TW202406731A - Multilayer body and method for producing same - Google Patents

Multilayer body and method for producing same Download PDF

Info

Publication number
TW202406731A
TW202406731A TW112119839A TW112119839A TW202406731A TW 202406731 A TW202406731 A TW 202406731A TW 112119839 A TW112119839 A TW 112119839A TW 112119839 A TW112119839 A TW 112119839A TW 202406731 A TW202406731 A TW 202406731A
Authority
TW
Taiwan
Prior art keywords
thermally conductive
particles
conductive layer
curing
conductive particles
Prior art date
Application number
TW112119839A
Other languages
Chinese (zh)
Inventor
趙奕靖
渋谷弘毅
岩田侑記
西尾健
長島稔
Original Assignee
日商迪睿合股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商迪睿合股份有限公司 filed Critical 日商迪睿合股份有限公司
Publication of TW202406731A publication Critical patent/TW202406731A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Abstract

The present invention provides a multilayer body which comprises: a base material; a first heat conductive layer which is arranged on the base material and contains a curable component, a curing agent that cures the curable component, first heat conductive particles, and low-melting-point metal particles; and a second heat conductive layer which is arranged on the first heat conductive layer and contains a curable component, a curing agent that cures the curable component, second heat conductive particles, and low-melting-point metal particles. Some of the first heat conductive particles in the first heat conductive layer and some of the second heat conductive particles in the second heat conductive layer are in contact with each other; the volume average particle diameter of the first heat conductive particles is smaller than the volume average particle diameter of the second heat conductive particles; and the base material contains at least one substance that is selected from among silicon, aluminum, tungsten, molybdenum, glass, a mold resin, a stainless steel and a ceramic.

Description

層疊體及其製造方法Laminated body and manufacturing method thereof

本發明系關於層疊體和層疊體的製造方法。The present invention relates to a laminated body and a method for manufacturing the laminated body.

各種電子設備中的LSI等中,如果藉由使用的元件的發熱而LSI本身被長時間暴露於高溫,則有帶來動作不良、故障的擔憂。因此,為了防止LSI等的升溫,廣泛使用導熱材料。上述導熱材料能夠藉由使元件的發熱擴散或傳導至用於放出至大氣等體系外的放熱構件,從而能夠防止設備的升溫。In LSIs etc. used in various electronic devices, if the LSI itself is exposed to high temperatures for a long time due to the heat generated by the components used, there is a concern that malfunctions and malfunctions may occur. Therefore, in order to prevent the temperature of LSI and the like from rising, thermally conductive materials are widely used. The thermally conductive material described above can prevent the device from heating up by diffusing or conducting the heat generated by the element to a heat dissipation member for releasing the heat to the outside of the system such as the atmosphere.

如果作為這樣的導熱材料使用金屬或陶瓷,則具有不易輕量化,加工性差,或柔軟性變低這樣的問題。因此,提出了各種將由樹脂或橡膠等形成的高分子材料作為母材的導熱材料。If metal or ceramic is used as such a thermally conductive material, there are problems such as difficulty in weight reduction, poor workability, or reduced flexibility. Therefore, various thermally conductive materials using a polymer material made of resin, rubber, etc. as a base material have been proposed.

例如,提出了一種導熱接著劑,其具有含有固化成分和該固化成分用的固化劑的熱固性接著劑,以及分散於該熱固性接著劑中的金屬填料,金屬填料具有銀粉和焊料粉,該焊料粉顯示比導熱接著劑的熱固化處理溫度低的熔融溫度,並且在該熱固性接著劑的熱固化處理條件下與銀粉進行反應,生成顯示比該焊料粉的熔融溫度高的熔點的高熔點焊料合金,該固化劑為對於金屬填料具有助焊劑活性的固化劑,該固化成分為縮水甘油基醚型環氧樹脂,固化劑為三羧酸的單酸酐(例如,参照專利文獻1)。 現有技術文獻 專利文獻 For example, a thermally conductive adhesive is proposed, which has a thermosetting adhesive containing a curing component and a curing agent for the curing component, and a metal filler dispersed in the thermosetting adhesive, the metal filler including silver powder and solder powder, and the solder powder is dispersed in the thermosetting adhesive. It shows a melting temperature lower than the thermal curing treatment temperature of the thermally conductive adhesive, and reacts with the silver powder under the thermal curing treatment conditions of the thermosetting adhesive to produce a high melting point solder alloy showing a melting point higher than the melting temperature of the solder powder, The curing agent is a curing agent having flux activity for metal fillers, the curing component is a glycidyl ether type epoxy resin, and the curing agent is a monoanhydride of tricarboxylic acid (for example, see Patent Document 1). existing technical documents patent documents

專利文獻1:日本專利第5796242號公報Patent Document 1: Japanese Patent No. 5796242

<發明欲解決之問題><Problem to be solved by the invention>

然而,上述專利文獻1所記載的以往技術中,如果在銅基材與矽基材之間形成由導熱接著劑形成的導熱層,則具有與矽界面的接觸電阻變大,導熱性會降低這樣的問題。However, in the conventional technology described in the above-mentioned Patent Document 1, if a thermally conductive layer made of a thermally conductive adhesive is formed between a copper base material and a silicon base material, the contact resistance at the silicon interface increases and the thermal conductivity decreases. problem.

本發明的課題在於解決以往的上述各個問題,達成以下的目的。即,本發明的目的在於,提供能夠實現高導熱性和低熱電阻的層疊體和層疊體的製造方法。 用於解決問題的方法 An object of the present invention is to solve the above-mentioned conventional problems and achieve the following objects. That is, an object of the present invention is to provide a laminated body and a method for manufacturing the laminated body that can achieve high thermal conductivity and low thermal resistance. Methods used to solve problems

作為用於解決上述課題的方法,如下。即, <1>一種層疊體,其特徵在於,具有: 基材; 在上述基材上,含有固化成分、使該固化成分固化的固化劑、第1導熱粒子和低熔點金屬粒子的第1導熱層;以及 在上述第1導熱層上,含有固化成分、使該固化成分固化的固化劑、第2導熱粒子和低熔點金屬粒子的第2導熱層, 上述第1導熱層所包含的第1導熱粒子的一部分與上述第2導熱層所包含的第2導熱粒子的一部分進行了接觸,上述第1導熱粒子的體積平均粒徑比上述第2導熱粒子的體積平均粒徑小, 上述基材包含選自矽、鋁、鎢、鉬、玻璃、模塑樹脂、不鏽鋼和陶瓷中的至少1種。 <2>根據上述<1>所述的層疊體,上述第1導熱粒子的體積平均粒徑A與上述第2導熱粒子的體積平均粒徑B的比(A:B)為1:2~1:50。 <3>根據上述<1>或<2>所述的層疊體,上述第1導熱粒子的體積平均粒徑為0.3μm以上30μm以下。 <4>根據上述<1>~<3>中任一項所述的層疊體,上述第2導熱粒子的體積平均粒徑為1μm以上100μm以下。 <5>根據上述<1>~<4>中任一項所述的層疊體,上述第1導熱粒子和第2導熱粒子為銅粒子、銀被覆粒子和銀粒子的至少任一者。 <6>根據上述<1>~<5>中任一項所述的層疊體,上述低熔點金屬粒子包含Sn以及選自Bi、Ag、Cu和In中的至少1種。 <7>根據上述<1>~<6>中任一項所述的層疊體,上述固化劑相對於上述第1導熱粒子和第2導熱粒子具有助焊劑活性。 <8>根據上述<1>~<7>中任一項所述的層疊體,上述固化成分為環氧乙烷環化合物和氧雜環丁烷化合物的至少任一者。 <9>根據上述<1>~<8>中任一項所述的層疊體,在上述第1導熱層與上述第2導熱層之間具有第3導熱層。 <10>根據上述<9>所述的層疊體,上述第3導熱層為銅箔。 <11>根據上述<1>~<10>中任一項所述的層疊體,在上述第2導熱層上具有與上述基材對置的對置基材, 上述對置基材包含選自銅、金、鉑、鈀、銀、鋅、鐵、錫、鎳、鎂、銦和這些合金中的至少1種。 <12>一種層疊體的製造方法,其特徵在於,包括下述工序: 在上述基材上,形成含有固化成分、使該固化成分固化的固化劑、第1導熱粒子和低熔點金屬粒子的第1導熱層的第1導熱層形成工序,以及 在上述第1導熱層上,形成含有固化成分、使該固化成分固化的固化劑、第2導熱粒子和低熔點金屬粒子的第2導熱層的第2導熱層形成工序, 上述基材包含選自矽、鋁、鎢、鉬、玻璃、模塑樹脂、不鏽鋼和陶瓷中的至少1種。 <發明之功效> Methods for solving the above problems are as follows. Right now, <1> A laminated body characterized by having: base material; On the above-mentioned base material, a first thermally conductive layer containing a curing component, a curing agent for curing the curing component, first thermally conductive particles and low melting point metal particles; and On the above-mentioned first thermally conductive layer, a second thermally conductive layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles and low melting point metal particles, A part of the first thermally conductive particles included in the first thermally conductive layer is in contact with a part of the second thermally conductive particles included in the second thermally conductive layer, and the volume average particle diameter of the first thermally conductive particles is larger than that of the second thermally conductive particles. The volume average particle size is small, The base material includes at least one selected from the group consisting of silicon, aluminum, tungsten, molybdenum, glass, molding resin, stainless steel, and ceramics. <2> The laminate according to the above <1>, wherein the ratio (A:B) of the volume average particle diameter A of the first thermally conductive particles to the volume average particle diameter B of the second thermally conductive particles is 1:2 to 1 :50. <3> In the laminate according to <1> or <2>, the volume average particle diameter of the first thermally conductive particles is 0.3 μm or more and 30 μm or less. <4> The laminated body according to any one of the above <1> to <3>, wherein the second thermally conductive particles have a volume average particle diameter of 1 μm or more and 100 μm or less. <5> The laminated body according to any one of <1> to <4>, wherein the first thermally conductive particles and the second thermally conductive particles are at least any one of copper particles, silver-coated particles, and silver particles. <6> The laminated body according to any one of the above <1> to <5>, wherein the low melting point metal particles contain Sn and at least one selected from the group consisting of Bi, Ag, Cu and In. <7> In the laminated body according to any one of the above <1> to <6>, the curing agent has flux activity with respect to the first thermally conductive particles and the second thermally conductive particles. <8> The laminated body according to any one of the above <1> to <7>, wherein the cured component is at least one of an oxirane ring compound and an oxetane compound. <9> The laminated body according to any one of the above <1> to <8>, including a third thermal conductive layer between the first thermal conductive layer and the second thermal conductive layer. <10> The laminated body according to the above <9>, wherein the third thermal conductive layer is a copper foil. <11> The laminate according to any one of the above <1> to <10>, wherein the second thermal conductive layer has an opposing base material that faces the base material, The opposing base material includes at least one selected from the group consisting of copper, gold, platinum, palladium, silver, zinc, iron, tin, nickel, magnesium, indium and these alloys. <12> A method for manufacturing a laminated body, characterized by including the following steps: a first thermally conductive layer forming step of forming a first thermally conductive layer containing a curable component, a curing agent for curing the curable component, first thermally conductive particles, and low-melting-point metal particles on the above-mentioned base material; and A second thermal conductive layer forming step of forming a second thermal conductive layer containing a curing component, a curing agent for curing the curing component, second thermal conductive particles, and low melting point metal particles on the above-mentioned first thermal conductive layer, The base material includes at least one selected from the group consisting of silicon, aluminum, tungsten, molybdenum, glass, molding resin, stainless steel, and ceramics. <Effects of Invention>

