TW202408969A - Ferrite particles and method for producing ferrite particles - Google Patents

Ferrite particles and method for producing ferrite particles Download PDF

Info

Publication number
TW202408969A
TW202408969A TW112127856A TW112127856A TW202408969A TW 202408969 A TW202408969 A TW 202408969A TW 112127856 A TW112127856 A TW 112127856A TW 112127856 A TW112127856 A TW 112127856A TW 202408969 A TW202408969 A TW 202408969A
Authority
TW
Taiwan
Prior art keywords
ferrite particles
molybdenum
compound
mass
content
Prior art date
Application number
TW112127856A
Other languages
Chinese (zh)
Inventor
楊少偉
田淵穣
矢木直人
袁建軍
孫曉
趙偉
郭健
Original Assignee
日商Dic股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Dic股份有限公司 filed Critical 日商Dic股份有限公司
Publication of TW202408969A publication Critical patent/TW202408969A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to ferrite particles containing molybdenum. The present invention also relates to a method for producing the ferrite particles, the method including firing a metal compound and an iron compound in the presence of a molybdenum compound.

Description

鐵氧體粒子及製成鐵氧體粒子的方法Ferrite particles and method for producing ferrite particles

本發明是有關於一種鐵氧體粒子及用於製成鐵氧體粒子的方法。The present invention relates to ferrite particles and a method for producing ferrite particles.

鐵氧體是主要含有氧化鐵(Fe 2O 3)的複合氧化物,且主要作為磁性材料用於各種領域。近年來,隨著由機動車(例如,汽車)中的電子設備的使用增加而引起機動車內電磁環境發生過度擁擠,對雜訊抑制板的需求不斷增加。目前,儘管雜訊抑制板主要用於車輛導航及車載相機,但未來亦期望存在在毫米波雷達方面的需求。在電信領域,隨著向第五代行動通訊技術(5th generation Mobile Communication Technology,5G)的轉變,對用於智慧型電話的雜訊抑制板中的高屏蔽效能的需求亦不斷增加。 Ferrite is a complex oxide mainly containing iron oxide ( Fe2O3 ), and is mainly used as a magnetic material in various fields. In recent years, with the overcrowding of the electromagnetic environment in motor vehicles (e.g., cars) caused by the increase in the use of electronic devices in motor vehicles, the demand for noise suppression boards has continued to increase. Although noise suppression boards are currently mainly used for vehicle navigation and car cameras, there is also an expectation that there will be demand for millimeter wave radars in the future. In the telecommunications field, with the transition to the 5th generation Mobile Communication Technology (5G), the demand for high shielding effectiveness in noise suppression boards used in smartphones is also increasing.

專利文獻1揭露一種用於製成六方晶系鐵氧體粉末的方法,在所述方法中,將含有六方晶系鐵氧體前驅物的水溶液加熱至300℃或高於300℃並加壓至20百萬帕或高於20百萬帕,以將前驅物轉化成六方晶系鐵氧體,藉此獲得由通式AFe 12O 19表示的鐵氧體。亦揭露出通式中的A是二價金屬原子,且所述二價金屬原子是可為作為離子的二價陽離子的金屬原子且包括鹼土金屬原子(例如,鋇、鍶以及鈣及鉛)。 Patent Document 1 discloses a method for producing hexagonal ferrite powder in which an aqueous solution containing a hexagonal ferrite precursor is heated to 300°C or higher and pressurized to 20 MPa or higher to convert the precursor into hexagonal ferrite, thereby obtaining ferrite represented by the general formula AFe 12 O 19 . It is also disclosed that A in the general formula is a divalent metal atom, and the divalent metal atom is a metal atom that can be a divalent cation as an ion and includes an alkaline earth metal atom (eg, barium, strontium, calcium, and lead).

專利文獻2揭露一種用於製成六方晶系鐵氧體磁性粉末的方法,在所述方法中,將含有玻璃形成組分與六方晶系鐵氧體形成組分的原材料混合物熔化,對所獲得的熔化物質進行淬火以獲得固體,並使所獲得的固體經受加熱處理以使六方晶系鐵氧體磁性粒子及玻璃組分沈積下來。 引用列表 專利文獻 Patent document 2 discloses a method for producing hexagonal ferrite magnetic powder, in which a raw material mixture containing a glass-forming component and a hexagonal ferrite-forming component is melted, the obtained molten material is quenched to obtain a solid, and the obtained solid is subjected to a heat treatment to precipitate hexagonal ferrite magnetic particles and a glass component. Citation list Patent document

專利文獻1:日本未經審查的專利申請公開案第2016-222517號 專利文獻2:日本未經審查的專利申請公開案第2020-100561號 Patent Document 1: Japanese Unexamined Patent Application Publication No. 2016-222517 Patent Document 2: Japanese Unexamined Patent Application Publication No. 2020-100561

[技術問題][Technical Issue]

然而,關於鐵氧體粒子及用於製成鐵氧體粒子的方法的傳統知識有限且仍存在進一步研究的空間。另外,用於製成鐵氧體粒子的傳統方法通常使用濕式製程或溶膠-凝膠反應(sol-gel reaction),且難以對濕式製程或溶膠-凝膠反應中的粒子大小進行控制,且因此難以根據應用傳統方法來獲得具有特定粒子大小或特定粒子大小分佈的鐵氧體粒子。However, conventional knowledge about ferrite particles and the methods used to make ferrite particles is limited and there is still room for further research. In addition, traditional methods for making ferrite particles usually use a wet process or sol-gel reaction, and it is difficult to control the particle size in the wet process or sol-gel reaction. And it is therefore difficult to obtain ferrite particles having a specific particle size or a specific particle size distribution by applying conventional methods.

本發明是為解決所述問題而完成者,且其目的在於提供一種具有優異性質的鐵氧體粒子及可易於製成鐵氧體粒子的用於製成鐵氧體粒子的方法。 [問題解決方案] The present invention is made to solve the above-mentioned problem, and its purpose is to provide a ferrite particle having excellent properties and a method for producing ferrite particles that can easily produce ferrite particles. [Solution to the problem]

本發明的發明者已進行認真研究以解決所述主題,發現使用鉬化合物作為助熔劑可藉由乾式混合而易於製成鐵氧體粒子且可易於製成含有鉬的鐵氧體粒子,進而完成本發明。 具體而言,本發明具有以下態樣。 The inventor of the present invention has conducted careful research to solve the subject and found that ferrite particles can be easily produced by dry mixing using a molybdenum compound as a flux and ferrite particles containing molybdenum can be easily produced, thereby completing invention. Specifically, the present invention has the following aspects.

[1] 一種包含鉬的鐵氧體粒子。[1] A ferrite particle containing molybdenum.

[2] 如以上[1]所述的鐵氧體粒子,其中鐵氧體粒子具有尖晶石結構。[2] The ferrite particles as described in [1] above, wherein the ferrite particles have a spinel structure.

[3] 如以上[2]所述的鐵氧體粒子,其中尖晶石結構是由式AFe 2O 4表示,在式中,A是選自Ni、Mn、Cu、Zn、Mg、Ca及Co中的一個元素或多個元素。 [3] The ferrite particles as described in [2] above, wherein the spinel structure is represented by the formula AFe2O4 , wherein A is one or more elements selected from Ni, Mn, Cu, Zn, Mg, Ca and Co.

[4] 如以上[1]或[2]所述的鐵氧體粒子,其中鐵氧體粒子中的鉬含量為0.1質量%至30質量%,所述鐵氧體粒子中的所述鉬含量是藉由對鐵氧體粒子實行X射線螢光(X-ray fluorescence,XRF)分析而確定的相對於100質量%的鐵氧體粒子以MoO 3計的含量(Mo 1)。 [4] The ferrite particles as described in [1] or [2] above, wherein the molybdenum content in the ferrite particles is 0.1 mass% to 30 mass%, and the molybdenum content in the ferrite particles is It is the content in MoO 3 (Mo 1 ) relative to 100 mass % of ferrite particles determined by X-ray fluorescence (XRF) analysis of ferrite particles.

[5] 如以上[1]或[2]所述的鐵氧體粒子,其中鐵氧體粒子的表面層中的鉬含量為2.0質量%至95.0質量%,所述鐵氧體粒子的所述表面層中的所述鉬含量是藉由對鐵氧體粒子實行X射線光電子光譜法(X-ray photoelectron spectroscopy,XPS)表面分析而確定的相對於100質量%的鐵氧體粒子的表面層以MoO 3計的含量(Mo 2)。 [5] The ferrite particles as described in [1] or [2] above, wherein the molybdenum content in the surface layer of the ferrite particles is 2.0 mass % to 95.0 mass %, wherein the molybdenum content in the surface layer of the ferrite particles is the content (Mo 2 ) in terms of MoO 3 relative to 100 mass % of the surface layer of the ferrite particles determined by performing X-ray photoelectron spectroscopy (XPS) surface analysis on the ferrite particles.

[6] 如以上[1]或[2]所述的鐵氧體粒子,其中鉬局限於鐵氧體粒子的表面層中。[6] The ferrite particles as described in [1] or [2] above, wherein molybdenum is confined in the surface layer of the ferrite particles.

[7] 如以上[1]或[2]所述的鐵氧體粒子,其中鉬表面層局限化比率(Mo 2/Mo 1)為1.0至80.0,所述鉬表面層局限化比率是藉由對鐵氧體粒子實行X射線光電子光譜法(XPS)表面分析而確定的相對於100質量%的鐵氧體粒子的表面層以MoO 3計的含量(Mo 2)對藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子以MoO 3計的含量(Mo 1)的比率。 [7] The ferrite particles as described in [1] or [2] above, wherein the molybdenum surface layer localization ratio ( Mo2 / Mo1 ) is 1.0 to 80.0, wherein the molybdenum surface layer localization ratio is the ratio of the content (Mo2) calculated as MoO3 in the surface layer of the ferrite particles relative to 100 mass% determined by performing X-ray photoelectron spectroscopy ( XPS ) surface analysis on the ferrite particles to the content ( Mo1 ) calculated as MoO3 in the surface layer of the ferrite particles relative to 100 mass% determined by performing XRF analysis on the ferrite particles.

[8] 如以上[1]或[2]所述的鐵氧體粒子,其中鐵氧體粒子的一次粒子(primary particle)的平均粒子大小為0.1微米至100微米。[8] The ferrite particles as described in [1] or [2] above, wherein the average particle size of the primary particles of the ferrite particles is 0.1 μm to 100 μm.

[9] 如以上[1]或[2]所述的鐵氧體粒子,其中鐵氧體粒子具有藉由布龍瑙爾-埃梅特-特勒(Brunauer-Emmett-Teller,BET)方法量測的為0.1平方米/克至2.5平方米/克的比表面積。[9] The ferrite particles as described in [1] or [2] above, wherein the ferrite particles have a property measured by the Brunauer-Emmett-Teller (BET) method The specific surface area is 0.1 m2/g to 2.5 m2/g.

[10] 一種用於製成如[1]所述的鐵氧體粒子的方法,所述方法包括:在存在鉬化合物的條件下燒製金屬化合物及鐵化合物。[10] A method for producing the ferrite particles described in [1], the method comprising: sintering a metal compound and an iron compound in the presence of a molybdenum compound.

[11] 如以上[10]所述的用於製成鐵氧體粒子的方法,所述方法包括:在存在鉬化合物的條件下燒製金屬化合物及鐵化合物以及進一步添加的鋅化合物。[11] The method for producing ferrite particles as described in [10] above, which method includes firing a metal compound and an iron compound in the presence of a molybdenum compound and further adding a zinc compound.

[12] 如以上[10]或[11]所述的用於製成鐵氧體粒子的方法,其中鉬化合物是選自由三氧化鉬、鉬酸鋰、鉬酸鉀及鉬酸鈉組成的群組中的至少一種化合物。[12] The method for producing ferrite particles as described in [10] or [11] above, wherein the molybdenum compound is selected from the group consisting of molybdenum trioxide, lithium molybdate, potassium molybdate and sodium molybdate. at least one compound in the group.

[13] 如以上[10]或[11]所述的用於製成鐵氧體粒子的方法,其中燒製時的燒製溫度為800℃至1,500℃。 [發明的有利效果] [13] The method for producing ferrite particles as described in [10] or [11] above, wherein the firing temperature during firing is 800°C to 1,500°C. [Beneficial effects of the invention]

本發明可提供一種具有優異性質的鐵氧體粒子及可易於製成鐵氧體粒子的用於製成鐵氧體粒子的方法。The present invention can provide ferrite particles having excellent properties and a method for producing ferrite particles that can be easily produced.

以下參照附圖詳細地闡述本發明實施例。The embodiments of the present invention are described in detail below with reference to the accompanying drawings.

<<鐵氧體粒子>> 本實施例的鐵氧體粒子含有鉬。本實施例的鐵氧體粒子含有鉬且具有優異的性質,例如自鉬得到的磁性。 本實施例的鐵氧體粒子亦可具有粒子形狀受控的優異性質。 本實施例的鐵氧體粒子亦可具有黏聚程度低或無黏聚的優異性質。 <<Ferrite particles>> The ferrite particles of this example contain molybdenum. The ferrite particles of this example contain molybdenum and have excellent properties, such as magnetism derived from molybdenum. The ferrite particles of this embodiment may also have excellent properties of controlled particle shape. The ferrite particles of this embodiment may also have excellent properties of low or no cohesion.

本實施例的鐵氧體粒子可含有自在以下所述的製成方法中使用的鉬化合物得到的鉬。可藉由在以下所述的製成方法中使用鉬化合物來控制欲製成的鐵氧體粒子的粒子形狀。The ferrite particles of this example may contain molybdenum obtained from the molybdenum compound used in the production method described below. The particle shape of the ferrite particles to be produced can be controlled by using a molybdenum compound in the production method described below.

關於本實施例的鐵氧體粒子中所含有的鉬,所述鉬的存在狀態及量並非僅限於特定者,且所述鉬可包含於鐵氧體粒子中作為鉬金屬、鉬氧化物、部分還原的鉬化合物等。鉬被認為包含於鐵氧體粒子中作為MoO 3,但亦可包含於鐵氧體粒子中作為MoO 2、MoO等而非MoO 3Regarding the molybdenum contained in the ferrite particles of this embodiment, the existence state and amount of the molybdenum are not limited to specific ones, and the molybdenum may be contained in the ferrite particles as molybdenum metal, molybdenum oxide, partially reduced molybdenum compound, etc. Molybdenum is considered to be contained in the ferrite particles as MoO 3 , but may be contained in the ferrite particles as MoO 2 , MoO, etc. instead of MoO 3 .

鉬的包含形式並非僅限於特定的形式。鉬可以黏附至鐵氧體粒子的表面的形式被包含、以鐵氧體粒子的晶體結構的取代部分的形式被包含、以非晶形的狀態被包含,或者為該些形式的組合。The inclusion form of molybdenum is not limited to a specific form. Molybdenum may be included in a form adhering to the surface of the ferrite particles, in a form of a substitution part of the crystal structure of the ferrite particles, in an amorphous state, or in a combination of these forms.

因此,本實施例的鐵氧體粒子可含有鉬且具體而言可含有自在以下所述的製成方法中使用的鉬化合物得到的鉬,且因此相較於傳統的鐵氧體粒子的磁性效能而言,可期望磁性效能得到改善。Therefore, the ferrite particles of the present embodiment may contain molybdenum and, specifically, may contain molybdenum obtained from a molybdenum compound used in the preparation method described below, and thus, it is expected that the magnetic performance can be improved compared to the magnetic performance of conventional ferrite particles.

在本說明書中,對鐵氧體粒子的粒子形狀進行控制意指所製成的鐵氧體粒子的粒子形狀並非無定形的。在本說明書中,粒子形狀受控的鐵氧體粒子意指粒子形狀並非無定形的鐵氧體粒子。 本實施例的鐵氧體粒子可具有多邊形形狀。本實施例的鐵氧體粒子具有受控的晶體形狀且可具有多邊形自形形狀。可藉由以下所述的製成方法來製成晶體形狀受控的鐵氧體粒子。 In this specification, controlling the particle shape of ferrite particles means that the particle shape of the produced ferrite particles is not amorphous. In this specification, ferrite particles with controlled particle shape means ferrite particles whose particle shape is not amorphous. The ferrite particles of this embodiment may have a polygonal shape. The ferrite particles of this embodiment have a controlled crystal shape and may have a polygonal eumorphic shape. The ferrite particles with controlled crystal shape can be produced by the production method described below.

鐵氧體粒子的聚集體(粉末)可以任何狀態包含除多邊形形狀以外的任何形狀的鐵氧體粒子。相對於鐵氧體粒子的聚集體(粉末)的總量以重量計或以數目計,多邊形形狀的鐵氧體粒子的含量較佳為80%或大於80%,更佳為90%或大於90%,且甚至更佳為95%或大於95%。可使用掃描電子顯微鏡(scanning electron microscopy,SEM)來確定鐵氧體粒子的形態。The aggregate (powder) of ferrite particles may contain ferrite particles of any shape other than a polygonal shape in any state. The content of polygonal-shaped ferrite particles is preferably 80% or more, more preferably 90% or more, relative to the total amount of aggregates (powder) of ferrite particles by weight or by number. %, and even better is 95% or greater. Scanning electron microscopy (SEM) can be used to determine the morphology of the ferrite particles.

對於本實施例的鐵氧體粒子而言,可藉由對以下所述的製成方法中的鉬化合物的使用量及類型、燒製溫度等進行控制來控制欲獲得的鐵氧體粒子的粒子大小及鉬含量。For the ferrite particles of this embodiment, the particle size and molybdenum content of the ferrite particles to be obtained can be controlled by controlling the amount and type of the molybdenum compound used in the preparation method described below, the firing temperature, etc.

本實施例的鐵氧體粒子的一次粒子的平均粒子大小可為0.1微米至100微米、0.1微米至50微米、1.0微米至40微米或者1.5微米至30微米。The average particle size of the primary particles of the ferrite particles of this embodiment may be 0.1 μm to 100 μm, 0.1 μm to 50 μm, 1.0 μm to 40 μm, or 1.5 μm to 30 μm.

關於鐵氧體粒子的一次粒子的平均粒子大小,使用掃描電子顯微鏡(SEM)來拍攝鐵氧體粒子,且對於作為二維影像上的最小單元的粒子(即,一次粒子),採用在50個隨機選擇的一次粒子的輪廓線上的兩個點之間的距離之中的所量測的最大長度的平均值。Regarding the average particle size of primary particles of ferrite particles, ferrite particles were photographed using a scanning electron microscope (SEM), and for particles that are the smallest unit on a two-dimensional image (i.e., primary particles), the average value of the maximum length measured among the distances between two points on the outlines of 50 randomly selected primary particles was adopted.

藉由對本實施例的鐵氧體粒子進行雷射繞射及散射而計算出的中位直徑(median diameter)D 50可為0.5微米至50微米、1微米至40微米或者1.5微米至35微米。 The median diameter D 50 calculated by performing laser diffraction and scattering on the ferrite particles of this embodiment may be 0.5 micron to 50 micron, 1 micron to 40 micron, or 1.5 micron to 35 micron.

在使用雷射繞射粒子大小分析儀以乾燥形式量測出的粒子大小分佈中,藉由對鐵氧體粒子進行雷射繞射及散射而計算出的中位直徑D 50可被確定為使體積累積百分比的比例為50%的粒子大小。 In the particle size distribution measured in dry form using a laser diffraction particle size analyzer, the median diameter D 50 calculated by laser diffraction and scattering of the ferrite particles can be determined as The cumulative volume percentage is proportional to 50% of the particle size.

藉由對本實施例的鐵氧體粒子進行BET方法確定的比表面積可為0.1平方米/克至2.5平方米/克、0.15平方米/克至2.5平方米/克、0.1平方米/克至2.0平方米/克或者0.2平方米/克至2.0平方米/克。The specific surface area of the ferrite particles of this embodiment determined by the BET method may be 0.1 m2/g to 2.5 m2/g, 0.15 m2/g to 2.5 m2/g, 0.1 m2/g to 2.0 m2/g, or 0.2 m2/g to 2.0 m2/g.

使用比表面積計(例如,由麥奇克拜爾公司(Microtrac Bell Corporation)製造的拜爾索普迷你(BELSORP-mini))來量測比表面積,且將藉由布龍瑙爾-埃梅特-特勒方法(BET法)而自氮氣的吸附量量測的每克樣品的表面積計算為比表面積(平方米/克)。The specific surface area is measured using a specific surface area meter (e.g., BELSORP-mini manufactured by Microtrac Bell Corporation), and the surface area per gram of the sample measured from the adsorption amount of nitrogen by the Bronnauer-Emmett-Teller method (BET method) is calculated as the specific surface area (m2/g).

