]. Therefore, in FIG. 10B , the output voltage Vout is jointly generated by S=M-K=4 battery components MC[2], MC[3], MC[5], and MC[6] whose quality status is the quasi-elimination status wkST.

從第10A、10B圖可以看出,品質狀態為準淘汰狀態wkST的S個電池組件MC,仍可在正常狀態nmST的電池組件MC的數量不足(K<M)時,作為替代選項。藉由使用品質狀態為準淘汰狀態wkST的(M-K)個電池組件MC作為輔助提供輸出電壓Vout的方式,本案的電池管理系統10可提昇供電模組13的電量使用效率。再者,若品質狀態為準淘汰狀態wkST的電池組件MC的數量,搭配品質狀態為正常狀態nmST的電池組件MC的數量(K+S)後,超過產生輸出電壓Vout所需的數量(M)時,控制器11須進一步從S個品質狀態為準淘汰狀態wkST的電池組件MC中,選取其中的(M-K)個電池組件MC進行供電,如表3所示。根據本揭露的構想,控制器11可比較S個準淘汰狀態wkST的電池組件MC的SOC,並選取其中(M-K)個具有較高之SOC的電池組件MC進行供電。As can be seen from Figures 10A and 10B, the S battery modules MC in the quasi-obsolete state wkST can still be used as replacement options when the number of battery modules MC in the normal state nmST is insufficient (K<M). By using (M-K) battery modules MC in the quasi-obsolete state wkST as an auxiliary means of providing the output voltage Vout, the battery management system 10 of the present case can improve the power usage efficiency of the power supply module 13. Furthermore, if the number of battery components MC in the quasi-obsolete state wkST, combined with the number of battery components MC in the normal state nmST (K+S), exceeds the number (M) required to generate the output voltage Vout, the controller 11 must further select (M-K) battery components MC from the S battery components MC in the quasi-obsolete state wkST for power supply, as shown in Table 3. According to the concept of the present disclosure, the controller 11 can compare the SOCs of the S battery components MC in the quasi-obsolete state wkST, and select (M-K) battery components MC with higher SOCs for power supply.

表3 電池組件MC 數量 準淘汰狀態wkST的電池組件MC S個 搭配正常狀態nmST的電池組件MC進行供電之準淘汰狀態wkST的電池組件MC的數量 (M-K)個 未用於搭配正常狀態nmST的電池組件MC進行供電之準淘汰狀態wkST的電池組件MC的數量 S-(M-K)個 table 3 Battery Components MC quantity Semi-obsolete wkST battery module MC S The number of battery modules MC in the semi-retired state wkST that are used to supply power with battery modules MC in the normal state nmST (MK) The number of battery modules MC in the quasi-obsolete state wkST that are not used to supply power with battery modules MC in the normal state nmST S-(MK)

請參見第11A、11B圖,其係K<M且K+S>M時,控制器11判斷供電模組13應採用設定組態setCFG_3產生輸出電壓Vout之示意圖。K<M且K+S>M時,單以K個正常狀態nmST的電池組件MC,仍不足以產生輸出電壓Vout。因此,控制器11須同時將K個包含品質狀態為正常狀態nmST的電池組件MC的電池模組bMD,與包含(M-K)個品質狀態為準淘汰狀態wkST的電池組件MC的電池模組bMD設為串聯組態serCFG。Please refer to Figures 11A and 11B, which are schematic diagrams showing that when K<M and K+S>M, the controller 11 determines that the power supply module 13 should adopt the setting configuration setCFG_3 to generate the output voltage Vout. When K<M and K+S>M, K battery modules MC in the normal state nmST alone are still insufficient to generate the output voltage Vout. Therefore, the controller 11 must simultaneously set the K battery modules bMD including the battery modules MC in the normal state nmST and the battery modules bMD including (M-K) battery modules MC in the quasi-elimination state wkST to the series configuration serCFG.

在第11A圖中,假定品質為正常狀態nmST的電池組件MC的數量K=3,品質為準淘汰狀態wkST的電池組件MC的數量S=3,品質為淘汰狀態deadST的電池組件MC的數量T=0,且產生輸出電壓Vout所需之電池組件MC的數量M=4,其中K<M且K+S>M。由於品質狀態為正常狀態nmST的電池組件MC數量不足(K<M),控制器11除了將K=3個品質狀態為正常狀態nmST的電池組件MC[2]、MC[5]、MC[6]設為串聯組態serCFG外,還需從品質狀態為準淘汰狀態wkST的S=3個電池組件MC[1]、MC[3]、MC[4]中選取其中(M-K)=4-3=1個具有較高SOC者(第11A圖假設為電池組件MC[4]),搭配K=3個品質狀態為正常狀態nmST的電池組件MC[2]、MC[5]、MC[6]一起產生輸出電壓Vout。因此,控制器11將電池組件MC[2]、MC[4]、MC[5]、MC[6]所屬的電池模組bMD[2]、bMD[4]、bMD[5]、bMD[6]的連接組態設為串聯組態serCFG。另一方面,因供電模組13還包含未被選取之S-(M-K)=2個準淘汰狀態wkST的電池組件MC[1]、MC[3]的緣故,控制器11將電池組件MC[1]、MC[3]所屬的電池模組bMD[1]、bMD[3]的連接組態設為旁路組態bpCFG。In FIG. 11A , it is assumed that the number of battery components MC whose quality is in the normal state nmST is K=3, the number of battery components MC whose quality is in the quasi-obsolete state wkST is S=3, the number of battery components MC whose quality is in the obsolete state deadST is T=0, and the number of battery components MC required to generate the output voltage Vout is M=4, where K<M and K+S>M. Since the number of battery components MC with a quality state of normal state nmST is insufficient (K<M), the controller 11 not only sets K=3 battery components MC[2], MC[5], MC[6] with a quality state of normal state nmST to the series configuration serCFG, but also selects (M-K)=4-3=1 battery component with a higher SOC from S=3 battery components MC[1], MC[3], MC[4] with a quality state of quasi-elimination state wkST (Figure 11A assumes that it is battery component MC[4]) to generate the output voltage Vout together with K=3 battery components MC[2], MC[5], MC[6] with a quality state of normal state nmST. Therefore, the controller 11 sets the connection configuration of the battery modules bMD[2], bMD[4], bMD[5], bMD[6] to which the battery components MC[2], MC[4], MC[5], MC[6] belong to the series configuration serCFG. On the other hand, because the power supply module 13 also includes the unselected S-(M-K)=2 quasi-eliminated state wkST battery components MC[1], MC[3], the controller 11 sets the connection configuration of the battery modules bMD[1], bMD[3] to which the battery components MC[1], MC[3] belong to the bypass configuration bpCFG.