根據本發明,能夠解決以往的上述各個問題,達成上述目的,能夠提供能夠實現高導熱性和低熱電阻的層疊體和層疊體的製造方法。According to the present invention, it is possible to solve the above-mentioned conventional problems, achieve the above-mentioned objects, and provide a laminated body and a method for manufacturing the laminated body that can achieve high thermal conductivity and low thermal resistance.

(層疊體) 本發明的層疊體具有:基材,第1導熱層以及第2導熱層,優選具有第3導熱層和對置基材,進一步根據需要具有其它構件。 (Laminated body) The laminated body of the present invention has a base material, a first thermal conductive layer and a second thermal conductive layer, preferably a third thermal conductive layer and a counter base material, and further has other members as necessary.

在本發明中,藉由在基材上,依次具有第1導熱層和第2導熱層,第1導熱粒子的一部分與第2導熱粒子的一部分進行了接觸,上述第1導熱粒子的體積平均粒徑比上述第2導熱粒子的體積平均粒徑小,從而即使為由選自矽、鋁、鎢、鉬、玻璃、模塑樹脂、不鏽鋼和陶瓷中的至少1種形成的焊料潤濕性差的基材,也隨著接觸面積的增大,能夠大幅提高導熱性。In the present invention, by having the first thermally conductive layer and the second thermally conductive layer sequentially on the base material, a part of the first thermally conductive particles comes into contact with a part of the second thermally conductive particles, and the volume average particle size of the first thermally conductive particles is The diameter is smaller than the volume average particle diameter of the second thermally conductive particles, so that even if it is formed of at least one selected from the group consisting of silicon, aluminum, tungsten, molybdenum, glass, molding resin, stainless steel, and ceramics, it has poor solder wettability. Material, as the contact area increases, the thermal conductivity can be greatly improved.

<基材> 關於上述基材的形狀、結構、大小、材質等,沒有特別限制,能夠根據目的適當選擇。 <Substrate> The shape, structure, size, material, etc. of the above-mentioned base material are not particularly limited and can be appropriately selected according to the purpose.

作為上述基材的形狀,可舉出例如,板狀、片狀等。作為上述基材的結構,可舉出單層結構、層疊結構等。作為上述基材的大小,能夠根據用途等適當選擇。Examples of the shape of the base material include plate shape, sheet shape, and the like. Examples of the structure of the base material include a single-layer structure, a laminated structure, and the like. The size of the above-mentioned base material can be appropriately selected depending on the use and the like.

上述基材的材質為焊料不易潤濕的材質,包含選自矽、鋁、鎢、鉬、玻璃、模塑樹脂、不銹鋼和陶瓷中的至少1種。作為上述陶瓷,可舉出例如,氮化鋁、炭化矽、氧化鋁、氮化鎵等。作為上述模塑樹脂,可舉出例如,環氧樹脂、有機矽樹脂、氨基甲酸酯樹脂、丙烯酸系樹脂等。The material of the above-mentioned base material is a material that is not easily wetted by solder, and includes at least one selected from the group consisting of silicon, aluminum, tungsten, molybdenum, glass, molding resin, stainless steel, and ceramics. Examples of the ceramic include aluminum nitride, silicon carbide, aluminum oxide, gallium nitride, and the like. Examples of the molding resin include epoxy resin, silicone resin, urethane resin, acrylic resin, and the like.

上述基材的平均厚度沒有特別限制,能夠根據目的適當選擇。The average thickness of the base material is not particularly limited and can be appropriately selected depending on the purpose.

上述基材可以為放熱結構體中的發熱體(電子部件)自身。The base material may be the heat generating body (electronic component) itself in the heat radiation structure.

<第1導熱層> 第1導熱層在上述基材上形成,優選與基材相接而形成。上述第1導熱層含有固化成分、使該固化成分固化的固化劑、第1導熱粒子和低熔點金屬粒子,進一步根據需要含有其它成分。 <1st thermal conductive layer> The first thermally conductive layer is formed on the above-mentioned base material, and is preferably formed in contact with the base material. The first thermally conductive layer contains a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles, and further contains other components as necessary.

-固化成分- 作為固化成分,優選使用環氧乙烷環化合物和氧雜環丁烷化合物的至少任一者。 -Curing ingredients- As a curing component, it is preferable to use at least one of an ethylene oxide ring compound and an oxetane compound.

--環氧乙烷環化合物-- 上述環氧乙烷環化合物為具有環氧乙烷環的化合物,可舉出例如,環氧樹脂等。 --Ethylene oxide ring compound-- The above-mentioned ethylene oxide ring compound is a compound having an ethylene oxide ring, and examples thereof include epoxy resins and the like.

作為上述環氧樹脂,沒有特別限制,能夠根據目的適當選擇,可舉出例如,縮水甘油基醚型環氧樹脂、苯酚酚醛清漆型環氧樹脂、甲酚酚醛清漆型環氧樹脂、雙酚A型環氧樹脂、三苯酚型環氧樹脂、四苯酚型環氧樹脂、苯酚-苯二亞甲基型環氧樹脂、萘酚-苯二亞甲基型環氧樹脂、苯酚-萘酚型環氧樹脂、苯酚-二環戊二烯型環氧樹脂、脂環式環氧樹脂、脂肪族環氧樹脂等。它們可以單独使用1種,可以並用2種以上。The epoxy resin is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include glycidyl ether type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, and bisphenol A. type epoxy resin, trisphenol type epoxy resin, tetraphenol type epoxy resin, phenol-xylylene epoxy resin, naphthol-xylylene epoxy resin, phenol-naphthol type epoxy resin Oxygen resin, phenol-dicyclopentadiene epoxy resin, alicyclic epoxy resin, aliphatic epoxy resin, etc. One type of these may be used alone, or two or more types may be used in combination.

--氧雜環丁烷化合物-- 上述氧雜環丁烷化合物為具有氧雜環丁烷基的化合物,可以為脂肪族化合物、脂環式化合物或芳香族化合物。 --oxetane compounds-- The above-mentioned oxetane compound is a compound having an oxetanyl group, and may be an aliphatic compound, an alicyclic compound, or an aromatic compound.

上述氧雜環丁烷化合物可以為僅僅具有1個氧雜環丁烷基的1官能的氧雜環丁烷化合物,可以為具有2個以上氧雜環丁烷基的多官能的氧雜環丁烷化合物。The above-mentioned oxetane compound may be a monofunctional oxetane compound having only one oxetanyl group, or a polyfunctional oxetane compound having two or more oxetanyl groups. Alkane compounds.

作為上述氧雜環丁烷化合物,沒有特別限制,能夠根據目的適當選擇,可舉出例如,3,7-雙(3-氧雜環丁烷基)-5-氧雜-壬烷、1,4-雙[(3-乙基-3-氧雜環丁烷基甲氧基)甲基]苯、1,2-雙[(3-乙基-3-氧雜環丁烷基甲氧基)甲基]乙烷、1,3-雙[(3-乙基-3-氧雜環丁烷基甲氧基)甲基]丙烷、乙二醇雙(3-乙基-3-氧雜環丁烷基甲基)醚、三甘醇雙(3-乙基-3-氧雜環丁烷基甲基)醚、四甘醇雙(3-乙基-3-氧雜環丁烷基甲基)醚、1,4-雙(3-乙基-3-氧雜環丁烷基甲氧基)丁烷、1,6-雙(3-乙基-3-氧雜環丁烷基甲氧基)己烷、3-乙基-3-(苯氧基)甲基氧雜環丁烷、3-乙基-3-(環己基氧基甲基)氧雜環丁烷、3-乙基-3-(2-乙基己基氧基甲基)氧雜環丁烷、3-乙基-3-羥基甲基氧雜環丁烷、3-乙基-3-(氯甲基)氧雜環丁烷、3-乙基-3{[(3-乙基氧雜環丁烷-3-基)甲氧基]甲基}氧雜環丁烷、苯二亞甲基雙氧雜環丁烷、4,4’-雙[(3-乙基-3-氧雜環丁烷基)甲氧基甲基]聯苯(OXBP)等。它們可以單独使用1種,可以並用2種以上。The oxetane compound is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include 3,7-bis(3-oxetanyl)-5-oxa-nonane, 1, 4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, 1,2-bis[(3-ethyl-3-oxetanylmethoxy) )methyl]ethane, 1,3-bis[(3-ethyl-3-oxetanylmethoxy)methyl]propane, ethylene glycol bis(3-ethyl-3-oxa cyclobutyl methyl) ether, triethylene glycol bis (3-ethyl-3-oxetanyl methyl) ether, tetraethylene glycol bis (3-ethyl-3-oxetanyl) Methyl)ether, 1,4-bis(3-ethyl-3-oxetanylmethoxy)butane, 1,6-bis(3-ethyl-3-oxetanyl) Methoxy)hexane, 3-ethyl-3-(phenoxy)methyloxetane, 3-ethyl-3-(cyclohexyloxymethyl)oxetane, 3- Ethyl-3-(2-ethylhexyloxymethyl)oxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3-(chloromethyl) Oxetane, 3-ethyl-3{[(3-ethyloxetan-3-yl)methoxy]methyl}oxetane, xylylenedioxa Cyclbutane, 4,4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl (OXBP), etc. One type of these may be used alone, or two or more types may be used in combination.

