WO2023238694A1 - Multilayer body and method for producing same - Google Patents

Multilayer body and method for producing same Download PDF

Info

Publication number
WO2023238694A1
WO2023238694A1 PCT/JP2023/019593 JP2023019593W WO2023238694A1 WO 2023238694 A1 WO2023238694 A1 WO 2023238694A1 JP 2023019593 W JP2023019593 W JP 2023019593W WO 2023238694 A1 WO2023238694 A1 WO 2023238694A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
particles
conductive layer
curing
conductive particles
Prior art date
Application number
PCT/JP2023/019593
Other languages
French (fr)
Japanese (ja)
Inventor
奕靖 趙
弘毅 渋谷
侑記 岩田
健 西尾
稔 長島
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2023238694A1 publication Critical patent/WO2023238694A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • the present invention relates to a laminate and a method for manufacturing a laminate.
  • thermally conductive materials are widely used to prevent the temperature of LSIs and the like from rising.
  • the thermally conductive material can prevent the temperature of the device from rising by diffusing the heat generated by the element or transmitting it to a heat radiating member for discharging it to the outside of the system, such as the atmosphere.
  • thermally conductive materials When metals or ceramics are used as such thermally conductive materials, there are problems such as difficulty in reducing weight, poor workability, or low flexibility. Therefore, various heat conductive materials have been proposed that use polymeric materials such as resin or rubber as a base material.
  • thermosetting adhesive containing a curing component and a curing agent for the curing component, and a metal filler dispersed in the thermosetting adhesive
  • the metal filler includes silver powder and solder powder.
  • the solder powder exhibits a melting temperature lower than the heat curing temperature of the thermally conductive adhesive, and reacts with the silver powder under the heat curing conditions of the thermosetting adhesive to reach a temperature lower than the melting temperature of the solder powder.
  • the hardening agent is a hardening agent that has flux activity against metal fillers
  • the hardening component is a glycidyl ether type epoxy resin
  • the hardening agent is a glycidyl ether type epoxy resin.
  • a thermally conductive adhesive that is a monoanhydride of tricarboxylic acid has been proposed (see, for example, Patent Document 1).
  • An object of the present invention is to solve the above-mentioned conventional problems and achieve the following objects. That is, an object of the present invention is to provide a laminate and a method for manufacturing the laminate that can achieve high thermal conductivity and low thermal resistance.
  • Means for solving the above problem are as follows. That is, ⁇ 1> Base material; a first thermally conductive layer containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles on the base material; a second thermally conductive layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles on the first thermally conductive layer; has A portion of the first thermally conductive particles contained in the first thermally conductive layer and a portion of the second thermally conductive particles contained in the second thermally conductive layer are in contact with each other, and the first thermally conductive particles are in contact with each other.
  • the volume average particle size of the thermally conductive particles is smaller than the volume average particle size of the second thermally conductive particles
  • the laminate is characterized in that the base material includes at least one selected from silicon, aluminum, tungsten, molybdenum, glass, mold resin, stainless steel, and ceramics.
  • the ratio (A:B) of the volume average particle diameter A of the first heat conductive particles to the volume average particle diameter B of the second heat conductive particles is 1:2 to 1:50. This is the laminate described in ⁇ 1>.
  • ⁇ 3> The laminate according to ⁇ 1> or ⁇ 2>, wherein the first thermally conductive particles have a volume average particle diameter of 0.3 ⁇ m or more and 30 ⁇ m or less.
  • ⁇ 4> The laminate according to any one of ⁇ 1> to ⁇ 3>, wherein the second thermally conductive particles have a volume average particle size of 1 ⁇ m or more and 100 ⁇ m or less.
  • ⁇ 5> The laminate according to any one of ⁇ 1> to ⁇ 4>, wherein the first and second thermally conductive particles are at least one of copper particles, silver-coated particles, and silver particles. It is.
  • ⁇ 6> The laminate according to any one of ⁇ 1> to ⁇ 5>, wherein the low melting point metal particles contain Sn and at least one selected from Bi, Ag, Cu, and In. be.
  • ⁇ 7> The laminate according to any one of ⁇ 1> to ⁇ 6>, wherein the curing agent has flux activity with respect to the first and second thermally conductive particles.
  • the curing component is at least one of an oxirane ring compound and an oxetane compound.
  • ⁇ 9> The laminate according to any one of ⁇ 1> to ⁇ 8>, including a third thermally conductive layer between the first thermally conductive layer and the second thermally conductive layer. . ⁇ 10> The laminate according to ⁇ 9>, wherein the third thermally conductive layer is a copper foil.
  • a facing base material facing the base material is provided on the second thermally conductive layer, ⁇ 1> to ⁇ 10>, wherein the opposing base material contains at least one selected from copper, gold, platinum, palladium, silver, zinc, iron, tin, nickel, magnesium, indium, and alloys thereof.
  • a conductive layer forming step, including; The method for producing a laminate is characterized in that the base material contains at least one selected from silicon, aluminum, tungsten, molybdenum, glass, mold resin, stainless steel, and ceramics.
  • the present invention it is possible to provide a laminate and a method for manufacturing the laminate, which can solve the above-mentioned conventional problems, achieve the above-mentioned objects, and realize high thermal conductivity and low thermal resistance.
  • FIG. 1 is a schematic diagram showing an example of a laminate according to the first embodiment.
  • FIG. 2 is a schematic diagram showing an example of a laminate according to the second embodiment.
  • FIG. 3 is a schematic cross-sectional view showing an example of a heat dissipation structure used in the present invention.
  • the laminate of the present invention preferably has a base material, a first thermally conductive layer, a second thermally conductive layer, a third thermally conductive layer and an opposing base material, and further has a third thermally conductive layer and an opposing base material, if necessary. and other members.
  • the first thermally conductive layer and the second thermally conductive layer are provided on the base material in this order, and a portion of the first thermally conductive particles and a portion of the second thermally conductive particles are in contact with each other.
  • the volume average particle size of the first thermally conductive particles is smaller than the volume average particle size of the second thermally conductive particles, so that silicon, aluminum, tungsten, molybdenum, glass, mold resin, stainless steel Even if the base material has poor solder wettability and is made of at least one selected from ceramics and ceramics, the thermal conductivity can be significantly improved by increasing the contact area.
  • Base material The shape, structure, size, material, etc. of the base material are not particularly limited and can be appropriately selected depending on the purpose.
  • Examples of the shape of the base material include a plate shape and a sheet shape.
  • Examples of the structure of the base material include a single layer structure and a laminated structure.
  • the size of the base material can be appropriately selected depending on the purpose and the like.
  • the material of the base material is a material that is difficult to wet with solder, and includes at least one selected from silicon, aluminum, tungsten, molybdenum, glass, mold resin, stainless steel, and ceramics.
  • the ceramics include aluminum nitride, silicon carbide, alumina, and gallium nitride.
  • the mold resin include epoxy resin, silicone resin, urethane resin, and acrylic resin.
  • the average thickness of the base material is not particularly limited and can be appropriately selected depending on the purpose.
  • the base material may be the heating element (electronic component) itself in the heat dissipation structure.
  • the first thermally conductive layer is preferably formed on the base material and in contact with the base material.
  • the first thermally conductive layer contains a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles, and further contains other components as necessary.
  • the curing component it is preferable to use at least one of an oxirane ring compound and an oxetane compound.
  • the oxirane ring compound is a compound having an oxirane ring, and includes, for example, an epoxy resin.