在第11A圖中,以粗黑線箭頭標示的電流依序流經電池模組bMD[1]的旁路開關bpSW[1];電池模組bMD[2]的第一串聯開關s1SW[2]、電池組件MC[2]和第二串聯開關s2SW[2];電池模組bMD[3]的旁路開關bpSW[3];電池模組bMD[4]的第一串聯開關s1SW[4]、電池組件MC[4]和第二串聯開關s2SW[4];電池模組bMD[5]的第一串聯開關s1SW[5]、電池組件MC[5]和第二串聯開關s2SW[5];以及,電池模組bMD[6]的第一串聯開關s1SW[6]、電池組件MC[6]和第二串聯開關s2SW[6]。因此,在第11A圖中,由品質狀態為正常狀態nmST的電池組件MC[2]、MC[5]、MC[6]和品質狀態為準淘汰狀態wkST的電池組件MC[4]共同產生輸出電壓Vout。In FIG. 11A , the current indicated by the thick black arrow flows sequentially through the bypass switch bpSW[1] of the battery module bMD[1]; the first series switch s1SW[2], the battery module MC[2] and the second series switch s2SW[2] of the battery module bMD[2]; the bypass switch bpSW[3] of the battery module bMD[3]; the first series switch s1SW[4], the battery module MC[4] and the second series switch s2SW[4] of the battery module bMD[4]; the first series switch s1SW[5], the battery module MC[5] and the second series switch s2SW[5] of the battery module bMD[5]; and the first series switch s1SW[6], the battery module MC[6] and the second series switch s2SW[6] of the battery module bMD[6]. Therefore, in FIG. 11A , the output voltage Vout is jointly generated by the battery components MC[ 2 ], MC[ 5 ], and MC[ 6 ] whose quality state is the normal state nmST and the battery component MC[ 4 ] whose quality state is the semi-obsolete state wkST.

在第11B圖中,假定品質為正常狀態nmST的電池組件MC的數量K=3,品質為準淘汰狀態wkST的電池組件MC的數量S=2,品質為淘汰狀態deadST的電池組件MC的數量T=1,且產生輸出電壓Vout所需之電池組件MC的數量M=4,其中K<M且K+S>M。由於正常狀態nmST的電池組件MC數量不足(K<M),除了利用K=3個品質狀態為正常狀態nmST的電池組件MC[2]、MC[5]、MC[6]產生一部分的輸出電壓Vout外,還需從品質狀態為準淘汰狀態wkST的S個電池組件MC[1]、MC[3]中選取(M-K)=4-3=1個具有較高SOC者(第11B圖假設為電池組件MC[3]),搭配K=3個品質狀態為正常狀態nmST的電池組件MC[2]、MC[5]、MC[6]一起產生輸出電壓Vout。因此,控制器11將電池模組bMD[2]、bMD[3]、bMD[5]、bMD[6]的連接組態設為串聯組態serCFG。另一方面,因供電模組13包含S-(M-k)=2-1=1個品質狀態為準淘汰狀態wkST且未被選取的電池組件MC[1]的緣故,控制器11將電池組件MC[1]所屬的電池模組bMD[1]的連接組態設為旁路組態bpCFG;且,因供電模組13還包含T=1個品質狀態為淘汰狀態deadST的電池組件MC[4]的緣故,控制器11將電池組件MC[4]所屬的電池模組bMD[4]的連接組態設為旁路組態bpCFG。In FIG. 11B , it is assumed that the number of battery components MC whose quality is in the normal state nmST is K=3, the number of battery components MC whose quality is in the quasi-obsolete state wkST is S=2, the number of battery components MC whose quality is in the obsolete state deadST is T=1, and the number of battery components MC required to generate the output voltage Vout is M=4, where K<M and K+S>M. Since the number of battery modules MC in the normal state nmST is insufficient (K<M), in addition to using K=3 battery modules MC[2], MC[5], MC[6] in the normal state nmST to generate a portion of the output voltage Vout, it is also necessary to select (M-K)=4-3=1 with a higher SOC from the S battery modules MC[1] and MC[3] in the quasi-elimination state wkST (Figure 11B assumes that it is battery module MC[3]) to generate the output voltage Vout together with K=3 battery modules MC[2], MC[5], MC[6] in the normal state nmST. Therefore, the controller 11 sets the connection configuration of the battery modules bMD[2], bMD[3], bMD[5], and bMD[6] to the series configuration serCFG. On the other hand, because the power supply module 13 includes S-(M-k)=2-1=1 battery components MC[1] whose quality status is the quasi-elimination status wkST and which have not been selected, the controller 11 sets the connection configuration of the battery module bMD[1] to which the battery component MC[1] belongs to the bypass configuration bpCFG; and, because the power supply module 13 also includes T=1 battery components MC[4] whose quality status is the elimination status deadST, the controller 11 sets the connection configuration of the battery module bMD[4] to which the battery component MC[4] belongs to the bypass configuration bpCFG.

在第11B圖中,以粗黑線箭頭標示的電流依序流經電池模組bMD[1]的旁路開關bpSW[1];電池模組bMD[2]的第一串聯開關s1SW[2]、電池組件MC[2]和第二串聯開關s2SW[2];電池模組bMD[3]的第一串聯開關s1SW[3]、電池組件MC[3]和第二串聯開關s2SW[3];電池模組bMD[4]的旁路開關bpSW[4];電池模組bMD[5]的第一串聯開關s1SW[5]、電池組件MC[5]和第二串聯開關s2SW[5];以及,電池模組bMD[6]的第一串聯開關s1SW[6]、電池組件MC[6]和第二串聯開關s2SW[6]。因此,在第11B圖中,由品質狀態為正常狀態nmST的K=3個電池組件MC[2]、MC[5]、MC[6]和品質狀態為準淘汰狀態wkST的(M-K)=1個電池組件MC[3]共同產生輸出電壓Vout。In FIG. 11B , the current indicated by the thick black arrow flows sequentially through the bypass switch bpSW[1] of the battery module bMD[1]; the first series switch s1SW[2], the battery module MC[2] and the second series switch s2SW[2] of the battery module bMD[2]; the first series switch s1SW[3], the battery module MC[3] and the second series switch s2SW[3] of the battery module bMD[3]; the bypass switch bpSW[4] of the battery module bMD[4]; the first series switch s1SW[5], the battery module MC[5] and the second series switch s2SW[5] of the battery module bMD[5]; and the first series switch s1SW[6], the battery module MC[6] and the second series switch s2SW[6] of the battery module bMD[6]. Therefore, in FIG. 11B , the output voltage Vout is jointly generated by K=3 battery components MC[2], MC[5], MC[6] whose quality state is the normal state nmST and (M-K)=1 battery component MC[3] whose quality state is the quasi-eliminated state wkST.

由第10A、10B、11A、11B圖可歸納出,當K<M且(K+S)≥M時,供電模組13可使用K個品質狀態為正常狀態nmST的電池組件MC,搭配(M-K)個品質狀態為準淘汰狀態wkST的電池組件MC產生輸出電壓Vout。此處將供電模組13中,品質狀態為正常狀態nmST的電池組件MC的數量(K個)少於產生輸出電壓Vout所需之M個電池組件MC時(K<M),另需搭配(M-K)個品質狀態為準淘汰狀態wkST的電池組件MC進行供電的情況下,控制器11對電池模組bMD[1]~bMD[N]的連接組態的配置方式定義為設定組態setCFG_3。It can be concluded from Figures 10A, 10B, 11A, and 11B that when K<M and (K+S)≥M, the power supply module 13 can use K battery components MC with a quality state of normal state nmST to match (M-K) battery components MC with a quality state of quasi-obsolete state wkST to generate the output voltage Vout. Here, when the number (K) of battery components MC with a quality state of normal state nmST in the power supply module 13 is less than the M battery components MC required to generate the output voltage Vout (K<M), and (M-K) battery components MC with a quality state of quasi-obsolete state wkST are required to supply power, the controller 11 defines the configuration method of the connection configuration of the battery modules bMD[1]~bMD[N] as the setting configuration setCFG_3.