本實施例的鐵氧體粒子含有鐵氧體。儘管鐵氧體粒子可採取各種晶體結構(例如,尖晶石結構及石榴石結構),但在本實施例中較佳為具有尖晶石結構。尖晶石結構例如由AFe 2O 4表示(在式中,A是選自Ni、Mn、Cu、Zn、Mg、Ca及Co的一個元素或多個元素)。尖晶石結構通常由AFe 2O 4表示(在式中,A是選自Ni、Mn、Cu、Zn、Mg、Ca及Co中的一個元素或兩個元素)。 The ferrite particles of this embodiment contain ferrite. Although the ferrite particles can adopt various crystal structures (for example, spinel structure and garnet structure), in this embodiment, it is preferred to have a spinel structure. The spinel structure is represented by AFe2O4 , for example (where A is one or more elements selected from Ni, Mn, Cu, Zn, Mg, Ca and Co). The spinel structure is usually represented by AFe2O4 (where A is one or two elements selected from Ni, Mn, Cu, Zn, Mg, Ca and Co).

相對於100質量%的鐵氧體粒子,本實施例的鐵氧體粒子較佳為以65質量%至99.95質量%的量含有AFe 2O 4,更佳為以70質量%至99.5質量%的量含有AFe 2O 4,且甚至更佳為以90質量%至99質量%的量含有AFe 2O 4Relative to 100 mass % of ferrite particles, the ferrite particles of this embodiment preferably contain AFe 2 O 4 in an amount of 65 mass % to 99.95 mass %, and more preferably in an amount of 70 mass % to 99.5 mass %. AFe 2 O 4 is contained in an amount of 90 to 99 mass %.

鐵氧體粒子可含有鎳。可藉由X射線螢光(XRF)分析來量測鐵氧體粒子中所含有的鎳含量。本實施例的鐵氧體粒子中的鎳含量(藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子以NiO計的含量(Ni 1))較佳為5質量%至50質量%,更佳為10質量%至40質量%,且甚至更佳為15質量%至30質量%。 The ferrite particles may contain nickel. The nickel content in the ferrite particles can be measured by X-ray fluorescence (XRF) analysis. The nickel content in the ferrite particles of the present embodiment (the content (Ni 1 ) in terms of NiO relative to 100% by mass of the ferrite particles determined by performing XRF analysis on the ferrite particles) is preferably 5% by mass to 50% by mass, more preferably 10% by mass to 40% by mass, and even more preferably 15% by mass to 30% by mass.

可藉由XRF分析來量測鐵氧體粒子中所含有的鐵含量。本實施例的鐵氧體粒子中的鐵含量(藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子以Fe 2O 3計的含量(Fe 1))較佳為35質量%至80質量%,更佳為40質量%至75質量%,且甚至更佳為45質量%至70質量%。 The iron content contained in ferrite particles can be measured by XRF analysis. The iron content in the ferrite particles of this example (the content in terms of Fe 2 O 3 (Fe 1 ) relative to 100% by mass of the ferrite particles determined by XRF analysis of the ferrite particles) is relatively Preferably it is 35 mass% to 80 mass%, more preferably 40 mass% to 75 mass%, and even more preferably 45 mass% to 70 mass%.

可藉由XRF分析來量測鐵氧體粒子中所含有的鉬含量。本實施例的鐵氧體粒子中的鉬含量(藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子以MoO 3計的含量(Mo 1))較佳為0.1質量%或大於0.1質量%,較佳為0.1質量%至30質量%,更佳為0.5質量%至25質量%,且甚至更佳為0.75質量%至20質量%。 The molybdenum content contained in the ferrite particles can be measured by XRF analysis. The molybdenum content in the ferrite particles of the present embodiment (the content (Mo 1 ) calculated as MoO 3 relative to 100% by mass of the ferrite particles determined by performing XRF analysis on the ferrite particles) is preferably 0.1% by mass or more, more preferably 0.1% by mass to 30% by mass, more preferably 0.5% by mass to 25% by mass, and even more preferably 0.75% by mass to 20% by mass.

本實施例的鐵氧體粒子中的以上例示的含量(Ni 1)、含量(Fe 1)及含量(Mo 1)的相應的上限值與相應的下限值可彼此自由組合。含量(Ni 1)、含量(Fe 1)及含量(Mo 1)的相應的值亦可彼此自由組合。 The upper limits and lower limits of the above-exemplified contents (Ni 1 ), (Fe 1 ) and (Mo 1 ) in the ferrite particles of this embodiment can be freely combined. The corresponding values of the contents (Ni 1 ), (Fe 1 ) and (Mo 1 ) can also be freely combined.

當尖晶石結構由NiFe 2O 4表示時,本實施例的鐵氧體粒子的實例可為藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子具有15質量%至45質量%的含量(Ni 1)、35質量%至75質量%的含量(Fe 1)以及0.1質量%至30質量%的含量(Mo 1)的鐵氧體粒子;藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子具有17.5質量%至40質量%的含量(Ni 1)、40質量%至70質量%的含量(Fe 1)以及0.5質量%至25質量%的含量(Mo 1)的鐵氧體粒子;或者藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子具有20質量%至35質量%的含量(Ni 1)、45質量%至65質量%的含量(Fe 1)以及0.75質量%至20質量%的含量(Mo 1)的鐵氧體粒子。 When the spinel structure is represented by NiFe 2 O 4 , examples of the ferrite particles of the present embodiment may be ferrite particles having a content (Ni 1 ) of 15 to 45 mass %, a content (Fe 1 ) of 35 to 75 mass %, and a content (Mo 1 ) of 0.1 to 30 mass % relative to 100 mass % of the ferrite particles as determined by performing XRF analysis on the ferrite particles; and ferrite particles having a content (Ni 1 ) of 17.5 to 40 mass %, a content (Fe 1 ) of 40 to 70 mass %, and a content (Mo 1 ) of 0.5 to 25 mass % relative to 100 mass % of the ferrite particles as determined by performing XRF analysis on the ferrite particles. ) ferrite particles; or ferrite particles having a content of (Ni 1 ) of 20 to 35 mass %, a content of (Fe 1 ) of 45 to 65 mass %, and a content of (Mo 1 ) of 0.75 to 20 mass % relative to 100 mass % of the ferrite particles as determined by performing XRF analysis on the ferrite particles.

鐵氧體粒子可更含有鋅。可藉由XRF分析來量測鐵氧體粒子中所含有的鋅含量。本實施例的鐵氧體粒子中的鋅含量(藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子以ZnO 2計的含量(Zn 1))較佳為0.5質量%至25質量%,更佳為0.75質量%至20質量%,且甚至更佳為0.1質量%至15質量%。 The ferrite particles may further contain zinc. The zinc content in the ferrite particles may be measured by XRF analysis. The zinc content in the ferrite particles of the present embodiment (the content ( Zn1 ) calculated as ZnO2 relative to 100% by mass of the ferrite particles determined by performing XRF analysis on the ferrite particles) is preferably 0.5% by mass to 25% by mass, more preferably 0.75% by mass to 20% by mass, and even more preferably 0.1% by mass to 15% by mass.

本實施例的鐵氧體粒子中的以上例示的含量(Ni 1)、含量(Fe 1)、含量(Zn 1)及含量(Mo 1)的相應的上限值與相應的下限值可彼此自由組合。含量(Ni 1)、含量(Fe 1)、含量(Zn 1)及含量(Mo 1)的相應的值亦可彼此自由組合。 The corresponding upper limit values and the corresponding lower limit values of the above-exemplified content (Ni 1 ), content (Fe 1 ), content (Zn 1 ), and content (Mo 1 ) in the ferrite particles of this embodiment can be mutually exclusive. Free combination. The corresponding values of the content (Ni 1 ), the content (Fe 1 ), the content (Zn 1 ) and the content (Mo 1 ) can also be freely combined with each other.

當尖晶石結構由NiFe 2O 4表示時,本實施例的鐵氧體粒子的實例可為藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子具有10質量%至40質量%的含量(Ni 1)、45質量%至60質量%的含量(Fe 1)、0.5質量%至20質量%的含量(Zn 1)以及0質量%至5質量%的含量(Mo 1)的鐵氧體粒子;藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子具有12.5質量%至35質量%的含量(Ni 1)、47.5質量%至57.5質量%的含量(Fe 1)、0.75質量%至17.5質量%的含量(Zn 1)以及0.1質量%至3質量%的含量(Mo 1)的鐵氧體粒子;或者藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子具有15質量%至30質量%的含量(Ni 1)、50質量%至55質量%的含量(Fe 1)、1.0質量%至15質量%的含量(Zn 1)以及0.5質量%至2.5質量%的含量(Mo 1)的鐵氧體粒子。 When the spinel structure is represented by NiFe 2 O 4 , an example of the ferrite particles of the present embodiment may be one having 10% by mass relative to 100% by mass of the ferrite particles as determined by performing XRF analysis on the ferrite particles. Content of mass % to 40 mass % (Ni 1 ), 45 mass % to 60 mass % content (Fe 1 ), 0.5 mass % to 20 mass % content (Zn 1 ), and 0 mass % to 5 mass % content Ferrite particles of (Mo 1 ); having a content of 12.5 to 35 mass % (Ni 1 ) and 47.5 mass % relative to 100 mass % of ferrite particles as determined by XRF analysis of the ferrite particles % to 57.5 mass% (Fe 1 ), 0.75 to 17.5 mass% (Zn 1 ), and 0.1 to 3 mass% (Mo 1 ) ferrite particles; or by The ferrite particles were determined by XRF analysis to have a content of 15% to 30% by mass (Ni 1 ), a content of 50% to 55% by mass (Fe 1 ), and 1.0% by mass relative to 100% by mass of ferrite particles. % to 15% by mass (Zn 1 ) and 0.5% to 2.5% by mass (Mo 1 ).

鐵氧體粒子可含有錳來替代鎳。可藉由XRF分析來量測鐵氧體粒子中所含有的錳含量。本實施例的鐵氧體粒子中的錳含量(藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子以MnO 2計的含量(Mn 1))較佳為10質量%至60質量%,更佳為20質量%至50質量%,且甚至更佳為30質量%至40質量%。 The ferrite particles may contain manganese instead of nickel. The manganese content contained in ferrite particles can be measured by XRF analysis. The manganese content in the ferrite particles of this embodiment (the content in MnO 2 based on 100 mass % of the ferrite particles determined by XRF analysis of the ferrite particles (Mn 1 )) is preferably: 10 to 60 mass%, more preferably 20 to 50 mass%, and even more preferably 30 to 40 mass%.

本實施例的鐵氧體粒子中的以上例示的含量(Mn 1)、含量(Fe 1)及含量(Mo 1)的相應的上限值與相應的下限值可彼此自由組合。含量(Mn 1)、含量(Fe 1)及含量(Mo 1)的相應的值亦可彼此自由組合。 The corresponding upper limit values and the corresponding lower limit values of the above-exemplified content (Mn 1 ), content (Fe 1 ), and content (Mo 1 ) in the ferrite particles of this embodiment can be freely combined with each other. The corresponding values of content (Mn 1 ), content (Fe 1 ) and content (Mo 1 ) can also be freely combined with each other.

當尖晶石結構由MnFe 2O 4表示時,本實施例的鐵氧體粒子的實例可為藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子具有10質量%至60質量%的含量(Mn 1)、30質量%至80質量%的含量(Fe 1)以及0質量%的含量(Mo 1)的鐵氧體粒子;藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子具有20質量%至50質量%的含量(Mn 1)、40質量%至75質量%的含量(Fe 1)以及0質量%的含量(Mo 1)的鐵氧體粒子;或者藉由對鐵氧體粒子實行XRF分析而確定的相對於100質量%的鐵氧體粒子具有30質量%至40質量%的含量(Mn 1)、50質量%至70質量%的含量(Fe 1)以及0質量%的含量(Mo 1)的鐵氧體粒子。 When the spinel structure is represented by MnFe 2 O 4 , examples of the ferrite particles of the present embodiment may be ferrite particles having a content (Mn 1 ) of 10 to 60 mass %, a content (Fe 1 ) of 30 to 80 mass %, and a content (Mo 1 ) of 0 mass % relative to 100 mass % of the ferrite particles as determined by performing XRF analysis on the ferrite particles; and ferrite particles having a content (Mn 1 ) of 20 to 50 mass %, a content (Fe 1 ) of 40 to 75 mass %, and a content (Mo 1 ) of 0 mass % relative to 100 mass % of the ferrite particles as determined by performing XRF analysis on the ferrite particles. ) ferrite particles; or ferrite particles having a content of (Mn 1 ) of 30 to 40 mass %, a content of (Fe 1 ) of 50 to 70 mass %, and a content of (Mo 1 ) of 0 mass % relative to 100 mass % of the ferrite particles as determined by performing XRF analysis on the ferrite particles.

對於XRF分析,可使用X射線螢光分析儀(例如,由日本理學公司(Rigaku Corporation)製造的普裡默斯(Primus)IV)。For XRF analysis, an X-ray fluorescence analyzer (eg, Primus IV manufactured by Rigaku Corporation) may be used.

以NiO計的含量(Ni 1)是指藉由對鐵氧體粒子實行XRF分析而確定的自使用以NiO計的校準線轉換的NiO量確定的鎳含量的值。 The content in NiO (Ni 1 ) refers to the value of the nickel content determined by performing XRF analysis on ferrite particles from the NiO amount converted using a calibration line in NiO.

以Fe 2O 3計的含量(Fe 1)是指藉由對鐵氧體粒子實行XRF分析而確定的自使用以Fe 2O 3計的校準線轉換的Fe 2O 3量確定的鐵含量的值。 The content in terms of Fe 2 O 3 (Fe 1 ) refers to the iron content determined by performing XRF analysis on ferrite particles from the amount of Fe 2 O 3 converted using a calibration line in terms of Fe 2 O 3 value.

以MoO 3計的含量(Mo 1)是指藉由對鐵氧體粒子實行XRF分析而確定的自使用以MoO 3計的校準線轉換的MoO 3量確定的鉬含量的值。 The content in terms of MoO 3 (Mo 1 ) refers to a value of the molybdenum content determined from the amount of MoO 3 converted using a calibration line in terms of MoO 3 , determined by performing XRF analysis on ferrite particles.

以ZnO 2計的含量(Zn 1)是指藉由對鐵氧體粒子實行XRF分析而確定的自使用以ZnO 2計的校準線轉換的ZnO 2量確定的鋅含量的值。 The content in ZnO 2 (Zn 1 ) refers to the value of the zinc content determined by performing XRF analysis on ferrite particles from the ZnO 2 amount converted using a calibration line in ZnO 2 .

以MnO 2計的含量(Mn 1)是指藉由對鐵氧體粒子實行XRF分析而確定的自使用以MnO 2計的校準線轉換的MnO 2量確定的錳含量的值。 The content in MnO 2 (Mn 1 ) refers to the value of the manganese content determined by performing XRF analysis on ferrite particles from the amount of MnO 2 converted using a calibration line in MnO 2 .

可藉由X射線光電子光譜法(XPS)表面分析來量測鐵氧體粒子的表面層中所含有的鎳含量。本實施例的鐵氧體粒子的表面層中的鎳含量(藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層的以NiO計的含量(Ni 2))較佳為0質量%至65質量%,更佳為0質量%至60質量%,且甚至更佳為0質量%至55質量%。 The nickel content contained in the surface layer of the ferrite particles can be measured by X-ray photoelectron spectroscopy (XPS) surface analysis. The nickel content in the surface layer of the ferrite particles of the present embodiment (the content (Ni 2 ) in terms of NiO relative to 100% by mass of the surface layer of the ferrite particles determined by performing XPS surface analysis on the ferrite particles) is preferably 0% by mass to 65% by mass, more preferably 0% by mass to 60% by mass, and even more preferably 0% by mass to 55% by mass.

可藉由X射線光電子光譜法(XPS)表面分析來量測鐵氧體粒子的表面層中所含有的鐵含量。本實施例的鐵氧體粒子的表面層中的鐵含量(藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層以Fe 2O 3計的含量(Fe 2))較佳為5質量%至65質量%,更佳為10質量%至60質量%,且甚至更佳為12.5質量%至57.5質量%。 The iron content contained in the surface layer of the ferrite particles can be measured by X-ray photoelectron spectroscopy (XPS) surface analysis. The iron content in the surface layer of the ferrite particles of the present embodiment (the content (Fe 2 ) in terms of Fe 2 O 3 relative to 100% by mass of the surface layer of the ferrite particles determined by performing XPS surface analysis on the ferrite particles) is preferably 5% by mass to 65% by mass, more preferably 10% by mass to 60% by mass, and even more preferably 12.5% by mass to 57.5% by mass.

可藉由X射線光電子光譜法(XPS)表面分析來量測鐵氧體粒子的表面層中所含有的鉬含量。本實施例的鐵氧體粒子的表面層中的鉬含量(藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層以MoO 3計的含量(Mo 2))較佳為1質量%或大於1質量%,較佳為2.0質量%至95質量%,更佳為2.5質量%至90質量%,且甚至更佳為3.0質量%至87.5質量%。 The molybdenum content contained in the surface layer of the ferrite particles can be measured by X-ray photoelectron spectroscopy (XPS) surface analysis. The molybdenum content in the surface layer of the ferrite particles of the present embodiment (the content (Mo 2 ) in terms of MoO 3 relative to 100% by mass of the surface layer of the ferrite particles determined by performing XPS surface analysis on the ferrite particles) is preferably 1% by mass or more, preferably 2.0% by mass to 95% by mass, more preferably 2.5% by mass to 90% by mass, and even more preferably 3.0% by mass to 87.5% by mass.

本實施例的鐵氧體粒子中的以上例示的含量(Ni 2)、含量(Fe 2)及含量(Mo 2)的相應的上限值與相應的下限值可彼此自由組合。含量(Ni 2)、含量(Fe 2)及含量(Mo 2)的相應的值亦可彼此自由組合。 The upper limits and lower limits of the above-mentioned contents (Ni 2 ), (Fe 2 ) and (Mo 2 ) in the ferrite particles of this embodiment can be freely combined with each other. The corresponding values of the contents (Ni 2 ), (Fe 2 ) and (Mo 2 ) can also be freely combined with each other.

當尖晶石結構由NiFe 2O 4表示時,本實施例的鐵氧體粒子的實例可為藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層具有0質量%至60質量%的含量(Ni 2)、5質量%至65質量%的含量(Fe 2)以及2.5質量%至90質量%的含量(Mo 2)的鐵氧體粒子;藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層具有3質量%至57.5質量%的含量(Ni 2)、10質量%至60質量%的含量(Fe 2)以及5質量%至87.5質量%的含量(Mo 2)的鐵氧體粒子;或者藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層具有5質量%至55質量%的含量(Ni 2)、12.5質量%至55質量%的含量(Fe 2)以及7.5質量%至85質量%的含量(Mo 2)的鐵氧體粒子。 When the spinel structure is represented by NiFe 2 O 4 , an example of the ferrite particles of the present embodiment may be the value determined by performing XPS surface analysis on the ferrite particles relative to 100 mass % of the ferrite particles. The surface layer has ferrite particles with a content of 0% to 60% by mass (Ni 2 ), a content of 5% to 65% by mass (Fe 2 ), and a content of 2.5% to 90% by mass (Mo 2 ); The surface layer of the ferrite particles, as determined by performing XPS surface analysis on the ferrite particles, has a content of 3 to 57.5 mass % (Ni 2 ) and 10 to 60 mass %, relative to 100 mass % of the ferrite particles. Ferrite particles with a content (Fe 2 ) and a content (Mo 2 ) of 5% by mass to 87.5% by mass; or determined by performing XPS surface analysis on the ferrite particles relative to 100% by mass of the ferrite particles The surface layer has ferrite particles with a content of 5% to 55% by mass (Ni 2 ), a content of 12.5% to 55% by mass (Fe 2 ), and a content of 7.5% to 85% by mass (Mo 2 ) .

如上所述,鐵氧體粒子可更含有鋅。可藉由X射線光電子光譜法(XPS)表面分析來量測鐵氧體粒子中所含有的鋅含量。本實施例的鐵氧體粒子的表面層中的鋅含量(藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層以ZnO 2計的含量(Zn 2))較佳為0.1質量%至10質量%,更佳為0.25質量%至8質量%,且甚至更佳為0.5質量%至6質量%。 As mentioned above, the ferrite particles may further contain zinc. The zinc content contained in ferrite particles can be measured by X-ray photoelectron spectroscopy (XPS) surface analysis. The zinc content in the surface layer of the ferrite particles of this example (the content in ZnO 2 relative to the surface layer of 100 mass % of the ferrite particles determined by performing XPS surface analysis on the ferrite particles) ( Zn 2 )) is preferably 0.1 mass% to 10 mass%, more preferably 0.25 mass% to 8 mass%, and even more preferably 0.5 mass% to 6 mass%.