  • the epoxy resin is not particularly limited and can be appropriately selected depending on the purpose, such as glycidyl ether type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, trisphenol. type epoxy resin, tetraphenol type epoxy resin, phenol-xylylene type epoxy resin, naphthol-xylylene type epoxy resin, phenol-naphthol type epoxy resin, phenol-dicyclopentadiene type epoxy resin, alicyclic epoxy resin, aliphatic epoxy resin Examples include. These may be used alone or in combination of two or more.
  • the oxetane compound is a compound having an oxetanyl group, and may be an aliphatic compound, an alicyclic compound, or an aromatic compound.
  • the oxetane compound may be a monofunctional oxetane compound having only one oxetanyl group, or a polyfunctional oxetane compound having two or more oxetanyl groups.
  • the oxetane compound is not particularly limited and can be appropriately selected depending on the purpose, such as 3,7-bis(3-oxetanyl)-5-oxanonan, 1,4-bis[(3- ethyl-3-oxetanylmethoxy)methyl]benzene, 1,2-bis[(3-ethyl-3-oxetanylmethoxy)methyl]ethane, 1,3-bis[(3-ethyl-3-oxetanylmethoxy)methyl]propane , ethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, triethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, tetraethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, 1, 4-bis(3-ethyl-3-oxetanylmethoxy)butane, 1,6-bis(3-ethyl-3
  • oxetane compound commercially available products can be used, and examples of the commercially available products include the "Aron Oxetane (registered trademark)” series sold by Toagosei Co., Ltd., and the “Aron Oxetane (registered trademark)” series sold by Ube Industries, Ltd. Examples include the “ETERNACOLL (registered trademark)” series.
  • glycidyl ether type epoxy resin phenol novolac type epoxy resin, cresol novolac type epoxy resin, phenol-dicyclopentadiene type epoxy resin, bisphenol A type epoxy resin, aliphatic epoxy resin, 4, 4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl (OXBP) is preferred.
  • the content of the curing component is not particularly limited and can be selected as appropriate depending on the purpose, but it should be 0.5% by mass or more and 60% by mass or less based on the total amount of the first thermally conductive layer. is preferred.
  • the curing agent is a curing agent corresponding to the curing component, such as an acid anhydride curing agent, an aliphatic amine curing agent, an aromatic amine curing agent, a phenol curing agent, or a mercaptan curing agent.
  • examples include polyaddition type curing agents such as , and catalyst type curing agents such as imidazole. These may be used alone or in combination of two or more. Among these, acid anhydride curing agents are preferred.
  • the curing component of the acid anhydride curing agent is an epoxy resin
  • no gas is generated during thermal curing, and a long pot life can be achieved when mixed with the epoxy resin. This is preferable because a good balance between physical, chemical, and mechanical properties can be achieved.
  • Examples of the acid anhydride curing agent include cyclohexane-1,2-dicarboxylic anhydride and tricarboxylic acid monoanhydride.
  • Examples of the monoanhydride of tricarboxylic acid include cyclohexane-1,2,4-tricarboxylic acid-1,2-acid anhydride.
  • the curing agent has flux activity, since it improves the wettability of the molten low-melting point metal particles to the thermally conductive particles.
  • the method for causing the curing agent to exhibit flux activity include a method of introducing a protonic acid group such as a carboxy group, a sulfonyl group, or a phosphoric acid group into the curing agent by a known method.
  • a carboxyl group from the viewpoint of reactivity with the epoxy resin or oxetane compound as a curing component, and examples thereof include carboxyl group-containing organic acids such as glutaric acid and succinic acid.
  • it may be a compound modified from glutaric anhydride or succinic anhydride, or a metal salt of an organic acid such as silver glutarate.
  • the content of the curing agent is not particularly limited and can be appropriately selected depending on the purpose, but it should be 0.1% by mass or more and 30% by mass or less based on the total amount of the first thermally conductive layer. is preferred.
  • the molar equivalent equivalent ratio (C/D) between the curing component C and the curing agent D varies depending on the type of curing component and curing agent used, and cannot be unconditionally defined, but is 0.5 or more. It is preferably 3 or less, more preferably 0.5 or more and 2 or less, and even more preferably 0.7 or more and 1.5 or less.
  • the equivalent ratio (C/D) is 0.5 or more and 3 or less, there is an advantage that the low melting point metal particles can sufficiently melt to form a network when the thermally conductive composition is thermoset.
  • the first thermally conductive particles are preferably at least one of copper particles, silver-coated particles, and silver particles.
  • Examples of the silver-coated particles include silver-coated copper particles, silver-coated nickel particles, and silver-coated aluminum particles.
  • the shape of the first thermally conductive particles is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include spherical, flat, granular, and acicular shapes.
  • the volume average particle diameter of the first thermally conductive particles is preferably 0.3 ⁇ m or more and 30 ⁇ m or less, more preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the volume average particle size of the thermally conductive particles is 0.3 ⁇ m or more and 30 ⁇ m or less, the volume ratio of the first thermally conductive particles to the low melting point metal particles can be increased, and high thermal conductivity and low thermal resistance can be achieved.
  • the volume average particle size can be measured, for example, by a laser diffraction/scattering particle size distribution measuring device (product name: Microtrac MT3300EXII).
  • solder particles defined in JIS Z3282-1999 are preferably used.
  • solder particles examples include Sn-Pb solder particles, Pb-Sn-Sb solder particles, Sn-Sb solder particles, Sn-Pb-Bi solder particles, Sn-Bi solder particles, and Sn-Bi solder particles.
  • -Ag based solder particles, Sn-Cu based solder particles, Sn-Pb-Cu based solder particles, Sn-In based solder particles, Sn-Ag based solder particles, Sn-Pb-Ag based solder particles, Pb-Ag based solder Examples include particles, Sn-Ag-Cu solder particles, and the like. These may be used alone or in combination of two or more.
  • solder particles containing Sn and at least one selected from Bi, Ag, Cu, and In are preferred, and include Sn-Bi solder particles, Sn-Bi-Ag solder particles, and Sn-Ag solder particles.
  • Sn-Bi solder particles Sn-Bi-Ag solder particles
  • Sn-Ag solder particles Sn-Ag solder particles.
  • -Cu-based solder particles and Sn--In based solder particles are more preferred.
  • the shape of the low melting point metal particles is not particularly limited and can be appropriately selected depending on the purpose, and examples include spherical, flat, granular, and acicular shapes.
  • the melting point of the low melting point metal particles is preferably 100°C or more and 250°C or less, more preferably 120°C or more and 200°C or less.
  • the melting point of the low melting point metal particles is lower than the heat curing temperature of the first heat conductive composition. This is preferable because a network (continuous metal phase) can be formed through conductive particles and high thermal conductivity and low thermal resistance can be achieved.
  • the low melting point metal particles react with the heat conductive particles under the thermosetting conditions of the first heat conductive composition to form an alloy having a higher melting point than the low melting point metal particles, so that It can prevent melting and improve reliability. Moreover, the heat resistance of the cured product of the first thermally conductive composition is improved.
  • the heat curing treatment of the first thermally conductive composition is performed, for example, at a temperature of 150° C. or more and 200° C. for 30 minutes or more and 2 hours or less.
  • the volume average particle diameter of the low melting point metal particles is preferably 10 ⁇ m or less, more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the volume average particle size of the low melting point metal particles can be measured in the same manner as the volume average particle size of the first thermally conductive particles.