實際應用時,電池管理系統10可搭配電動車的其他元件使用。例如,若控制器11選用設定組態setCFG_3時,可在儀表板產生對應的提示訊息,提醒駕駛目前供電模組13內的電池組件MC[1]~MC[N]普遍趨於老化。此種關於應用上的變化,此處不予詳述。In actual application, the battery management system 10 can be used in conjunction with other components of the electric vehicle. For example, if the controller 11 selects the setting configuration setCFG_3, a corresponding prompt message can be generated on the dashboard to remind the driver that the battery components MC[1]~MC[N] in the power supply module 13 are generally aging. Such changes in application are not described in detail here.

請參見第12圖,其係(K+S)<M時,控制器11判斷供電模組13應採用設定組態setCFG_4並停止產生輸出電壓Vout之示意圖。當供電模組13處於設定組態setCFG_4((K+S)<M)時,供電模組13所包含的正常狀態nmST和準淘汰狀態wkST的電池組件MC的總和(K+S)不足以產生輸出電壓Vout。此時,供電模組13停止供電。Please refer to FIG. 12, which is a schematic diagram showing that when (K+S)<M, the controller 11 determines that the power supply module 13 should adopt the setting configuration setCFG_4 and stop generating the output voltage Vout. When the power supply module 13 is in the setting configuration setCFG_4 ((K+S)<M), the sum (K+S) of the battery components MC in the normal state nmST and the quasi-elimination state wkST included in the power supply module 13 is insufficient to generate the output voltage Vout. At this time, the power supply module 13 stops supplying power.

在第12圖中,假定品質為正常狀態nmST的電池組件MC的數量K=3,品質為準淘汰狀態wkST的電池組件MC的數量S=0,品質為淘汰狀態deadST的電池組件MC的數量T=3,且產生輸出電壓Vout所需之電池組件MC的數量M=4,其中K+S<M。K=3個電池組件MC[2]、MC[4]、MC[6]的品質狀態為正常狀態nmST;T=3個電池組件MC[1]、MC[3]、MC[5]的品質狀態為淘汰狀態deadST。此時,在因供電模組13中,僅存K=3個電池組件MC[2]、MC[4]、MC[6]可供應輸出電壓Vout使用,不符合M=4個的最低輸出需求。此種情況代表供電模組13已經失效,需更換電池組件MC。此處將K+S<M的情況下,控制器11對電池模組bMD[1]~bMD[N]的連接組態的配置方式定義為設定組態setCFG_4。其中,(K+S)=(N-T)。因此,K+S<M的情況,亦相當於(N-T)<M的情況。In FIG. 12, it is assumed that the number of battery components MC with a quality of normal state nmST is K=3, the number of battery components MC with a quality of quasi-obsolete state wkST is S=0, the number of battery components MC with a quality of obsolete state deadST is T=3, and the number of battery components MC required to generate the output voltage Vout is M=4, where K+S<M. The quality state of K=3 battery components MC[2], MC[4], MC[6] is the normal state nmST; the quality state of T=3 battery components MC[1], MC[3], MC[5] is the obsolete state deadST. At this time, in the power supply module 13, there are only K=3 battery components MC[2], MC[4], MC[6] available for the output voltage Vout, which does not meet the minimum output requirement of M=4. This situation means that the power supply module 13 has failed and the battery module MC needs to be replaced. Here, the configuration method of the controller 11 for the connection configuration of the battery modules bMD[1]~bMD[N] under the situation of K+S<M is defined as the setting configuration setCFG_4. Among them, (K+S)=(N-T). Therefore, the situation of K+S<M is also equivalent to the situation of (N-T)<M.

如前所述,電池管理系統10可搭配電動車的其他元件使用。因此,若控制器11選用設定組態setCFG_4時,可在儀表板產生對應的提示訊息,通知駕駛目前供電模組13已無法供電。此種關於應用上的變化,此處不予詳述。As mentioned above, the battery management system 10 can be used in conjunction with other components of the electric vehicle. Therefore, if the controller 11 selects the setting configuration setCFG_4, a corresponding prompt message can be generated on the dashboard to inform the driver that the power supply module 13 is currently unable to supply power. This change in application will not be described in detail here.

承上所述,根據K、S、M的大小關係,供電模組13在設定組態setCFG_1~setCFG_4的設定也不相同。表4進一步彙整控制器11在設定組態setCFG_1~setCFG_4如何因應變數M、N、K、S、T的數值的改變,調整電池模組bMD[1]~bMD[N]的連接組態。As mentioned above, the power supply module 13 has different settings in the configurations setCFG_1 to setCFG_4 according to the relationship between the values of K, S, and M. Table 4 further summarizes how the controller 11 adjusts the connection configurations of the battery modules bMD[1] to bMD[N] in the configurations setCFG_1 to setCFG_4 in response to changes in the values of the variables M, N, K, S, and T.

表4 設定組態 參考圖式 變數的關係 電池模組bM的連接組態 setCFG_1 第8A、8B、8C圖 K=M 將K=M個品質狀態為正常狀態nmST的電池組件MC所屬的電池模組bMD設為串聯組態serCFG (電池組件MC為使用模式useMD) 將S個品質狀態為準淘汰狀態wkST的電池組件MC所屬的電池模組bMD設為旁路組態bpCFG (電池組件MC為停用模式stpMD) 將T個品質狀態為淘汰狀態deadST的電池組件MC所屬的電池模組bMD設為旁路組態bpCFG (電池組件MC為停用模式stpMD) setCFG_2 第9A、9B、9C圖 K>M 將品質狀態為正常狀態nmST的K個電池組件MC其中的M個電池組件MC所屬的電池模組bMD設為串聯組態serCFG (電池組件MC為使用模式useMD) 將品質狀態為正常狀態nmST的K個電池組件MC其中的(K-M)個電池組件MC所屬的電池模組bMD設為並聯組態pCFG (電池組件MC為停用模式stpMD) 將S個品質狀態為準淘汰狀態wkST的電池組件MC所屬的電池模組bMD設為旁路組態bpCFG (電池組件MC為停用模式stpMD) 將T個品質狀態為淘汰狀態deadST的電池組件MC所屬的電池模組bMD設為旁路組態bpCFG (電池組件MC為停用模式stpMD) setCFG_3 第10A、10B、11A、11B圖 K<M,且K+S≥M 將K個品質狀態為正常狀態nmST的電池組件MC所屬的電池模組bMD設為串聯組態serCFG (電池組件MC為使用模式useMD) 自S個品質狀態為準淘汰狀態wkST的電池組件MC中,選擇將(M-K)個電池組件MC所屬的電池模組bMD設為串聯組態serCFG (電池組件MC為使用模式useMD) 自S個品質狀態為準淘汰狀態wkST的電池組件MC中,選擇將S-(M-K)個電池組件MC所屬的電池模組bMD設為旁路組態bpCFG (電池組件MC為停用模式stpMD) 將T個品質狀態為淘汰狀態deadST的電池組件MC所屬的電池模組bMD設為旁路組態bpCFG (電池組件MC為停用模式stpMD) setCFG_4 第12圖 K+S<M 可用於供電的電池組件MC的數量不足,供電模組13失效 (電池組件MC為停用模式stpMD) Table 4 Configuration Reference diagram Relationship of variables Connection configuration of battery module bM setCFG_1 Figures 8A, 8B, 8C K=M Set the battery module bMD of K=M battery components MC with a quality status of normal state nmST to the series configuration serCFG (battery component MC is in use mode useMD) Set the battery module bMD of the S battery components MC whose quality status is the semi-obsolete status wkST to the bypass configuration bpCFG (the battery component MC is in the disabled mode stpMD) Set the battery module bMD of T battery components MC with the quality status of deadST to the bypass configuration bpCFG (battery component MC is in the disabled mode stpMD) setCFG_2 Figures 9A, 9B, 9C K>M Set the battery module bMD to which M of the K battery components MC with a quality status of normal state nmST belong to the series configuration serCFG (the battery component MC is in the use mode useMD) Set the battery module bMD to which (KM) battery modules MC belong among the K battery modules MC whose quality status is normal status nmST to parallel configuration pCFG (battery module MC is in deactivation mode stpMD) Set the battery module bMD of the S battery components MC whose quality status is the semi-obsolete status wkST to the bypass configuration bpCFG (the battery component MC is in the disabled mode stpMD) Set the battery module bMD of T battery components MC with the quality status of deadST to the bypass configuration bpCFG (battery component MC is in the disabled mode stpMD) setCFG_3 Figures 10A, 10B, 11A, 11B K<M, and K+S≥M Set the battery module bMD of K battery components MC with a quality status of normal state nmST to the series configuration serCFG (battery component MC is in use mode useMD) From among S battery components MC whose quality status is semi-elimination status wkST, select and set the battery modules bMD to which (MK) battery components MC belong to the series configuration serCFG (battery components MC are in use mode useMD) From among the S battery components MC whose quality status is the semi-elimination status wkST, select and set the battery modules bMD to which the S-(MK) battery components MC belong to the bypass configuration bpCFG (the battery components MC are in the deactivation mode stpMD) Set the battery module bMD of T battery components MC with the quality status of deadST to the bypass configuration bpCFG (battery component MC is in the disabled mode stpMD) setCFG_4 Figure 12 K+S<M The number of battery modules MC available for power supply is insufficient, and the power supply module 13 fails (the battery module MC is in the disabled mode stpMD)