本實施例的鐵氧體粒子中的以上例示的含量(Ni 2)、含量(Fe 2)、含量(Zn 2)及含量(Mo 2)的相應的上限值與相應的下限值可彼此自由組合。含量(Ni 2)、含量(Fe 2)、含量(Zn 2)及含量(Mo 2)的相應的值亦可彼此自由組合。 The corresponding upper limit values and the corresponding lower limit values of the above-exemplified content (Ni 2 ), content (Fe 2 ), content (Zn 2 ), and content (Mo 2 ) in the ferrite particles of this embodiment can be mutually exclusive. Free combination. The corresponding values of content (Ni 2 ), content (Fe 2 ), content (Zn 2 ) and content (Mo 2 ) can also be freely combined with each other.

當尖晶石結構由NiFe 2O 4表示時,本實施例的鐵氧體粒子的實例可為藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層具有0.5質量%至25質量%的含量(Ni 2)、20質量%至70質量%的含量(Fe 2)、0.1質量%至10質量%的含量(Zn 2)以及20質量%至75質量%的含量(Mo 2)的鐵氧體粒子;藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層具有1.0質量%至20質量%的含量(Ni 2)、25質量%至65質量%的含量(Fe 2)、0.25質量%至8質量%的含量(Zn 2)以及25質量%至70質量%的含量(Mo 2)的鐵氧體粒子;或者藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層具有1.5質量%至10質量%的含量(Ni 2)、30質量%至60質量%的含量(Fe 2)、0.5質量%至6質量%的含量(Zn 2)以及30質量%至65質量%的含量(Mo 2)的鐵氧體粒子。 When the spinel structure is represented by NiFe2O4 , examples of the ferrite particles of the present embodiment may be ferrite particles having a content of ( Ni2 ) of 0.5 to 25 mass%, a content of ( Fe2 ) of 20 to 70 mass%, a content of ( Zn2 ) of 0.1 to 10 mass%, and a content of ( Mo2 ) of 20 to 75 mass% relative to 100 mass% of the surface layer of the ferrite particles determined by performing XPS surface analysis on the ferrite particles; and a content of ( Ni2 ) of 1.0 to 20 mass%, a content of ( Fe2 ) of 25 to 65 mass%, relative to 100 mass% of the surface layer of the ferrite particles determined by performing XPS surface analysis on the ferrite particles . ), 0.25 mass % to 8 mass % (Zn 2 ) and 25 mass % to 70 mass % (Mo 2 ) of a ferrite particle; or a ferrite particle having a content of (Ni 2 ) of 1.5 mass % to 10 mass %, a content of (Fe 2 ) of 30 mass % to 60 mass %, a content of (Zn 2 ) of 0.5 mass % to 6 mass % and a content of (Mo 2 ) of 30 mass % to 65 mass % relative to 100 mass % of the ferrite particle's surface layer as determined by performing XPS surface analysis on the ferrite particle.

當鐵氧體粒子含有錳來替代鎳時,可藉由X射線光電子光譜法(XPS)表面分析來量測鐵氧體粒子中所含有的錳含量。本實施例的鐵氧體粒子的表面層中的含量(藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層以MnO 2計的含量(Mn 2))較佳為10質量%至80質量%,更佳為20質量%至70質量%,且甚至更佳為30質量%至60質量%。 When the ferrite particles contain manganese in place of nickel, the manganese content contained in the ferrite particles can be measured by X-ray photoelectron spectroscopy (XPS) surface analysis. The content in the surface layer of the ferrite particles of the present embodiment (the content (Mn 2 ) in terms of MnO 2 relative to 100% by mass of the surface layer of the ferrite particles determined by performing XPS surface analysis on the ferrite particles) is preferably 10% to 80% by mass, more preferably 20% to 70% by mass, and even more preferably 30% to 60% by mass.

本實施例的鐵氧體粒子中的以上例示的含量(Mn 2)、含量(Fe 2)及含量(Mo 2)的相應的上限值與相應的下限值可彼此自由組合。含量(Mn 2)、含量(Fe 2)及含量(Mo 2)的相應的值亦可彼此自由組合。 The upper limits and lower limits of the above-mentioned contents (Mn 2 ), (Fe 2 ) and (Mo 2 ) in the ferrite particles of this embodiment can be freely combined. The corresponding values of the contents (Mn 2 ), (Fe 2 ) and (Mo 2 ) can also be freely combined.

當尖晶石結構由MnFe 2O 4表示時,本實施例的鐵氧體粒子的實例可為藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層具有10質量%至80質量%的含量(Mn 2)、5質量%至75質量%的含量(Fe 2)以及10質量%至95質量%的含量(Mo 2)的鐵氧體粒子;藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層具有20質量%至70質量%的含量(Mn 2)、7.5質量%至65質量%的含量(Fe 2)以及12.5質量%至90質量%的含量(Mo 2)的鐵氧體粒子;或者藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層具有30質量%至60質量%的含量(Mn 2)、10質量%至60質量%的含量(Fe 2)以及15質量%至87.5質量%的含量(Mo 2)的鐵氧體粒子。 When the spinel structure is represented by MnFe 2 O 4 , an example of the ferrite particles of the present embodiment may be relative to 100 mass % of the ferrite particles determined by performing XPS surface analysis on the ferrite particles. The surface layer has ferrite particles with a content of 10 to 80 mass% (Mn 2 ), a content of 5 to 75 mass% (Fe 2 ), and a content of 10 to 95 mass% (Mo 2 ); The surface layer of the ferrite particles, as determined by performing XPS surface analysis on the ferrite particles, has a content (Mn 2 ) of 20 mass % to 70 mass % and 7.5 mass % to 65 mass % relative to 100 mass % of the ferrite particles. Ferrite particles with a content (Fe 2 ) and a content (Mo 2 ) of 12.5% by mass to 90% by mass; or determined by performing XPS surface analysis on the ferrite particles relative to 100% by mass of the ferrite particles The surface layer has ferrite particles with a content of 30% to 60% by mass (Mn 2 ), a content of 10% to 60% by mass (Fe 2 ), and a content of 15% to 87.5% by mass (Mo 2 ) .

對於XPS分析,可使用掃描X射線光電子光譜分析儀(例如由愛發科(ULVAC Phi, Inc.)製造的誇特拉(QUANTERA)SXM)。For XPS analysis, a scanning X-ray photoelectron spectrometer (such as the QUANTERA SXM manufactured by ULVAC Phi, Inc.) can be used.

含量(Ni 2)是指藉由透過X射線光電子光譜法(XPS)對鐵氧體粒子實行XPS表面分析以獲取相應元素的存在比例(原子%)並確定以氧化物計的鎳含量而被確定為相對於100質量%的鐵氧體粒子的表面層的NiO含量的值。 Content (Ni 2 ) is determined by performing XPS surface analysis on ferrite particles through X-ray photoelectron spectroscopy (XPS) to obtain the presence ratio (atomic %) of the corresponding element and determine the nickel content in terms of oxides It is the value of the NiO content in the surface layer of ferrite particles relative to 100% by mass.

含量(Fe 2)是指藉由透過X射線光電子光譜法(XPS)對鐵氧體粒子實行XPS表面分析以獲取相應元素的存在比例(原子%)並確定以氧化物計的鐵含量而被確定為相對於100質量%的鐵氧體粒子的表面層的Fe 2O 3含量的值。 The content (Fe 2 ) refers to the value determined as the content of Fe 2 O 3 in the surface layer of the ferrite particles relative to 100 mass % by performing XPS surface analysis on the ferrite particles to obtain the existence ratio (atomic %) of the corresponding element and determine the iron content in terms of oxide.

含量(Mo 2)是指藉由透過X射線光電子光譜法(XPS)對鐵氧體粒子實行XPS表面分析以獲取相應元素的存在比例(原子%)並確定以氧化物計的鉬含量而被確定為相對於100質量%的鐵氧體粒子的表面層的MoO 3含量的值。 Content (Mo 2 ) is determined by performing XPS surface analysis on ferrite particles through X-ray photoelectron spectroscopy (XPS) to obtain the presence ratio (atomic %) of the corresponding element and determine the molybdenum content in oxide terms. It is the value of the MoO 3 content in the surface layer of ferrite particles relative to 100% by mass.

含量(Mn 2)是指藉由透過X射線光電子光譜法(XPS)對鐵氧體粒子實行XPS表面分析以獲取相應元素的存在比例(原子%)並確定以氧化物計的錳含量而被確定為相對於100質量%的鐵氧體粒子的表面層的MnO 2含量的值。 The content (Mn 2 ) refers to the value determined as the MnO 2 content of the surface layer of the ferrite particles relative to 100 mass % by performing XPS surface analysis on the ferrite particles to obtain the existence ratio (atomic %) of the corresponding element and determine the manganese content in terms of oxide.

在本實施例的鐵氧體粒子中,鉬較佳為局限於鐵氧體粒子的表面層中。In the ferrite particles of this embodiment, molybdenum is preferably localized in the surface layer of the ferrite particles.

本說明書中的「表面層」是指本實施例的鐵氧體粒子的表面的10奈米內的區。此距離對應於在實例中用於進行量測的XPS偵測深度。The “surface layer” in this specification refers to a region within 10 nanometers on the surface of the ferrite particles in this embodiment. This distance corresponds to the XPS detection depth used for measurements in the example.

「局限於表面層中」是指表面層中每單位體積的鉬或鉬化合物的質量大於表面層以外每單位體積的鉬或鉬化合物的質量的狀態。"Confined to the surface layer" refers to a state in which the mass of molybdenum or molybdenum compounds per unit volume in the surface layer is greater than the mass of molybdenum or molybdenum compounds per unit volume outside the surface layer.

在本實施例的鐵氧體粒子中,鉬局限於鐵氧體粒子的表面層中的事實可藉由以下事實來確定:藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層以MoO 3計的鉬含量(Mo 2)大於藉由對鐵氧體粒子實行X射線螢光(XRF)分析而確定的相對於100質量%的鐵氧體粒子以MoO 3計的鉬含量(Mo 1),如以下所述的實例中所示。 In the ferrite particles of the present embodiment, the fact that molybdenum is localized in the surface layer of the ferrite particles can be confirmed by the fact that the molybdenum content (Mo 2 ) calculated as MoO 3 of the surface layer of the ferrite particles relative to 100 mass % determined by performing XPS surface analysis on the ferrite particles is greater than the molybdenum content (Mo 1 ) calculated as MoO 3 of the ferrite particles relative to 100 mass % determined by performing X-ray fluorescence (XRF) analysis on the ferrite particles, as shown in the examples described below.

在本實施例的鐵氧體粒子中,作為鉬局限於鐵氧體粒子的表面層中的標誌,本實施例的鐵氧體粒子具有鉬表面層局限化比率(Mo 2/Mo 1),所述鉬表面層局限化比率較佳為1.0至80,更佳為3.0至60,且甚至更佳為5.0至50,所述鉬表面層局限化比率是藉由對鐵氧體粒子實行XPS表面分析而確定的相對於100質量%的鐵氧體粒子的表面層以MoO 3計的含量(Mo 2)對相對於100質量%的鐵氧體粒子以MoO 3計的含量(Mo 1)的比率。 In the ferrite particles of the present embodiment, as a sign that molybdenum is localized in the surface layer of the ferrite particles, the ferrite particles of the present embodiment have a molybdenum surface layer localization ratio (Mo 2 /Mo 1 ), which is a ratio of the content (Mo 2 ) calculated as MoO 3 of the surface layer of the ferrite particles relative to 100 mass % to the content (Mo 1 ) calculated as MoO 3 of the ferrite particles relative to 100 mass % determined by performing XPS surface analysis on the ferrite particles, preferably 1.0 to 80, more preferably 3.0 to 60, and even more preferably 5.0 to 50 .

藉由將鉬或鉬化合物局限於鐵氧體粒子的表面層中,相較於使鉬或鉬化合物不僅均勻地存在於表面層中,且亦均勻地存在於表面層以外(內層)中的情形而言,可更高效地賦予優異性質(例如,催化活性)。By confining molybdenum or a molybdenum compound in the surface layer of ferrite particles, superior properties (for example, catalytic activity) can be imparted more efficiently than when molybdenum or a molybdenum compound is uniformly present not only in the surface layer but also in the outer layer (inner layer).

本實施例的鐵氧體粒子可作為鐵氧體粒子的聚集體提供,且對於以上所述的鎳含量、鐵含量及鉬含量的值而言,例如可採用以聚集體作為樣品確定的值。相似地,對於以上所述的鎳含量、鐵含量、鋅含量及鉬含量的值,可採用以聚集體作為樣品確定的值。此外,對於以上所述的錳含量、鐵含量及鉬含量的值,可採用以聚集體作為樣品確定的值。The ferrite particles of this embodiment can be provided as aggregates of ferrite particles, and for the above-mentioned values of nickel content, iron content, and molybdenum content, for example, values determined using aggregates as samples can be used. Similarly, for the values of nickel content, iron content, zinc content and molybdenum content mentioned above, the values determined using aggregates as samples can be used. In addition, for the values of manganese content, iron content and molybdenum content described above, values determined using aggregates as samples can be used.

除鉬以外,本實施例的鐵氧體粒子可更含有鋰、鉀或鈉。In addition to molybdenum, the ferrite particles of this embodiment may further contain lithium, potassium or sodium.

<用於製成鐵氧體粒子的方法> 本實施例的用於製成鐵氧體粒子的方法包括在存在鉬化合物的條件下燒製金屬化合物及鐵化合物。更具體而言,本實施例的製成方法是用於製成鐵氧體粒子的方法,且可包括將金屬化合物、鐵化合物與鉬化合物混合於一起以製作混合物並燒製所述混合物。 <Method for producing ferrite particles> The method for producing ferrite particles in this embodiment includes firing a metal compound and an iron compound in the presence of a molybdenum compound. More specifically, the manufacturing method of this embodiment is a method for manufacturing ferrite particles, and may include mixing a metal compound, an iron compound, and a molybdenum compound together to prepare a mixture and firing the mixture.

相較於不使用鉬化合物的情形而言,藉由在存在鉬化合物的條件下燒製金屬化合物及鐵化合物,可改善鐵氧體粒子的形成反應效率。因此,可高效地製成雜質含量減少的高品質的鐵氧體粒子,且此外可易於製成黏聚程度低的鐵氧體粒子。Compared with the case where the molybdenum compound is not used, by firing the metal compound and the iron compound in the presence of the molybdenum compound, the formation reaction efficiency of the ferrite particles can be improved. Therefore, high-quality ferrite particles with reduced impurity content can be efficiently produced, and in addition, ferrite particles with a low degree of cohesion can be easily produced.

作為金屬化合物,可使用含有選自Ni、Mn、Cu、Zn、Mg、Ca及Co的任何元素的金屬化合物。所述金屬化合物的實例包括鎳化合物、錳化合物、銅化合物、鋅化合物、鎂化合物、鈣化合物及鈷化合物。As the metal compound, there can be used a metal compound containing any element selected from Ni, Mn, Cu, Zn, Mg, Ca, and Co. Examples of the metal compound include nickel compounds, manganese compounds, copper compounds, zinc compounds, magnesium compounds, calcium compounds, and cobalt compounds.

藉由在存在鉬化合物的條件下燒製金屬化合物及鐵化合物以及進一步添加的鋅化合物,會添加特定比例的順磁性物質,進而使A位點的磁性能夠適度降低並使自A-B位點相互作用得到的磁性增加。By calcining metal compounds and iron compounds in the presence of molybdenum compounds and further adding zinc compounds, a specific proportion of paramagnetic substances is added, thereby appropriately reducing the magnetic properties of the A site and increasing the magnetism obtained from the A-B site interaction.

使用含有鉬及鎳的化合物(例如,鉬酸鎳)的情形亦被認為是使用鉬化合物及鎳化合物的情形。The case of using a compound containing molybdenum and nickel (for example, nickel molybdate) is also considered as the case of using a molybdenum compound and a nickel compound.

本實施例的用於製成鐵氧體粒子的方法可易於製成以上所述實施例的鐵氧體粒子。The method for producing ferrite particles of this embodiment can easily produce the ferrite particles of the above-mentioned embodiments.

用於製成鐵氧體粒子的較佳方法包括:將含有選自Ni、Mn、Cu、Zn、Mg、Ca及Co的任何元素的金屬化合物、鐵化合物與鉬化合物混合於一起以製作混合物的步驟(混合步驟);以及燒製所述混合物的步驟(燒製步驟)。以下以使用鎳化合物作為金屬化合物的實例的情形為例進行闡述。A preferred method for producing ferrite particles includes: a step of mixing a metal compound containing any element selected from Ni, Mn, Cu, Zn, Mg, Ca and Co, an iron compound and a molybdenum compound to produce a mixture (mixing step); and a step of firing the mixture (firing step). The following is an example of using a nickel compound as an example of a metal compound.

[混合步驟] 混合步驟是將鎳化合物、鐵化合物與鉬化合物混合於一起以製作混合物的步驟。以下對混合物的含量進行闡述。 [Mixing step] The mixing step is a step of mixing the nickel compound, the iron compound and the molybdenum compound together to prepare a mixture. The content of the mixture is described below.

(鎳化合物) 鎳化合物的類型並非僅限於特定類型。鎳化合物的實例包括氫氧化鎳、氧化鎳、碳酸鎳、鉬酸鎳、氯化鎳、硝酸鎳、硫酸鎳及乙酸鎳。較佳為氧化鎳、氫氧化鎳或碳酸鎳,且自反應性的角度及不產生有毒氣體的角度來看,更佳為氧化鎳或氫氧化鎳。 (nickel compound) The type of nickel compound is not limited to a specific type. Examples of nickel compounds include nickel hydroxide, nickel oxide, nickel carbonate, nickel molybdate, nickel chloride, nickel nitrate, nickel sulfate, and nickel acetate. Nickel oxide, nickel hydroxide or nickel carbonate is preferable, and from the viewpoint of reactivity and no toxic gas generation, nickel oxide or nickel hydroxide is more preferable.

燒製後的鐵氧體粒子的形狀幾乎不反映原材料鎳化合物的形狀,且因此作為鎳化合物,亦可合適地使用球形鎳化合物、無定形鎳化合物、具有高縱橫比的結構(線、纖維、帶、管等)、片材等。The shape of the ferrite particles after firing hardly reflects the shape of the raw material nickel compound, and therefore, as the nickel compound, spherical nickel compounds, amorphous nickel compounds, structures with a high aspect ratio (wires, fibers, ribbons, tubes, etc.), sheets, etc. can also be suitably used.

(鐵化合物) 鐵化合物的類型並非僅限於特定類型且可使用任何已知的類型。該些類型的具體實例包括氧化鐵(II)(FeO)或所謂的方鐵礦(wüstite)、黑色氧化鐵(II、III)(Fe 3O 4)、以及紅色或棕色的氧化鐵(III)(Fe 2O 3)。氧化鐵(III)的實例包括α-Fe 2O 3、β-Fe 2O 3、γ-Fe 2O 3及ε-Fe 2O 3。羥基氧化鐵的實例包括α-羥基氧化鐵、β-羥基氧化鐵、γ-羥基氧化鐵及δ-羥基氧化鐵。氫氧化鐵的實例包括氫氧化鐵(II)(Fe(OH) 2)及氫氧化鐵(III)(Fe(OH) 3)。作為氧化鐵,較佳為氧化鐵(III)(Fe 2O 3)。 (Iron compound) The type of iron compound is not limited to a specific type and any known type can be used. Specific examples of the types include iron (II) oxide (FeO) or so-called wüstite, black iron (II, III) oxide (Fe 3 O 4 ), and red or brown iron (III) oxide (Fe 2 O 3 ). Examples of iron (III) oxide include α-Fe 2 O 3 , β-Fe 2 O 3 , γ-Fe 2 O 3 , and ε-Fe 2 O 3 . Examples of hydroxy iron oxide include α-hydroxy iron oxide, β-hydroxy iron oxide, γ-hydroxy iron oxide, and δ-hydroxy iron oxide. Examples of iron hydroxide include iron (II) hydroxide (Fe(OH) 2 ) and iron (III) hydroxide (Fe(OH) 3 ). As the iron oxide, iron (III) oxide (Fe 2 O 3 ) is preferred.

鐵化合物的形狀並非僅限於特定形狀,且例如可合適地使用球形形狀、棒狀形狀或板狀形狀。The shape of the iron compound is not limited to a specific shape, and for example, a spherical shape, a rod shape, or a plate shape can be suitably used.