作為上述氧雜環丁烷化合物,能夠使用市售品,作為上述市售品,可舉出例如,由東亞合成株式會社銷售的「ARONE OXETANE(注冊商標)」系列、由宇部興產株式會社銷售的「ETERNACOLL(注冊商標)」系列等。As the oxetane compound, a commercially available product can be used. Examples of the commercially available product include the "ARONE OXETANE (registered trademark)" series sold by Toagosei Co., Ltd. and the "ARONE OXETANE (registered trademark)" series sold by Ube Kosan Co., Ltd. "ETERNACOLL (registered trademark)" series, etc.

上述環氧乙烷環化合物和氧雜環丁烷化合物之中,優選為縮水甘油基醚型環氧樹脂、苯酚酚醛清漆型環氧樹脂、甲酚酚醛清漆型環氧樹脂、苯酚-二環戊二烯型環氧樹脂、雙酚A型環氧樹脂、脂肪族環氧樹脂、4,4’-雙[(3-乙基-3-氧雜環丁烷基)甲氧基甲基]聯苯(OXBP)。Among the above-mentioned ethylene oxide ring compounds and oxetane compounds, glycidyl ether type epoxy resin, phenol novolak type epoxy resin, cresol novolac type epoxy resin, and phenol-dicyclopentane are preferred. Diene epoxy resin, bisphenol A epoxy resin, aliphatic epoxy resin, 4,4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl] Benzene (OXBP).

上述固化成分的含量沒有特別限制,能夠根據目的適當選擇,相對於第1導熱層的總量,優選為0.5質量%以上60質量%以下。The content of the curable component is not particularly limited and can be appropriately selected depending on the purpose. It is preferably 0.5 mass % or more and 60 mass % or less based on the total amount of the first thermal conductive layer.

-固化劑- 作為上述固化劑,為與上述固化成分對應的固化劑,可舉出例如,酸酐系固化劑、脂肪族胺系固化劑、芳香族胺系固化劑、苯酚系固化劑、硫醇系固化劑等加聚型固化劑、咪唑等觸媒型固化劑等。它們可以單独使用1種,可以並用2種以上。這些之中,優選為酸酐系固化劑。 -Curing agent- The above-mentioned curing agent is a curing agent corresponding to the above-mentioned curing component, and examples thereof include acid anhydride-based curing agents, aliphatic amine-based curing agents, aromatic amine-based curing agents, phenol-based curing agents, thiol-based curing agents, and the like. Addition polymerization type curing agent, imidazole and other catalyst type curing agents, etc. One type of these may be used alone, or two or more types may be used in combination. Among these, acid anhydride-based curing agents are preferred.

上述酸酐系固化劑在固化成分為環氧樹脂的情況下,熱固化時沒有氣體的發生,與環氧樹脂混合時能夠實現長的儲存期,此外,從能夠實現所得的固化物的電特性、化學的特性和機械特性間的良好的平衡的方面考慮,是優選的。When the curing component of the above-mentioned acid anhydride-based curing agent is an epoxy resin, no gas is generated during thermal curing, and when mixed with the epoxy resin, a long storage period can be achieved. In addition, the electrical properties of the obtained cured product can be realized. A good balance between chemical properties and mechanical properties is preferred.

作為上述酸酐系固化劑,可舉出例如,環己烷-1,2-二羧酸酐、三羧酸的單酸酐等。作為上述三羧酸的單酸酐,可舉出例如,環己烷-1,2,4-三羧酸-1,2-酸酐等。Examples of the acid anhydride-based curing agent include cyclohexane-1,2-dicarboxylic acid anhydride, tricarboxylic acid monoanhydride, and the like. Examples of the monoanhydride of the tricarboxylic acid include cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride.

上述固化劑具有助焊劑活性,從提高相對於導熱粒子的熔融的低熔點金屬粒子的潤濕性方面考慮是優選的。作為上述固化劑表現助焊劑活性的方法,可舉出例如,對於上述固化劑利用公知的方法導入羧基、磺醯基、磷酸基等質子酸基的方法等。這些之中,從與作為固化成分的環氧樹脂或氧雜環丁烷化合物的反應性方面考慮,優選導入羧基,可舉出例如,戊二酸、琥珀酸等含有羧基的有機酸等。此外,可以為由戊二酸酐或琥珀酸酐改性的化合物或戊二酸銀等有機酸的金屬鹽等。The above-mentioned curing agent has flux activity and is preferable from the viewpoint of improving the wettability of the melted low-melting-point metal particles with respect to the thermally conductive particles. Examples of a method for the curing agent to exhibit flux activity include a method of introducing a protonic acid group such as a carboxyl group, a sulfonyl group, or a phosphoric acid group into the curing agent by a known method. Among these, it is preferable to introduce a carboxyl group from the viewpoint of reactivity with an epoxy resin or an oxetane compound as a curing component. Examples include organic acids containing a carboxyl group such as glutaric acid and succinic acid. In addition, compounds modified with glutaric anhydride or succinic anhydride or metal salts of organic acids such as silver glutarate may be used.

上述固化劑的含量沒有特別限制,能夠根據目的適當選擇,相對於第1導熱層的總量,優選為0.1質量%以上30質量%以下。The content of the curing agent is not particularly limited and can be appropriately selected depending on the purpose. It is preferably 0.1 mass % or more and 30 mass % or less based on the total amount of the first thermal conductive layer.

上述固化成分C與上述固化劑D的莫耳当量基準的当量比(C/D)根據使用的固化成分和固化劑的種類而不同,不能籠統地規定,優選為0.5以上3以下,更優選為0.5以上2以下,進一步優選為0.7以上1.5以下。 如果上述当量比(C/D)為0.5以上3以下,則具有將導熱組合物熱固化時,低熔點金屬粒子充分地熔融而能夠形成網路這樣的優點。 The molar equivalent equivalent ratio (C/D) between the curing component C and the curing agent D varies depending on the type of curing component and curing agent used and cannot be generally defined. However, it is preferably 0.5 or more and 3 or less, and more preferably 0.5 or more and 3 or less. 0.5 or more and 2 or less, more preferably 0.7 or more and 1.5 or less. If the equivalent ratio (C/D) is 0.5 or more and 3 or less, there is an advantage that when the thermally conductive composition is thermally cured, the low-melting-point metal particles are sufficiently melted to form a network.

-第1導熱粒子- 作為上述第1導熱粒子,優選為銅粒子、銀被覆粒子和銀粒子的至少任一者。 -The 1st thermal conductive particle- The first thermally conductive particles are preferably at least one of copper particles, silver-coated particles, and silver particles.

作為上述銀被覆粒子,可舉出例如,銀被覆銅粒子、銀被覆鎳粒子、銀被覆鋁粒子等。Examples of the silver-coated particles include silver-coated copper particles, silver-coated nickel particles, silver-coated aluminum particles, and the like.

作為上述第1導熱粒子的形狀,沒有特別限制,能夠根據目的適當選擇,可舉出例如,球狀、扁平狀、粒狀、針狀等。The shape of the first thermally conductive particles is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include spherical, flat, granular, needle-shaped, and the like.

上述第1導熱粒子的體積平均粒徑優選為0.3μm以上30μm以下,更優選為0.5μm以上10μm以下。如果導熱粒子的體積平均粒徑為0.3μm以上30μm以下,則能夠增大第1導熱粒子相對於低熔點金屬粒子的體積比例,能夠實現高導熱性和低熱電阻。上述體積平均粒徑能夠藉由例如,鐳射器衍射、散乱式粒徑分佈測定装置(製品名:Microtrac MT3300EXII),進行測定。The volume average particle diameter of the first thermally conductive particles is preferably 0.3 μm or more and 30 μm or less, and more preferably 0.5 μm or more and 10 μm or less. If the volume average particle diameter of the thermally conductive particles is 0.3 μm or more and 30 μm or less, the volume ratio of the first thermally conductive particles relative to the low-melting-point metal particles can be increased, and high thermal conductivity and low thermal resistance can be achieved. The above-mentioned volume average particle size can be measured, for example, by laser diffraction and a scattering particle size distribution measuring device (product name: Microtrac MT3300EXII).

-低熔點金屬粒子- 作為上述低熔點金屬粒子,適合使用JIS Z3282-1999所規定的焊料粒子。 -Low melting point metal particles- As the above-mentioned low melting point metal particles, solder particles specified in JIS Z3282-1999 are suitably used.

作為上述焊料粒子,可舉出例如,Sn-Pb系焊料粒子、Pb-Sn-Sb系焊料粒子、Sn-Sb系焊料粒子、Sn-Pb-Bi系焊料粒子、Sn-Bi系焊料粒子、Sn-Bi-Ag系焊料粒子、Sn-Cu系焊料粒子、Sn-Pb-Cu系焊料粒子、Sn-In系焊料粒子、Sn-Ag系焊料粒子、Sn-Pb-Ag系焊料粒子、Pb-Ag系焊料粒子、Sn-Ag-Cu系焊料粒子等。它們可以單独使用1種,可以並用2種以上。這些之中,優選為包含Sn,以及選自Bi、Ag、Cu和In中的至少1種的焊料粒子,更優選為Sn-Bi系焊料粒子、Sn-Bi-Ag系焊料粒子、Sn-Ag-Cu系焊料粒子、Sn-In系焊料粒子。Examples of the solder particles include Sn-Pb solder particles, Pb-Sn-Sb solder particles, Sn-Sb solder particles, Sn-Pb-Bi solder particles, Sn-Bi solder particles, Sn -Bi-Ag based solder particles, Sn-Cu based solder particles, Sn-Pb-Cu based solder particles, Sn-In based solder particles, Sn-Ag based solder particles, Sn-Pb-Ag based solder particles, Pb-Ag Solder particles, Sn-Ag-Cu solder particles, etc. One type of these may be used alone, or two or more types may be used in combination. Among these, solder particles containing Sn and at least one selected from Bi, Ag, Cu, and In are preferred, and Sn-Bi-based solder particles, Sn-Bi-Ag-based solder particles, and Sn-Ag are more preferred. -Cu-based solder particles and Sn-In-based solder particles.