基於第8A、8B、8C、9A、9B、9C、10A、10B、11A、11B、12圖的說明與表4的彙整,控制器11在組態設定階段cfgSTG,如何因應電池組件MC[1]~MC[N]的各種品質狀態組合的情況,判斷電池模組bMD[1]~bMD[N]之連接組態的方式,可歸納為第13圖的流程。請參見第13圖,其係控制器在組態設定階段cfgSTG判斷供電模組之設定組態的流程圖。Based on the descriptions of FIGS. 8A, 8B, 8C, 9A, 9B, 9C, 10A, 10B, 11A, 11B, and 12 and the summary of Table 4, the controller 11 determines the connection configuration of the battery modules bMD[1]~bMD[N] in response to various quality status combinations of the battery components MC[1]~MC[N] in the configuration setting stage cfgSTG, which can be summarized as the process of FIG. 13. Please refer to FIG. 13, which is a flow chart of the controller determining the configuration of the power supply module in the configuration setting stage cfgSTG.

首先,控制器11判斷供電模組13中,品質狀態為正常狀態nmST的電池組件MC的數量K是否等於產生輸出電壓Vout所需的數量M(即判斷K=M?)(步驟S701)。若步驟S701的判斷結果為肯定,控制器11便將該K個品質狀態為正常狀態nmST的電池組件MC設為使用模式useMD。另一方面,因其餘的(N-K)個電池組件MC的品質狀態為準淘汰狀態wkST或淘汰狀態deadST,控制器11便將該(N-K)個電池組件MC設為停用模式stpMD,如表4所列之設定組態setCFG_1(步驟S707)。其中,(N-K)=S+T。關於設定組態setCFG_1的相關細節,請參見第8A~8C圖的舉例與表4的整理。First, the controller 11 determines whether the number K of battery components MC in the power supply module 13 whose quality status is the normal state nmST is equal to the number M required to generate the output voltage Vout (i.e., is it determined that K=M?) (step S701). If the judgment result of step S701 is affirmative, the controller 11 sets the K battery components MC in the normal quality status nmST to the use mode useMD. On the other hand, because the quality status of the remaining (N-K) battery components MC is the quasi-obsolete state wkST or the obsolete state deadST, the controller 11 sets the (N-K) battery components MC to the deactivation mode stpMD, as shown in the setting configuration setCFG_1 listed in Table 4 (step S707). Among them, (N-K)=S+T. For details on setting configuration setCFG_1, please refer to the examples in Figures 8A~8C and the summary in Table 4.

若步驟S701的判斷結果為否定,控制器11將進一步判斷品質狀態為正常狀態nmST的電池組件MC的數量K是否超過產生輸出電壓Vout所需的電池組件MC的數量M(即判斷K>M?)(步驟S703)。若步驟S703的判斷結果為肯定,控制器11仍然僅需要M個品質狀態為正常狀態nmST的電池組件MC產生輸出電壓Vout。因此,控制器11將K個品質狀態為正常狀態nmST的電池組件MC,其中的M個設為使用模式useMD。另一方面,品質狀態為正常狀態nmST但未用於產生輸出電壓Vout的(K-M)個電池組件MC,便被控制器11設為停用模式stpMD,如表4所列之設定組態setCFG_2(步驟S709)。關於設定組態setCFG_2的相關細節,請參見第9A~9C圖的舉例與表4的整理。If the judgment result of step S701 is negative, the controller 11 will further judge whether the number K of battery modules MC with a quality state of normal state nmST exceeds the number M of battery modules MC required to generate the output voltage Vout (i.e., judge whether K>M?) (step S703). If the judgment result of step S703 is positive, the controller 11 still only needs M battery modules MC with a quality state of normal state nmST to generate the output voltage Vout. Therefore, the controller 11 sets M of the K battery modules MC with a quality state of normal state nmST to the use mode useMD. On the other hand, the (K-M) battery components MC whose quality status is normal status nmST but not used to generate output voltage Vout are set to the disabled mode stpMD by the controller 11, as shown in the setting configuration setCFG_2 (step S709) listed in Table 4. For details of the setting configuration setCFG_2, please refer to the examples in Figures 9A to 9C and the summary in Table 4.

若步驟S703的判斷結果為否定,控制器11將進一步判斷品質狀態為正常狀態nmST的電池組件MC的數量K和品質狀態為準淘汰狀態wkST的電池組件MC的數量S的總和(即K+S),是否大於或等於產生輸出電壓Vout所需的電池組件MC的數量M(即判斷K+S≥M?)(步驟S705)。若步驟S705的判斷結果為肯定,控制器11將使用K個品質狀態為正常狀態nmST的電池組件MC,以及(M-K)個品質狀態為準淘汰狀態wkST的電池組件MC來產生輸出電壓Vout。因此,控制器11將K個品質狀態為正常狀態nmST的電池組件MC,以及(M-K)個品質狀態為準淘汰狀態wkST的電池組件MC設為使用模式useMD。另一方面,未用於產生輸出電壓Vout的S-(M-K)個品質狀態為準淘汰狀態wkST的電池組件MC,則被控制器11設為停用模式stpMD,如表4所列之設定組態setCFG_3(步驟S711)。關於設定組態setCFG_3的相關細節,請參見第10A、10B、11A、11B圖的舉例與表4的整理。If the judgment result of step S703 is negative, the controller 11 will further judge whether the sum of the number K of battery components MC with a quality state of normal state nmST and the number S of battery components MC with a quality state of quasi-elimination state wkST (i.e., K+S) is greater than or equal to the number M of battery components MC required to generate the output voltage Vout (i.e., judge whether K+S≥M?) (step S705). If the judgment result of step S705 is positive, the controller 11 will use K battery components MC with a quality state of normal state nmST and (M-K) battery components MC with a quality state of quasi-elimination state wkST to generate the output voltage Vout. Therefore, the controller 11 sets K battery components MC whose quality status is the normal state nmST and (M-K) battery components MC whose quality status is the quasi-obsolete state wkST to the use mode useMD. On the other hand, the S-(M-K) battery components MC whose quality status is the quasi-obsolete state wkST that are not used to generate the output voltage Vout are set by the controller 11 to the deactivation mode stpMD, as shown in the setting configuration setCFG_3 (step S711) listed in Table 4. For details about the setting configuration setCFG_3, please refer to the examples in Figures 10A, 10B, 11A, and 11B and the summary in Table 4.