  • the volume average particle size of the first heat conductive particles is larger than the volume average particle size of the low melting point metal particles, and the volume average particle size ratio of the heat conductive particles A and the low melting point metal particles B (A/B ) is preferably 2 or more, more preferably 3 or more, and even more preferably 5 or more.
  • the upper limit of the volume average particle size ratio (A/B) is preferably 20 or less, more preferably 10 or less.
  • the thermally conductive particles become the main component in the first thermally conductive composition, and the first thermally conductive particles and Since the low melting point metal particles present between the first heat conductive particles are melted by heating and alloyed with the first heat conductive particles to form a network, high thermal conductivity and low thermal resistance can be achieved.
  • the volume ratio (A/B) of the first heat conductive particles A and the low melting point metal particles B in the first heat conductive layer is preferably 1 or more, more preferably 1.5 or more, and 2 or more. is even more preferable.
  • the upper limit of the volume ratio (A/B) is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less.
  • the volume ratio (A/B) is 1 or more, the volume ratio of thermally conductive particles having a larger volume average particle diameter than the low melting point metal particles increases, so it is possible to suppress the flow of the molten low melting point metal particles. can.
  • separation is less likely to occur at an interface (for example, silicon) where low-melting point metal particles are difficult to wet, the influence of the material of the interface can be suppressed, and the selectivity of the interface material can be improved.
  • the first thermally conductive layer preferably contains a polymer in order to impart flexibility and the like.
  • the polymer is not particularly limited and can be appropriately selected depending on the purpose.
  • the polymer may have a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, a polyalkylene structure, a polyalkyleneoxy structure, Examples include polymers having at least one structure selected from a polyisoprene structure, a polyisobutylene structure, a polyamide structure, and a polycarbonate structure.
  • the content of the polymer is preferably 1% by mass or more and 50% by mass or less, more preferably 1% by mass or more and 30% by mass or less, and 1% by mass or more and 10% by mass or less, based on the total amount of the first thermally conductive layer. is even more preferable.
  • the first thermally conductive layer may contain other components as long as the effects of the present invention are not impaired.
  • the other components are not particularly limited and can be selected as appropriate depending on the purpose. inhibitors, ultraviolet absorbers, curing accelerators, silane coupling agents, leveling agents, flame retardants, etc.).
  • the first thermally conductive composition is prepared by uniformly mixing the curing component, the curing agent, the first thermally conductive particles, the low melting point particles, the polymer, and other components as necessary by a conventional method. It can be prepared by
  • the average thickness of the first thermally conductive layer is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the second thermally conductive layer contains a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles, and further contains other components as necessary.
  • the second thermally conductive particles are preferably at least one of copper particles, silver-coated particles, and silver particles.
  • Examples of the silver-coated particles include silver-coated copper particles, silver-coated nickel particles, and silver-coated aluminum particles.
  • the shape of the second thermally conductive particles is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include spherical, flat, granular, and acicular shapes.
  • a portion of the first thermally conductive particles contained in the first thermally conductive layer and a portion of the second thermally conductive particles contained in the second thermally conductive layer are in contact with each other, and the first thermally conductive particles are in contact with each other. It is necessary that the volume average particle size of the heat conductive particles is smaller than the volume average particle size of the second heat conductive particles. If the volume average particle size of the first heat conductive particles is larger than the volume average particle size of the second heat conductive particles, the thermal conductivity of the laminate may decrease.
  • the ratio (A:B) of the volume average particle size A of the first thermally conductive particles to the volume average particle size B of the second thermally conductive particles is preferably 1:2 to 1:50, and 1 :10 to 1:40 is more preferable.
  • the volume average particle diameter of the second thermally conductive particles is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 70 ⁇ m or less, and even more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the volume average particle size of the second thermally conductive particles can be measured in the same manner as the volume average particle size of the first thermally conductive particles.
  • the curing component, curing agent, low melting point metal particles, polymer, and other components in the second thermally conductive layer are the curing component, curing agent, low melting point metal particles, polymer, and other components in the first thermally conductive layer described above. Since the components are the same as those in , the details of these will be omitted.
  • the average thickness of the second thermally conductive layer is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 20 ⁇ m or more and 300 ⁇ m or less, more preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the third thermally conductive layer is formed between the first thermally conductive layer and the second thermally conductive layer, and the third thermally conductive layer may be a single layer, or may have two or more layers. There may be multiple layers.
  • the third thermally conductive layer is preferably a copper foil from the viewpoint of thermal conductivity.
  • the average thickness of the third thermally conductive layer is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 5 ⁇ m or more and 200 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the facing base material is arranged to face the base material, and there are no particular limitations on its shape, structure, size, material, etc., and can be appropriately selected depending on the purpose.
  • Examples of the shape of the facing substrate include a plate shape and a sheet shape.
  • Examples of the structure of the opposing base material include a single layer structure and a laminated structure. The size of the opposing base material can be appropriately selected depending on the application and the like.
  • the material of the opposing base material is a material easily wetted by solder, and includes at least one member selected from copper, gold, platinum, palladium, silver, zinc, iron, tin, nickel, magnesium, indium, and alloys thereof. include.
  • the average thickness of the facing substrate is not particularly limited and can be appropriately selected depending on the purpose.
  • the opposing base material may be the heat spreader itself in the heat dissipation structure.
  • the method for manufacturing a laminate of the present invention includes a first thermally conductive layer forming step, a second thermally conductive layer forming step, and further includes other steps as necessary.
  • First thermally conductive layer forming step In the first thermally conductive layer forming step, a first thermally conductive layer containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles is formed on the base material. This is the process of forming.
  • the base material includes at least one selected from silicon, aluminum, tungsten, molybdenum, glass, mold resin, stainless steel, and ceramics.
  • the curing component, curing agent, first thermally conductive particles, and low melting point metal particles are the curing component, curing agent, first thermally conductive particles, and low melting point metal particles contained in the first thermally conductive layer. Since it is similar to the low melting point metal particles, its explanation will be omitted.
  • a method for forming the first thermally conductive layer for example, (1) a first thermally conductive layer containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles; A method of applying a composition onto a substrate and curing it, (2) containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles on a support with a release layer. Examples include a method of forming a cured product layer containing a cured product of the first thermally conductive composition and transferring the cured product layer onto a substrate. In (2) above, the support is peeled off when transferring the cured material layer onto the base material.
  • Examples of the method for applying the first thermally conductive composition to the base material in (1) include an inkjet method, a blade coating method, a gravure coating method, a gravure offset coating method, a bar coating method, a roll coating method, and a knife method.
  • a second thermally conductive layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles is formed on the first thermally conductive layer. This is a step of forming a thermally conductive layer.
  • the curing component, the curing agent, the second thermally conductive particles, and the low melting point metal particles are the curing component, the curing agent, the second thermally conductive particles contained in the second thermally conductive layer, and the above-mentioned low melting point metal particles, so the explanation thereof will be omitted.
  • the method for forming the second thermally conductive layer includes, for example, (1) a second thermally conductive layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles; A method of applying a composition onto a first thermally conductive layer and curing it, (2) a curing component on a support with a release layer, a curing agent for curing the curing component, a second thermally conductive particle, and a low melting point Examples include a method of forming a cured material layer containing a cured product of a second thermally conductive composition containing metal particles, and transferring the cured material layer onto the first thermally conductive layer. In (2) above, the support is peeled off when transferring the cured material layer onto the first thermally conductive layer.
  • Examples of the method for applying the second thermally conductive composition in (1) above to the first thermally conductive layer include an inkjet method, a blade coating method, a gravure coating method, a gravure offset coating method, a bar coating method, and a roll coating method.