(鉬化合物) 鉬化合物的實例包括鉬氧化物、鉬酸、硫化鉬、矽化鉬及鉬酸鹽化合物,且較佳為鉬氧化物或鉬酸鹽化合物。 (Molybdenum compound) Examples of the molybdenum compound include molybdenum oxide, molybdenum acid, molybdenum sulfide, molybdenum silicide and molybdenum oxide compounds, and preferably molybdenum oxide or molybdenum oxide compounds.

鉬氧化物的實例包括二氧化鉬(MoO 2)及三氧化鉬(MoO 3),且較佳為三氧化鉬。 Examples of molybdenum oxides include molybdenum dioxide (MoO 2 ) and molybdenum trioxide (MoO 3 ), and molybdenum trioxide is preferred.

鉬酸鹽化合物不受限制,只要鉬酸鹽化合物為鉬氧陰離子(例如,MoO 4 2-、Mo 2O 7 2-、Mo 3O 10 2-、Mo 4O 13 2-、Mo 5O 16 2-、Mo 6O 19 2-、Mo 7O 24 6-或Mo 8O 26 4-)的鹽化合物即可。鉬酸鹽化合物可為鉬氧陰離子的鹼金屬鹽、鹼土金屬鹽或銨鹽。 The molybdate compound is not limited as long as the molybdate compound is a molybdate anion (for example, MoO 4 2- , Mo 2 O 7 2- , Mo 3 O 10 2- , Mo 4 O 13 2- , Mo 5 O 16 2- , Mo 6 O 19 2- , Mo 7 O 24 6- or Mo 8 O 26 4- ) salt compounds may be used. The molybdate compound may be an alkali metal salt, an alkaline earth metal salt, or an ammonium salt of the molybdenum oxyanion.

鉬酸鹽化合物較佳為鉬氧陰離子的鹼金屬鹽,更佳為鉬酸鋰、鉬酸鉀或鉬酸鈉,甚至更佳為鉬酸鉀或鉬酸鈉,且特佳為鉬酸鈉。The molybdate compound is preferably an alkali metal salt of a molybdenum oxide anion, more preferably lithium molybdate, potassium molybdate or sodium molybdate, even more preferably potassium molybdate or sodium molybdate, and particularly preferably sodium molybdate.

在本實施例的用於製成鐵氧體粒子的方法中,鉬酸鹽化合物可為水合物。In the method for producing ferrite particles of this embodiment, the molybdate compound may be a hydrate.

鉬化合物較佳為選自由三氧化鉬、鉬酸鋰、鉬酸鉀及鉬酸鈉組成的群組的至少一種化合物,更佳為選自由三氧化鉬、鉬酸鉀及鉬酸鈉組成的群組的至少一種化合物,且甚至更佳為三氧化鉬及/或鉬酸鈉。The molybdenum compound is preferably at least one compound selected from the group consisting of molybdenum trioxide, lithium molybdate, potassium molybdate, and sodium molybdate, and more preferably is selected from the group consisting of molybdenum trioxide, potassium molybdate, and sodium molybdate. At least one compound of the group, and even better is molybdenum trioxide and/or sodium molybdate.

(鋅化合物) 在混合步驟中,將鎳化合物、鐵化合物與鉬化合物混合於一起,且可進一步添加鋅化合物以製作混合物。 鋅化合物的類型並非僅限於特定類型。鋅化合物的實例包括氫氧化鋅、氧化鋅、碳酸鋅、鉬酸鋅、乙酸鋅、氯化鋅、硝酸鋅及硫酸鋅,且自反應性的角度及不產生有毒氣體的角度來看,較佳為氫氧化鋅或氧化鋅。 (zinc compound) In the mixing step, the nickel compound, the iron compound and the molybdenum compound are mixed together, and a zinc compound may be further added to make a mixture. The types of zinc compounds are not limited to specific types. Examples of zinc compounds include zinc hydroxide, zinc oxide, zinc carbonate, zinc molybdate, zinc acetate, zinc chloride, zinc nitrate and zinc sulfate, and are preferred from the viewpoint of self-reactivity and the viewpoint of not generating toxic gases. It is zinc hydroxide or zinc oxide.

(錳化合物) 在混合步驟中,可使用錳化合物來替代鎳化合物,且可將錳化合物、鐵化合物與鉬化合物混合於一起以形成混合物。 錳化合物的類型並非僅限於特定類型。錳化合物的實例包括碳酸錳、氧化錳、乙酸錳、氯化錳、硝酸錳、硫酸錳及其水合物,且自反應性的角度及不產生有毒氣體的角度來看,較佳為碳酸錳或氧化錳。 (manganese compound) In the mixing step, a manganese compound may be used instead of the nickel compound, and the manganese compound, the iron compound, and the molybdenum compound may be mixed together to form a mixture. The type of manganese compound is not limited to a specific type. Examples of manganese compounds include manganese carbonate, manganese oxide, manganese acetate, manganese chloride, manganese nitrate, manganese sulfate and hydrates thereof, and from the perspective of reactivity and the absence of toxic gas generation, manganese carbonate or manganese carbonate is preferred. Manganese oxide.

本實施例的用於製成鐵氧體粒子的方法可包括在存在鉬化合物及鈉化合物及/或鉀化合物的條件下燒製鎳化合物及鐵化合物的步驟。The method for producing ferrite particles in this embodiment may include the step of firing a nickel compound and an iron compound in the presence of a molybdenum compound, a sodium compound and/or a potassium compound.

本實施例的用於製成鐵氧體粒子的方法可包括在燒製步驟之前將鎳化合物、鐵化合物、鉬化合物與鈉化合物及/或鉀化合物混合於一起以製作混合物的步驟(混合步驟),且可包括燒製所述混合物的步驟(燒製步驟)。The method for producing ferrite particles in this embodiment may include a step of mixing a nickel compound, an iron compound, a molybdenum compound and a sodium compound and/or a potassium compound together to prepare a mixture before the firing step (mixing step) , and may include a step of firing the mixture (firing step).

在本實施例的製成方法中,藉由使用鈉化合物及/或鉀化合物,會易於調節欲製成的鐵氧體粒子的粒子大小且可製成黏聚程度低或無黏聚的鐵氧體粒子。In the manufacturing method of this embodiment, by using a sodium compound and/or a potassium compound, the particle size of the ferrite particles to be manufactured can be easily adjusted and ferrite particles with low or no agglomeration can be manufactured.

亦可使用含有鉬及鈉的化合物(例如,鉬酸鈉)來替代鉬化合物及鈉化合物的至少部分。相似地,亦可使用含有鉬及鉀的化合物(例如,鉬酸鉀)來替代鉬化合物及鉀化合物的至少部分。 因此,將鎳化合物、鐵化合物與含有鉬及鉀及/或鈉的化合物混合於一起以製作混合物的步驟亦被視為將鎳化合物、鐵化合物、鉬化合物、鉀化合物及/或鈉化合物混合於一起以製作混合物的步驟。 A compound containing molybdenum and sodium (e.g., sodium molybdate) may be used to replace at least part of the molybdenum compound and the sodium compound. Similarly, a compound containing molybdenum and potassium (e.g., potassium molybdate) may be used to replace at least part of the molybdenum compound and the potassium compound. Therefore, the step of mixing a nickel compound, an iron compound, and a compound containing molybdenum, potassium, and/or sodium together to prepare a mixture is also regarded as the step of mixing a nickel compound, an iron compound, a molybdenum compound, a potassium compound, and/or a sodium compound together to prepare a mixture.

在燒製過程中可例如使用價格較低且更易於得到的鉬化合物及鈉化合物作為原材料來製成適合作為助熔劑的含有鉬及鈉的化合物。在此實例中,使用鉬化合物及鈉化合物作為助熔劑的情形及使用含有鉬及鈉的化合物作為助熔劑的情形二者共同被視為使用鉬化合物及鈉化合物作為助熔劑,即存在鉬化合物及鈉化合物的情形。During the firing process, for example, molybdenum compounds and sodium compounds that are less expensive and more readily available can be used as raw materials to produce compounds containing molybdenum and sodium that are suitable as fluxes. In this example, the use of molybdenum compounds and sodium compounds as fluxes and the use of compounds containing molybdenum and sodium as fluxes are both collectively regarded as the use of molybdenum compounds and sodium compounds as fluxes, that is, there are molybdenum compounds and Sodium compounds.

在燒製過程中可例如使用價格較低且更易於得到的鉬化合物及鉀化合物作為原材料來製成適合作為助熔劑的含有鉬及鉀的化合物。在此實例中,使用鉬化合物及鉀化合物作為助熔劑的情形及使用含有鉬及鉀的化合物作為助熔劑的情形二者共同被視為使用鉬化合物及鉀化合物作為助熔劑,即存在鉬化合物及鉀化合物的情形。During the firing process, for example, molybdenum compounds and potassium compounds that are less expensive and more readily available can be used as raw materials to produce compounds containing molybdenum and potassium that are suitable as fluxes. In this example, the use of molybdenum compounds and potassium compounds as fluxes and the use of compounds containing molybdenum and potassium as fluxes are both collectively regarded as the use of molybdenum compounds and potassium compounds as fluxes, that is, there are molybdenum compounds and Potassium compounds.

可單獨使用以上所述的鉬化合物或者組合使用以上所述的鉬化合物中的二或更多者。The above-mentioned molybdenum compounds may be used alone or in combination of two or more.

鉬酸鈉(Na 2Mo nO 3n+1,n = 1至3)含有鈉且亦可具有作為以下所述的鈉化合物的功能。 Sodium molybdate (Na 2 Mo n O 3n+1 , n = 1 to 3) contains sodium and can also function as a sodium compound as described below.

鉬酸鉀(K 2Mo nO 3n+1,n = 1至3)含有鉀且亦可具有作為以下所述的鉀化合物的功能。 Potassium molybdate (K 2 Mo n O 3n+1 , n = 1 to 3) contains potassium and can also function as a potassium compound described below.

(鈉化合物) 鈉化合物並非僅限於特定化合物。鈉化合物的實例包括碳酸鈉、鉬酸鈉、氧化鈉、硫酸鈉、氫氧化鈉、硝酸鈉、氯化鈉及金屬性鈉。在該些鈉化合物之中,自工業可用性及處置容易度的角度來看,較佳為使用碳酸鈉、鉬酸鈉、氧化鈉及硫酸鈉。 (Sodium compound) The sodium compound is not limited to a specific compound. Examples of the sodium compound include sodium carbonate, sodium molybdate, sodium oxide, sodium sulfate, sodium hydroxide, sodium nitrate, sodium chloride, and metallic sodium. Among these sodium compounds, sodium carbonate, sodium molybdate, sodium oxide, and sodium sulfate are preferably used from the viewpoint of industrial availability and ease of disposal.

可單獨使用以上所述的鈉化合物或者組合使用以上所述的鈉化合物中的二或更多者。The sodium compounds described above may be used alone or in combination of two or more.

在與以上相同的方式中,鉬酸鈉含有鉬且因此亦可具有作為如上所述的鉬化合物的功能。In the same manner as above, sodium molybdate contains molybdenum and thus can also function as a molybdenum compound as described above.

(鉀化合物) 鉀化合物並非僅限於特定化合物。鉀化合物的實例包括氯化鉀、亞氯酸鉀、氯酸鉀、硫酸鉀、硫酸氫鉀、亞硫酸鉀、亞硫酸氫鉀、硝酸鉀、碳酸鉀、碳酸氫鉀、乙酸鉀、氧化鉀、溴化鉀、溴酸鉀、氫氧化鉀、矽酸鉀、磷酸鉀、磷酸氫鉀、硫化鉀、硫化氫鉀、鉬酸鉀及鎢酸鉀。在此種情形中,鉀化合物包括與鉬化合物的情形一樣的異構物。在該些鉀化合物之中,較佳為使用碳酸鉀、碳酸氫鉀、氧化鉀、氫氧化鉀、氯化鉀、硫酸鉀及鉬酸鉀,且更佳為使用碳酸鉀、碳酸氫鉀、氯化鉀、硫酸鉀及鉬酸鉀。 (Potassium compound) Potassium compounds are not limited to specific compounds. Examples of potassium compounds include potassium chloride, potassium chlorite, potassium chlorate, potassium sulfate, potassium hydrogen sulfate, potassium sulfite, potassium hydrogen sulfite, potassium nitrate, potassium carbonate, potassium hydrogen carbonate, potassium acetate, potassium oxide, potassium bromide, potassium bromate, potassium hydroxide, potassium silicate, potassium phosphate, potassium hydrogen phosphate, potassium sulfide, potassium hydrogen sulfide, potassium molybdate, and potassium tungstate. In this case, the potassium compound includes isomers as in the case of the molybdenum compound. Among these potassium compounds, potassium carbonate, potassium bicarbonate, potassium oxide, potassium hydroxide, potassium chloride, potassium sulfate and potassium molybdate are preferably used, and potassium carbonate, potassium bicarbonate, potassium chloride, potassium sulfate and potassium molybdate are more preferably used.

可單獨使用以上所述的鉀化合物或者組合使用以上所述的鉀化合物中的二或更多者。The potassium compounds described above may be used alone or in combination of two or more.

在與以上相同的方式中,鉬酸鉀含有鉬且因此亦可具有作為以上所述的鉬化合物的功能。In the same manner as above, potassium molybdate contains molybdenum and thus can also function as the molybdenum compound described above.

當鐵氧體粒子中的尖晶石結構由NiFe 2O 4表示時,在本實施例的用於製成鐵氧體粒子的方法中,原材料的較佳組合的實例包括使用氧化鎳、氧化鐵(III)及三氧化鉬。 相似地,在本實施例的用於製成鐵氧體粒子的方法中,原材料的較佳組合的實例包括使用氧化鎳、氧化鐵(III)以及鉬酸鈉或其水合物。 相似地,在本實施例的用於製成鐵氧體粒子的方法中,原材料的較佳組合的實例包括使用氧化鎳、氧化鐵(III)、三氧化鉬以及鉬酸鈉或其水合物。 相似地,在本實施例的用於製成鐵氧體粒子的方法中,原材料的較佳組合的實例包括使用氧化鎳、氧化鐵(III)、氧化鋅、三氧化鉬以及鉬酸鈉或其水合物。 When the spinel structure in the ferrite particles is represented by NiFe 2 O 4 , in the method for making the ferrite particles of the present embodiment, examples of preferred combinations of raw materials include using nickel oxide, iron oxide (III) and molybdenum trioxide. Similarly, in the method for making ferrite particles of the present embodiment, examples of preferable combinations of raw materials include using nickel oxide, iron (III) oxide, and sodium molybdate or its hydrate. Similarly, in the method for making ferrite particles of the present embodiment, examples of preferred combinations of raw materials include using nickel oxide, iron (III) oxide, molybdenum trioxide, and sodium molybdate or its hydrate. Similarly, in the method for making ferrite particles of the present embodiment, examples of preferred combinations of raw materials include using nickel oxide, iron (III) oxide, zinc oxide, molybdenum trioxide, and sodium molybdate or their Hydrate.

另外,當鐵氧體粒子中的尖晶石結構由MnFe 2O 4表示時,在本實施例的用於製成鐵氧體粒子的方法中,原材料的較佳組合的實例包括使用碳酸錳或其水合物、羥基氧化鐵以及鉬酸鈉或其水合物。 In addition, when the spinel structure in the ferrite particles is represented by MnFe 2 O 4 , in the method for making the ferrite particles of the present embodiment, examples of preferred combinations of raw materials include using manganese carbonate or Its hydrate, iron oxyhydroxide and sodium molybdate or its hydrate.

藉由在存在鉬化合物及鈉化合物的條件下或在存在鉬化合物及鉀化合物的條件下燒製鎳化合物及鐵化合物,易於對欲製成的鐵氧體粒子的粒子大小進行調節,且可製成黏聚程度低或無黏聚的鐵氧體粒子。儘管對於此情況的原因尚不清楚,但可設想出以下原因。舉例而言,K 2MoO 4及Na 2MoO 4是穩定的化合物且難以藉由燒製步驟而揮發,且因此K 2MoO 4及Na 2MoO 4不太可能在揮發步驟期間參與快速反應,使得更易於對鐵氧體粒子的生長進行控制。亦認為熔化的K 2MoO 4及Na 2MoO 4展現出與溶劑的功能相似的功能且例如可藉由增加反應時間來增大粒子大小的值。亦認為熔化的K 2MoO 4及Na 2MoO 4展現出與溶劑的功能相似的功能,且因此鐵氧體粒子會分散,進而使得難以發生黏聚。 By firing the nickel compound and the iron compound in the presence of the molybdenum compound and the sodium compound or in the presence of the molybdenum compound and the potassium compound, the particle size of the ferrite particles to be produced can be easily adjusted, and ferrite particles with low or no agglomeration can be produced. Although the reason for this is not clear, the following reasons can be conceived. For example, K 2 MoO 4 and Na 2 MoO 4 are stable compounds and are difficult to volatilize by the firing step, and therefore K 2 MoO 4 and Na 2 MoO 4 are less likely to participate in a rapid reaction during the volatilization step, making it easier to control the growth of ferrite particles. It is also believed that the molten K 2 MoO 4 and Na 2 MoO 4 exhibit functions similar to those of a solvent and that the value of the particle size can be increased, for example, by increasing the reaction time. It is also believed that the molten K 2 MoO 4 and Na 2 MoO 4 exhibit functions similar to those of a solvent and that therefore the ferrite particles are dispersed, making it difficult to agglomerate.

在本實施例的用於製成鐵氧體粒子的方法中,使用鉬化合物作為助熔劑。在本說明書中,使用鉬化合物作為助熔劑的此種製成方法可在下文中被簡稱為「助熔劑方法」。認為在鎳化合物、鐵化合物與鉬化合物藉由此種燒製而在高溫下彼此反應以形成鉬酸鐵及鉬酸鎳之後,當鉬酸鐵及鉬酸鎳在更高溫度下進一步分解成鎳-鐵複合氧化物及鉬氧化物時,鉬化合物併入至鐵氧體粒子中。認為鉬氧化物昇華而被自系統移除,且在此過程中,鉬化合物與鎳-鐵複合氧化物相互反應以在鐵氧體粒子的表面層中形成鉬化合物。 關於鐵氧體粒子中所含有的鉬化合物的形成機制,更具體而言,認為藉由鉬與鎳原子及鐵原子進行反應來形成Mo-O-Ni及Mo-O-Fe發生於鐵氧體粒子的表面層中,藉由實行高溫燒製而使Mo解吸附,且具有Mo-O-Ni-O-Fe鍵的鉬氧化物或鉬化合物等形成於鐵氧體粒子的表面層中。 In the method for producing ferrite particles of the present embodiment, a molybdenum compound is used as a flux. In this specification, such a production method using a molybdenum compound as a flux may be referred to as a "flux method" hereinafter. It is believed that after the nickel compound, the iron compound, and the molybdenum compound react with each other at a high temperature to form iron molybdate and nickel molybdate by such firing, when the iron molybdate and the nickel molybdate are further decomposed into nickel-iron composite oxide and molybdenum oxide at a higher temperature, the molybdenum compound is incorporated into the ferrite particles. It is believed that the molybdenum oxide is sublimated and removed from the system, and in this process, the molybdenum compound and the nickel-iron composite oxide react with each other to form a molybdenum compound in the surface layer of the ferrite particles. More specifically, regarding the formation mechanism of the molybdenum compound contained in the ferrite particles, it is believed that the formation of Mo-O-Ni and Mo-O-Fe occurs in the surface layer of the ferrite particles by the reaction of molybdenum with nickel atoms and iron atoms, and Mo is desorbed by high-temperature sintering, and molybdenum oxides or molybdenum compounds having Mo-O-Ni-O-Fe bonds are formed in the surface layer of the ferrite particles.

未併入至鐵氧體粒子中的鉬氧化物可藉由使鉬氧化物昇華而被回收並重新使用。藉由此種方式,可減少黏附至鐵氧體粒子的表面的鉬氧化物的量,且可最大程度地賦予鐵氧體粒子的原始性質。Molybdenum oxide that is not incorporated into the ferrite particles can be recovered and reused by sublimating the molybdenum oxide. In this way, the amount of molybdenum oxide adhering to the surface of the ferrite particles can be reduced, and the original properties of the ferrite particles can be given to the greatest extent.

另一方面,鉬氧陰離子的鹼金屬鹽即使在燒製溫度範圍內亦不會蒸發且可在燒製之後易於藉由洗滌而被回收,因此會減少釋放至燒製爐外的鉬化合物的量並顯著地降低製成成本。On the other hand, alkali metal salts of molybdenum oxyanions do not evaporate even within the firing temperature range and can be easily recovered by washing after firing, thereby reducing the amount of molybdenum compounds released outside the firing furnace. And significantly reduce manufacturing costs.