作為上述低熔點金屬粒子的形狀,沒有特別限制,能夠根據目的適當選擇,可舉出例如,球狀、扁平狀、粒狀、針狀等。The shape of the low-melting-point metal particles is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include spherical, flat, granular, needle-shaped, and the like.

上述低熔點金屬粒子的熔點優選為100℃以上250℃以下,更優選為120℃以上200℃以下。The melting point of the low-melting-point metal particles is preferably 100°C or more and 250°C or less, and more preferably 120°C or more and 200°C or less.

上述低熔點金屬粒子的熔點比上述第1導熱組合物的熱固化處理溫度低,從在第1導熱組合物的固化物中通過熔融的低熔點金屬粒子,藉由第1導熱粒子以能夠形成網路(金屬的連續相),能夠實現高導熱性和低熱電阻方面考慮是優選的。The melting point of the low-melting-point metal particles is lower than the thermal curing temperature of the first heat-conductive composition. From the melted low-melting-point metal particles passing through the cured product of the first heat-conductive composition, a network can be formed by the first heat-conductive particles. path (continuous phase of metal), which is preferred in terms of being able to achieve high thermal conductivity and low thermal resistance.

上述低熔點金屬粒子在上述第1導熱組合物的熱固化處理條件下與上述導熱粒子進行反應,成為顯示與上述低熔點金屬粒子相比高的熔點的合金,從而能夠防止高溫下的熔融,可靠性提高。此外,第1導熱組合物的固化物的耐熱性提高。The low-melting-point metal particles react with the thermally conductive particles under the thermal curing treatment conditions of the first thermally conductive composition to form an alloy having a higher melting point than the low-melting-point metal particles, thereby preventing melting at high temperatures and reliably sexual enhancement. In addition, the heat resistance of the cured product of the first thermally conductive composition is improved.

上述第1導熱組合物的熱固化處理例如,以150℃以上200℃的溫度在30分鐘以上2小時以下的條件進行。The thermal curing treatment of the first thermally conductive composition is performed, for example, at a temperature of 150° C. or more and 200° C. for 30 minutes or more and 2 hours or less.

上述低熔點金屬粒子的體積平均粒徑優選為10μm以下,更優選為1μm以上5μm以下。如果低熔點金屬粒子的體積平均粒徑為10μm以下,則能夠減小低熔點金屬粒子相對於導熱粒子的體積比例,能夠實現第1導熱層的高導熱性和低熱電阻。上述低熔點金屬粒子的體積平均粒徑能夠與上述第1導熱粒子的體積平均粒徑同樣地操作來進行測定。The volume average particle diameter of the low melting point metal particles is preferably 10 μm or less, more preferably 1 μm or more and 5 μm or less. If the volume average particle diameter of the low-melting-point metal particles is 10 μm or less, the volume ratio of the low-melting-point metal particles relative to the thermally conductive particles can be reduced, and high thermal conductivity and low thermal resistance of the first thermally conductive layer can be achieved. The volume average particle diameter of the low melting point metal particles can be measured in the same manner as the volume average particle diameter of the first thermally conductive particles.

上述第1導熱粒子的體積平均粒徑比上述低熔點金屬粒子的體積平均粒徑大,上述導熱粒子A與上述低熔點金屬粒子B的體積平均粒徑比(A/B)優選為2以上,更優選為3以上,進一步優選為5以上。上述體積平均粒徑比(A/B)的上限值優選為20以下,更優選為10以下。The volume average particle diameter of the first thermally conductive particles is larger than the volume average particle diameter of the low melting point metal particles, and the volume average particle diameter ratio (A/B) of the thermally conductive particles A and the low melting point metal particles B is preferably 2 or more, More preferably, it is 3 or more, and even more preferably, it is 5 or more. The upper limit of the volume average particle diameter ratio (A/B) is preferably 20 or less, and more preferably 10 or less.

藉由使用與上述第1導熱粒子相比體積平均粒徑小的低熔點金屬粒子,從而在第1導熱組合物中,上述導熱粒子成為主成分,上述第1導熱粒子與上述第1導熱粒子之間存在的低熔點金屬粒子由於加熱而熔融,與第1導熱粒子進行合金化而形成網路,因此能夠實現高導熱性和低熱電阻。By using low-melting-point metal particles with a smaller volume average particle diameter than the first thermally conductive particles, the thermally conductive particles become the main component in the first thermally conductive composition. The low-melting-point metal particles present in the gap are melted by heating and alloyed with the first thermally conductive particles to form a network. Therefore, high thermal conductivity and low thermal resistance can be achieved.

第1導熱層中的上述第1導熱粒子A與上述低熔點金屬粒子B的體積比(A/B)優選為1以上,更優選為1.5以上,進一步優選為2以上。上述體積比(A/B)的上限值優選為5以下,更優選為4以下,進一步優選為3以下。 如果上述體積比(A/B)為1以上,則與低熔點金屬粒子相比體積平均粒徑大的導熱粒子的體積比例增多,因此能夠抑制熔融的低熔點金屬粒子的流動。此外,低熔點金屬粒子即使對於不易潤濕的界面(例如,矽),也不易產生分離,因此能夠抑制界面的材質的影響,界面材質的選擇性提高。 The volume ratio (A/B) of the first thermally conductive particles A and the low-melting-point metal particles B in the first thermally conductive layer is preferably 1 or more, more preferably 1.5 or more, and still more preferably 2 or more. The upper limit of the volume ratio (A/B) is preferably 5 or less, more preferably 4 or less, and still more preferably 3 or less. If the volume ratio (A/B) is 1 or more, the volume ratio of thermally conductive particles having a larger volume average particle diameter than that of low-melting-point metal particles increases, thereby suppressing the flow of molten low-melting-point metal particles. In addition, the low-melting-point metal particles are less likely to separate even with an interface that is not easily wetted (for example, silicon). Therefore, the influence of the interface material can be suppressed and the selectivity of the interface material can be improved.

-聚合物- 第1導熱層為了賦予柔軟性等,優選含有聚合物。 -polymer- The first thermally conductive layer preferably contains a polymer in order to impart flexibility and the like.

作為上述聚合物,沒有特別限制,能夠根據目的適當選擇,可舉出例如,在分子内具有選自聚丁二烯結構、聚矽氧烷結構、聚(甲基)丙烯酸酯結構、聚亞烷基結構、聚亞烷基氧基結構、聚異戊二烯結構、聚異丁烯結構、聚醯胺結構、聚碳酸酯結構中的至少1種的結構的聚合物等。The above-mentioned polymer is not particularly limited and can be appropriately selected according to the purpose. For example, polymers having a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, and a polyalkylene structure in the molecule can be used. A polymer having at least one structure selected from the group consisting of base structure, polyalkyleneoxy structure, polyisoprene structure, polyisobutylene structure, polyamide structure, and polycarbonate structure.

上述聚合物的含量相對於第1導熱層的總量,優選為1質量%以上50質量%以下,更優選為1質量%以上30質量%以下,進一步優選為1質量%以上10質量%以下。The content of the polymer is preferably 1 mass % or more and 50 mass % or less, more preferably 1 mass % or more and 30 mass % or less, and still more preferably 1 mass % or more and 10 mass % or less, based on the total amount of the first thermal conductive layer.

-其它成分- 上述第1導熱層只要不損害本發明的效果,可以含有其它成分。作為上述其它成分,沒有特別限制,能夠根據目的適當選擇,可舉出例如,金屬以外的導熱粒子(例如,氮化鋁、氧化鋁、碳纖維等)、添加劑(例如,抗氧化劑、紫外線吸收劑、固化促進劑、矽烷偶聯劑、流平劑、阻燃劑等)等。 -Other ingredients- The above-mentioned first thermal conductive layer may contain other components as long as the effects of the present invention are not impaired. The above-mentioned other components are not particularly limited and can be appropriately selected according to the purpose. Examples thereof include thermally conductive particles other than metals (for example, aluminum nitride, aluminum oxide, carbon fiber, etc.), additives (for example, antioxidants, ultraviolet absorbers, Curing accelerator, silane coupling agent, leveling agent, flame retardant, etc.).

第1導熱組合物能夠將上述固化成分、上述固化劑、上述第1導熱粒子、上述低熔點粒子、上述聚合物、和根據需要的其它成分利用常規方法均勻地混合來調製。The first thermally conductive composition can be prepared by uniformly mixing the above-mentioned curable component, the above-mentioned curing agent, the above-mentioned first thermally conductive particles, the above-mentioned low melting point particles, the above-mentioned polymer, and other components if necessary by a conventional method.

上述第1導熱層的平均厚度沒有特別限制,能夠根據目的適當選擇,優選為1μm以上100μm以下,更優選為5μm以上50μm以下。The average thickness of the first thermally conductive layer is not particularly limited and can be appropriately selected depending on the purpose. It is preferably 1 μm or more and 100 μm or less, and more preferably 5 μm or more and 50 μm or less.

<第2導熱層> 第2導熱層含有固化成分、使該固化成分固化的固化劑、第2導熱粒子、和低熔點金屬粒子,進一步根據需要含有其它成分。 <Second thermal conductive layer> The second thermally conductive layer contains a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles, and further contains other components as necessary.

-第2導熱粒子- 作為上述第2導熱粒子,優選為銅粒子、銀被覆粒子和銀粒子的至少任一者。 -The second thermally conductive particle- The second thermally conductive particles are preferably at least one of copper particles, silver-coated particles, and silver particles.

作為上述銀被覆粒子,可舉出例如,銀被覆銅粒子、銀被覆鎳粒子、銀被覆鋁粒子等。Examples of the silver-coated particles include silver-coated copper particles, silver-coated nickel particles, silver-coated aluminum particles, and the like.

作為上述第2導熱粒子的形狀,沒有特別限制,能夠根據目的適當選擇,可舉出例如,球狀、扁平狀、粒狀、針狀等。The shape of the second thermally conductive particles is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include spherical, flat, granular, needle-shaped, and the like.

需要上述第1導熱層所包含的第1導熱粒子的一部分與上述第2導熱層所包含的第2導熱粒子的一部分進行了接觸,上述第1導熱粒子的體積平均粒徑比上述第2導熱粒子的體積平均粒徑小。如果上述第1導熱粒子的體積平均粒徑比上述第2導熱粒子的體積平均粒徑大,則有時層疊體的導熱性降低。It is required that a part of the first thermally conductive particles included in the first thermally conductive layer is in contact with a part of the second thermally conductive particles included in the second thermally conductive layer, and the volume average particle diameter of the above-mentioned first thermally conductive particles is larger than that of the above-mentioned second thermally conductive particles. The volume average particle size is small. If the volume average particle diameter of the first thermally conductive particles is larger than the volume average particle diameter of the second thermally conductive particles, the thermal conductivity of the laminate may decrease.