若步驟S705的判斷結果為否定,代表供電模組13中的品質狀態為正常狀態nmST的電池組件MC的數量K和品質狀態為準淘汰狀態wkST的電池組件MC的數量S的加總,仍不足以產生輸出電壓Vout。即,K+S<M。也就是說,控制器11無法從供電模組13中,找到足夠用於產生輸出電壓Vout的電池組件MC。此時,控制器11將供電模組13設為如表4所示之設定組態setCFG_4(步驟S713)。關於設定組態setCFG_4的相關細節,請參見第12圖的舉例與表4的整理。If the judgment result of step S705 is negative, it means that the sum of the number K of battery components MC with a quality status of normal state nmST and the number S of battery components MC with a quality status of quasi-elimination state wkST in the power supply module 13 is still insufficient to generate the output voltage Vout. That is, K+S<M. In other words, the controller 11 cannot find enough battery components MC in the power supply module 13 to generate the output voltage Vout. At this time, the controller 11 sets the power supply module 13 to the setting configuration setCFG_4 shown in Table 4 (step S713). For details about the setting configuration setCFG_4, please refer to the example in Figure 12 and the summary in Table 4.

請同時參見第2、4、13圖。如第2圖所述,電池管理系統10在品質監控階段mntSTG與組態設定階段cfgSTG之間來回切換,直到電池管理系統10進入失效階段failSTG為止。且,第4圖對應於品質監控階段mntSTG的流程,第13圖對應於組態設定階段cfgSTG的流程。因此,在電池管理系統10仍堪使用的情況下,控制器11結束第4圖的流程後,將執行第13圖的流程,且於第13圖的流程結束後,執行第4圖的流程。Please refer to Figures 2, 4, and 13 at the same time. As described in Figure 2, the battery management system 10 switches back and forth between the quality monitoring stage mntSTG and the configuration setting stage cfgSTG until the battery management system 10 enters the failure stage failSTG. Moreover, Figure 4 corresponds to the process of the quality monitoring stage mntSTG, and Figure 13 corresponds to the process of the configuration setting stage cfgSTG. Therefore, when the battery management system 10 is still usable, after the controller 11 completes the process of Figure 4, it will execute the process of Figure 13, and after the process of Figure 13 is completed, it will execute the process of Figure 4.

根據前述說明可以得知,本揭露的做法可使控制器11動態地掌握各個電池組件MC[1]~MC[N]的品質狀態,進而調整實際供電之電池組件MC。本揭露的控制器優先自正常狀態nmST的K個電池組件中,選取作為提供輸出電壓Vout者。並於正常狀態nmST的電池組件的數量不足(K<M)時,另從S個準淘汰狀態wkST的電池組件中選取(M-K)個,用於補足供應輸出電壓Vout所需之不足額的數量。控制器動態因應N個電池組件的品質狀態,調整電池模組的連接組態,直到(K+S)<M時,電池管理系統才停止供電。透過此種管理方式,可使電池組件MC[1]~MC[N]的老化速度更加平均。且可進一步降低因電池組件MC個別的品質問題對整體供電的影響。由於隨時進行監控的緣故,還可避免突發性的電池損壞而引起輸出電壓Vout無法穩定產生的風險。According to the above description, the disclosed method allows the controller 11 to dynamically grasp the quality status of each battery component MC[1]~MC[N], and then adjust the battery component MC that actually supplies power. The controller disclosed in the present invention preferentially selects the battery components MC[1]~MC[N] from the K battery components in the normal state nmST as the ones that provide the output voltage Vout. When the number of battery components in the normal state nmST is insufficient (K<M), (M-K) battery components are selected from the S battery components in the quasi-eliminated state wkST to make up for the insufficient number required to supply the output voltage Vout. The controller dynamically responds to the quality status of the N battery components and adjusts the connection configuration of the battery module until (K+S)<M, at which time the battery management system stops supplying power. Through this management method, the aging rate of the battery components MC[1]~MC[N] can be made more uniform. It can also further reduce the impact of individual quality issues of battery components MC on the overall power supply. Because of the constant monitoring, it can also avoid the risk of unstable output voltage Vout caused by sudden battery damage.

根據模擬結果,採用本揭露的電池管理系統10時,可顯著增加電池組總放電時間與每次循環的放電時間。因此,供電模組中的內電量之使用將更有效率,並能使電池組件MC[1]~MC[N]在放電時的電量更加均衡。According to the simulation results, the total discharge time of the battery pack and the discharge time per cycle can be significantly increased when the battery management system 10 of the present disclosure is used. Therefore, the internal power in the power supply module will be used more efficiently and the power of the battery components MC[1]~MC[N] can be more balanced during discharge.

綜上所述,雖然本申請已以實施例揭露如上,然其並非用以限定本申請。本申請所屬技術領域中具有通常知識者,在不脫離本申請之精神和範圍內,當可作各種之更動與潤飾。因此,本申請之保護範圍當視後附之申請專利範圍所界定者為準。In summary, although the present application has been disclosed as above by the embodiments, it is not intended to limit the present application. Those with ordinary knowledge in the technical field to which the present application belongs can make various changes and modifications without departing from the spirit and scope of the present application. Therefore, the scope of protection of the present application shall be subject to the scope of the patent application attached hereto.

10:電池管理系統 11:控制器 13:供電模組 mS[1]~mS[6]:電池監控信號 swCtl[1]~swCtl[6]:開關控制信號 bMD[1]~bMD[6],bMD[n]:電池模組 No1,No2:輸出端點 MC[1]~MC[6],MC[n]:電池組件 Nc_12,Nc_23,Nc_34,Nc_45,Nc_56,Nc1,Nc2,Nc_(n-1)n,Nc_n(n+1):共用端點 Vout:輸出電壓 mntSTG:品質監控階段 cfgSTG:組態設定階段 failSTG:失效階段 stgA1~stgA4,qA1~qA2:虛線箭頭 nmST:正常狀態 wkST:準淘汰狀態 deadST:淘汰狀態 S601,S603,S605,S607,S609,S611,S613,S615,S607a,S607c,S607e,S607g,S607i,S607k,S607m,S607o,S607q,S701,S703,S705,S707,S709,S711,S713:步驟 bpSW[n]:旁路開關 s1SW[n],s2SW[n]:串聯開關 p1SW[n],p2SW[n]:並聯開關 Nin1[n],Nin2[n]:內部端點 mS[n]:電池監控信號 BC:電池單元 E1:第一端 E2:第二端 useMD:使用模式 stpMD:停用模式 MP1:第一種品質-連接組態的對應關係 MP2:第二種品質-連接組態的對應關係 MP3:第三種品質-連接組態的對應關係 MP4:第四種品質-連接組態的對應關係 MP5:第五種品質-連接組態的對應關係 serCFG:串聯組態 pCFG:並聯組態 bpCFG:旁路組態 10: Battery management system 11: Controller 13: Power supply module mS[1]~mS[6]: Battery monitoring signal swCtl[1]~swCtl[6]: Switch control signal bMD[1]~bMD[6],bMD[n]: Battery module No1,No2: Output terminal MC[1]~MC[6],MC[n]: Battery module Nc_12,Nc_23,Nc_34,Nc_45,Nc_56,Nc1,Nc2,Nc_(n-1)n,Nc_n(n+1): Common terminal Vout: Output voltage mntSTG: Quality monitoring stage cfgSTG: Configuration setting stage failSTG: Failure stage stgA1~stgA4,qA1~qA2: dashed arrows nmST: normal state wkST: quasi-eliminated state deadST: eliminated state S601,S603,S605,S607,S609,S611,S613,S615,S607a,S607c,S607e,S607g,S607i,S607k,S607m,S607o,S607q,S701,S703,S705,S707,S709,S711,S713: steps bpSW[n]: bypass switch s1SW[n],s2SW[n]: series switch p1SW[n],p2SW[n]: parallel switch Nin1[n], Nin2[n]: internal endpoints mS[n]: battery monitoring signal BC: battery cell E1: first end E2: second end useMD: use mode stpMD: disable mode MP1: first quality-connection configuration correspondence MP2: second quality-connection configuration correspondence MP3: third quality-connection configuration correspondence MP4: fourth quality-connection configuration correspondence MP5: fifth quality-connection configuration correspondence serCFG: series configuration pCFG: parallel configuration bpCFG: bypass configuration