  • FIG. 1 is a schematic diagram showing an example of a laminate according to the first embodiment.
  • the laminate 10 in FIG. 1 includes a first thermally conductive layer 12 containing first thermally conductive particles 15 on a base material 11, and a second thermally conductive layer 12 on the first thermally conductive layer 12. 16, and an opposing base material 14 on the second heat conductive layer 13.
  • a portion of the first thermally conductive particles 15 included in the first thermally conductive layer 12 and a portion of the second thermally conductive particles 16 included in the second thermally conductive layer 13 are in contact with each other, and the first thermally conductive particles 15 are in contact with each other.
  • the volume average particle size of the second heat conductive particles 15 is smaller than the volume average particle size of the second heat conductive particles 16.
  • FIG. 2 is a schematic diagram showing an example of a laminate according to the second embodiment.
  • the laminate 20 of FIG. 2 has a first thermally conductive layer 12 containing first thermally conductive particles 15 on a base material 11, and a third layer made of copper foil on the first thermally conductive layer 12.
  • a second thermally conductive layer 13 containing second thermally conductive particles 16 on the third thermally conductive layer 17; and a counter substrate 14 on the second thermally conductive layer 13. has.
  • the volume average particle diameter of the first heat conductive particles 15 is smaller than the volume average particle diameter of the second heat conductive particles 16.
  • the laminate of the present invention can be used, for example, with a thermal interface material (TIM), an LED chip, or an IC that fills a minute gap between a heat source such as an LSI and a heat sink to allow heat to flow smoothly between the two.
  • a thermal interface material TIM
  • an LED chip or an IC that fills a minute gap between a heat source such as an LSI and a heat sink to allow heat to flow smoothly between the two.
  • the heat dissipation board on which the chip is mounted can be suitably used when bonding to a heat sink to configure a power LED module or a power IC module.
  • power LED modules include wire bonding type and flip chip type
  • power IC modules include wire bonding type
  • the heat dissipation structure used in the present invention is composed of a heating element, the laminate of the present invention, and a heat dissipation member.
  • the heating element is not particularly limited and can be selected as appropriate depending on the purpose, for example, CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit). Electronic parts such as Can be mentioned.
  • CPU Central Processing Unit
  • MPU Micro Processing Unit
  • GPU Graphics Processing Unit
  • the heat dissipation member is not particularly limited as long as it is a structure that dissipates heat generated by electronic components (heat generating elements), and can be appropriately selected depending on the purpose.For example, heat spreaders, heat sinks, vapor chambers, heat Examples include pipes.
  • the heat spreader is a member for efficiently transmitting heat from the electronic component to other components.
  • the material of the heat spreader is not particularly limited and can be appropriately selected depending on the purpose, such as copper and aluminum.
  • the heat spreader usually has a flat plate shape.
  • the heat sink is a member for releasing heat from the electronic component into the air.
  • the material of the heat sink is not particularly limited and can be appropriately selected depending on the purpose, such as copper and aluminum.
  • the heat sink has, for example, a plurality of fins.
  • the heat sink includes, for example, a base portion and a plurality of fins extending in non-parallel directions (for example, perpendicular directions) to one surface of the base portion.
  • the heat spreader and the heat sink generally have a solid structure with no internal space.
  • the vapor chamber is a hollow structure.
  • a volatile liquid is sealed in the internal space of the hollow structure.
  • Examples of the vapor chamber include a plate-shaped hollow structure such as a hollow structure of the heat spreader and a hollow structure of the heat sink.
  • the heat pipe is a cylindrical, substantially cylindrical, or flat cylindrical hollow structure.
  • a volatile liquid is sealed in the internal space of the hollow structure.
  • FIG. 3 is a schematic cross-sectional view showing an example of a semiconductor device as a heat dissipation structure.
  • the laminate 7 of the present invention radiates heat generated by an electronic component 3 such as a semiconductor element, and as shown in FIG. 3 and the heat spreader 2. Further, the thermally conductive sheet 1 is sandwiched between the heat spreader 2 and the heat sink 5.
  • the heat spreader 2 is formed into a rectangular plate shape, for example, and has a main surface 2a facing the electronic component 3, and a side wall 2b erected along the outer periphery of the main surface 2a.
  • a heat conductive sheet 1 is provided on a main surface 2a surrounded by side walls 2b, and a heat sink 5 is provided on the other surface 2c opposite to the main surface 2a via the heat conductive sheet 1.
  • the heat spreader 2 is formed using, for example, copper or aluminum, which has good thermal conductivity, because the higher the thermal conductivity, the lower the thermal resistance, and the more efficiently the heat spreader 2 absorbs the heat of the electronic components 3 such as semiconductor elements. can do.
  • the electronic component 3 is, for example, a semiconductor element such as a BGA, and is mounted on the wiring board 6. Further, the heat spreader 2 also has the front end surface of the side wall 2b mounted on the wiring board 6, so that the side wall 2b surrounds the electronic component 3 at a predetermined distance.
  • a heat radiating member is formed that absorbs the heat generated by the electronic component 3 and radiates the heat from the heat sink 5.
  • thermoly conductive composition (Examples 1 to 5, Comparative Examples 1 to 3, and Reference Example 1) ⁇ Preparation of thermally conductive composition>
  • the compositions and contents listed in Tables 1 to 3 were uniformly mixed using a stirring device (foam remover Rentaro, automatic revolution mixer, manufactured by Shinky Co., Ltd.), and the first thermally conductive composition and the second thermally conductive composition were mixed uniformly.
  • a thermally conductive composition was prepared. Note that the content of each component in Tables 1 to 3 is in parts by mass.
  • the first thermally conductive composition was applied on a 30 mm x 30 mm x 2 mm base material (silicon) according to the descriptions in Tables 1 to 3, and then , a second thermally conductive composition was applied on the first thermally conductive layer, a 30 mm x 30 mm x 2 mm opposing base material (copper) was laminated on the second thermally conductive composition, and the layer was heated at 150°C. It was heated for 60 minutes and cured to form a laminate having a first thermally conductive layer with an average thickness of 10 ⁇ m and a second thermally conductive layer with an average thickness of 70 ⁇ m.
  • Example 2 a copper foil with an average thickness of 30 ⁇ m was used as the third thermally conductive layer.
  • Comparative Example 2 a laminate was formed in the same manner as Examples 1 to 5 and Comparative Example 3, except that the second thermally conductive composition was not used.
  • Thermal resistance (°C ⁇ cm 2 /W) of each of the obtained laminates was measured by a method based on ASTM-D5470.
  • the thermal resistance of the cured product was calculated by subtracting the thermal resistance of the base material and the opposing substrate from the results, and the thermal impedance (Kmm 2 /W) was calculated from the thermal resistance and the area of the cured product.
  • Thermal conductivity is 15 W/m ⁇ K or more
  • Thermal conductivity is 10 W/m ⁇ K or more and less than 15 W/m ⁇ K
  • Thermal conductivity is less than 10 W/m ⁇ K
  • Second thermally conductive particles *First thermally conductive particles 1: Ag particles, manufactured by DOWA Electronics Co., Ltd., volume average particle diameter Dv: 1 ⁇ m *First thermally conductive particles 2: Ag-coated Cu particles, manufactured by Fukuda Metal Foil and Powder Industries Co., Ltd., volume average particle diameter Dv: 5 ⁇ m *First thermally conductive particles 3: Ag-coated Cu particles, manufactured by Fukuda Metal Foil and Powder Industries Co., Ltd., volume average particle diameter Dv: 40 ⁇ m
  • the laminate of the present invention can realize high thermal conductivity and low thermal resistance as a thermal interface material (TIM), so it can be used, for example, in CPUs, MPUs, power transistors, LEDs, lasers, etc. whose element operation efficiency and life span are adversely affected by temperature. Suitable for use around various electrical devices such as diodes.