上述第1導熱粒子的體積平均粒徑A與上述第2導熱粒子的體積平均粒徑B的比(A:B)優選為1:2~1:50,更優選為1:10~1:40。The ratio (A:B) of the volume average particle diameter A of the first thermally conductive particles to the volume average particle diameter B of the second thermally conductive particles is preferably 1:2 to 1:50, more preferably 1:10 to 1:40. .

上述第2導熱粒子的體積平均粒徑優選為1μm以上100μm以下,更優選為10μm以上70μm以下,進一步優選為10μm以上50μm以下。如果第2導熱粒子的體積平均粒徑為1μm以上100μm以下,則能夠實現高導熱性和低熱電阻。上述第2導熱粒子的體積平均粒徑能夠與上述第1導熱粒子的體積平均粒徑同樣地操作,進行測定。The volume average particle diameter of the second thermally conductive particles is preferably 1 μm or more and 100 μm or less, more preferably 10 μm or more and 70 μm or less, and still more preferably 10 μm or more and 50 μm or less. If the volume average particle diameter of the second thermally conductive particles is 1 μm or more and 100 μm or less, high thermal conductivity and low thermal resistance can be achieved. The volume average particle diameter of the second thermally conductive particles can be measured in the same manner as the volume average particle diameter of the first thermally conductive particles.

上述第2導熱層中的固化成分、固化劑、低熔點金屬粒子、聚合物及其它成分與上述第1導熱層中的固化成分、固化劑、低熔點金屬粒子、聚合物及其它成分同樣,因此省略它們的詳細情況。The curing components, curing agent, low melting point metal particles, polymers and other components in the second thermal conductive layer are the same as the curing components, curing agent, low melting point metal particles, polymers and other components in the first thermal conductive layer. Therefore, Their details are omitted.

上述第2導熱層的平均厚度沒有特別限制,能夠根據目的適當選擇,優選為20μm以上300μm以下,更優選為50μm以上200μm以下。The average thickness of the second thermally conductive layer is not particularly limited and can be appropriately selected depending on the purpose. It is preferably 20 μm or more and 300 μm or less, and more preferably 50 μm or more and 200 μm or less.

<第3導熱層> 上述第3導熱層在上述第1導熱層與上述第2導熱層之間形成,上述第3導熱層可以為單層,或可以為2層以上的複數層。 <Third thermal conductive layer> The third thermal conductive layer is formed between the first thermal conductive layer and the second thermal conductive layer. The third thermal conductive layer may be a single layer, or may be a plurality of two or more layers.

上述第3導熱層從導熱性的方面考慮優選為銅箔。The third thermal conductive layer is preferably a copper foil from the viewpoint of thermal conductivity.

上述第3導熱層的平均厚度沒有特別限制,能夠根據目的適當選擇,優選為5μm以上200μm以下,更優選為10μm以上100μm以下。The average thickness of the third thermally conductive layer is not particularly limited and can be appropriately selected depending on the purpose. It is preferably 5 μm or more and 200 μm or less, and more preferably 10 μm or more and 100 μm or less.

<對置基材> 上述對置基材與上述基材對置而配置,關於其形狀、結構、大小、材質等,沒有特別限制,能夠根據目的適當選擇。 <Opposite base material> The opposing base material is arranged to face the base material. The shape, structure, size, material, etc. are not particularly limited and can be appropriately selected according to the purpose.

作為上述對置基材的形狀,可舉出例如,板狀、片狀等。作為上述對置基材的結構,可舉出單層結構、層疊結構等。作為上述對置基材的大小,能夠根據用途等適當選擇。Examples of the shape of the counter base material include plate shape, sheet shape, and the like. Examples of the structure of the counter base material include a single-layer structure, a laminated structure, and the like. The size of the counter base material can be appropriately selected depending on the use and the like.

上述對置基材的材質為焊料易於潤濕的材質,包含選自銅、金、鉑、鈀、銀、鋅、鐵、錫、鎳、鎂、銦、和這些合金中的至少1種。The material of the opposing base material is a material that is easily wetted by solder, and includes at least one selected from the group consisting of copper, gold, platinum, palladium, silver, zinc, iron, tin, nickel, magnesium, indium, and these alloys.

上述對置基材的平均厚度沒有特別限制,能夠根據目的適當選擇。The average thickness of the opposing base material is not particularly limited and can be appropriately selected depending on the purpose.

上述對置基材可以為放熱結構體中的散熱模組自身。The above-mentioned opposing base material may be the heat dissipation module itself in the heat dissipation structure.

<其它構件> 作為其它構件,沒有特別限制,能夠根據目的適當選擇,可舉出例如,保護層等。 <Other components> The other components are not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include a protective layer and the like.

(層疊體的製造方法) 本發明的層疊體的製造方法包括第1導熱層形成工序以及第2導熱層形成工序,進一步根據需要包含其它工序。 (Method for manufacturing laminated body) The manufacturing method of the laminated body of this invention includes a 1st thermally conductive layer formation process and a 2nd thermally conductive layer formation process, and further includes other processes as needed.

<第1導熱層形成工序> 第1導熱層形成工序為在上述基材上,形成含有固化成分、使該固化成分固化的固化劑、第1導熱粒子和低熔點金屬粒子的第1導熱層的工序。 <First thermal conductive layer formation process> The first thermally conductive layer forming step is a step of forming a first thermally conductive layer containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles on the base material.

上述基材包含選自矽、鋁、鎢、鉬、玻璃、模塑樹脂、不鏽鋼和陶瓷中的至少1種。The base material includes at least one selected from the group consisting of silicon, aluminum, tungsten, molybdenum, glass, molding resin, stainless steel, and ceramics.

上述固化成分、固化劑、上述第1導熱粒子、和上述低熔點金屬粒子與上述第1導熱層所包含的上述固化成分、固化劑、上述第1導熱粒子、和上述低熔點金屬粒子同樣,因此省略其說明。The above-mentioned curing component, the curing agent, the above-mentioned first thermally conductive particles, and the above-mentioned low-melting-point metal particles are the same as the above-mentioned curing components, the curing agent, the above-mentioned first thermally conductive particles, and the above-mentioned low-melting-point metal particles included in the above-mentioned first thermally conductive layer. Therefore, Its description is omitted.

作為上述第1導熱層的形成方法,可舉出例如,(1)將含有固化成分、使該固化成分固化的固化劑、第1導熱粒子和低熔點金屬粒子的第1導熱組合物賦予至基材上,使其固化的方法,(2)在帶有剥離層的支持體上形成包含含有固化成分、使該固化成分固化的固化劑、第1導熱粒子和低熔點金屬粒子的第1導熱組合物的固化物的固化物層,在基材上轉印固化物層的方法等。上述(2)中,在將固化物層轉印至基材上時,剥離支持體。Examples of a method for forming the first thermally conductive layer include (1) providing a first thermally conductive composition containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low-melting-point metal particles to a base. (2) forming a first thermally conductive combination containing a curing component, a curing agent for curing the curing component, first thermally conductive particles and low-melting-point metal particles on a support with a release layer; The cured product layer of the cured product of the object, the method of transferring the cured product layer on the substrate, etc. In the above (2), when the cured material layer is transferred to the base material, the support is peeled off.

作為上述(1)中的將第1導熱組合物賦予至上述基材的手法,可舉出例如,噴墨法、刮板塗佈法、凹版塗佈法、凹版膠版塗佈法、棒塗法、輥塗法、刀塗佈法、氣刀塗佈法、逗點塗佈法、U逗點塗佈法、AKKU塗佈法、平滑塗佈法、微凹版塗佈法、反向輥塗法、4根輥塗法、5根輥塗法、浸漬塗佈法、簾式塗佈法、滑動塗佈法、模塗法等。Examples of the method for applying the first thermally conductive composition to the base material in the above (1) include an inkjet method, a blade coating method, a gravure coating method, a gravure offset coating method, and a bar coating method. , roller coating method, knife coating method, air knife coating method, comma coating method, U comma coating method, AKKU coating method, smooth coating method, microgravure coating method, reverse roller coating method , 4-roller coating method, 5-roller coating method, dip coating method, curtain coating method, sliding coating method, die coating method, etc.

<第2導熱層形成工序> 第2導熱層形成工序為在上述第1導熱層上,形成含有固化成分、使該固化成分固化的固化劑、第2導熱粒子和低熔點金屬粒子的第2導熱層的工序。 <Second thermal conductive layer formation process> The second thermally conductive layer forming step is a step of forming a second thermally conductive layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles on the first thermally conductive layer.

上述固化成分、上述固化劑、上述第2導熱粒子、和上述低熔點金屬粒子與上述第2導熱層所包含的上述固化成分、上述固化劑、上述第2導熱粒子、和上述低熔點金屬粒子同樣,因此省略其說明。The above-mentioned curing component, the above-mentioned curing agent, the above-mentioned second thermally conductive particles, and the above-mentioned low melting point metal particles are the same as the above-mentioned curing component, the above-mentioned curing agent, the above-mentioned second thermally conductive particles, and the above-mentioned low melting point metal particles included in the above-mentioned second thermally conductive layer. , so its description is omitted.

作為上述第2導熱層的形成方法,可舉出例如,(1)將含有固化成分、使該固化成分固化的固化劑、第2導熱粒子和低熔點金屬粒子的第2導熱組合物賦予至第1導熱層上,使其固化的方法,(2)在帶有剥離層的支持體上形成包含含有固化成分、使該固化成分固化的固化劑、第2導熱粒子和低熔點金屬粒子的第2導熱組合物的固化物的固化物層,在第1導熱層上轉印固化物層的方法等。上述(2)中,在將固化物層轉印至第1導熱層上時,剥離支持體。Examples of a method for forming the second thermally conductive layer include (1) applying a second thermally conductive composition containing a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles to the second thermally conductive layer. 1. A method of solidifying the thermally conductive layer, (2) forming a second layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles and low-melting-point metal particles on a support with a release layer. A cured product layer of a cured product of a thermally conductive composition, a method of transferring the cured product layer on the first thermally conductive layer, etc. In the above (2), when the cured material layer is transferred to the first thermal conductive layer, the support is peeled off.