在助熔劑方法中,認為例如當組合使用鉬化合物與鈉化合物時,鉬化合物與鈉化合物首先彼此反應以形成鉬酸鈉。認為與此同時,鉬化合物與鐵化合物發生反應以形成鉬酸鐵。認為例如鉬酸鎳及鉬酸鐵在存在液態鉬酸鈉的條件下分解以使晶體生長,進而可易於獲得黏聚程度低或無黏聚的鐵氧體粒子,同時對以上所述的助熔劑的蒸發(MoO 3的昇華)進行控制。 In the flux method, it is believed that, for example, when a molybdenum compound and a sodium compound are used in combination, the molybdenum compound and the sodium compound first react with each other to form sodium molybdate. It is believed that at the same time, the molybdenum compound and the iron compound react to form iron molybdate. It is believed that, for example, nickel molybdate and iron molybdate decompose in the presence of liquid sodium molybdate to grow crystals, and thus ferrite particles with low or no cohesion can be easily obtained, while the evaporation of the flux (sublimation of MoO 3 ) described above is controlled.

(其他的金屬化合物) 若期望,則在燒製期間可使用其他的金屬化合物。本實施例的用於製成鐵氧體粒子的方法可包括在燒製步驟之前將鎳化合物、鐵化合物、鉬化合物、鈉化合物及/或鉀化合物與其他的金屬化合物混合於一起以製作混合物的步驟(混合步驟),且可包括燒製所述混合物的步驟(燒製步驟)。 (Other metal compounds) If desired, other metal compounds can be used during firing. The method for making ferrite particles in this embodiment may include mixing nickel compounds, iron compounds, molybdenum compounds, sodium compounds and/or potassium compounds with other metal compounds before the firing step to make a mixture. step (mixing step), and may include a step of firing the mixture (firing step).

其他的金屬化合物並非僅限於特定金屬化合物,較佳為含有選自由第II族金屬化合物及第III族金屬化合物組成的群組中的至少一者。The other metal compound is not limited to a specific metal compound, but preferably contains at least one selected from the group consisting of a Group II metal compound and a Group III metal compound.

第II族金屬化合物的實例包括鈣化合物、鍶化合物及鋇化合物。Examples of Group II metal compounds include calcium compounds, strontium compounds, and barium compounds.

第III族金屬化合物的實例包括鈧化合物、釔化合物、鑭化合物及鈰化合物。Examples of Group III metal compounds include scandium compounds, yttrium compounds, lanthanum compounds, and cerium compounds.

以上所述的其他的金屬化合物意指金屬元素的氧化物、氫氧化物、碳酸鹽及氯化物。釔化合物的實例包括氧化釔(Y 2O 3)、氫氧化釔及碳酸釔。在該些釔化合物之中,金屬化合物較佳為金屬元素的氧化物。注意,該些金屬化合物亦包括其異構物。 The other metal compounds mentioned above refer to oxides, hydroxides, carbonates and chlorides of metal elements. Examples of yttrium compounds include yttrium oxide (Y 2 O 3 ), yttrium hydroxide and yttrium carbonate. Among these yttrium compounds, the metal compound is preferably an oxide of a metal element. Note that these metal compounds also include isomers thereof.

在該些其他的金屬化合物之中,所述其他的金屬化合物較佳為第三週期元素的金屬化合物、第四週期元素的金屬化合物、第五週期元素的金屬化合物或第六週期元素的金屬化合物,更佳為第四週期元素的金屬化合物或第五週期元素的金屬化合物,且甚至更佳為第五週期元素的金屬化合物。具體而言,較佳為使用鈣化合物、釔化合物及鑭化合物,更佳為使用鈣化合物及釔化合物,且特佳為使用釔化合物。Among the other metal compounds, the other metal compounds are preferably metal compounds of elements of the third period, metal compounds of elements of the fourth period, metal compounds of elements of the fifth period or metal compounds of elements of the sixth period. , more preferably a metal compound of a fourth period element or a fifth period element, and even more preferably a metal compound of a fifth period element. Specifically, it is preferable to use a calcium compound, an yttrium compound and a lanthanum compound, more preferably to use a calcium compound and an yttrium compound, and particularly preferably to use an yttrium compound.

舉例而言,相對於在混合步驟中使用的金屬化合物的總量,較佳為以0質量%至1.2質量%(例如,0莫耳%至1莫耳%)的比例使用所述其他的金屬化合物。For example, the other metal is preferably used in a proportion of 0 to 1.2 mass % (for example, 0 to 1 mol %) relative to the total amount of the metal compound used in the mixing step. compound.

在本實施例的用於製成鐵氧體粒子的方法中,所使用的鎳化合物、鐵化合物與鉬化合物的混合量並非僅限於特定混合量。舉例而言,在原材料中或在混合物中,鎳化合物與鐵化合物的總質量對鉬化合物的質量的比率可為0.1至40、0.2至20或者0.4至10。In the method for producing ferrite particles of the present embodiment, the mixing amounts of the nickel compound, iron compound and molybdenum compound used are not limited to specific mixing amounts. For example, the ratio of the total mass of the nickel compound and the iron compound to the mass of the molybdenum compound in the raw material or in the mixture may be 0.1 to 40, 0.2 to 20 or 0.4 to 10.

在本實施例的用於製成鐵氧體粒子的方法中,當進一步混合鋅化合物時,所使用的鎳化合物、鐵化合物、鋅化合物及鉬化合物的混合量並非僅限於特定混合量。舉例而言,在原材料中或在混合物中,鎳化合物、鐵化合物與鋅化合物的總質量對鉬化合物的質量的比率可為0.1至40、0.2至20或者0.4至10。In the method for producing ferrite particles of the present embodiment, when the zinc compound is further mixed, the mixing amounts of the nickel compound, iron compound, zinc compound and molybdenum compound used are not limited to specific mixing amounts. For example, the ratio of the total mass of the nickel compound, iron compound and zinc compound to the mass of the molybdenum compound in the raw material or in the mixture may be 0.1 to 40, 0.2 to 20 or 0.4 to 10.

在本實施例的用於製成鐵氧體粒子的方法中,所使用的錳化合物、鐵化合物及鉬化合物的混合量並非僅限於特定混合量。舉例而言,在原材料中或在混合物中,錳化合物與鐵化合物的總質量對鉬化合物的質量的比率可為0.1至40、0.2至20或者0.4至10。In the method for producing ferrite particles in this embodiment, the mixing amounts of the manganese compound, iron compound and molybdenum compound used are not limited to specific mixing amounts. For example, the ratio of the total mass of the manganese compound and the iron compound to the mass of the molybdenum compound in the raw material or in the mixture may be 0.1 to 40, 0.2 to 20, or 0.4 to 10.

在本實施例的用於製成鐵氧體粒子的方法中,在原材料中或在混合物中的鎳對鐵的莫耳比(Ni/Fe)例如可為0.2至0.6或者0.25至0.5。In the method for producing ferrite particles of the present embodiment, the molar ratio of nickel to iron (Ni/Fe) in the raw material or in the mixture may be, for example, 0.2 to 0.6 or 0.25 to 0.5.

[燒製步驟] 燒製步驟是燒製混合物的步驟。如上所述,本實施例的製成方法包括在存在鉬化合物的條件下燒製鎳化合物及鐵化合物。作為另外一種選擇,當在混合步驟中獲得含有鋅化合物的混合物時,可包括在存在鉬化合物的條件下燒製鎳化合物及鐵化合物以及進一步添加的鋅化合物。 當在混合步驟中獲得含有鎳化合物、錳化合物、銅化合物及/或鈷化合物的混合物時,可包括在存在鉬化合物的條件下燒製鎳化合物、錳化合物、鐵化合物、銅化合物及/或鈷化合物。 在混合步驟中,可使用錳化合物來替代鎳化合物。當獲得含有錳化合物及銅化合物及/或鈷化合物的混合物時,可包括在存在鉬化合物的條件下燒製錳化合物、鐵化合物及銅化合物及/或鈷化合物。 藉由燒製所述混合物來獲得根據本實施例的鐵氧體粒子。如上所述,此種製成方法被稱為助熔劑方法。 [Firing steps] The firing step is the step of firing the mixture. As mentioned above, the manufacturing method of this embodiment includes firing the nickel compound and the iron compound in the presence of the molybdenum compound. Alternatively, when the mixture containing the zinc compound is obtained in the mixing step, it may include firing the nickel compound and the iron compound in the presence of the molybdenum compound and further adding the zinc compound. When the mixture containing the nickel compound, manganese compound, copper compound and/or cobalt compound is obtained in the mixing step, it may include firing the nickel compound, manganese compound, iron compound, copper compound and/or cobalt in the presence of the molybdenum compound compound. In the mixing step, manganese compounds may be used instead of nickel compounds. When the mixture containing the manganese compound and the copper compound and/or the cobalt compound is obtained, it may include firing the manganese compound, the iron compound, the copper compound and/or the cobalt compound in the presence of the molybdenum compound. The ferrite particles according to this embodiment are obtained by firing the mixture. As mentioned above, this manufacturing method is called the flux method.

助熔劑方法被歸類為溶液方法。更具體而言,助熔劑方法是一種利用晶體-助熔劑兩組分狀態圖顯示出共晶型狀態的事實進行晶體生長的方法。助熔劑方法的機制推測如下。即,當對溶質與助熔劑的混合物進行加熱時,溶質及助熔劑變為液相。在此過程中,助熔劑是一種熔化劑,或者換言之,溶質-助熔劑兩組分狀態圖顯示出共晶型狀態,且因此溶質在較溶質的熔點低的溫度下熔化以形成液相。當助熔劑在此種狀態下蒸發時,助熔劑的濃度降低,或者換言之,由助熔劑引起的降低溶質熔點的效果減小,且助熔劑的蒸發會充當驅動力來使溶質進行晶體生長(助熔劑蒸發方法)。注意,溶質及助熔劑亦可藉由對液相進行冷卻而使溶質進行晶體生長(緩慢冷卻方法)。The flux method is classified as a solution method. More specifically, the flux method is a method of crystal growth that exploits the fact that the crystal-flux two-component state diagram shows a eutectic state. The mechanism of the flux method is hypothesized as follows. That is, when a mixture of a solute and a flux is heated, the solute and the flux change into a liquid phase. In this process, the flux is a melting agent, or in other words, the solute-flux two-component state diagram shows a eutectic state, and therefore the solute melts at a lower temperature than the melting point of the solute to form a liquid phase. When the flux evaporates in this state, the concentration of the flux decreases, or in other words, the effect caused by the flux in lowering the melting point of the solute decreases, and the evaporation of the flux acts as a driving force for crystal growth of the solute (assisted in Flux evaporation method). Note that solutes and fluxes can also cause crystal growth of solutes by cooling the liquid phase (slow cooling method).

助熔劑方法具有優點,例如能夠在較熔點低得多的溫度下生長晶體,能夠對晶體結構進行精確控制,以及能夠形成具有自形形狀的晶體主體。The flux method has advantages such as the ability to grow crystals at temperatures much lower than the melting point, the ability to precisely control the crystal structure, and the ability to form crystal bodies with euhedral shapes.

在藉由使用鉬化合物作為助熔劑的助熔劑方法來製成鐵氧體粒子中,儘管機制未必清晰,但據推測是由於例如以下機制。即,當在存在鉬化合物的條件下燒製鎳化合物及鐵化合物時,首先形成鉬酸鎳及鉬酸鐵。在此過程中,鉬酸鎳及鉬酸鐵如可自以上闡釋中理解在較氧化鎳及氧化鐵或鎳鐵氧體的熔點低的溫度下生長鎳鐵氧體晶體作為其複合氧化物。然後,例如藉由對助熔劑進行蒸發,鉬酸鎳及鉬酸鐵分解並生長晶體以產出鐵氧體粒子。即,鉬化合物起到助熔劑的作用且藉由中間體或者鉬酸鎳及鉬酸鐵來製成鎳鐵氧體粒子。In the flux method using a molybdenum compound as a flux to produce ferrite particles, although the mechanism is not necessarily clear, it is presumed to be due to, for example, the following mechanism. That is, when a nickel compound and an iron compound are fired in the presence of a molybdenum compound, nickel molybdate and iron molybdate are first formed. In this process, nickel molybdate and iron molybdate, as can be understood from the above explanation, grow nickel ferrite crystals as their composite oxides at a temperature lower than the melting point of nickel oxide and iron oxide or nickel ferrite. Then, for example by evaporating the flux, the nickel molybdate and iron molybdate decompose and grow crystals to produce ferrite particles. That is, the molybdenum compound functions as a flux and nickel ferrite particles are produced from intermediates or nickel molybdate and iron molybdate.

助熔劑方法可製成含有鉬的鐵氧體粒子,其中鉬局限於鐵氧體粒子的表面層中。The flux method can produce ferrite particles containing molybdenum, where the molybdenum is confined to the surface layer of the ferrite particles.

燒製的方法並非僅限於特定方法且可藉由任何已知且常規的方法來實行。認為當燒製溫度高於800℃時,鎳化合物、鐵化合物與鉬化合物相互反應以形成鉬酸鎳及鉬酸鐵。此外,認為當燒製溫度達到950℃或高於950℃時,鉬酸鎳及鉬酸鐵分解以形成鎳鐵氧體粒子。認為在鎳鐵氧體粒子中,當鉬酸鎳及鉬酸鐵分解成鎳鐵氧體及鉬氧化物時,鉬化合物併入至鎳鐵氧體粒子中。The firing method is not limited to a specific method and can be carried out by any known and conventional method. It is believed that when the firing temperature is higher than 800° C., the nickel compound, the iron compound, and the molybdenum compound react with each other to form nickel molybdate and iron molybdate. In addition, it is believed that when the firing temperature reaches 950° C. or higher, nickel molybdate and iron molybdate decompose to form nickel ferrite particles. It is believed that in the nickel ferrite particles, when nickel molybdate and iron molybdate decompose into nickel ferrite and molybdenum oxide, the molybdenum compound is incorporated into the nickel ferrite particles.

燒製期間的鎳化合物、鐵化合物及鉬化合物的狀態並非僅限於特定狀態,且鉬化合物僅需要存在於相同的空間中,使得鉬化合物能夠作用於鎳化合物及鐵化合物。具體而言,所述狀態可為其中鉬化合物的粉末、鎳化合物的粉末與鐵化合物的粉末混合於一起的簡單混合、使用粉碎機等的機械混合或者使用研缽等的混合,且可在乾燥狀態或潮濕狀態下進行混合。The states of the nickel compound, iron compound, and molybdenum compound during firing are not limited to a specific state, and the molybdenum compound only needs to exist in the same space so that the molybdenum compound can act on the nickel compound and the iron compound. Specifically, the state may be a simple mixing in which a powder of the molybdenum compound, a powder of the nickel compound, and a powder of the iron compound are mixed together, a mechanical mixing using a pulverizer or the like, or a mixing using a mortar or the like, and the mixing may be performed in a dry state or a wet state.

當燒製含有鋅化合物的混合物時,鎳化合物、鐵化合物、鋅化合物及鉬化合物的狀態並非僅限於特定狀態,且鉬化合物僅需要存在於相同的空間中,使得鉬化合物能夠作用於鎳化合物、鐵化合物及鋅化合物。具體而言,所述狀態可為其中鉬化合物的粉末、鎳化合物的粉末、鐵化合物的粉末與鋅化合物的粉末混合於一起的簡單混合、使用粉碎機等的機械混合或者使用研缽等的混合,且可在乾燥狀態或潮濕狀態下進行混合。When the mixture containing the zinc compound is fired, the states of the nickel compound, iron compound, zinc compound and molybdenum compound are not limited to a specific state, and the molybdenum compound only needs to exist in the same space, so that the molybdenum compound can act on the nickel compound, Iron compounds and zinc compounds. Specifically, the state may be simple mixing in which powder of a molybdenum compound, a powder of a nickel compound, a powder of an iron compound, and a powder of a zinc compound are mixed together, mechanical mixing using a pulverizer or the like, or mixing using a mortar or the like. , and can be mixed in dry or wet conditions.

對於燒製溫度的條件不存在特別限制,燒製溫度是慮及目標鐵氧體粒子的粒子大小、鐵氧體粒子中的鉬化合物的形成、鐵氧體粒子的形狀等而恰當確定。燒製溫度可為950℃或高於950℃(接近鉬酸鎳及鉬酸鐵的分解溫度)、1,000℃或高於1,000℃,1,050℃或高於1,050℃、或者1,100℃或高於1,100℃。There is no particular limitation on the conditions of the firing temperature, and the firing temperature is appropriately determined in consideration of the particle size of the target ferrite particles, the formation of molybdenum compounds in the ferrite particles, the shape of the ferrite particles, etc. The firing temperature may be 950° C. or higher (close to the decomposition temperature of nickel molybdate and iron molybdate), 1,000° C. or higher, 1,050° C. or higher, or 1,100° C. or higher.

較高的燒製溫度趨於更有可能獲得粒子形狀受控且具有大的粒子大小的鐵氧體粒子。自高效地製成此種鐵氧體粒子的角度來看,燒製溫度較佳為950℃或高於950℃,更佳為1,000℃或高於1,000℃,甚至更佳為1,050℃或高於1,050℃,且特佳為1,100℃或高於1,100℃。A higher firing temperature tends to be more likely to obtain ferrite particles having a controlled particle shape and a large particle size. From the viewpoint of efficiently producing such ferrite particles, the firing temperature is preferably 950° C. or higher, more preferably 1,000° C. or higher, even more preferably 1,050° C. or higher, and particularly preferably 1,100° C. or higher.

一般而言,當試圖對燒製後所獲得的鐵氧體粒子的形狀進行控制或改善磁性時,需要在高於1,200℃或較佳為高於1,500℃下實行高溫燒製。然而,就燒製爐的負擔及能源成本而言,在工業使用方面存在重大挑戰。Generally speaking, when trying to control the shape of ferrite particles obtained after firing or improve magnetic properties, high-temperature firing at higher than 1,200°C or preferably higher than 1,500°C is required. However, there are major challenges in terms of the burden of firing furnaces and energy costs for industrial use.

舉例而言,本發明的一個實施例甚至在用於燒製鎳化合物及鐵化合物的最大燒製溫度為1,500℃或低於1,500℃的條件下,亦可以低成本高效地實行形成鐵氧體粒子,進而有助於降低能源成本及減少環境負荷。For example, an embodiment of the present invention can form ferrite particles efficiently and at low cost even when the maximum firing temperature for firing the nickel compound and the iron compound is 1,500° C. or lower, thereby helping to reduce energy costs and reduce environmental load.

本實施例的用於製成鐵氧體粒子的方法即使在燒製溫度為低於氧化鐵的熔點的1,500℃或低於1,500℃時亦可與前驅物的形狀無關地形成具有自形形狀的鐵氧體粒子。自此一角度來看,燒製溫度較佳為1,500℃或低於1,500℃,更佳為1,400℃或低於1,400℃,甚至更佳為1,300℃或低於1,300℃,且特佳為1,200℃或低於1,200℃。The method for producing ferrite particles of the present embodiment can form ferrite particles having an eumorphic shape regardless of the shape of the precursor even when the firing temperature is 1,500° C. or lower, which is lower than the melting point of iron oxide. From this point of view, the firing temperature is preferably 1,500° C. or lower, more preferably 1,400° C. or lower, even more preferably 1,300° C. or lower, and particularly preferably 1,200° C. or lower.

作為實例,在燒製步驟中用於燒製鎳化合物及鐵化合物的燒製溫度的數值範圍可為800℃至1,500℃、900℃至1,500℃、950℃至1,400℃、1,000℃至1,300℃或者1,000℃至1,200℃。As an example, the firing temperature for firing the nickel compound and the iron compound in the firing step may range from 800°C to 1,500°C, 900°C to 1,500°C, 950°C to 1,400°C, 1,000°C to 1,300°C, or 1,000°C to 1,200°C.

自製成效率的角度來看,溫度上昇速率可為20℃/小時至600℃/小時、40℃/小時至500℃/小時或者80℃/小時至400℃/小時。From the perspective of manufacturing efficiency, the temperature rise rate can be 20°C/hour to 600°C/hour, 40°C/hour to 500°C/hour, or 80°C/hour to 400°C/hour.

關於燒製的時間,較佳為在15分鐘至10小時的範圍內實行到達特定燒製溫度的溫度上昇時間。燒製溫度的保持時間可為5分鐘或大於5分鐘,較佳為在5分鐘至1,000小時的範圍內實行,且更佳為在1小時至30小時的範圍內實行。為高效地實行鐵氧體粒子的形成,燒製溫度保持時間甚至更佳為2小時或大於2小時,且燒製溫度保持時間特佳為2小時至24小時。Regarding the firing time, the temperature rise time to reach a specific firing temperature is preferably carried out in the range of 15 minutes to 10 hours. The holding time of the firing temperature may be 5 minutes or more, preferably in the range of 5 minutes to 1,000 hours, and more preferably in the range of 1 hour to 30 hours. In order to efficiently form ferrite particles, the firing temperature holding time is even more preferably 2 hours or more, and the firing temperature holding time is particularly preferably 2 hours to 24 hours.