  • TIM thermal interface material

Abstract

The present invention provides a multilayer body which comprises: a base material; a first heat conductive layer which is arranged on the base material and contains a curable component, a curing agent that cures the curable component, first heat conductive particles, and low-melting-point metal particles; and a second heat conductive layer which is arranged on the first heat conductive layer and contains a curable component, a curing agent that cures the curable component, second heat conductive particles, and low-melting-point metal particles. Some of the first heat conductive particles in the first heat conductive layer and some of the second heat conductive particles in the second heat conductive layer are in contact with each other; the volume average particle diameter of the first heat conductive particles is smaller than the volume average particle diameter of the second heat conductive particles; and the base material contains at least one substance that is selected from among silicon, aluminum, tungsten, molybdenum, glass, a mold resin, a stainless steel and a ceramic.

Description

積層体及びその製造方法Laminated body and its manufacturing method
 本発明は、積層体及び積層体の製造方法に関する。 The present invention relates to a laminate and a method for manufacturing a laminate.
 各種電子機器におけるLSI等では、用いられている素子の発熱によりLSI自身が長時間高温に晒されると動作不良や故障につながる恐れがある。このため、LSI等の昇温を防ぐために熱伝導材料が広く用いられている。前記熱伝導材料は素子の発熱を拡散させるか、あるいは大気等の系外に放出させるための放熱部材に伝えることによって機器の昇温を防ぐことができる。 In LSIs used in various electronic devices, if the LSI itself is exposed to high temperatures for a long period of time due to the heat generated by the elements used, it may lead to malfunction or failure. Therefore, thermally conductive materials are widely used to prevent the temperature of LSIs and the like from rising. The thermally conductive material can prevent the temperature of the device from rising by diffusing the heat generated by the element or transmitting it to a heat radiating member for discharging it to the outside of the system, such as the atmosphere.
 このような熱伝導材料として金属又はセラミックスを用いると、軽量化しにくい、加工性が悪い、又は柔軟性が低くなるという問題がある。そこで、樹脂又はゴム等からなる高分子材料を母材とする熱伝導材料が種々提案されている。 When metals or ceramics are used as such thermally conductive materials, there are problems such as difficulty in reducing weight, poor workability, or low flexibility. Therefore, various heat conductive materials have been proposed that use polymeric materials such as resin or rubber as a base material.
 例えば、硬化成分及び該硬化成分用の硬化剤を含有する熱硬化性接着剤と、該熱硬化性接着剤中に分散した金属フィラーとを有し、金属フィラーは、銀粉及びハンダ粉を有し、該ハンダ粉は、熱伝導接着剤の熱硬化処理温度よりも低い溶融温度を示し、かつ該熱硬化性接着剤の熱硬化処理条件下で銀粉と反応して、当該ハンダ粉の溶融温度より高い融点を示す高融点ハンダ合金を生成するものであり、該硬化剤は、金属フィラーに対してフラックス活性を有する硬化剤であり、該硬化成分が、グリシジルエーテル型エポキシ樹脂であり、硬化剤がトリカルボン酸のモノ酸無水物である熱伝導接着剤が提案されている(例えば、特許文献1参照)。 For example, it includes a thermosetting adhesive containing a curing component and a curing agent for the curing component, and a metal filler dispersed in the thermosetting adhesive, and the metal filler includes silver powder and solder powder. , the solder powder exhibits a melting temperature lower than the heat curing temperature of the thermally conductive adhesive, and reacts with the silver powder under the heat curing conditions of the thermosetting adhesive to reach a temperature lower than the melting temperature of the solder powder. It produces a high melting point solder alloy that exhibits a high melting point, the hardening agent is a hardening agent that has flux activity against metal fillers, the hardening component is a glycidyl ether type epoxy resin, and the hardening agent is a glycidyl ether type epoxy resin. A thermally conductive adhesive that is a monoanhydride of tricarboxylic acid has been proposed (see, for example, Patent Document 1).
日本国特許第5796242号公報Japanese Patent No. 5796242
 しかしながら、上記特許文献1に記載の従来技術では、銅基材とシリコン基材の間に熱伝導接着剤からなる熱伝導層を形成すると、シリコン界面との接触抵抗が大きくなり、熱伝導性が低下してしまうという問題がある。 However, in the conventional technology described in Patent Document 1, when a thermally conductive layer made of a thermally conductive adhesive is formed between a copper base material and a silicon base material, the contact resistance with the silicon interface increases and the thermal conductivity decreases. There is a problem that it decreases.
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、高熱伝導性及び低熱抵抗を実現できる積層体及び積層体の製造方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned conventional problems and achieve the following objects. That is, an object of the present invention is to provide a laminate and a method for manufacturing the laminate that can achieve high thermal conductivity and low thermal resistance.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 基材と、
 前記基材上に、硬化成分、該硬化成分を硬化させる硬化剤、第1の熱伝導粒子、及び低融点金属粒子を含有する第1の熱伝導層と、
 前記第1の熱伝導層上に、硬化成分、該硬化成分を硬化させる硬化剤、第2の熱伝導粒子、及び低融点金属粒子を含有する第2の熱伝導層と、
を有し、
 前記第1の熱伝導層に含まれる第1の熱伝導粒子の一部と前記第2の熱伝導層に含まれる第2の熱伝導粒子の一部とが接触しており、前記第1の熱伝導粒子の体積平均粒径が前記第2の熱伝導粒子の体積平均粒径よりも小さく、
 前記基材が、シリコン、アルミニウム、タングステン、モリブデン、ガラス、モールド樹脂、ステンレス鋼、及びセラミックスから選択される少なくとも1種を含むことを特徴とする積層体である。
 <2> 前記第1の熱伝導粒子の体積平均粒径Aと前記第2の熱伝導粒子の体積平均粒径Bとの比(A:B)が1:2~1:50である、前記<1>に記載の積層体である。
 <3> 前記第1の熱伝導粒子の体積平均粒径が0.3μm以上30μm以下である、前記<1>又は<2>に記載の積層体である。
 <4> 前記第2の熱伝導粒子の体積平均粒径が1μm以上100μm以下である、前記<1>から<3>のいずれか一つに記載の積層体である。
 <5> 前記第1及び第2の熱伝導粒子が、銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかである、前記<1>から<4>のいずれか一つに記載の積層体である。
 <6> 前記低融点金属粒子がSnと、Bi、Ag、Cu、及びInから選択される少なくとも1種とを含む、前記<1>から<5>のいずれか一つに記載の積層体である。
 <7> 前記硬化剤が前記第1及び第2の熱伝導粒子に対してフラックス活性を有する、前記<1>から<6>のいずれか一つに記載の積層体である。
 <8> 前記硬化成分がオキシラン環化合物及びオキセタン化合物の少なくともいずれかである、前記<1>から<7>のいずれか一つに記載の積層体である。
 <9> 前記第1の熱伝導層と前記第2の熱伝導層の間に第3の熱伝導層を有する、前記<1>から<8>のいずれか一つに記載の積層体である。
 <10> 前記第3の熱伝導層が銅箔である、前記<9>に記載の積層体である。
 <11> 前記第2の熱伝導層上に、前記基材と対向する対向基材を有し、
 前記対向基材が、銅、金、白金、パラジウム、銀、亜鉛、鉄、錫、ニッケル、マグネシウム、インジウム、及びこれらの合金から選択される少なくとも1種を含む、前記<1>から<10>のいずれか一つに記載の積層体である。
 <12> 前記基材上に、硬化成分、該硬化成分を硬化させる硬化剤、第1の熱伝導粒子、及び低融点金属粒子を含有する第1の熱伝導層を形成する第1の熱伝導層形成工程と、
 前記第1の熱伝導層上に、硬化成分、該硬化成分を硬化させる硬化剤、第2の熱伝導粒子、及び低融点金属粒子を含有する第2の熱伝導層を形成する第2の熱伝導層形成工程と、
を含み、
 前記基材が、シリコン、アルミニウム、タングステン、モリブデン、ガラス、モールド樹脂、ステンレス鋼、及びセラミックスから選択される少なくとも1種を含むことを特徴とする積層体の製造方法である。
Means for solving the above problem are as follows. That is,
<1> Base material;
a first thermally conductive layer containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles on the base material;
a second thermally conductive layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles on the first thermally conductive layer;
has
A portion of the first thermally conductive particles contained in the first thermally conductive layer and a portion of the second thermally conductive particles contained in the second thermally conductive layer are in contact with each other, and the first thermally conductive particles are in contact with each other. The volume average particle size of the thermally conductive particles is smaller than the volume average particle size of the second thermally conductive particles,
The laminate is characterized in that the base material includes at least one selected from silicon, aluminum, tungsten, molybdenum, glass, mold resin, stainless steel, and ceramics.