作為上述(1)中的將第2導熱組合物賦予至上述第1導熱層的手法,可舉出例如,噴墨法、刮板塗佈法、凹版塗佈法、凹版膠版塗佈法、棒塗法、輥塗法、刀塗佈法、氣刀塗佈法、逗點塗佈法、U逗點塗佈法、AKKU塗佈法、平滑塗佈法、微凹版塗佈法、反向輥塗法、4根輥塗法、5根輥塗法、浸漬塗佈法、簾式塗佈法、滑動塗佈法、模塗法等。Examples of the method for applying the second thermally conductive composition to the first thermally conductive layer in the above (1) include an inkjet method, a blade coating method, a gravure coating method, a gravure offset coating method, and a rod coating method. Coating method, roller coating method, knife coating method, air knife coating method, comma coating method, U comma coating method, AKKU coating method, smooth coating method, microgravure coating method, reverse roller Coating method, 4-roller coating method, 5-roller coating method, dip coating method, curtain coating method, sliding coating method, die coating method, etc.

<其它工序> 作為其它工序,沒有特別限制,能夠根據目的適當選擇,可舉出例如,第3導熱層形成工序等。 <Other processes> The other steps are not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include a third thermal conductive layer forming step and the like.

這裡,關於本發明的層疊體的實施方式,参照附圖進行詳細地說明。另外,各附圖中,同一構成部分附上同一符號,有時省略重複的說明。此外,下述構成構件的數、位置、形狀等不限定於本實施的形態,在實施本發明的基礎上,能夠成為優選的數、位置、形狀等。Here, embodiments of the laminated body of the present invention will be described in detail with reference to the drawings. In addition, in each drawing, the same component is attached|subjected with the same symbol, and the overlapping description may be abbreviate|omitted. In addition, the number, position, shape, etc. of the following structural members are not limited to the embodiment, and may be a preferred number, position, shape, etc. after implementing the present invention.

<第1實施方式> 圖1為表示第1實施方式涉及的層疊體的一例的概略圖。該圖1的層疊體10中,在基材11上,具有含有第1導熱粒子15的第1導熱層12,在第1導熱層12上,具有含有第2導熱粒子16的第2導熱層13,在第2導熱層13上,具有對置基材14。 <First Embodiment> FIG. 1 is a schematic diagram showing an example of a laminated body according to the first embodiment. In the laminated body 10 of FIG. 1 , the first thermal conductive layer 12 containing the first thermal conductive particles 15 is provided on the base material 11 , and the second thermal conductive layer 13 containing the second thermal conductive particles 16 is provided on the first thermal conductive layer 12 . , on the second thermal conductive layer 13, there is an opposing base material 14.

第1導熱層12所包含的第1導熱粒子15的一部分與第2導熱層13所包含的第2導熱粒子16的一部分進行了接觸,第1導熱粒子15的體積平均粒徑比第2導熱粒子16的體積平均粒徑小。A part of the first thermally conductive particles 15 included in the first thermally conductive layer 12 is in contact with a part of the second thermally conductive particles 16 included in the second thermally conductive layer 13. The volume average particle diameter of the first thermally conductive particles 15 is smaller than that of the second thermally conductive particles 15. The volume average particle size of 16 is small.

<第2實施方式> 圖2為表示第2實施方式涉及的層疊體的一例的概略圖。該圖2的層疊體20中,在基材11上,具有含有第1導熱粒子15的第1導熱層12,在第1導熱層12上,具有作為銅箔的第3導熱層17,在第3導熱層17上,具有含有第2導熱粒子16的第2導熱層13,在第2導熱層13上,具有對置基材14。 <Second Embodiment> FIG. 2 is a schematic diagram showing an example of the laminated body according to the second embodiment. In the laminated body 20 of FIG. 2, the first thermal conductive layer 12 containing the first thermal conductive particles 15 is provided on the base material 11, and the third thermal conductive layer 17 as a copper foil is provided on the first thermal conductive layer 12. 3. On the thermal conductive layer 17, there is a second thermal conductive layer 13 containing second thermal conductive particles 16, and on the second thermal conductive layer 13, there is a facing base material 14.

第1導熱層12所包含的第1導熱粒子15的一部分與第2導熱層13所包含的第2導熱粒子16的一部分藉由第3導熱層17而進行了接觸,第1導熱粒子15的體積平均粒徑比第2導熱粒子16的體積平均粒徑小。A part of the first thermal conductive particles 15 included in the first thermal conductive layer 12 and a part of the second thermal conductive particles 16 included in the second thermal conductive layer 13 are in contact through the third thermal conductive layer 17. The volume of the first thermal conductive particles 15 The average particle diameter is smaller than the volume average particle diameter of the second thermally conductive particles 16 .

本發明的層疊體例如,能夠適合用於藉由填充LSI等熱源與散熱片之間的微小間隙,從而將實装有兩者之間熱順利地流動那樣的熱界面材料(TIM)、LED芯片或IC芯片的放熱基板與散熱片接著而構成功率LED模組或功率IC模組時。The laminate of the present invention can be suitably used, for example, in thermal interface materials (TIM) and LED chips that are mounted by filling the minute gap between a heat source such as an LSI and a heat sink so that heat flows smoothly between them. Or when the heat dissipation substrate of the IC chip and the heat sink are connected to form a power LED module or power IC module.

這裡,作為功率LED模組,具有引線接合實装類型的模組和倒裝晶片實装類型的模組,作為功率IC模組,具有引線接合實装類型的模組。Here, the power LED module includes a wire bonding mounting type module and a flip chip mounting type module, and the power IC module includes a wire bonding mounting type module.

本發明所使用的放熱結構體由發熱體、本發明的層疊體以及放熱構件構成。The heat radiation structure used in the present invention is composed of a heat generating body, the laminated body of the present invention, and a heat radiation member.

作為上述發熱體,沒有特別限制,能夠根據目的適當選擇,可舉出例如,CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)等電子部件等。The heating element is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include electronic components such as CPU (Central Processing Unit), MPU (Micro Processing Unit), and GPU (Graphics Processing Unit).

作為上述放熱構件,如果為將電子部件(發熱體)的發出的熱進行放熱的結構體,則沒有特別限制,能夠根據目的適當選擇,可舉出例如,散熱模組、散熱片、均溫板、熱管等。The heat dissipation member is not particularly limited as long as it is a structure that dissipates the heat generated by the electronic component (heating body), and can be appropriately selected according to the purpose. Examples thereof include a heat dissipation module, a heat sink, and a vapor chamber. , heat pipes, etc.

上述散熱模組為用於將上述電子部件的熱有效率地傳導至其它部件的構件。作為上述散熱模組的材質,沒有特別限制,能夠根據目的適當選擇,可舉出例如,銅、鋁等。上述散熱模組通常為平板形狀。The heat dissipation module is a member for efficiently conducting heat from the electronic component to other components. The material of the heat dissipation module is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include copper, aluminum, and the like. The above-mentioned heat dissipation module is usually in the shape of a flat plate.

上述散熱片為用於將上述電子部件的熱放出至空氣中的構件。作為上述散熱片的材質,沒有特別限制,能夠根據目的適當選擇,可舉出例如,銅、鋁等。上述散熱片例如,具有複數的扇片。上述散熱片例如,具有基部,以及相對於上述基部的一個面,朝向非平行方向(例如,正交的方向)而延伸那樣設置的複數的扇片。The heat sink is a member for dissipating the heat of the electronic component into the air. The material of the heat sink is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include copper, aluminum, and the like. The heat sink includes, for example, a plurality of fins. The heat sink includes, for example, a base and a plurality of segments extending in a non-parallel direction (for example, an orthogonal direction) with respect to one surface of the base.

上述散熱模組和上述散熱片一般而言,為内部不具有空間的實心結構。Generally speaking, the above-mentioned heat dissipation module and the above-mentioned heat sink are solid structures with no space inside.

上述均溫板為中空結構體。上述中空結構體的内部空間封入有揮發性的液體。作為上述均溫板,可舉出例如,使上述散熱模組為中空結構的均溫板,使上述散熱片為中空結構那樣的板狀的中空結構體等。The above-mentioned vapor chamber is a hollow structure. The internal space of the above-mentioned hollow structure is filled with volatile liquid. Examples of the above-mentioned temperature equalization plate include a temperature equalization plate in which the above-mentioned heat dissipation module has a hollow structure, a plate-shaped hollow structure in which the above-mentioned heat dissipation fins have a hollow structure, and the like.

上述熱管為圓筒狀、大致圓筒狀或扁平筒狀的中空結構體。上述中空結構體的内部空間封入有揮發性的液體。The heat pipe is a cylindrical, substantially cylindrical or flat cylindrical hollow structure. The internal space of the above-mentioned hollow structure is filled with volatile liquid.

這裡,圖3為表示作為放熱結構體的半導體装置的一例的概略斷面圖。本發明的層疊體7將半導體元件等電子部件3的發出的熱進行放熱,圖3所示那樣,固定於散熱模組2的與電子部件3對峙的主面2a,在電子部件3與散熱模組2之間被挟持。此外,導熱片1挟持於散熱模組2與散熱片5之間。Here, FIG. 3 is a schematic cross-sectional view showing an example of a semiconductor device as a heat radiation structure. The laminated body 7 of the present invention dissipates heat generated by electronic components 3 such as semiconductor elements, and is fixed to the main surface 2a of the heat dissipation module 2 facing the electronic component 3 as shown in FIG. 3 . Group 2 was held hostage. In addition, the thermal conductive sheet 1 is held between the heat dissipation module 2 and the heat dissipation fin 5 .

散熱模組2例如,方形板狀地形成,具有與電子部件3對峙的主面2a,以及沿著主面2a的外周而立設的側壁2b。散熱模組2在被側壁2b包圍的主面2a設置導熱片1,此外在與主面2a相反側的另一面2c藉由導熱片1而設置散熱片5。散熱模組2越具有高導熱率,則熱電阻減少,效率良好地吸熱半導體元件等電子部件3的熱,例如,能夠使用導熱性良好的銅、鋁來形成。The heat dissipation module 2 is formed in a square plate shape, for example, and has a main surface 2 a facing the electronic component 3 and a side wall 2 b standing along the outer periphery of the main surface 2 a. The heat dissipation module 2 is provided with a heat conductive sheet 1 on the main surface 2a surrounded by the side wall 2b, and is provided with a heat dissipation fin 5 through the heat conductive sheet 1 on the other surface 2c opposite to the main surface 2a. The heat dissipation module 2 has a higher thermal conductivity, which reduces the thermal resistance and efficiently absorbs heat from electronic components 3 such as semiconductor elements. For example, the heat dissipation module 2 can be formed using copper or aluminum with good thermal conductivity.