第1圖,其係本揭露實施例的電池管理系統之示意圖; 第2圖,其係本揭露實施例的電池管理系統之操作狀態圖; 第3圖,其係本揭露實施例的電池組件MC[n]的品質狀態圖; 第4圖,其係控制器在品質監控階段mntSTG判斷電池組件MC[1]~MC[N]之品質的流程圖; 第5A、5B圖,其係進一步說明步驟S607的流程圖; 第6圖,其係根據本揭露實施例的電池模組bMD[n]之示意圖; 第7圖,其係控制器因應電池組件MC[n]的品質而搭配電池模組bMD[n]的連接組態之示意圖; 第8A、8B、8C圖,其係K=M時,控制器判斷供電模組應採用設定組態setCFG_1產生輸出電壓Vout之示意圖; 第9A、9B、9C圖,其係K>M時,控制器判斷供電模組應採用設定組態setCFG_2產生輸出電壓Vout之示意圖; 第10A、10B圖,其係K<M且K+S=M時,控制器判斷供電模組應採用設定組態setCFG_3產生輸出電壓Vout之示意圖; 第11A、11B圖,其係K<M且K+S>M時,控制器判斷供電模組應採用設定組態setCFG_3產生輸出電壓Vout之示意圖; 第12圖,其係K+S<M時,控制器判斷供電模組應採用設定組態setCFG_4並停止產生輸出電壓Vout之示意圖;及 第13圖,其係控制器在組態設定階段cfgSTG判斷供電模組之設定組態的流程圖。 FIG. 1 is a schematic diagram of a battery management system according to an embodiment of the present disclosure; FIG. 2 is an operation status diagram of a battery management system according to an embodiment of the present disclosure; FIG. 3 is a quality status diagram of a battery module MC[n] according to an embodiment of the present disclosure; FIG. 4 is a flow chart of the controller judging the quality of battery modules MC[1]~MC[N] in the quality monitoring stage mntSTG; FIG. 5A and FIG. 5B are flow charts further illustrating step S607; FIG. 6 is a schematic diagram of a battery module bMD[n] according to an embodiment of the present disclosure; FIG. 7 is a schematic diagram of the controller matching the connection configuration of the battery module bMD[n] according to the quality of the battery module MC[n]; Figures 8A, 8B, and 8C are schematic diagrams showing that when K=M, the controller determines that the power supply module should adopt the setting configuration setCFG_1 to generate the output voltage Vout; Figures 9A, 9B, and 9C are schematic diagrams showing that when K>M, the controller determines that the power supply module should adopt the setting configuration setCFG_2 to generate the output voltage Vout; Figures 10A and 10B are schematic diagrams showing that when K<M and K+S=M, the controller determines that the power supply module should adopt the setting configuration setCFG_3 to generate the output voltage Vout; Figures 11A and 11B are schematic diagrams showing that when K<M and K+S>M, the controller determines that the power supply module should adopt the setting configuration setCFG_3 to generate the output voltage Vout; Figure 12 is a schematic diagram showing that when K+S<M, the controller determines that the power supply module should adopt the setting configuration setCFG_4 and stop generating the output voltage Vout; and Figure 13 is a flow chart showing that the controller determines the setting configuration of the power supply module in the configuration setting stage cfgSTG.

bMD[n」:電池模組 bMD[n]:Battery module

bpSW[n]:旁路開關 bpSW[n]: bypass switch

s1SW[n],s2SW[n]:串聯開關 s1SW[n],s2SW[n]: series switch

p1SW[n],p2SW[n]:並聯開關 p1SW[n],p2SW[n]:parallel switches

Nc1,Nc2,Nc_(n-1)n,Nc_n(n+1):共用端點 Nc1, Nc2, Nc_(n-1)n, Nc_n(n+1): shared endpoints

Nin1[n],Nin2[n]:內部端點 Nin1[n], Nin2[n]: internal endpoints

mS[n]:電池監控信號 mS[n]: Battery monitoring signal

BC:電池單元 BC:Battery cell

MC[n]:電池組件 MC[n]:Battery components

E1:第一端 E1: First end

E2:第二端 E2: Second end

Claims (19)