<2> The ratio (A:B) of the volume average particle diameter A of the first heat conductive particles to the volume average particle diameter B of the second heat conductive particles is 1:2 to 1:50. This is the laminate described in <1>.
<3> The laminate according to <1> or <2>, wherein the first thermally conductive particles have a volume average particle diameter of 0.3 μm or more and 30 μm or less.
<4> The laminate according to any one of <1> to <3>, wherein the second thermally conductive particles have a volume average particle size of 1 μm or more and 100 μm or less.
<5> The laminate according to any one of <1> to <4>, wherein the first and second thermally conductive particles are at least one of copper particles, silver-coated particles, and silver particles. It is.
<6> The laminate according to any one of <1> to <5>, wherein the low melting point metal particles contain Sn and at least one selected from Bi, Ag, Cu, and In. be.
<7> The laminate according to any one of <1> to <6>, wherein the curing agent has flux activity with respect to the first and second thermally conductive particles.
<8> The laminate according to any one of <1> to <7>, wherein the curing component is at least one of an oxirane ring compound and an oxetane compound.
<9> The laminate according to any one of <1> to <8>, including a third thermally conductive layer between the first thermally conductive layer and the second thermally conductive layer. .
<10> The laminate according to <9>, wherein the third thermally conductive layer is a copper foil.
<11> A facing base material facing the base material is provided on the second thermally conductive layer,
<1> to <10>, wherein the opposing base material contains at least one selected from copper, gold, platinum, palladium, silver, zinc, iron, tin, nickel, magnesium, indium, and alloys thereof. The laminate according to any one of the above.
<12> A first thermally conductive layer containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles on the base material. a layer forming step;
A second thermally conductive layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles on the first thermally conductive layer. A conductive layer forming step,
including;
The method for producing a laminate is characterized in that the base material contains at least one selected from silicon, aluminum, tungsten, molybdenum, glass, mold resin, stainless steel, and ceramics.
 本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、高熱伝導性及び低熱抵抗を実現できる積層体及び積層体の製造方法を提供することができる。 According to the present invention, it is possible to provide a laminate and a method for manufacturing the laminate, which can solve the above-mentioned conventional problems, achieve the above-mentioned objects, and realize high thermal conductivity and low thermal resistance.
図1は、第1の実施形態に係る積層体の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a laminate according to the first embodiment. 図2は、第2の実施形態に係る積層体の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a laminate according to the second embodiment. 図3は、本発明で用いられる放熱構造体の一例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a heat dissipation structure used in the present invention.
(積層体)
 本発明の積層体は、基材と、第1の熱伝導層と、第2の熱伝導層とを有し、第3の熱伝導層及び対向基材を有することが好ましく、更に必要に応じてその他の部材を有する。
(laminate)
The laminate of the present invention preferably has a base material, a first thermally conductive layer, a second thermally conductive layer, a third thermally conductive layer and an opposing base material, and further has a third thermally conductive layer and an opposing base material, if necessary. and other members.
 本発明においては、基材上に第1の熱伝導層及び第2の熱伝導層をこの順に有し、第1の熱伝導粒子の一部と第2の熱伝導粒子の一部とが接触しており、前記第1の熱伝導粒子の体積平均粒径が前記第2の熱伝導粒子の体積平均粒径よりも小さいことにより、シリコン、アルミニウム、タングステン、モリブデン、ガラス、モールド樹脂、ステンレス鋼、及びセラミックスから選択される少なくとも1種からなるはんだ濡れ性の悪い基材であっても、接触面積の増大によって、熱伝導性を大幅に向上させることができる。 In the present invention, the first thermally conductive layer and the second thermally conductive layer are provided on the base material in this order, and a portion of the first thermally conductive particles and a portion of the second thermally conductive particles are in contact with each other. The volume average particle size of the first thermally conductive particles is smaller than the volume average particle size of the second thermally conductive particles, so that silicon, aluminum, tungsten, molybdenum, glass, mold resin, stainless steel Even if the base material has poor solder wettability and is made of at least one selected from ceramics and ceramics, the thermal conductivity can be significantly improved by increasing the contact area.
<基材>
 前記基材の形状、構造、大きさ、材質などについては、特に制限はなく、目的に応じて適宜選択することができる。
<Base material>
The shape, structure, size, material, etc. of the base material are not particularly limited and can be appropriately selected depending on the purpose.
 前記基材の形状としては、例えば、板状、シート状などが挙げられる。前記基材の構造としては、単層構造、積層構造などが挙げられる。前記基材の大きさとしては、用途等に応じて適宜選択することができる。 Examples of the shape of the base material include a plate shape and a sheet shape. Examples of the structure of the base material include a single layer structure and a laminated structure. The size of the base material can be appropriately selected depending on the purpose and the like.
 前記基材の材質は、はんだが濡れにくい材質であり、シリコン、アルミニウム、タングステン、モリブデン、ガラス、モールド樹脂、ステンレス鋼、及びセラミックスから選択される少なくとも1種を含む。前記セラミックスとしては、例えば、窒化アルミニウム、炭化ケイ素、アルミナ、窒化ガリウムなどが挙げられる。前記モールド樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、アクリル樹脂などが挙げられる。 The material of the base material is a material that is difficult to wet with solder, and includes at least one selected from silicon, aluminum, tungsten, molybdenum, glass, mold resin, stainless steel, and ceramics. Examples of the ceramics include aluminum nitride, silicon carbide, alumina, and gallium nitride. Examples of the mold resin include epoxy resin, silicone resin, urethane resin, and acrylic resin.
 前記基材の平均厚みは、特に制限はなく、目的に応じて適宜選択することができる。 The average thickness of the base material is not particularly limited and can be appropriately selected depending on the purpose.
 前記基材は、放熱構造体における発熱体(電子部品)そのものであってもよい。 The base material may be the heating element (electronic component) itself in the heat dissipation structure.