電子部件3例如,為BGA等半導體元件,實装於配線基板6。此外散熱模組2中,側壁2b的前端面實装於配線基板6,由此藉由側壁2b而間隔預定的距離以包圍電子部件3。 而且,藉由在散熱模組2的主面2a設置本發明的層疊體7,從而吸收電子部件3的發出的熱,形成由散熱片5放熱的放熱構件。 實施例 The electronic component 3 is, for example, a semiconductor element such as a BGA, and is mounted on the wiring board 6 . Furthermore, in the heat dissipation module 2 , the front end surface of the side wall 2 b is mounted on the wiring board 6 , so that the electronic component 3 is surrounded by the side wall 2 b at a predetermined distance. Furthermore, by providing the laminate 7 of the present invention on the main surface 2 a of the heat dissipation module 2 , the heat generated by the electronic component 3 is absorbed and a heat dissipation member is formed that dissipates heat from the heat dissipation fin 5 . Example

以下,說明本發明的實施例,本發明不受這些實施例的任何限定。Hereinafter, Examples of the present invention will be described, but the present invention is not limited to these Examples in any way.

(實施例1~5、比較例1~3和参考例1) <導熱組合物的調製> 將表1~表3所記載的組成和含量使用攪拌装置(泡通煉太郎、自動公轉混合機,株式會社THINKY製)均勻地混合,調製第1導熱組合物和第2導熱組合物。另外,表1~表3中的各成分的含量為質量份。 (Examples 1 to 5, Comparative Examples 1 to 3, and Reference Example 1) <Preparation of thermally conductive composition> The compositions and contents described in Tables 1 to 3 were uniformly mixed using a stirring device (Rentaro Awamitsu, automatic rotating mixer, manufactured by THINKY Co., Ltd.) to prepare a first thermally conductive composition and a second thermally conductive composition. In addition, the content of each component in Tables 1 to 3 is parts by mass.

<層疊體的形成> 接下來,實施例1~5和比較例3中,按照表1~表3的記載,在30mm×30mm×2mm的基材(矽)上,賦予第1導熱組合物,接下來,在第1導熱層上,賦予第2導熱組合物,在該第2導熱組合物上層疊30mm×30mm×2mm的對置基材(銅),在150℃加熱60分鐘,使其固化,形成具有平均厚度10μm的第1導熱層與平均厚度70μm的第2導熱層的層疊體。 <Formation of laminated body> Next, in Examples 1 to 5 and Comparative Example 3, according to the descriptions in Tables 1 to 3, the first thermally conductive composition was applied on the base material (silicon) of 30 mm×30 mm×2 mm. A second thermally conductive composition was applied to the thermally conductive layer, and a 30mm×30mm×2mm opposing base material (copper) was laminated on the second thermally conductive composition, heated at 150° C. for 60 minutes, and cured to form a layer with an average thickness of 10 μm. A laminate of a first thermally conductive layer and a second thermally conductive layer with an average thickness of 70 μm.

實施例2中,作為第3導熱層,使用平均厚度30μm的銅箔。In Example 2, a copper foil with an average thickness of 30 μm was used as the third thermal conductive layer.

参考例1和比較例1中,沒有使用第1導熱組合物,除此以外,與上述實施例1~5和比較例3同樣地操作,形成層疊體。另外,参考例1中,代替30mm×30mm×2mm的基材(矽)而使用30mm×30mm×2mm的基材(銅)。In Reference Example 1 and Comparative Example 1, a laminate was formed in the same manner as in Examples 1 to 5 and Comparative Example 3, except that the first thermally conductive composition was not used. In addition, in Reference Example 1, a base material (copper) of 30 mm × 30 mm × 2 mm was used instead of the base material (silicon) of 30 mm × 30 mm × 2 mm.

比較例2中,沒有使用第2導熱組合物,除此以外,與實施例1~5和比較例3同樣地操作,形成層疊體。In Comparative Example 2, a laminate was formed in the same manner as in Examples 1 to 5 and Comparative Example 3, except that the second thermally conductive composition was not used.

接下來,關於所得的各層疊體,以下那樣操作,評價熱阻抗和導熱性。將結果顯示於表1~表3。Next, the thermal resistance and thermal conductivity of each of the obtained laminates were evaluated in the following manner. The results are shown in Tables 1 to 3.

<熱阻抗> 關於獲得的各層疊體,利用按照ASTM-D5470的方法,測定熱電阻(℃・cm 2/W)。由其結果減去基材和對置基材的熱電阻而算出固化物的熱電阻,由上述熱電阻和固化物的面積,算出熱阻抗(Kmm 2/W)。 <Thermal Resistance> The thermal resistance (°C·cm 2 /W) of each obtained laminated body was measured according to the method according to ASTM-D5470. The thermal resistance of the cured product was calculated by subtracting the thermal resistance of the base material and the opposing substrate from the result, and the thermal resistance (Kmm 2 /W) was calculated from the thermal resistance and the area of the cured product.

<導熱性> 關於獲得的各層疊體,利用按照ASTM-D5470的方法,測定熱電阻(℃・cm 2/W)。由其結果減去基材和對置基材的熱電阻而算出固化物的熱電阻,由上述熱電阻和固化物的厚度,求出導熱率(W/m・K),藉由下述基準評價導熱性。 [評價基準] ◎:導熱率為15W/m・K以上 〇:導熱率為10W/m・K以上且小於15W/m・K ×:導熱率小於10W/m・K <Thermal Conductivity> Thermal resistance (°C·cm 2 /W) of each obtained laminate was measured according to the method according to ASTM-D5470. The thermal resistance of the cured product is calculated by subtracting the thermal resistance of the base material and the opposing substrate from the result. The thermal conductivity (W/m・K) is calculated from the thermal resistance and the thickness of the cured product based on the following criteria: Evaluate thermal conductivity. [Evaluation criteria] ◎: Thermal conductivity is 15W/m・K or more 〇: Thermal conductivity is 10W/m・K or more and less than 15W/m・K ×: Thermal conductivity is less than 10W/m・K

【表1】 【Table 1】

【表2】 【Table 2】

【表3】 【table 3】

關於表1~表3中的各成分的詳細情況,如下所述。The details of each component in Tables 1 to 3 are as follows.

-固化成分- *OXBP:宇部興產株式會社製,4,4’-雙[(3-乙基-3-氧雜環丁烷基)甲氧基甲基]聯苯 -Curing ingredients- *OXBP: Ube Kosan Co., Ltd., 4,4’-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl

-固化劑- *多元羧酸,Dexerials株式會社合成品 -Curing agent- *Polycarboxylic acid, synthetic product of Dexerials Co., Ltd.

-低熔點金屬粒子(焊料粒子)- *Sn 42Bi 58:三井金屬礦業株式會社製,體積平均粒徑Dv:4μm,熔點139℃ -Low melting point metal particles (solder particles)- *Sn 42 Bi 58 : Made by Mitsui Metal Mining Co., Ltd., volume average particle size Dv: 4 μm, melting point 139°C

-第1導熱粒子- *第1導熱粒子1:Ag粒子,DOWA電子學株式會社製,體積平均粒徑Dv:1μm *第1導熱粒子2:Ag塗佈Cu粒子,福田金屬箔粉工業株式會社製,體積平均粒徑Dv:5μm *第1導熱粒子3:Ag塗佈Cu粒子,福田金屬箔粉工業株式會社製,體積平均粒徑Dv:40μm -The 1st thermal conductive particle- *First thermally conductive particle 1: Ag particle, manufactured by DOWA Electronics Co., Ltd., volume average particle diameter Dv: 1 μm *First thermally conductive particle 2: Ag-coated Cu particles, manufactured by Fukuda Metal Foil Industry Co., Ltd., volume average particle diameter Dv: 5 μm *First thermally conductive particle 3: Ag-coated Cu particles, manufactured by Fukuda Metal Foil Industry Co., Ltd., volume average particle diameter Dv: 40 μm

-第2導熱粒子- *第2導熱粒子1:Ag塗佈Cu粒子,福田金屬箔粉工業株式會社製,體積平均粒徑Dv:40μm *第2導熱粒子2:Cu粒子,福田金屬箔粉工業株式會社製,體積平均粒徑Dv:40μm *第2導熱粒子3:Ag粒子,DOWA電子學株式會社製,體積平均粒徑Dv:1μm -The second thermally conductive particle- *Second thermally conductive particles 1: Ag-coated Cu particles, manufactured by Fukuda Metal Foil Industry Co., Ltd., volume average particle diameter Dv: 40 μm *Second thermally conductive particles 2: Cu particles, manufactured by Fukuda Metal Foil Industry Co., Ltd., volume average particle diameter Dv: 40 μm *Second thermally conductive particles 3: Ag particles, manufactured by DOWA Electronics Co., Ltd., volume average particle diameter Dv: 1 μm

-聚合物- *M1276:Arkema株式會社製,聚醯胺化合物 產業可利用性 -polymer- *M1276: Made by Arkema Co., Ltd., polyamide compound industrial availability

本發明的層疊體作為熱界面材料(TIM)能夠實現高導熱性和低熱電阻,因此例如,適合用於由於溫度而對於元件動作的效率、寿命等產生不良影響的CPU、MPU、功率電晶體、LED、鐳射二極體等各種電氣器件周邊等。The laminated body of the present invention can achieve high thermal conductivity and low thermal resistance as a thermal interface material (TIM), and is therefore suitable for use in, for example, CPUs, MPUs, power transistors, etc. where temperature adversely affects the efficiency, lifespan, etc. of element operation. Various electrical device peripherals such as LEDs and laser diodes.

本申請基於2022年6月8日於日本特許庁申請的特願202-93004號來主張優先權,援用上述申請中記載的全部内容。This application claims priority based on Japanese Patent Application No. 202-93004 filed in the Japanese Patent Office on June 8, 2022, and the entire content described in the above application is incorporated by reference.