一種電池模組,電連接於一控制器,包含: 一電池組件,具有一第一端與一第二端; 一第一串聯開關,電連接於該電池組件的該第一端; 一第二串聯開關,電連接於該電池組件的該第二端,其中該第一串聯開關與該第二串聯開關係同步導通或同步斷開; 一第一並聯開關,電連接於該電池組件的該第一端; 一第二並聯開關,電連接於該電池組件的該第二端,其中該第一並聯開關與該第二並聯開關係同步導通或同步斷開;以及 一旁路開關,電連接於該第一串聯開關與該第二串聯開關,其中 該控制器係根據該電池組件的品質而選擇性導通該第一串聯開關、該第二串聯開關、該第一並聯開關、該第二並聯開關與該旁路開關。 A battery module, electrically connected to a controller, comprises: a battery assembly, having a first end and a second end; a first series switch, electrically connected to the first end of the battery assembly; a second series switch, electrically connected to the second end of the battery assembly, wherein the first series switch and the second series switch are synchronously turned on or disconnected; a first parallel switch, electrically connected to the first end of the battery assembly; a second parallel switch, electrically connected to the second end of the battery assembly, wherein the first parallel switch and the second parallel switch are synchronously turned on or disconnected; and a bypass switch, electrically connected to the first series switch and the second series switch, wherein The controller selectively turns on the first series switch, the second series switch, the first parallel switch, the second parallel switch and the bypass switch according to the quality of the battery assembly. 如請求項1所述之電池模組,其中 在一品質監控階段,該電池模組係傳送代表該電池組件的品質的一電池監控信號至該控制器,且 在一組態設定階段,該電池模組係因應自該控制器接收的一組開關控制信號而被設定為一串聯組態、一並聯組態或一旁路組態其中之一者。 A battery module as described in claim 1, wherein in a quality monitoring stage, the battery module transmits a battery monitoring signal representing the quality of the battery assembly to the controller, and in a configuration setting stage, the battery module is set to one of a series configuration, a parallel configuration or a bypass configuration in response to a set of switch control signals received from the controller. 如請求項2所述之電池模組,其中該電池模組係輪流處於該品質監控階段與該組態設定階段。A battery module as described in claim 2, wherein the battery module is alternately in the quality monitoring stage and the configuration setting stage. 如請求項2所述之電池模組,其中,在該組態設定階段, 當該控制器將該電池模組設定為該串聯組態時,該第一串聯開關與該第二串聯開關導通,且該第一並聯開關、該第二並聯開關與旁路開關斷開; 當該控制器將該電池模組設定為該並聯組態時,該第一串聯開關與該第二串聯開關斷開,且該第一並聯開關、該第二並聯開關與該旁路開關導通;以及, 當該控制器將該電池模組設定為該旁路組態時,該第一串聯開關、該第二串聯開關、該第一並聯開關與該第二並聯開關斷開,且該旁路開關導通。 A battery module as described in claim 2, wherein, in the configuration setting stage, when the controller sets the battery module to the series configuration, the first series switch and the second series switch are turned on, and the first parallel switch, the second parallel switch and the bypass switch are turned off; when the controller sets the battery module to the parallel configuration, the first series switch and the second series switch are turned off, and the first parallel switch, the second parallel switch and the bypass switch are turned on; and, when the controller sets the battery module to the bypass configuration, the first series switch, the second series switch, the first parallel switch and the second parallel switch are turned off, and the bypass switch is turned on. 如請求項2所述之電池模組,其中在該品質監控階段,該控制器係根據該電池監控信號而將該電池組件的品質狀態標記為一正常狀態、一準淘汰狀態,或一淘汰狀態。A battery module as described in claim 2, wherein in the quality monitoring stage, the controller marks the quality status of the battery component as a normal state, a quasi-eliminated state, or an eliminated state based on the battery monitoring signal. 如請求項5所述之電池模組,其中, 當該控制器將該電池組件的品質狀態標記為該正常狀態時,該控制器係利用該組開關控制信號將該電池模組設定為該串聯組態或該並聯組態; 當該控制器將該電池組件的品質狀態標記為該準淘汰狀態時,該控制器係利用該組開關控制信號將該電池模組設定為該串聯組態或該旁路組態;以及 當該控制器將該電池組件的品質狀態標記為該淘汰狀態時,該控制器係利用該組開關控制信號將該電池模組設定為該旁路組態。 A battery module as described in claim 5, wherein, when the controller marks the quality status of the battery assembly as the normal state, the controller uses the set of switch control signals to set the battery module to the series configuration or the parallel configuration; when the controller marks the quality status of the battery assembly as the quasi-obsolete state, the controller uses the set of switch control signals to set the battery module to the series configuration or the bypass configuration; and when the controller marks the quality status of the battery assembly as the obsolete state, the controller uses the set of switch control signals to set the battery module to the bypass configuration. 如請求項5所述之電池模組,其中該電池監控信號係包含: 該電池組件的一健康狀態(state of health,簡稱為SOH);以及該電池組件的一荷電狀態(state of charge,簡稱為SOC)其中的至少一者。 A battery module as described in claim 5, wherein the battery monitoring signal includes: a state of health (SOH) of the battery component; and at least one of a state of charge (SOC) of the battery component. 如請求項7所述之電池模組,其中 當該電池組件的該健康狀態符合一壽命終止條件時,該控制器將該電池組件的品質狀態標記為該淘汰狀態;以及 當該電池組件的該荷電狀態符合一終止點條件時,該控制器將該電池組件的品質狀態標記為該淘汰狀態。 A battery module as described in claim 7, wherein when the health status of the battery component meets a life end condition, the controller marks the quality status of the battery component as the obsolete state; and when the charge status of the battery component meets an end point condition, the controller marks the quality status of the battery component as the obsolete state. 如請求項1所述之電池模組,其中該電池組件係包含複數個電池單元,該等電池單元係排列為X行與Y列,其中位於各該X行的該等電池單元係彼此並聯,且位於各該Y列的該等電池單元係彼此串聯。A battery module as described in claim 1, wherein the battery assembly comprises a plurality of battery cells, wherein the battery cells are arranged in X rows and Y columns, wherein the battery cells in each of the X rows are connected in parallel to each other, and the battery cells in each of the Y columns are connected in series to each other. 一種電池管理系統,包含: 一控制器;以及 一供電模組,電連接於該控制器,其係產生一輸出電壓,其中該供電模組係包含: N個電池模組,其中該N個電池模組中的一第n個電池模組係包含: 一電池組件,具有一第一端與一第二端; 一第一串聯開關,電連接於該電池組件的該第一端; 一第二串聯開關,電連接於電池組件的該第二端,其中該第一串聯開關與該第二串聯開關係同步導通或同步斷開,且當該第一串聯開關與該第二串聯開關同步導通時,該電池組件提供一部分的該輸出電壓; 一第一並聯開關,電連接於該電池組件的該第一端; 一第二並聯開關,電連接於該電池組件的該第二端,其中該第一並聯開關與該第二並聯開關係同步導通或同步斷開;以及 一旁路開關,電連接於該第一串聯開關與該第二串聯開關, 其中該控制器係根據該電池組件的品質而選擇性導通該第一串聯開關、該第二串聯開關、該第一並聯開關、該第二並聯開關與該旁路開關,其中n、N為正整數,且n小於或等於N。 A battery management system comprises: A controller; and A power supply module electrically connected to the controller, which generates an output voltage, wherein the power supply module comprises: N battery modules, wherein an nth battery module among the N battery modules comprises: A battery assembly having a first end and a second end; A first series switch electrically connected to the first end of the battery assembly; A second series switch electrically connected to the second end of the battery assembly, wherein the first series switch and the second series switch are synchronously turned on or off, and when the first series switch and the second series switch are synchronously turned on, the battery assembly provides a portion of the output voltage; A first parallel switch electrically connected to the first end of the battery assembly; a second parallel switch electrically connected to the second end of the battery assembly, wherein the first parallel switch and the second parallel switch are synchronously turned on or off; and a bypass switch electrically connected to the first series switch and the second series switch, wherein the controller selectively turns on the first series switch, the second series switch, the first parallel switch, the second parallel switch and the bypass switch according to the quality of the battery assembly, wherein n and N are positive integers, and n is less than or equal to N. 如請求項10所述之電池管理系統,其中 在一品質監控階段,該控制器係自該N個電池模組分別接收代表該N個電池組件的品質的N個電池監控信號,且該控制器係因應該N個電池監控信號而分別將各該N個電池模組所包含的該電池組件的品質狀態標記為一正常狀態、一準淘汰狀態,或一淘汰狀態; 在一組態設定階段,該控制器係根據各該N個電池模組所包含的該電池組件的品質狀態而分別傳送N組開關控制信號至該N個電池模組。 A battery management system as described in claim 10, wherein In a quality monitoring stage, the controller receives N battery monitoring signals representing the quality of the N battery components from the N battery modules, and the controller marks the quality status of the battery components contained in each of the N battery modules as a normal state, a quasi-elimination state, or an elimination state in response to the N battery monitoring signals; In a configuration setting stage, the controller transmits N sets of switch control signals to the N battery modules according to the quality status of the battery components contained in each of the N battery modules. 如請求項11所述之電池管理系統,其中在該組態設定階段,各該N個電池模組係因應該N組開關控制信號而被設定為一串聯組態、一並聯組態或一旁路組態其中之一者。A battery management system as described in claim 11, wherein in the configuration setting stage, each of the N battery modules is set to one of a series configuration, a parallel configuration or a bypass configuration in response to the N sets of switch control signals. 如請求項12所述之電池管理系統,其中在該組態設定階段,該控制器係將該N個電池模組其中的M個電池模組設定為該串聯組態,且該M個電池模組係共同產生該輸出電壓,其中M為正整數,且N大於M。A battery management system as described in claim 12, wherein in the configuration setting stage, the controller sets M of the N battery modules to the series configuration, and the M battery modules jointly generate the output voltage, wherein M is a positive integer and N is greater than M. 如請求項13所述之電池管理系統,其中該控制器係因應該N個電池監控信號而 將該N個電池模組其中的K個電池模組所包含的該電池組件的品質狀態標記為該正常狀態; 將該N個電池模組其中的S個電池模組所包含的該電池組件的品質狀態標記為該準淘汰狀態;以及, 將該N個電池模組其中的T個電池模組所包含的該電池組件的品質狀態標記為該淘汰狀態,其中K、S、T均為大於或等於0的整數,且K、S、T的總和等於N。 The battery management system as described in claim 13, wherein the controller, in response to the N battery monitoring signals, marks the quality status of the battery assembly contained in K of the N battery modules as the normal status; marks the quality status of the battery assembly contained in S of the N battery modules as the quasi-obsolete status; and, marks the quality status of the battery assembly contained in T of the N battery modules as the obsolete status, wherein K, S, and T are all integers greater than or equal to 0, and the sum of K, S, and T is equal to N. 如請求項14所述之電池管理系統,其中 當K與S的總和小於M時,該控制器係控制該供電模組停止產生該輸出電壓; 當K與S的總和大於或等於M,且K小於M時,該控制器係將該K個電池模組設定為該串聯組態,將該S個電池模組中的(M-K)個電池模組設定為該串聯組態,並將該S個電池模組中的S-(M-K)個電池模組設定為該旁路組態,其中該K個電池模組與該(M-K)個電池模組係共同產生該輸出電壓; 當K大於M時,該控制器係將該K個電池模組中的M個電池模組設定為該串聯組態,並將該K個電池模組中的(K-M)個電池模組設定為該並聯組態,其中該M個電池模組係共同產生該輸出電壓;以及 當K等於M時,該控制器係將該K個電池模組設定為該串聯組態,並將該S個電池模組設定為該旁路組態,其中該K個電池模組係共同產生該輸出電壓。 A battery management system as described in claim 14, wherein when the sum of K and S is less than M, the controller controls the power supply module to stop generating the output voltage; when the sum of K and S is greater than or equal to M, and K is less than M, the controller sets the K battery modules to the series configuration, sets (M-K) of the S battery modules to the series configuration, and sets S-(M-K) of the S battery modules to the bypass configuration, wherein the K battery modules and the (M-K) battery modules jointly generate the output voltage; When K is greater than M, the controller sets M battery modules among the K battery modules to the series configuration, and sets (K-M) battery modules among the K battery modules to the parallel configuration, wherein the M battery modules jointly generate the output voltage; and When K is equal to M, the controller sets the K battery modules to the series configuration, and sets the S battery modules to the bypass configuration, wherein the K battery modules jointly generate the output voltage. 如請求項14所述之電池管理系統,其中該控制器係將該T個電池模組設定為該旁路組態。A battery management system as described in claim 14, wherein the controller sets the T battery modules to the bypass configuration. 如請求項12所述之電池管理系統,其中, 當該控制器將該第n個電池模組設為該串聯組態時,該第一串聯開關與該第二串聯開關導通,且該第一並聯開關、該第二並聯開關與旁路開關斷開; 當該控制器將該第n個電池模組設為該並聯組態時,該第一串聯開關與該第二串聯開關斷開,且該第一並聯開關、該第二並聯開關與該旁路開關導通;以及, 當該控制器將該第n個電池模組設為該旁路組態時,該第一串聯開關、該第二串聯開關、該第一並聯開關與該第二並聯開關斷開,且該旁路開關導通。 A battery management system as described in claim 12, wherein, when the controller sets the nth battery module to the series configuration, the first series switch and the second series switch are turned on, and the first parallel switch, the second parallel switch and the bypass switch are turned off; when the controller sets the nth battery module to the parallel configuration, the first series switch and the second series switch are turned off, and the first parallel switch, the second parallel switch and the bypass switch are turned on; and, when the controller sets the nth battery module to the bypass configuration, the first series switch, the second series switch, the first parallel switch and the second parallel switch are turned off, and the bypass switch is turned on. 如請求項11所述之電池管理系統,其中該N個電池監控信號中的一第n個電池監控信號係包含: 該第n個電池模組中的該電池組件的一健康狀態(state of health,簡稱為SOH);以及 該第n個電池模組中的該電池組件的一荷電狀態(state of charge,簡稱為SOC)其中的至少一者。 A battery management system as described in claim 11, wherein an nth battery monitoring signal among the N battery monitoring signals comprises: a state of health (SOH) of the battery component in the nth battery module; and at least one of a state of charge (SOC) of the battery component in the nth battery module. 如請求項18所述之電池管理系統,其中在該品質監控階段, 當該控制器判斷該第n個電池模組中的該電池組件的該健康狀態符合一壽命終止條件時,該控制器係將該電池組件的品質狀態標記為該淘汰狀態;以及 當該控制器判斷該第n個電池模組中的該電池組件的該荷電狀態符合一終止點條件時,該控制器係將該電池組件的品質狀態標記為該淘汰狀態。 A battery management system as described in claim 18, wherein in the quality monitoring stage, when the controller determines that the health status of the battery component in the nth battery module meets a life end condition, the controller marks the quality status of the battery component as the obsolete state; and when the controller determines that the charge status of the battery component in the nth battery module meets an end point condition, the controller marks the quality status of the battery component as the obsolete state.
TW111146761A 2022-08-31 2022-12-06 Battery module and battery management system TW202411092A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US63/402,514 2022-08-31