<第1の熱伝導層>
 第1の熱伝導層は、前記基材上に形成され、基材と接して形成されることが好ましい。前記第1の熱伝導層は、硬化成分、該硬化成分を硬化させる硬化剤、第1の熱伝導粒子、及び低融点金属粒子を含有し、更に必要に応じてその他の成分を含有する。
<First thermally conductive layer>
The first thermally conductive layer is preferably formed on the base material and in contact with the base material. The first thermally conductive layer contains a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles, and further contains other components as necessary.
-硬化成分-
 硬化成分としては、オキシラン環化合物及びオキセタン化合物の少なくともいずれかを用いることが好ましい。
-Curing component-
As the curing component, it is preferable to use at least one of an oxirane ring compound and an oxetane compound.
--オキシラン環化合物--
 前記オキシラン環化合物は、オキシラン環を有する化合物であり、例えば、エポキシ樹脂などが挙げられる。
--Oxirane ring compound--
The oxirane ring compound is a compound having an oxirane ring, and includes, for example, an epoxy resin.
 前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、トリスフェノール型エポキシ樹脂、テトラフェノール型エポキシ樹脂、フェノール-キシリレン型エポキシ樹脂、ナフトール-キシリレン型エポキシ樹脂、フェノール-ナフトール型エポキシ樹脂、フェノール-ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The epoxy resin is not particularly limited and can be appropriately selected depending on the purpose, such as glycidyl ether type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, trisphenol. type epoxy resin, tetraphenol type epoxy resin, phenol-xylylene type epoxy resin, naphthol-xylylene type epoxy resin, phenol-naphthol type epoxy resin, phenol-dicyclopentadiene type epoxy resin, alicyclic epoxy resin, aliphatic epoxy resin Examples include. These may be used alone or in combination of two or more.
--オキセタン化合物--
 前記オキセタン化合物は、オキセタニル基を有する化合物であり、脂肪族化合物、脂環式化合物、又は芳香族化合物であってもよい。
--Oxetane compound--
The oxetane compound is a compound having an oxetanyl group, and may be an aliphatic compound, an alicyclic compound, or an aromatic compound.
 前記オキセタン化合物は、オキセタニル基を1つのみ有する1官能のオキセタン化合物であってもよいし、オキセタニル基を2つ以上有する多官能のオキセタン化合物であってもよい。 The oxetane compound may be a monofunctional oxetane compound having only one oxetanyl group, or a polyfunctional oxetane compound having two or more oxetanyl groups.
 前記オキセタン化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、3,7-ビス(3-オキセタニル)-5-オキサ-ノナン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,2-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エタン、1,3-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]プロパン、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、トリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、テトラエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス(3-エチル-3-オキセタニルメトキシ)ブタン、1,6-ビス(3-エチル-3-オキセタニルメトキシ)ヘキサン、3-エチル-3-(フェノキシ)メチルオキセタン、3-エチル-3-(シクロヘキシルオキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(クロロメチル)オキセタン、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、キシリレンビスオキセタン、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル(OXBP)などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The oxetane compound is not particularly limited and can be appropriately selected depending on the purpose, such as 3,7-bis(3-oxetanyl)-5-oxanonan, 1,4-bis[(3- ethyl-3-oxetanylmethoxy)methyl]benzene, 1,2-bis[(3-ethyl-3-oxetanylmethoxy)methyl]ethane, 1,3-bis[(3-ethyl-3-oxetanylmethoxy)methyl]propane , ethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, triethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, tetraethylene glycol bis(3-ethyl-3-oxetanylmethyl) ether, 1, 4-bis(3-ethyl-3-oxetanylmethoxy)butane, 1,6-bis(3-ethyl-3-oxetanylmethoxy)hexane, 3-ethyl-3-(phenoxy)methyloxetane, 3-ethyl-3- (cyclohexyloxymethyl)oxetane, 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3-(chloromethyl)oxetane, 3-ethyl-3{ Examples include [(3-ethyloxetan-3-yl)methoxy]methyl}oxetane, xylylenebisoxetane, 4,4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl (OXBP), and the like. These may be used alone or in combination of two or more.
 前記オキセタン化合物としては、市販品を用いることができ、前記市販品としては、例えば、東亞合成株式会社から販売されている「アロンオキセタン(登録商標)」シリーズ、宇部興産株式会社から販売されている「ETERNACOLL(登録商標)」シリーズなどが挙げられる。 As the oxetane compound, commercially available products can be used, and examples of the commercially available products include the "Aron Oxetane (registered trademark)" series sold by Toagosei Co., Ltd., and the "Aron Oxetane (registered trademark)" series sold by Ube Industries, Ltd. Examples include the "ETERNACOLL (registered trademark)" series.
 上記オキシラン環化合物及びオキセタン化合物の中でも、グリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノール-ジシクロペンタジエン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、脂肪族エポキシ樹脂、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル(OXBP)が好ましい。 Among the above oxirane ring compounds and oxetane compounds, glycidyl ether type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, phenol-dicyclopentadiene type epoxy resin, bisphenol A type epoxy resin, aliphatic epoxy resin, 4, 4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl (OXBP) is preferred.
 前記硬化成分の含有量は、特に制限はなく、目的に応じて適宜選択することができるが、第1の熱伝導層の全量に対して、0.5質量%以上60質量%以下であることが好ましい。 The content of the curing component is not particularly limited and can be selected as appropriate depending on the purpose, but it should be 0.5% by mass or more and 60% by mass or less based on the total amount of the first thermally conductive layer. is preferred.
-硬化剤-
 前記硬化剤としては、上記硬化成分に対応した硬化剤であって、例えば、酸無水物系硬化剤、脂肪族アミン系硬化剤、芳香族アミン系硬化剤、フェノール系硬化剤、メルカプタン系硬化剤等の重付加型硬化剤、イミダゾール等の触媒型硬化剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、酸無水物系硬化剤が好ましい。
-Hardening agent-
The curing agent is a curing agent corresponding to the curing component, such as an acid anhydride curing agent, an aliphatic amine curing agent, an aromatic amine curing agent, a phenol curing agent, or a mercaptan curing agent. Examples include polyaddition type curing agents such as , and catalyst type curing agents such as imidazole. These may be used alone or in combination of two or more. Among these, acid anhydride curing agents are preferred.
 前記酸無水物系硬化剤は硬化成分がエポキシ樹脂である場合、熱硬化の際にガスの発生がなく、エポキシ樹脂と混合した際に長いポットライフを実現でき、また、得られる硬化物の電気的特性、化学的特性、及び機械的特性間の良好なバランスを実現できる点から好ましい。 When the curing component of the acid anhydride curing agent is an epoxy resin, no gas is generated during thermal curing, and a long pot life can be achieved when mixed with the epoxy resin. This is preferable because a good balance between physical, chemical, and mechanical properties can be achieved.
 前記酸無水物系硬化剤としては、例えば、シクロヘキサン-1,2-ジカルボン酸無水物、トリカルボン酸のモノ酸無水物などが挙げられる。前記トリカルボン酸のモノ酸無水物としては、例えば、シクロへキサン-1,2,4-トリカルボン酸-1,2-酸無水物などが挙げられる。 Examples of the acid anhydride curing agent include cyclohexane-1,2-dicarboxylic anhydride and tricarboxylic acid monoanhydride. Examples of the monoanhydride of tricarboxylic acid include cyclohexane-1,2,4-tricarboxylic acid-1,2-acid anhydride.