作為實例,藉由選擇燒製溫度為800℃至1,500℃以及燒製溫度保持時間為2小時至24小時的條件,可易於獲得含有鉬的鐵氧體粒子。As an example, by selecting conditions such that the firing temperature is 800°C to 1,500°C and the firing temperature holding time is 2 hours to 24 hours, ferrite particles containing molybdenum can be easily obtained.

燒製的氣氛只要能夠獲得本發明的效果,則並非僅限於特定氣氛,例如較佳為含氧氣氛(例如,空氣或氧氣)、或者惰性氣氛(例如,氮氣、氬氣或二氧化碳),且慮及成本態樣而更佳為空氣氣氛。The firing atmosphere is not limited to a specific atmosphere as long as the effect of the present invention can be achieved. For example, an oxygen-containing atmosphere (e.g., air or oxygen) or an inert atmosphere (e.g., nitrogen, argon or carbon dioxide) is preferred, and an air atmosphere is more preferred in consideration of cost.

用於進行燒製的設備不必受到限制,且可使用所謂的燒製爐。燒製爐較佳為由不與昇華的鉬氧化物反應的材料形成,且此外,較佳為使用高度密封的燒製爐,進而使得能夠高效地使用鉬氧化物。The equipment for performing the firing is not necessarily limited, and a so-called firing furnace may be used. The firing furnace is preferably formed of a material that does not react with the sublimated molybdenum oxide, and further, it is preferred to use a highly sealed firing furnace, thereby enabling efficient use of the molybdenum oxide.

[冷卻步驟] 用於製成鐵氧體粒子的方法可包括冷卻步驟。冷卻步驟是在燒製步驟中對晶體生長的鐵氧體粒子進行冷卻的步驟。 [Cooling step] The method for making ferrite particles may include a cooling step. The cooling step is a step of cooling the ferrite particles crystal-grown in the firing step.

冷卻速率並非僅限於特定速率,較佳為1℃/小時至1,000℃/小時,更佳為5℃/小時至500℃/小時,且甚至更佳為50℃/小時至100℃/小時。冷卻速率由於製成時間可被縮短而較佳為1℃/小時或大於1℃/小時。另一方面,冷卻速率由於燒製容器不太可能因熱衝擊而破裂且可使用更長時間而較佳為1,000℃/小時或小於1,000℃/小時。The cooling rate is not limited to a specific rate, and is preferably 1°C/hour to 1,000°C/hour, more preferably 5°C/hour to 500°C/hour, and even more preferably 50°C/hour to 100°C/hour. The cooling rate is preferably 1°C/hour or more than 1°C/hour because the production time can be shortened. On the other hand, the cooling rate is preferably 1,000°C/hour or less since the firing container is less likely to be broken due to thermal shock and can be used for a longer period of time.

冷卻的方法並非僅限於特定方法,可為進行自然冷卻或使用冷卻設備。The cooling method is not limited to a specific method, and may be natural cooling or use of cooling equipment.

[鉬移除步驟] 本實施例的用於製成鐵氧體粒子的方法可更包括在燒製步驟之後根據需要移除鉬的至少部分的鉬移除步驟。 [Molybdenum Removal Step] The method for producing ferrite particles of this embodiment may further include a molybdenum removal step of removing at least part of the molybdenum as needed after the firing step.

所述方法的實例包括洗滌處理及高溫處理。可組合完成該些處理。Examples of the method include washing treatment and high temperature treatment. These treatments may be performed in combination.

如上所述,鉬在燒製期間參與昇華,且因此藉由對燒製時間、燒製溫度等進行控制,可對鐵氧體粒子的表面層中存在的鉬含量進行控制,且可對鐵氧體粒子的表面層以外(內層)中存在的鉬含量及其存在狀態進行控制。As described above, molybdenum participates in sublimation during firing, and therefore by controlling the firing time, firing temperature, etc., the molybdenum content present in the surface layer of the ferrite particles can be controlled, and the ferrite particles can be controlled. The content and state of molybdenum present outside the surface layer (inner layer) of the bulk particles are controlled.

鉬可黏附至鐵氧體粒子的表面。作為除昇華以外的方式,可藉由使用水、氨水溶液、氫氧化鈉水溶液等進行洗滌來移除鉬。Molybdenum can adhere to the surface of ferrite particles. As a method other than sublimation, molybdenum can be removed by washing with water, ammonia aqueous solution, sodium hydroxide aqueous solution, or the like.

在此過程中,可藉由恰當地改變所使用的水、氨水溶液或氫氧化鈉水溶液的濃度及用量、洗滌位點、洗滌時間等來控制鐵氧體粒子中的鉬含量。In this process, the molybdenum content in the ferrite particles can be controlled by appropriately changing the concentration and dosage of water, ammonia solution or sodium hydroxide solution, washing location, washing time, etc.

高溫處理方法的實例包括將溫度昇高至鉬化合物的昇華點或沸點或高於鉬化合物的昇華點或沸點的方法。Examples of the high temperature treatment method include a method of raising the temperature to or above the sublimation point or boiling point of the molybdenum compound.

[粉碎步驟] 在藉由燒製步驟獲得的燒製產品中,鐵氧體粒子可能會黏聚,且無法必要地滿足所考量的應用中合適的粒子大小範圍。因此,可將鐵氧體粒子粉碎以滿足所需的合適的粒子大小範圍。 由於粉碎燒製產物的方法並非僅限於特定方法,且可使用傳統上已知的粉碎方法,例如球磨機、顎式壓碎機、噴射磨機、盤式磨機(disk mill)、光譜磨機(spectromill)、研磨機及混合磨機(mixer mill)。 [Crushing steps] In the fired product obtained by the firing step, the ferrite particles may agglomerate and not necessarily meet the appropriate particle size range for the application under consideration. Therefore, ferrite particles can be pulverized to meet the desired suitable particle size range. Since the method of pulverizing the fired product is not limited to a specific method, and conventionally known pulverizing methods such as ball mill, jaw crusher, jet mill, disk mill, spectrum mill ( Spectromill, grinder and mixer mill.

[分類步驟] 可使藉由燒製步驟獲得的含有鐵氧體粒子的燒製產物經受恰當的分類處理以對粒子大小範圍進行調節。「分類處理」是指根據粒子的大小對粒子進行分組的操作。 [Classification step] The fired product containing ferrite particles obtained by the firing step may be subjected to appropriate classification treatment to adjust the particle size range. "Classification treatment" refers to the operation of grouping particles according to their sizes.

分類可為潮濕形式或乾燥形式,但自製成率的角度來看,較佳為乾式分類。 乾式分類包括使用篩子進行分類及風力分類,其中所述分類是藉由離心力與流體阻力之間的差異實行。自分類精度的角度來看,較佳為風力分類,所述風力分類可使用分類器(例如,使用康達效應(Coanda effect)的氣流分類器、旋渦氣流分類器、強制渦旋離心(vortex centrifugal)分類器及半自由渦旋離心分類器)來實行。 Sorting can be done in a wet or dry form, but dry sorting is preferred from the perspective of yield. Dry sorting includes sorting using a screen and wind sorting, where the sorting is performed by the difference between centrifugal force and fluid resistance. From the perspective of sorting accuracy, wind sorting is preferred, which can be performed using a sorter (e.g., an airflow sorter using the Coanda effect, a vortex airflow sorter, a vortex centrifugal sorter, and a semi-free vortex centrifugal sorter).

可在必要的階段實行粉碎步驟及分類步驟。舉例而言,藉由存在或不存在粉碎及分類並選擇粉碎及分類的條件,可對欲獲得的鐵氧體粒子的平均粒子大小進行調節。The pulverization step and the classification step may be performed at a necessary stage. For example, the average particle size of the ferrite particles to be obtained may be adjusted by the presence or absence of pulverization and classification and by selecting the conditions of pulverization and classification.

本實施例的鐵氧體粒子或藉由本實施例的製成方法獲得的鐵氧體粒子黏聚程度小或無黏聚,且因此自以下角度而言較佳:本實施例的鐵氧體粒子或藉由本實施例的製成方法獲得的鐵氧體粒子易於展示出其原始性質、在其自身的可處置性方面優異、以及當本實施例的鐵氧體粒子或藉由本實施例的製成方法獲得的鐵氧體粒子分散於所分散的介質中進行使用時具有更佳的分散性。The ferrite particles of the present embodiment or the ferrite particles obtained by the manufacturing method of the present embodiment have little or no agglomeration, and are therefore better from the following perspectives: the ferrite particles of the present embodiment or the ferrite particles obtained by the manufacturing method of the present embodiment are easy to show their original properties, are excellent in their own disposability, and have better dispersibility when the ferrite particles of the present embodiment or the ferrite particles obtained by the manufacturing method of the present embodiment are dispersed in a dispersed medium for use.

本實施例的用於製成鐵氧體粒子的方法可易於製成黏聚程度小或無黏聚的鐵氧體粒子,且因此具有優異的優點,即即使在不實行粉碎步驟或分類步驟的條件下,亦可以高的製成率製成具有期望的優異性質的鐵氧體粒子。The method for producing ferrite particles of the present embodiment can easily produce ferrite particles with little or no agglomeration, and therefore has an excellent advantage that ferrite particles having desired excellent properties can be produced at a high yield even without performing a pulverization step or a classification step.

以上所述實施例的用於製成鐵氧體粒子的方法可製成含有鉬且因其形狀易於控制且效率高而具有高品質的鐵氧體粒子。 [實例] The method for producing ferrite particles of the above-described embodiment can produce ferrite particles containing molybdenum and having high quality because of its easy control of shape and high efficiency. [Example]

以下參照實例更詳細地闡述本發明。本發明並非僅限於以下實例。The present invention is described in more detail below with reference to examples. The present invention is not limited to the following examples.

<鐵氧體粒子的製成> [實例1] 向80毫升的氧化鋯鍋中充入5.63克的氧化鎳(由關東化學股份有限公司(Kanto Chemical Co., Inc.)製造)、12.45克的氧化鐵(III)(由關東化學股份有限公司製造)、3.6克的三氧化鉬(由日本無機顏料&化學有限公司(Nippon Inorganic Colour & Chemical Co., Ltd.)製造)及100克的5毫米直徑(mmφ)氧化鋯珠,將其混合於一起並使用行星式球磨機(由飛馳公司(Fritsch)製造的P-5)以200轉每分鐘(rpm)粉碎60分鐘以獲得混合物。將所獲得的混合物放入至坩堝中並在陶瓷電爐中在1,100℃下燒製10小時。以5℃/分鐘來實行溫度上昇。在溫度降低之後取出坩堝以獲得黑色粉末。 將所獲得的黑色粉末轉移至燒杯,向其中加入200克的0.5%氨水,進行攪拌並洗滌3小時以溶解剩餘的三氧化鉬。然後在120℃下對藉由透過使用5C濾紙進行吸濾而濾出的所獲得的粒子進行乾燥以獲得17.1克的白色粉末。所獲得的粒子是NiFe 2O 4<Production of ferrite particles> [Example 1] Into an 80 ml zirconia pot were charged 5.63 g of nickel oxide (manufactured by Kanto Chemical Co., Inc.), 12.45 g of iron (III) oxide (manufactured by Kanto Chemical Co., Inc.), 3.6 g of molybdenum trioxide (manufactured by Nippon Inorganic Colour & Chemical Co., Ltd.) and 100 g of 5 mm diameter (mmφ) zirconia beads, which were mixed together and pulverized using a planetary ball mill (P-5 manufactured by Fritsch) at 200 revolutions per minute (rpm) for 60 minutes to obtain a mixture. The obtained mixture was placed in a crucible and fired in a ceramic electric furnace at 1,100°C for 10 hours. The temperature was raised at 5°C/min. After the temperature dropped, the crucible was taken out to obtain a black powder. The obtained black powder was transferred to a beaker, 200 g of 0.5% ammonia water was added thereto, stirred and washed for 3 hours to dissolve the remaining molybdenum trioxide. The obtained particles filtered by suction filtration using 5C filter paper were then dried at 120°C to obtain 17.1 g of white powder. The obtained particles were NiFe 2 O 4 .

[實例2] 除三氧化鉬的充入量為1.8克以外,以與實例1中相同的方式獲得黑色粉末。 [Example 2] A black powder was obtained in the same manner as in Example 1 except that the amount of molybdenum trioxide charged was 1.8 g.

[實例3] 向100毫升的聚丙烯瓶中充入3.19克的氧化鎳(由關東化學股份有限公司製造)、6.81克的氧化鐵(III)(由關東化學股份有限公司製造)、13.94克的二水合鉬酸鈉(由關東化學股份有限公司製造)、8.23克的三氧化鉬(由日本無機顏料&化學有限公司製造)及100克的5毫米直徑氧化鋯珠,將其混合於一起並使用塗料混合器(由東洋精機製作所(Toyo Seiki Seisaku-sho, Ltd.)製造)粉碎120分鐘以獲得混合物。將所獲得的混合物放入至坩堝中並在陶瓷電爐中在1,300℃下燒製10小時。以5℃/分鐘來實行溫度上昇。在溫度降低之後取出坩堝以獲得黑色粉末。 將所獲得的黑色粉末轉移至燒杯,向其中加入200克的離子交換水,進行攪拌並洗滌3小時以溶解剩餘的鉬酸鈉。然後在120℃下對藉由透過使用5C濾紙進行吸濾而濾出的所獲得的粒子進行乾燥以獲得9.2克的黑色粉末。所獲得的粒子是NiFe 2O 4[Example 3] Into a 100 ml polypropylene bottle, 3.19 g of nickel oxide (manufactured by Kanto Chemical Co., Ltd.), 6.81 g of iron (III) oxide (manufactured by Kanto Chemical Co., Ltd.), 13.94 g of sodium molybdate dihydrate (manufactured by Kanto Chemical Co., Ltd.), 8.23 g of molybdenum trioxide (manufactured by Japan Inorganic Pigments & Chemicals Co., Ltd.) and 100 g of 5 mm diameter zirconia beads were charged, mixed together and pulverized for 120 minutes using a paint mixer (manufactured by Toyo Seiki Seisaku-sho, Ltd.) to obtain a mixture. The obtained mixture was put into a crucible and fired at 1,300°C for 10 hours in a ceramic electric furnace. The temperature was increased at 5°C/min. After the temperature was lowered, the crucible was taken out to obtain a black powder. The obtained black powder was transferred to a beaker, 200 g of ion exchange water was added thereto, stirred and washed for 3 hours to dissolve the remaining sodium molybdate. Then, the obtained particles filtered by suction filtration using 5C filter paper were dried at 120°C to obtain 9.2 g of black powder. The obtained particles were NiFe 2 O 4 .

[實例4] 除燒製溫度為1,500℃且溫度上昇速率為2℃/分鐘以外,以與實例3中相同的方式獲得黑色粉末。 [Example 4] A black powder was obtained in the same manner as in Example 3 except that the firing temperature was 1,500°C and the temperature rise rate was 2°C/min.

[實例5] 除燒製溫度為900℃且溫度上昇速率為2℃/分鐘以外,以與實例3中相同的方式獲得黑色粉末。 [Example 5] A black powder was obtained in the same manner as in Example 3 except that the firing temperature was 900°C and the temperature rise rate was 2°C/min.

[實例6] 除燒製溫度為1,100℃以外,以與實例3中相同的方式獲得黑色粉末。 [Example 6] Black powder was obtained in the same manner as in Example 3 except that the firing temperature was 1,100°C.

[實例7] 除氧化鎳的充入量為3.02克,且向氧化鎳、氧化鐵(III)、二水合鉬酸鈉及三氧化鉬進一步添加0.17克的氧化鋅(ZnO對(NiO + ZnO)的莫耳比:0.05)以外,以與實例6中相同的方式獲得黑色粉末。所獲得的粒子是主要含有NiZnFe 2O 4的粒子。 [Example 7] The charging amount of nickel oxide was 3.02 g, and 0.17 g of zinc oxide (ZnO vs. (NiO + ZnO)) was further added to the nickel oxide, iron (III) oxide, sodium molybdate dihydrate and molybdenum trioxide. A black powder was obtained in the same manner as in Example 6 except that the molar ratio: 0.05). The obtained particles are particles mainly containing NiZnFe 2 O 4 .

[實例8] 除氧化鎳的充入量為2.86克,且氧化鋅的充入量為0.35克(ZnO對(NiO + ZnO)的莫耳比:0.1)以外,以與實例7中相同的方式獲得黑色粉末。 [Example 8] A black powder was obtained in the same manner as in Example 7 except that the charge amount of nickel oxide was 2.86 g and the charge amount of zinc oxide was 0.35 g (molar ratio of ZnO to (NiO + ZnO): 0.1).

[實例9] 除氧化鎳的充入量為2.23克,氧化鋅的充入量為1.04克(ZnO對(NiO + ZnO)的莫耳比:0.3)以外,以與實例7中相同的方式獲得黑色粉末。 [Example 9] Black powder was obtained in the same manner as in Example 7 except that the charging amount of nickel oxide was 2.23 g and the charging amount of zinc oxide was 1.04 g (molar ratio of ZnO to (NiO + ZnO): 0.3).

[實例10] 除氧化鎳的充入量為1.59克,且氧化鋅的充入量為1.73克(ZnO對(NiO + ZnO)的莫耳比:0.5)以外,以與實例7中相同的方式獲得黑色粉末。 [Example 10] A black powder was obtained in the same manner as in Example 7 except that the charge amount of nickel oxide was 1.59 g and the charge amount of zinc oxide was 1.73 g (molar ratio of ZnO to (NiO + ZnO): 0.5).

[實例11] 向100毫升的聚丙烯瓶中充入6.65克的碳酸錳-n-水合物(由關東化學股份有限公司製造)、8.89克的羥基氧化鐵(由關東化學股份有限公司製造)、15.5克的二水合鉬酸鈉(由關東化學股份有限公司製造)、100克的5毫米直徑氧化鋯珠及20克的離子交換水,將其混合於一起並使用塗料攪拌器以潮濕形式粉碎120分鐘以獲得混合物。在120度下對所獲得的混合物進行乾燥且將混合物放入至坩堝中,使用大氣電爐在氮氣氛中在800℃下燒製10小時。以5℃/分鐘來實行溫度上昇。在溫度降低之後取出坩堝以獲得黑色粉末。 將所獲得的黑色粉末轉移至燒杯,向其中加入200克的離子交換水,進行攪拌並洗滌3小時以溶解其餘的鉬酸鈉。然後在120℃下對藉由透過使用5C濾紙進行吸濾而濾出的所獲得的粒子進行乾燥以獲得黑色粉末。所獲得的粒子是主要含有MnFe 2O 4的粒子。 [Example 11] A 100 ml polypropylene bottle was charged with 6.65 g of manganese carbonate-n-hydrate (manufactured by Kanto Chemical Co., Ltd.), 8.89 g of iron oxyhydroxide (manufactured by Kanto Chemical Co., Ltd.), 15.5 g of sodium molybdate dihydrate (manufactured by Kanto Chemical Co., Ltd.), 100 g of 5 mm diameter zirconia beads and 20 g of ion-exchanged water were mixed together and pulverized in wet form using a paint stirrer 120 minutes to obtain the mixture. The obtained mixture was dried at 120 degrees Celsius, put into a crucible, and fired at 800°C for 10 hours in a nitrogen atmosphere using an atmospheric electric furnace. The temperature rise was performed at 5°C/min. After the temperature was lowered the crucible was taken out to obtain a black powder. The obtained black powder was transferred to a beaker, 200 grams of ion-exchange water was added thereto, stirred and washed for 3 hours to dissolve the remaining sodium molybdate. The obtained particles filtered out by suction filtration using 5C filter paper were then dried at 120° C. to obtain black powder. The obtained particles are particles mainly containing MnFe 2 O 4 .