Publications (1)

Publication Number Publication Date
TW202411092A true TW202411092A (en) 2024-03-16

Family

ID=

Similar Documents

Publication Publication Date Title
KR101749447B1 (en) Power supply architecture for large electric vehicle and method for controlling sequential rest ranking of battery boxes thereof
CN110281810B (en) DC charging of smart batteries
TWI474577B (en) Battery management system, battery module and method of balancing a plurality of battery modules
KR100666817B1 (en) Apparatus and method for balancing battery
US9592745B2 (en) Large electric vehicle power structure and alternating-hibernation battery management and control method thereof
JP3961950B2 (en) Hybrid power supply
JP2012050158A (en) Electric vehicle
JP2006254535A (en) Method and device for controlling charging voltage equalization circuit of battery pack
JP2013055825A (en) Electric power unit for vehicle and vehicle having the same
WO2012105448A1 (en) Battery module, battery system, power supply apparatus, and moving body
CN103326439A (en) Equalization circuit of battery pack and equalization method
JPH11103534A (en) Storage apparatus
JP5725444B2 (en) Power storage system
CN108674217A (en) A kind of battery optimization control system of new-energy automobile
CN112993418B (en) Energy storage system
TW202411092A (en) Battery module and battery management system
CN207683366U (en) A kind of hybrid battery system for electric vehicle
CN115566758A (en) Battery energy management system and method
CN117639147A (en) Battery module and battery management system
CN113824143A (en) Electric vehicle retired battery secondary utilization system based on H-bridge cascade
KR102446786B1 (en) Connecting device for different types of electrick vehicle battery moduls
US20240047978A1 (en) Power storage system
WO2022269827A1 (en) Charging system
JPH10285817A (en) Power accumulating system
WO2022269826A1 (en) Charging system