1:導熱片 2:散熱模組 2a:主面 3:發熱體(電子部件) 3a:上面 5:散熱片 6:配線基板 7:層疊體 10:層疊體 11:基材 12:第1導熱層 13:第2導熱層 14:對置基材 15:第1導熱粒子 16:第2導熱粒子 17:第3導熱層 20:層疊體 1: Thermal conductor 2: Cooling module 2a: Main side 3: Heating element (electronic components) 3a:top 5:Heat sink 6:Wiring board 7:Laminated body 10:Laminated body 11:Substrate 12: The first thermal conductive layer 13: The second thermal conductive layer 14:Opposite substrate 15: The first thermal conductive particle 16: The second thermal conductive particle 17:The third thermal conductive layer 20:Laminated body

圖1為表示第1實施方式涉及的層疊體的一例的概略圖。 圖2為表示第2實施方式涉及的層疊體的一例的概略圖。 圖3為表示本發明所使用的放熱結構體的一例的概略斷面圖。 FIG. 1 is a schematic diagram showing an example of a laminated body according to the first embodiment. FIG. 2 is a schematic diagram showing an example of the laminated body according to the second embodiment. FIG. 3 is a schematic cross-sectional view showing an example of the heat radiation structure used in the present invention.

Claims (12)

一種層疊體,其特徵在於,具有:     基材; 在該基材上,含有固化成分、使該固化成分固化的固化劑、第1導熱粒子和低熔點金屬粒子的第1導熱層;以及 在該第1導熱層上,含有固化成分、使該固化成分固化的固化劑、第2導熱粒子和低熔點金屬粒子的第2導熱層, 該第1導熱層所包含的第1導熱粒子的一部分與該第2導熱層所包含的第2導熱粒子的一部分進行了接觸,該第1導熱粒子的體積平均粒徑比該第2導熱粒子的體積平均粒徑小, 該基材包含選自矽、鋁、鎢、鉬、玻璃、模塑樹脂、不鏽鋼和陶瓷中的至少1種。 A laminated body, characterized by having: a base material; On the base material, a first thermal conductive layer containing a curing component, a curing agent for curing the curing component, first thermally conductive particles and low melting point metal particles; and On the first thermally conductive layer, a second thermally conductive layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles and low melting point metal particles, A part of the first thermally conductive particles included in the first thermally conductive layer is in contact with a part of the second thermally conductive particles included in the second thermally conductive layer, and the volume average particle diameter of the first thermally conductive particles is larger than that of the second thermally conductive particles. The volume average particle size is small, The base material contains at least one selected from silicon, aluminum, tungsten, molybdenum, glass, molding resin, stainless steel, and ceramics. 根據請求項1所述的層疊體, 該第1導熱粒子的體積平均粒徑A與該第2導熱粒子的體積平均粒徑B的比(A:B)為1:2~1:50。 The laminate according to claim 1, The ratio (A:B) of the volume average particle diameter A of the first thermally conductive particles to the volume average particle diameter B of the second thermally conductive particles is 1:2 to 1:50. 根據請求項1或2所述的層疊體, 該第1導熱粒子的體積平均粒徑為0.3μm以上30μm以下。 The laminate according to claim 1 or 2, The volume average particle diameter of the first thermally conductive particles is 0.3 μm or more and 30 μm or less. 根據請求項1或2所述的層疊體, 該第2導熱粒子的體積平均粒徑為1μm以上100μm以下。 The laminate according to claim 1 or 2, The second thermally conductive particles have a volume average particle diameter of 1 μm or more and 100 μm or less. 根據請求項1或2所述的層疊體, 該第1導熱粒子和該第2導熱粒子為銅粒子、銀被覆粒子和銀粒子的至少任一者。 The laminate according to claim 1 or 2, The first thermally conductive particles and the second thermally conductive particles are at least any one of copper particles, silver-coated particles, and silver particles. 根據請求項1或2所述的層疊體, 該低熔點金屬粒子包含Sn以及選自Bi、Ag、Cu和In中的至少1種。 The laminate according to claim 1 or 2, The low melting point metal particles contain Sn and at least one selected from the group consisting of Bi, Ag, Cu and In. 根據請求項1或2所述的層疊體, 該固化劑相對於該第1導熱粒子和該第2導熱粒子具有助焊劑活性。 The laminate according to claim 1 or 2, The curing agent has flux activity with respect to the first thermally conductive particles and the second thermally conductive particles. 根據請求項1或2所述的層疊體, 該固化成分為環氧乙烷環化合物和氧雜環丁烷化合物的至少任一者。 The laminate according to claim 1 or 2, The curing component is at least one of an ethylene oxide ring compound and an oxetane compound. 根據請求項1或2所述的層疊體, 在該第1導熱層與該第2導熱層之間具有第3導熱層。 The laminate according to claim 1 or 2, There is a third thermal conductive layer between the first thermal conductive layer and the second thermal conductive layer. 根據請求項9所述的層疊體, 該第3導熱層為銅箔。 The laminate according to claim 9, The third thermal conductive layer is copper foil. 根據請求項1或2所述的層疊體, 在該第2導熱層上具有與該基材對置的對置基材, 該對置基材包含選自銅、金、鉑、鈀、銀、鋅、鐵、錫、鎳、鎂、銦和這些合金中的至少1種。 The laminate according to claim 1 or 2, There is an opposing base material facing the base material on the second thermal conductive layer, The opposing base material contains at least one selected from the group consisting of copper, gold, platinum, palladium, silver, zinc, iron, tin, nickel, magnesium, indium and these alloys. 一種層疊體的製造方法,其特徵在於,包括下述工序: 在該基材上,形成含有固化成分、使該固化成分固化的固化劑、第1導熱粒子和低熔點金屬粒子的第1導熱層的第1導熱層形成工序;以及 在該第1導熱層上,形成含有固化成分、使該固化成分固化的固化劑、第2導熱粒子和低熔點金屬粒子的第2導熱層的第2導熱層形成工序, 該基材包含選自矽、鋁、鎢、鉬、玻璃、模塑樹脂、不鏽鋼和陶瓷中的至少1種。 A method for manufacturing a laminated body, characterized in that it includes the following steps: A first thermal conductive layer forming step of forming a first thermal conductive layer containing a cured component, a curing agent for curing the cured component, first thermal conductive particles and low melting point metal particles on the base material; and A second thermal conductive layer forming step of forming a second thermal conductive layer containing a curing component, a curing agent for curing the curing component, second thermal conductive particles, and low melting point metal particles on the first thermal conductive layer, The base material contains at least one selected from silicon, aluminum, tungsten, molybdenum, glass, molding resin, stainless steel, and ceramics.
TW112119839A 2022-06-08 2023-05-29 Multilayer body and method for producing same TW202406731A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-093004 2022-06-08
JP2022093004A JP2023179989A (en) 2022-06-08 2022-06-08 Laminate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW202406731A true TW202406731A (en) 2024-02-16

Family

ID=89118190

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112119839A TW202406731A (en) 2022-06-08 2023-05-29 Multilayer body and method for producing same

Country Status (3)

Country Link
JP (1) JP2023179989A (en)
TW (1) TW202406731A (en)
WO (1) WO2023238694A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034562B2 (en) * 2011-12-20 2016-11-30 デクセリアルズ株式会社 Thermally conductive sheet and method for producing the thermally conductive sheet
JP6356456B2 (en) * 2014-03-27 2018-07-11 デクセリアルズ株式会社 Manufacturing method of heat conductive sheet
US20190092994A1 (en) * 2017-09-27 2019-03-28 Intel Corporation Composite thermal interface materials, thermal interface components, and methods for making the same
JP6994042B2 (en) * 2017-09-28 2022-01-14 富士フイルム株式会社 Heat dissipation sheet and device with heat dissipation sheet
JP2020080345A (en) * 2018-11-12 2020-05-28 信越ポリマー株式会社 Electromagnetic wave shield film and print circuit board with the same
JP7370074B2 (en) * 2020-10-08 2023-10-27 北川工業株式会社 thermal conductive sheet

Also Published As

Publication number Publication date
JP2023179989A (en) 2023-12-20
WO2023238694A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
JP5299279B2 (en) Film-like resin composition for sealing filling, semiconductor package using the same, method for manufacturing semiconductor device, and semiconductor device
WO2011104996A1 (en) Thermosetting resin composition, b-stage thermally conductive sheet, and power module
JPWO2017014238A1 (en) Thermally conductive resin composition, thermal conductive sheet, and semiconductor device
JP2017025186A (en) Heat-conductive resin composition, laminate for circuit board, circuit board and semiconductor device
WO2016010067A1 (en) Material for semiconductor element protection and semiconductor device
JP6106389B2 (en) Pre-installed semiconductor sealing film
KR20170012206A (en) Adhesive agent and connection structure
JP2016023219A (en) Two-liquid mixing type first and second liquids for protecting semiconductor element, and semiconductor device
TW202406731A (en) Multilayer body and method for producing same
JP6430148B2 (en) Adhesive and connection structure
JP7200674B2 (en) Manufacturing method of heat dissipation structure
JP7445065B1 (en) Thermal conductive composition and method for producing laminate
JP5557158B2 (en) Flip chip connecting underfill agent and method of manufacturing semiconductor device using the same
TW202408799A (en) Laminated body and manufacturing method thereof
JP2008101145A (en) Resin composition and semiconductor device prepared by using the resin composition
WO2023238692A1 (en) Laminate and method for manufacturing same
WO2024048358A1 (en) Laminate and method for manufacturing laminate
WO2023182046A1 (en) Ester compound, method for producing same, thermally conductive composition and thermally conductive sheet
TW202413081A (en) Laminated body and method of manufacturing the laminated body
JP5047632B2 (en) Mounting method using hot-pressure adhesive for flip chip connection
WO2023037862A1 (en) Thermally conductive composition and thermally conductive sheet
JP2024047538A (en) Thermally conductive composition, thermally conductive sheet, method for producing thermally conductive composition, and method for producing thermally conductive sheet
TW202413537A (en) Thermal conductive composition, thermal conductive sheet, manufacturing method of thermal conductive composition and thermal conductive sheet manufacturing method
CN117916877A (en) Thermally conductive composition and thermally conductive sheet
JP7248007B2 (en) Adhesive for semiconductors and method for manufacturing semiconductor devices using the same