[比較例1] 向80毫升的氧化鋯鍋中充入5.63克的氧化鎳(由關東化學股份有限公司製造)、12.45克的氧化鐵(III)(由關東化學股份有限公司製造)及100克的5毫米直徑氧化鋯珠,將其混合於一起並使用行星式球磨機(由飛馳公司製造的P-5)以200轉每分鐘粉碎60分鐘以獲得混合物。將所獲得的混合物放入至坩堝中並在陶瓷電爐中在1,100℃下燒製10小時。以5℃/分鐘來實行溫度上昇。在溫度降低之後取出坩堝以獲得17.5克的黑色粉末。所獲得的粒子是含有少量未反應的物質的NiFe 2O 4[Comparative Example 1] An 80 ml zirconia pot was charged with 5.63 g of nickel oxide (manufactured by Kanto Chemical Co., Ltd.), 12.45 g of iron (III) oxide (manufactured by Kanto Chemical Co., Ltd.) and 100 g 5 mm diameter zirconia beads were mixed together and crushed using a planetary ball mill (P-5 manufactured by Feichi Corporation) at 200 rpm for 60 minutes to obtain a mixture. The obtained mixture was put into a crucible and fired in a ceramic electric furnace at 1,100°C for 10 hours. The temperature rise was performed at 5°C/min. After the temperature was lowered, the crucible was taken out to obtain 17.5 grams of black powder. The particles obtained were NiFe 2 O 4 containing a small amount of unreacted material.

<評估> 使用在實例1至實例11及比較例1中獲得的粉末作為樣品粉末以實行以下評估。 <Evaluation> The powders obtained in Examples 1 to 11 and Comparative Example 1 were used as sample powders to conduct the following evaluations.

[晶體結構分析:X射線繞射(X-Ray Diffraction,XRD)] 將樣品粉末填充至用於進行量測的0.5毫米深的設置於廣角X射線繞射(XRD)設備(由日本理學公司製造的阿爾蒂馬4(Ultima IV))中的樣品固持器(sample holder)中,且在Cu/Kα輻射、40千伏/40毫安、2°/分鐘的掃描速度及10°至70°的掃描範圍的條件下實行量測。 [Crystal structure analysis: X-ray Diffraction (XRD)] The sample powder was filled into a 0.5 mm deep sample holder in a wide-angle X-ray diffraction (XRD) equipment (Ultima IV manufactured by Rigaku Corporation) for measurement, and the measurement was carried out under the conditions of Cu/Kα radiation, 40 kV/40 mA, a scanning speed of 2°/min, and a scanning range of 10° to 70°.

[鐵氧體粒子的比表面積量測] 使用比表面積計(由麥奇克拜爾公司製造的拜爾索普迷你)對鐵氧體粒子的比表面積進行量測,且將藉由BET方法自氮氣的吸附量量測的每克樣品的表面積計算為比表面積(平方米/克)。 [Measurement of specific surface area of ferrite particles] The specific surface area of ferrite particles was measured using a specific surface area meter (Baythorpe Mini manufactured by Macchik Bayer), and the surface area per gram of sample measured from the adsorption amount of nitrogen by the BET method was calculated as the specific surface area (m2/g).

[一次粒子大小] 使用掃描電子顯微鏡(SEM)來拍攝鐵氧體粒子,對於作為二維影像上最小單位的粒子(即一次粒子),將50個隨機選擇的一次粒子的輪廓線上的兩個點之間的距離的所量測的最大長度的平均值定義為鐵氧體粒子的一次粒子大小。 [Primary particle size] Ferrite particles were photographed using a scanning electron microscope (SEM). For the smallest unit of particles (i.e., primary particles) on a two-dimensional image, the average value of the maximum length measured between two points on the contour of 50 randomly selected primary particles was defined as the primary particle size of the ferrite particles.

[粒子大小分佈量測] 在分散壓力為3巴(bar)且拉伸壓力為90毫巴的條件下使用雷射繞射乾式粒子大小分析儀(由日本雷射公司製造的赫魯(h3355)&羅德斯(HELOS (H3355) & RODOS))以乾燥形式量測了樣品粉末的粒子大小分佈。將體積累積百分比的分佈曲線在50%處與橫軸相交的點處的粒子大小確定為D 50[Particle size distribution measurement] The particle size distribution of the sample powder was measured in a dry form using a laser diffraction dry particle size analyzer (HELOS (H3355) & RODOS manufactured by Nippon Laser Co., Ltd.) under a dispersion pressure of 3 bar and a tensile pressure of 90 mbar. The particle size at the point where the distribution curve of the volume cumulative percentage intersects the horizontal axis at 50% was determined as D50 .

[X射線螢光(XRF)分析] 使用X射線螢光分析儀(由日本理學公司製造的普裡默斯IV),將約70毫克的樣品粉末放置於濾紙上,使用聚丙烯(polypropylene,PP)膜進行覆蓋並在以下條件下經受X射線螢光(XRF)分析。 量測條件 EZ掃描模式 量測元素:F至U 量測時間:標準 量測直徑:10毫米 殘餘物(其餘組分):無 [X-ray fluorescence (XRF) analysis] Using an X-ray fluorescence analyzer (Primus IV manufactured by Rigaku Corporation, Japan), approximately 70 mg of sample powder was placed on filter paper, covered with a polypropylene (PP) film and subjected to X-ray fluorescence (XRF) analysis under the following conditions. Measurement conditions EZ scan mode Measured elements: F to U Measuring time: Standard Measuring diameter: 10 mm Residues (other components): None

以氧化物計來確定藉由XRF分析獲得的鐵氧體粒子的鎳含量、鐵含量、鋅含量及鉬含量,以獲取相對於100質量%的鐵氧體粒子的NiO含量(Ni 1)、相對於100質量%的鐵氧體粒子的Fe 2O 3含量(Fe 1)、相對於100質量%的鐵氧體粒子的ZnO 2含量(Zn 1)及相對於100質量%的鐵氧體粒子的MoO 3含量(Mo 1)的結果。 The nickel content, iron content, zinc content, and molybdenum content of the ferrite particles obtained by XRF analysis were determined in terms of oxides to obtain the NiO content (Ni 1 ) relative to 100 mass % of the ferrite particles. Fe 2 O 3 content (Fe 1 ) relative to 100 mass % of ferrite particles, ZnO 2 content (Zn 1 ) relative to 100 mass % ferrite particles, and Results for MoO 3 content (Mo 1 ).

以氧化物計來確定藉由XRF分析獲得的鐵氧體粒子的錳含量、鐵含量及鉬含量,以獲取相對於100質量%的鐵氧體粒子的MnO 2含量(Mn 1)、相對於100質量%的鐵氧體粒子的Fe 2O 3含量(Fe 1)及相對於100質量%的鐵氧體粒子的MoO 3含量(Mo 1)。 The manganese content, iron content, and molybdenum content of the ferrite particles obtained by XRF analysis were determined in terms of oxides to obtain the MnO 2 content (Mn 1 ) relative to 100 mass % of the ferrite particles, relative to 100 Fe 2 O 3 content (Fe 1 ) of mass % of ferrite particles and MoO 3 content (Mo 1 ) relative to 100 mass % of ferrite particles.

[XPS表面分析] 對於樣品粉末的表面元素分析,使用單色化的Al-Kα作為X射線源而使用X射線光電子光譜分析儀(由愛發科公司製造的誇特拉SXM)來實行X射線光電子光譜法(XPS)的量測。藉由1,000平方微米面積量測而以原子%獲取每一元素的n = 3量測的平均值。 [XPS Surface Analysis] For surface element analysis of the sample powder, X-ray photoelectron spectroscopy (XPS) was performed using monochromatic Al-Kα as an X-ray source and an X-ray photoelectron spectrometer (Quatara SXM manufactured by AIFAC) ) measurement. Obtain the average of n = 3 measurements for each element in atomic % from 1,000 square micron area measurements.

以氧化物計來確定藉由XPS分析獲得的鐵氧體粒子的表面層中的鎳含量、表面層中的鐵含量及表面層中的鉬含量,以確定相對於100質量%的鐵氧體粒子的表面層的NiO含量(Ni 2)(質量%)、相對於100質量%的鐵氧體粒子的表面層的Fe 2O 3含量(Fe 2)(質量%)、以及相對於100質量%的鐵氧體粒子的表面層的MoO 3含量(Mo 2)(質量%)。 The nickel content in the surface layer of the ferrite particles, the iron content in the surface layer, and the molybdenum content in the surface layer obtained by XPS analysis were determined in terms of oxides to determine the NiO content (Ni 2 ) (mass %) of the surface layer of the ferrite particles relative to 100 mass %, the Fe 2 O 3 content (Fe 2 ) (mass %) of the surface layer of the ferrite particles relative to 100 mass %, and the MoO 3 content (Mo 2 ) (mass %) of the surface layer of the ferrite particles relative to 100 mass %.

以氧化物計來確定藉由XPS分析獲得的鐵氧體粒子的表面層中的錳含量、表面層中的鐵含量及表面層中的鉬含量以確定相對於100質量%的鐵氧體粒子的表面層的MnO 2含量(Mn 2)(質量%)、相對於100質量%的鐵氧體粒子的表面層的Fe 2O 3含量(Fe 2)(質量%)、以及相對於100質量%的鐵氧體粒子的表面層的MoO 3含量(Mo 2)(質量%)。 The manganese content in the surface layer of the ferrite particles obtained by XPS analysis, the iron content in the surface layer, and the molybdenum content in the surface layer were determined in terms of oxides to determine the content relative to 100 mass % of the ferrite particles. MnO 2 content (Mn 2 ) (mass %) of the surface layer, Fe 2 O 3 content (Fe 2 ) (mass %) of the surface layer relative to 100 mass % of ferrite particles, and relative to 100 mass % MoO 3 content (Mo 2 ) in the surface layer of ferrite particles (mass %).

[磁性分析] 使用振動樣品磁強計(vibrating sample magnetometer)(由理研電子(Riken Denshi)有限公司製造的BHV-50)以7.96 × 10 4安/米(A/m)的磁場強度及5分鐘的量測週期對面積為30平方毫米、厚度為2.5毫米、且質量約為0.15克的樣本實行量測。 [Magnetic analysis] A sample with an area of 30 square millimeters, a thickness of 2.5 millimeters, and a mass of approximately 0.15 grams was measured using a vibrating sample magnetometer (BHV-50 manufactured by Riken Denshi Co., Ltd.) at a magnetic field strength of 7.96 × 10 4 amperes per meter (A/m) and a measurement period of 5 minutes.

<結果> 表1列出藉由評估獲得的相應的值。應注意,「N.D.」是「未偵測到」的縮寫且指示不存在偵測。 <Result> Table 1 lists the corresponding values obtained by the evaluation. It should be noted that "N.D." is the abbreviation of "Not Detected" and indicates that there is no detection.

[表1] 實例1 實例2 實例3 實例4 實例5 實例6 實例7 實例8 實例9 實例10 實例11 比較例1 製成條件 NiO 5.63 5.63 3.19 3.19 3.19 3.19 3.02 2.86 2.23 1.59 - 5.63 Fe 2O 3 12.45 12.45 6.81 6.81 6.81 6.81 6.81 6.81 6.81 6.81 - 12.45 ZnO - - - - - - 0.17 0.35 1.04 1.73 - - MnCO 3·nH 2O - - - - - - - - - - 6.65 - FeOOH - - - - - - - - - - 8.89 - Na 2MoO 4·2H 2O - - 13.94 13.94 13.94 13.94 13.94 13.94 13.94 13.94 15.5 - MoO 3 3.6 1.8 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 - - (Ni化合物 + Fe化合物 + Zn化合物)/Mo化合物 質量比率 10/2 10/1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 - (Mn化合物 + Fe化合物)/Mo化合物 質量比率 1/1 Ni/Fe 莫耳比率 1/2 1/2 1/2 1/2 1/2 1/2 1/2.1 1/2.2 1/2.9 1/4 1/2 Mn/Fe 莫耳比率 1/2 Zn/Fe 莫耳比率 1/40 1/20 1/7 1/4 燒製溫度 °C 1100 1100 1300 1500 900 1100 1100 1100 1100 1100 800 1100 燒製時間 小時 10 10 10 10 10 10 10 10 10 10 10 10 評估 雜質的偵測 - - - - - - - - - - + + 黏聚程度 - - - - - - - - - - - + 比表面積 平方米/克 0.45 0.55 0.60 0.31 1.24 0.98 0.82 0.78 0.80 0.91 1.67 2.52 一次粒子大小 微米 12 8 7 17 2 5 5 5 5 5 1 4 D 50 微米 18.3 17.9 10.9 34.1 7.4 9.2 8.5 8.0 7.1 6.3 1.7 1.8 XRF MoO 3(Mo 1 質量% 8.6 7.1 10.9 12.7 19.8 1.4 1.8 1.6 0.8 2.1 0.0 未偵測到 NiO(Ni 1 質量% 28.5 29.7 25.5 21.5 23.6 31.3 28.6 27.7 21.8 16.2 31.6 Fe 2O 3(Fe 1 質量% 61.9 62.5 48.4 49.2 45.5 56.5 52.6 52.5 52.1 51.8 66 68.1 ZnO 2(Zn 1 質量% 1.3 2.5 8.2 13.6 MnO 2(Mn 1 質量% 33.5 XPS MoO 3(Mo 2 質量% 16.1 8.5 81.7 87 80.1 38 45.4 42.9 30.6 61.5 3.23 未偵測到 NiO(Ni 2 質量% 38.2 53.2 0 0 0 7.4 6.7 7.2 8.3 1.5 0 30.6 Fe 2O 3(Fe 2 質量% 45.6 38.3 18.3 13 19.9 54.6 47.2 47.7 55.6 32.1 40 ZnO 2(Zn 2 質量% 0.7 2.2 5.4 4.9 MnO 2(Mn 2 質量% 56.7 MoO 3表面層不均勻分佈比率(Mo 2/Mo 1 質量比率 1.9 1.2 7.5 6.9 4.0 27.1 25.2 26.8 38.3 29.3 - - 矯頑力 安/米 - 7.2E+02 - - - - - - - 1.2E+03 1.4E+03 2.5E+03 [Table 1] Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Example 11 Comparison Example 1 Manufacturing conditions NiO gram 5.63 5.63 3.19 3.19 3.19 3.19 3.02 2.86 2.23 1.59 - 5.63 Fe2O3 gram 12.45 12.45 6.81 6.81 6.81 6.81 6.81 6.81 6.81 6.81 - 12.45 ZnO gram - - - - - - 0.17 0.35 1.04 1.73 - - MnCO 3 ·nH 2 O gram - - - - - - - - - - 6.65 - FeOOH gram - - - - - - - - - - 8.89 - Na 2 MoO 4 ·2H 2 O gram - - 13.94 13.94 13.94 13.94 13.94 13.94 13.94 13.94 15.5 - MoO 3 gram 3.6 1.8 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 - - (Ni compound + Fe compound + Zn compound)/Mo compound Mass ratio 10/2 10/1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 - (Mn compound + Fe compound)/Mo compound Mass ratio 1/1 Ni/Fe Molar ratio 1/2 1/2 1/2 1/2 1/2 1/2 1/2.1 1/2.2 1/2.9 1/4 1/2 Mn/Fe Molar ratio 1/2 Zn/Fe Molar ratio 1/40 1/20 1/7 1/4 Firing temperature °C 1100 1100 1300 1500 900 1100 1100 1100 1100 1100 800 1100 Firing time Hours 10 10 10 10 10 10 10 10 10 10 10 10 evaluate Impurity Detection - - - - - - - - - - + + Degree of cohesion - - - - - - - - - - - + Specific surface area Square meter/gram 0.45 0.55 0.60 0.31 1.24 0.98 0.82 0.78 0.80 0.91 1.67 2.52 Primary particle size Micrometer 12 8 7 17 2 5 5 5 5 5 1 4 D 50 Micrometer 18.3 17.9 10.9 34.1 7.4 9.2 8.5 8.0 7.1 6.3 1.7 1.8 XRF MoO 3 (Mo 1 ) Quality% 8.6 7.1 10.9 12.7 19.8 1.4 1.8 1.6 0.8 2.1 0.0 Not detected NiO (Ni 1 ) Quality% 28.5 29.7 25.5 21.5 23.6 31.3 28.6 27.7 21.8 16.2 31.6 Fe 2 O 3 (Fe 1 ) Quality% 61.9 62.5 48.4 49.2 45.5 56.5 52.6 52.5 52.1 51.8 66 68.1 ZnO 2 (Zn 1 ) Quality% 1.3 2.5 8.2 13.6 MnO 2 (Mn 1 ) Quality% 33.5 XPS MoO 3 (Mo 2 ) Quality% 16.1 8.5 81.7 87 80.1 38 45.4 42.9 30.6 61.5 3.23 Not detected NiO ( Ni2 ) Quality% 38.2 53.2 0 0 0 7.4 6.7 7.2 8.3 1.5 0 30.6 Fe 2 O 3 (Fe 2 ) Quality% 45.6 38.3 18.3 13 19.9 54.6 47.2 47.7 55.6 32.1 40 ZnO 2 (Zn 2 ) Quality% 0.7 2.2 5.4 4.9 MnO 2 (Mn 2 ) Quality% 56.7 MoO 3 surface layer uneven distribution ratio (Mo 2 /Mo 1 ) Mass ratio 1.9 1.2 7.5 6.9 4.0 27.1 25.2 26.8 38.3 29.3 - - Stubbornness A/m - 7.2E+02 - - - - - - - 1.2E+03 1.4E+03 2.5E+03

圖1至圖12示出藉由使用掃描電子顯微鏡(SEM)實行拍攝而獲得的實例及比較例的粉末的SEM影像。 在實例1至實例10的相應實例的粉末中,辨識出諸多漂亮的多邊形粒子且在製成製程期間使粒子的晶體形狀受到控制(圖1至圖10)。在實例11的粉末中,亦辨識出諸多漂亮的多邊形粒子,且在製成製程期間使粒子的晶體形狀受到控制(圖11)。 相反地,在比較例1的粉末中,觀察到其中未觀察到特定形狀的無定形粒子(圖12)。 FIG. 1 to FIG. 12 show SEM images of the powders of the examples and the comparative examples obtained by photographing using a scanning electron microscope (SEM). In the powders of the corresponding examples of Examples 1 to 10, many beautiful polygonal particles were identified and the crystal shape of the particles was controlled during the manufacturing process (FIG. 1 to FIG. 10). In the powder of Example 11, many beautiful polygonal particles were also identified and the crystal shape of the particles was controlled during the manufacturing process (FIG. 11). In contrast, in the powder of Comparative Example 1, amorphous particles in which no specific shape was observed were observed (FIG. 12).

圖13示出實例1至實例10及比較例1的XRD分析的結果。在實例及比較例的樣品中辨識出自鐵氧體(Ni 2Fe 2O 4)得到的峰值(未標記的峰值)。 圖14示出實例11的XRD分析的結果。在本實例的樣品中辨識出自鐵氧體(Mn 2Fe 2O 4)得到的峰值(未標記的峰值)。 FIG13 shows the results of XRD analysis of Examples 1 to 10 and Comparative Example 1. In the samples of Examples and Comparative Examples, peaks derived from ferrite (Ni 2 Fe 2 O 4 ) were identified (peaks not labeled). FIG14 shows the results of XRD analysis of Example 11. In the sample of this Example, peaks derived from ferrite (Mn 2 Fe 2 O 4 ) were identified (peaks not labeled).

根據SEM觀察及XRD分析的結果,證實出在實例及比較例中獲得的粉末是含有鐵氧體的鐵氧體粒子。According to the results of SEM observation and XRD analysis, it was confirmed that the powders obtained in the examples and comparative examples were ferrite particles containing ferrite.

在實例1至實例11的樣品粉末中,幾乎未辨識出自雜質得到的峰值(圖13及圖14,表1中對雜質的偵測為「-」)。 相反地,在比較例1的樣品粉末中,明顯地偵測到自雜質(例如,氧化鎳及氧化鐵,即未反應的原材料)得到的峰值(在圖13中具有圓「●」的峰值)(表1中對雜質的偵測為「+」)。根據此結果推斷出,在比較例1的樣品粉末中,鐵氧體形成反應不完全且殘留有未反應的物質。 In the sample powders of Examples 1 to 11, the peaks derived from impurities were almost not identified (Figures 13 and 14, the detection of impurities in Table 1 is "-"). On the contrary, in the sample powder of Comparative Example 1, the peaks derived from impurities (e.g., nickel oxide and iron oxide, i.e., unreacted raw materials) were clearly detected (peaks with circle "●" in Figure 13) (the detection of impurities in Table 1 is "+"). Based on this result, it is inferred that in the sample powder of Comparative Example 1, the ferrite formation reaction is incomplete and unreacted substances remain.

根據此結果示出,在其中在存在鉬化合物的條件下燒製鎳化合物及鐵化合物的實例中,即使在900℃至1,500℃的相對低的燒製溫度下,亦順利地進行鐵氧體形成反應且能夠高效地製成雜質含量減少且形狀受控的高品質的鐵素體粒子。According to this result, in the example in which the nickel compound and the iron compound are fired in the presence of the molybdenum compound, the ferrite formation reaction proceeds smoothly even at a relatively low firing temperature of 900° C. to 1,500° C. and high-quality ferrite particles with reduced impurity content and controlled shape can be efficiently produced.

基於以下準則,自相應的鐵氧體粒子的SEM影像來評估粒子的黏聚程度。 ++:辨識出粒子的黏聚。 +:辨識出粒子的一些黏聚。 -:未辨識出明顯的粒子黏聚。 The degree of particle agglomeration was evaluated from the SEM images of the corresponding ferrite particles based on the following criteria. ++: Particle agglomeration was identified. +: Some particle agglomeration was identified. -: No obvious particle agglomeration was identified.

在比較例1的鐵氧體粒子中,在粒子之間辨識出明顯的黏聚熔融(agglomeration fusion)(黏聚程度:+),而在實例1至實例11的鐵氧體粒子中未辨識出明顯的黏聚(黏聚程度:-)。 根據此結果指示出,在其中在存在鉬化合物的條件下燒製鎳化合物或錳化合物及鐵化合物的實例中,能夠易於製成黏聚程度低或無黏聚的鐵氧體粒子。 In the ferrite particles of Comparative Example 1, obvious agglomeration fusion was recognized between the particles (agglomeration degree: +), while no obvious agglomeration was recognized in the ferrite particles of Examples 1 to 11 (agglomeration degree: -). This result indicates that in the example in which the nickel compound or the manganese compound and the iron compound are fired in the presence of the molybdenum compound, ferrite particles with low or no agglomeration can be easily produced.

在實例中(例如,參照實例3、實例5及實例6),較高的燒製溫度趨於給出粒子大小較大的鐵氧體粒子。 因此,發現藉由對燒製溫度進行控制,能夠對鐵氧體粒子的粒子大小進行控制且能夠製成具有期望粒子大小的鐵氧體粒子。 In the examples (for example, see Examples 3, 5, and 6), a higher firing temperature tends to give ferrite particles with a larger particle size. Therefore, it was found that by controlling the firing temperature, the particle size of the ferrite particles can be controlled and ferrite particles with a desired particle size can be produced.

表1列出NiO含量(Ni 1)、Fe 2O 3含量(Fe 1)、ZnO 2含量(Zn 1)、MoO 3含量(Mo 1)、NiO含量(Ni 2)、Fe 2O 3含量(Fe 2)、ZnO 2含量(Zn 2)及MoO 3含量(Mo 2)的值。 表1亦列出MnO 2含量(Mn 1)、Fe 2O 3含量(Fe 1)、MoO 3含量(Mo 1)、MnO 2含量(Mn 2)、Fe 2O 3含量(Fe 2)及MoO 3含量(Mo 2)的值。 Table 1 lists the values of NiO content (Ni 1 ), Fe 2 O 3 content (Fe 1 ), ZnO 2 content (Zn 1 ), MoO 3 content (Mo 1 ), NiO content (Ni 2 ), Fe 2 O 3 content (Fe 2 ), ZnO 2 content (Zn 2 ) and MoO 3 content (Mo 2 ). Table 1 also lists the values of MnO 2 content (Mn 1 ), Fe 2 O 3 content (Fe 1 ), MoO 3 content (Mo 1 ), MnO 2 content (Mn 2 ), Fe 2 O 3 content (Fe 2 ) and MoO 3 content (Mo 2 ).

根據MoO 3含量(Mo 1)的結果,證實出獲得了含有鉬的鐵氧體粒子。 Based on the results of the MoO 3 content (Mo 1 ), it was confirmed that molybdenum-containing ferrite particles were obtained.

根據MoO 3含量(Mo 2)的結果,實例1至實例11的鐵氧體粒子在鐵氧體粒子的表面層中含有鉬且可期望展示出鉬的各種作用,例如磁性性質。 According to the results of the MoO 3 content (Mo 2 ), the ferrite particles of Examples 1 to 11 contain molybdenum in the surface layer of the ferrite particles and can be expected to exhibit various effects of molybdenum, such as magnetic properties.

表1列出MoO 3含量(Mo 2)相對於MoO 3含量(Mo 1)的表面層局限化比率(Mo 2/Mo 1)的計算結果。 Table 1 lists the calculation results of the surface layer localization ratio (Mo 2 /Mo 1 ) of the MoO 3 content (Mo 2 ) relative to the MoO 3 content (Mo 1 ).

根據表面層局限化比率(Mo 2/Mo 1)的結果,在實例1至實例11的鐵氧體粒子中,藉由XPS表面分析而確定的鐵氧體粒子的表面層的鉬含量大於藉由XRF分析而確定的鉬含量。根據此結果證實出,鉬局限於鐵氧體粒子的表面層中且可期望鉬高效地展示出各種作用。 According to the results of the surface layer localization ratio (Mo 2 /Mo 1 ), in the ferrite particles of Examples 1 to 11, the molybdenum content of the surface layer of the ferrite particles determined by XPS surface analysis was greater than the molybdenum content determined by XRF analysis. From this result, it was confirmed that molybdenum was localized in the surface layer of the ferrite particles and that molybdenum could be expected to efficiently exhibit various effects.

在其中在原材料中使用MoO 3的實例1及實例2中獲得的鐵氧體粒子中,藉由XRF分析而確定的鉬含量隨著原材料中的(Ni化合物+ Fe化合物)/Mo化合物的比率的增大而趨於減少。在其中在原材料中組合使用Na 2MoO 4的實例3至實例6中,當原材料中的(Ni化合物+ Fe化合物)/(Mo化合物)的比率恆定處於1/2時,藉由XRF分析而確定的鉬含量及藉由XPS表面分析而確定的鐵氧體粒子的表面層中的鉬含量隨著燒製溫度的改變而改變。 In the ferrite particles obtained in Examples 1 and 2 in which MoO3 was used in the raw material, the molybdenum content determined by XRF analysis varied with the ratio of (Ni compound + Fe compound)/Mo compound in the raw material. increases and tends to decrease. In Examples 3 to 6 in which Na 2 MoO 4 was used in combination in the raw materials, when the ratio of (Ni compound + Fe compound)/(Mo compound) in the raw materials was constant at 1/2, it was determined by XRF analysis The molybdenum content and the molybdenum content in the surface layer of the ferrite particles, determined by XPS surface analysis, change with changes in firing temperature.

因此,藉由對所使用的鉬化合物的量及類型或燒製溫度進行控制,可對鐵氧體粒子中所含有的鉬的量進行控制且可製成含有期望量的鉬的鐵氧體粒子。Therefore, by controlling the amount and type of the molybdenum compound used or the firing temperature, the amount of molybdenum contained in the ferrite particles can be controlled and ferrite particles containing a desired amount of molybdenum can be produced.

在其中在原材料中組合使用Na 2MoO 4且亦使用ZnO的實例7至實例10中,當原材料中的(Ni化合物+ Fe化合物+ Zn化合物)/(Mo化合物)的比率恆定處於1/2時,藉由XRF分析而確定的鉬含量及藉由XPS表面分析而確定的鐵氧體粒子的表面層中的鉬含量隨著Ni/Fe的改變而改變。 In Examples 7 to 10 in which Na 2 MoO 4 was used in combination with ZnO in the raw materials, when the ratio of (Ni compound + Fe compound + Zn compound)/(Mo compound) in the raw materials was constant at 1/2 , the molybdenum content determined by XRF analysis and the molybdenum content in the surface layer of the ferrite particles determined by XPS surface analysis change with the change of Ni/Fe.

表1列出在實例2、實例10及實例11中量測的矯頑力(coercivity)值作為代表。實例2、實例10及實例11的鐵氧體粒子具有為1.4 × 10 3安/米或小於1.4 × 10 3安/米的矯頑力,所述矯頑力低至其中在原材料中未使用MoO 3的比較例1的矯頑力的約1/2至1/4,且透露出獲得了作為軟鐵氧體(軟磁性材料)的合適的鐵氧體粒子。 相反地,比較例1的鐵氧體粒子的矯頑力為較實例2、實例10及實例11中的矯頑力的值高的值,即2.5 × 10 3安/米,且透露出比較例1的鐵氧體粒子不適合作為軟鐵氧體。 Table 1 lists the coercivity values measured in Example 2, Example 10, and Example 11 as representatives. The ferrite particles of Example 2, Example 10, and Example 11 had a coercivity of 1.4 × 10 3 A/m or less , which was as low as about 1/2 to 1/4 of the coercivity of Comparative Example 1 in which MoO 3 was not used in the raw materials, and revealed that suitable ferrite particles as soft ferrite (soft magnetic material) were obtained. On the contrary, the toughness of the ferrite particles of Comparative Example 1 is a value higher than the toughness values in Examples 2, 10 and 11, namely 2.5 × 10 3 A/m, and it is revealed that the ferrite particles of Comparative Example 1 are not suitable as soft ferrite.

每一實施例中的每一配置及其組合等均為實例性的,且在不背離本發明的要旨的條件下,可對配置作出添加、省略、替換及其他改變。本發明不受每一實施例的限制,而是僅受申請專利範圍的範圍的限制。Each configuration and combination in each embodiment is exemplary, and additions, omissions, substitutions and other changes may be made to the configuration without departing from the gist of the invention. The present invention is not limited to each embodiment, but is only limited to the scope of the patent application.

without

圖1是在實例1中獲得的鐵氧體粒子的掃描電子顯微鏡(SEM)影像。 圖2是在實例2中獲得的鐵氧體粒子的SEM影像。 圖3是在實例3中獲得的鐵氧體粒子的SEM影像。 圖4是在實例4中獲得的鐵氧體粒子的SEM影像。 圖5是在實例5中獲得的鐵氧體粒子的SEM影像。 圖6是在實例6中獲得的鐵氧體粒子的SEM影像。 圖7是在實例7中獲得的鐵氧體粒子的SEM影像。 圖8是在實例8中獲得的鐵氧體粒子的SEM影像。 圖9是在實例9中獲得的鐵氧體粒子的SEM影像。 圖10是在實例10中獲得的鐵氧體粒子的SEM影像。 圖11是在實例11中獲得的鐵氧體粒子的SEM影像。 圖12是在比較例1中獲得的鐵氧體粒子的SEM影像。 圖13是在實例1至實例10及比較例1中獲得的鐵氧體粒子的X射線繞射(XRD)圖案。 圖14是在實例11中獲得的鐵氧體粒子的X射線繞射(XRD)圖案。 Figure 1 is a scanning electron microscope (SEM) image of the ferrite particles obtained in Example 1. Figure 2 is an SEM image of the ferrite particles obtained in Example 2. Figure 3 is an SEM image of the ferrite particles obtained in Example 3. Figure 4 is an SEM image of the ferrite particles obtained in Example 4. Figure 5 is an SEM image of the ferrite particles obtained in Example 5. Figure 6 is an SEM image of the ferrite particles obtained in Example 6. Figure 7 is an SEM image of the ferrite particles obtained in Example 7. Figure 8 is an SEM image of the ferrite particles obtained in Example 8. Figure 9 is an SEM image of the ferrite particles obtained in Example 9. FIG. 10 is an SEM image of the ferrite particles obtained in Example 10. Figure 11 is an SEM image of the ferrite particles obtained in Example 11. FIG. 12 is an SEM image of the ferrite particles obtained in Comparative Example 1. 13 is an X-ray diffraction (XRD) pattern of the ferrite particles obtained in Examples 1 to 10 and Comparative Example 1. Figure 14 is an X-ray diffraction (XRD) pattern of the ferrite particles obtained in Example 11.

Claims (13)

一種包含鉬的鐵氧體粒子。A ferrite particle containing molybdenum. 如請求項1所述的鐵氧體粒子,其中所述鐵氧體粒子具有尖晶石結構。The ferrite particles according to claim 1, wherein the ferrite particles have a spinel structure. 如請求項2所述的鐵氧體粒子,其中所述尖晶石結構是由式AFe 2O 4表示,在式中,A是選自Ni、Mn、Cu、Zn、Mg、Ca及Co中的一個元素或多個元素。 The ferrite particles as described in claim 2, wherein the spinel structure is represented by the formula AFe2O4 , wherein A is one or more elements selected from Ni, Mn, Cu, Zn, Mg, Ca and Co. 如請求項1或2所述的鐵氧體粒子,其中所述鐵氧體粒子中的鉬含量為0.1質量%至30質量%,所述鐵氧體粒子中的所述鉬含量是藉由對所述鐵氧體粒子實行X射線螢光(XRF)分析而確定的相對於100質量%的所述鐵氧體粒子以MoO 3計的含量(Mo 1)。 The ferrite particles according to claim 1 or 2, wherein the molybdenum content in the ferrite particles is 0.1 mass% to 30 mass%, and the molybdenum content in the ferrite particles is determined by The content (Mo 1 ) of the ferrite particles in terms of MoO 3 relative to 100 mass % of the ferrite particles is determined by X-ray fluorescence (XRF) analysis. 如請求項1或2所述的鐵氧體粒子,其中所述鐵氧體粒子的表面層中的鉬含量為2.0質量%至95.0質量%,所述鐵氧體粒子的所述表面層中的所述鉬含量是藉由對所述鐵氧體粒子實行X射線光電子光譜法(XPS)表面分析而確定的相對於100質量%的所述鐵氧體粒子的所述表面層以MoO 3計的含量(Mo 2)。 The ferrite particles according to claim 1 or 2, wherein the molybdenum content in the surface layer of the ferrite particles is 2.0 mass % to 95.0 mass %, wherein the molybdenum content in the surface layer of the ferrite particles is the content (Mo 2 ) in terms of MoO 3 relative to 100 mass % of the surface layer of the ferrite particles determined by performing X-ray photoelectron spectroscopy (XPS) surface analysis on the ferrite particles. 如請求項1或2所述的鐵氧體粒子,其中所述鉬局限於所述鐵氧體粒子的表面層中。The ferrite particle as described in claim 1 or 2, wherein the molybdenum is confined in the surface layer of the ferrite particle. 如請求項1或2所述的鐵氧體粒子,其中鉬表面層局限化比率(Mo 2/Mo 1)為1.0至80,所述鉬表面層局限化比率是藉由對所述鐵氧體粒子實行X射線光電子光譜法(XPS)表面分析而確定的相對於100質量%的所述鐵氧體粒子的表面層以MoO 3計的含量(Mo 2)對藉由對所述鐵氧體粒子實行X射線螢光分析而確定的相對於100質量%的所述鐵氧體粒子以MoO 3計的含量(Mo 1)的比率。 The ferrite particles according to claim 1 or 2, wherein a molybdenum surface layer localization ratio (Mo 2 /Mo 1 ) is 1.0 to 80, wherein the molybdenum surface layer localization ratio is a ratio of a content (Mo 2 ) in terms of MoO 3 in the surface layer of the ferrite particles relative to 100% by mass determined by performing X-ray photoelectron spectroscopy (XPS) surface analysis on the ferrite particles to a content (Mo 1 ) in terms of MoO 3 in the ferrite particles relative to 100 % by mass determined by performing X-ray fluorescence analysis on the ferrite particles. 如請求項1或2所述的鐵氧體粒子,其中所述鐵氧體粒子的一次粒子的平均粒子大小為0.1微米至100微米。The ferrite particles as described in claim 1 or 2, wherein the average particle size of the primary particles of the ferrite particles is 0.1 microns to 100 microns. 如請求項1或2所述的鐵氧體粒子,其中所述鐵氧體粒子具有藉由BET法量測的為0.1平方米/克至2.5平方米/克的比表面積。The ferrite particles as claimed in claim 1 or 2, wherein the ferrite particles have a specific surface area measured by the BET method of 0.1 m2/g to 2.5 m2/g. 一種製成鐵氧體粒子的方法,其為用於製成如請求項1所述的鐵氧體粒子的方法,所述方法包括:在存在鉬化合物的條件下燒製金屬化合物及鐵化合物。A method for producing ferrite particles, which is a method for producing ferrite particles as described in claim 1, the method comprising: firing a metal compound and an iron compound in the presence of a molybdenum compound. 如請求項10所述的製成鐵氧體粒子的方法,所述製成鐵氧體粒子的方法包括:在所述存在所述鉬化合物的條件下燒製所述金屬化合物及所述鐵化合物以及進一步添加的鋅化合物。The method for producing ferrite particles as described in claim 10 comprises: sintering the metal compound and the iron compound and further adding a zinc compound in the presence of the molybdenum compound. 如請求項10或11所述的製成鐵氧體粒子的方法,其中所述鉬化合物是選自由三氧化鉬、鉬酸鋰、鉬酸鉀及鉬酸鈉組成的群組中的至少一種化合物。A method for producing ferrite particles as described in claim 10 or 11, wherein the molybdenum compound is at least one compound selected from the group consisting of molybdenum trioxide, lithium molybdate, potassium molybdate and sodium molybdate. 如請求項10或11所述的製成鐵氧體粒子的方法,其中所述燒製時的燒製溫度為800℃至1,500℃。The method for producing ferrite particles according to claim 10 or 11, wherein the firing temperature during firing is 800°C to 1,500°C.
TW112127856A 2022-07-29 2023-07-26 Ferrite particles and method for producing ferrite particles TW202408969A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2022/108810 2022-07-29
PCT/CN2022/108810 WO2024020979A1 (en) 2022-07-29 2022-07-29 Ferrite particles and method for producing ferrite particles

Publications (1)

Publication Number Publication Date
TW202408969A true TW202408969A (en) 2024-03-01

Family

ID=89705014

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112127856A TW202408969A (en) 2022-07-29 2023-07-26 Ferrite particles and method for producing ferrite particles

Country Status (3)

Country Link
JP (1) JP7605328B2 (en)
TW (1) TW202408969A (en)
WO (1) WO2024020979A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237923A (en) * 1994-01-07 1995-09-12 Japan Synthetic Rubber Co Ltd Hollow particle containing ferrite
JP3856898B2 (en) * 1996-03-22 2006-12-13 Tdk株式会社 Ferrite core for line filter and manufacturing method thereof
JP4031886B2 (en) 1999-05-21 2008-01-09 Jfeケミカル株式会社 Method for producing Ni-Zn ferrite
JP3856722B2 (en) 2002-04-26 2006-12-13 Tdk株式会社 Manufacturing method of spinel type ferrite core
CN106220157A (en) * 2016-07-02 2016-12-14 南通保来利轴承有限公司 A kind of Ferrite Material for wave filter magnetic core and preparation method thereof
CN106587977B (en) * 2016-11-17 2019-07-09 横店集团东磁股份有限公司 A kind of power-type nickel-zinc-ferrite material and preparation method thereof
CN107311637B (en) * 2017-07-04 2018-06-19 浙江大学 A kind of method that low-power consumption manganese-zinc ferrite is prepared based on nucleocapsid crystal grain
CN107778001B (en) * 2017-10-10 2018-12-28 浙江大学 A method of generating nanometer crystal boundary high resistivity film reduces nickel-zinc ferrite power loss
CN109851344A (en) * 2018-12-31 2019-06-07 天长市中德电子有限公司 A kind of preparation process of high-performance nickel-zinc-ferrite material

Also Published As

Publication number Publication date
JP2024531012A (en) 2024-08-29
WO2024020979A1 (en) 2024-02-01
JP7605328B2 (en) 2024-12-24

Similar Documents

Publication Publication Date Title
JP6190023B1 (en) Method for producing zirconium tungstate phosphate
JP6849812B2 (en) Positive electrode active material for all-solid-state lithium secondary batteries
JP6391857B2 (en) Spinel-type lithium manganese-containing composite oxide
WO2016035852A1 (en) Lithium metal composite oxide powder
JP6856196B2 (en) Magnetic particles and their manufacturing method
JP6864104B2 (en) Positive electrode active material for all-solid-state lithium secondary batteries
JPWO2014136760A1 (en) Lithium metal composite oxide powder
TWI750137B (en) Method for manufacturing zirconium tungstate phosphate
JP2008105912A (en) METHOD FOR PRODUCING NANO-MULTIPLE OXIDE AxMyOz
WO2017061403A1 (en) Negative thermal expansion material and composite material including same
JP6718162B2 (en) Composite magnetic particle, radio wave absorber, and method for producing composite magnetic particle
JP6194618B2 (en) Trimanganese tetraoxide and method for producing the same
TW202408969A (en) Ferrite particles and method for producing ferrite particles
US20240294393A1 (en) Plate-shaped iron oxide particles and method for producing iron oxide particles
JP7458575B2 (en) Iron oxide particles and method for producing iron oxide particles
US20240243301A1 (en) Nickel oxide particles and method for producing the same
JP2013230966A (en) Metal-substituted trimanganese tetraoxide and method for producing the same, and method for producing lithium manganese complex oxide using the same
US20240092699A1 (en) Zirconia particles and method for producing zirconia particles
JP2024536613A (en) Forsterite particles and method for producing forsterite particles
TW202239712A (en) Composite particles and method for producing composite particles
JP2004175597A (en) Silica / rare earth oxide combined powder and method of manufacturing the same