 前記硬化剤は、フラックス活性を有するものが、熱伝導粒子に対する溶融した低融点金属粒子の濡れ性を向上させる点から好ましい。前記硬化剤にフラックス活性を発現させる方法としては、例えば、前記硬化剤にカルボキシ基、スルホニル基、リン酸基等のプロトン酸基を公知の方法により導入する方法などが挙げられる。これらの中でも、硬化成分としてのエポキシ樹脂又はオキセタン化合物との反応性の点から、カルボキシ基を導入することが好ましく、例えば、グルタル酸、コハク酸等のカルボキシル基含有の有機酸などが挙げられる。また、グルタル酸無水物又はコハク酸無水物から変性された化合物又はグルタル酸銀等の有機酸の金属塩などであっても構わない。 Preferably, the curing agent has flux activity, since it improves the wettability of the molten low-melting point metal particles to the thermally conductive particles. Examples of the method for causing the curing agent to exhibit flux activity include a method of introducing a protonic acid group such as a carboxy group, a sulfonyl group, or a phosphoric acid group into the curing agent by a known method. Among these, it is preferable to introduce a carboxyl group from the viewpoint of reactivity with the epoxy resin or oxetane compound as a curing component, and examples thereof include carboxyl group-containing organic acids such as glutaric acid and succinic acid. Further, it may be a compound modified from glutaric anhydride or succinic anhydride, or a metal salt of an organic acid such as silver glutarate.
 前記硬化剤の含有量は、特に制限はなく、目的に応じて適宜選択することができるが、第1の熱伝導層の全量に対して、0.1質量%以上30質量%以下であることが好ましい。 The content of the curing agent is not particularly limited and can be appropriately selected depending on the purpose, but it should be 0.1% by mass or more and 30% by mass or less based on the total amount of the first thermally conductive layer. is preferred.
 前記硬化成分Cと前記硬化剤Dとのモル当量基準の当量比(C/D)は、用いる硬化成分及び硬化剤の種類に応じて異なり一概には規定することができないが、0.5以上3以下が好ましく、0.5以上2以下がより好ましく、0.7以上1.5以下が更に好ましい。
 前記当量比(C/D)が0.5以上3以下であると、熱伝導組成物を熱硬化時に低融点金属粒子が十分に溶融してネットワークを形成できるという利点がある。
The molar equivalent equivalent ratio (C/D) between the curing component C and the curing agent D varies depending on the type of curing component and curing agent used, and cannot be unconditionally defined, but is 0.5 or more. It is preferably 3 or less, more preferably 0.5 or more and 2 or less, and even more preferably 0.7 or more and 1.5 or less.
When the equivalent ratio (C/D) is 0.5 or more and 3 or less, there is an advantage that the low melting point metal particles can sufficiently melt to form a network when the thermally conductive composition is thermoset.
-第1の熱伝導粒子-
 前記第1の熱伝導粒子としては、銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかが好ましい。
-First thermally conductive particles-
The first thermally conductive particles are preferably at least one of copper particles, silver-coated particles, and silver particles.
 前記銀被覆粒子としては、例えば、銀被覆銅粒子、銀被覆ニッケル粒子、銀被覆アルミニウム粒子などが挙げられる。 Examples of the silver-coated particles include silver-coated copper particles, silver-coated nickel particles, and silver-coated aluminum particles.
 前記第1の熱伝導粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、扁平状、粒状、針状などが挙げられる。 The shape of the first thermally conductive particles is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include spherical, flat, granular, and acicular shapes.
 前記第1の熱伝導粒子の体積平均粒径は、0.3μm以上30μm以下が好ましく、0.5μm以上10μm以下がより好ましい。熱伝導粒子の体積平均粒径が0.3μm以上30μm以下であると、第1の熱伝導粒子の低融点金属粒子に対する体積割合を大きくすることができ、高熱伝導性及び低熱抵抗を実現できる。前記体積平均粒径は、例えば、レーザ回折・散乱式粒子径分布測定装置(製品名:Microtrac MT3300EXII)により、測定することができる。 The volume average particle diameter of the first thermally conductive particles is preferably 0.3 μm or more and 30 μm or less, more preferably 0.5 μm or more and 10 μm or less. When the volume average particle size of the thermally conductive particles is 0.3 μm or more and 30 μm or less, the volume ratio of the first thermally conductive particles to the low melting point metal particles can be increased, and high thermal conductivity and low thermal resistance can be achieved. The volume average particle size can be measured, for example, by a laser diffraction/scattering particle size distribution measuring device (product name: Microtrac MT3300EXII).
-低融点金属粒子-
 前記低融点金属粒子としては、JIS Z3282-1999に規定されているはんだ粒子が好適に用いられる。
-Low melting point metal particles-
As the low melting point metal particles, solder particles defined in JIS Z3282-1999 are preferably used.
 前記はんだ粒子としては、例えば、Sn-Pb系はんだ粒子、Pb-Sn-Sb系はんだ粒子、Sn-Sb系はんだ粒子、Sn-Pb-Bi系はんだ粒子、Sn-Bi系はんだ粒子、Sn-Bi-Ag系はんだ粒子、Sn-Cu系はんだ粒子、Sn-Pb-Cu系はんだ粒子、Sn-In系はんだ粒子、Sn-Ag系はんだ粒子、Sn-Pb-Ag系はんだ粒子、Pb-Ag系はんだ粒子、Sn-Ag-Cu系はんだ粒子などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、Snと、Bi、Ag、Cu、及びInから選択される少なくとも1種と、を含むはんだ粒子が好ましく、Sn-Bi系はんだ粒子、Sn-Bi-Ag系はんだ粒子、Sn-Ag-Cu系はんだ粒子、Sn-In系はんだ粒子がより好ましい。 Examples of the solder particles include Sn-Pb solder particles, Pb-Sn-Sb solder particles, Sn-Sb solder particles, Sn-Pb-Bi solder particles, Sn-Bi solder particles, and Sn-Bi solder particles. -Ag based solder particles, Sn-Cu based solder particles, Sn-Pb-Cu based solder particles, Sn-In based solder particles, Sn-Ag based solder particles, Sn-Pb-Ag based solder particles, Pb-Ag based solder Examples include particles, Sn-Ag-Cu solder particles, and the like. These may be used alone or in combination of two or more. Among these, solder particles containing Sn and at least one selected from Bi, Ag, Cu, and In are preferred, and include Sn-Bi solder particles, Sn-Bi-Ag solder particles, and Sn-Ag solder particles. -Cu-based solder particles and Sn--In based solder particles are more preferred.
 前記低融点金属粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、扁平状、粒状、針状などが挙げられる。 The shape of the low melting point metal particles is not particularly limited and can be appropriately selected depending on the purpose, and examples include spherical, flat, granular, and acicular shapes.
 前記低融点金属粒子の融点は、100℃以上250℃以下が好ましく、120℃以上200℃以下がより好ましい。 The melting point of the low melting point metal particles is preferably 100°C or more and 250°C or less, more preferably 120°C or more and 200°C or less.
 前記低融点金属粒子の融点は前記第1の熱伝導組成物の熱硬化処理温度よりも低いことが、第1の熱伝導組成物の硬化物中に溶融した低融点金属粒子により第1の熱伝導粒子を介してネットワーク(金属の連続相)を形成でき、高熱伝導性及び低熱抵抗を実現できる点から好ましい。 The melting point of the low melting point metal particles is lower than the heat curing temperature of the first heat conductive composition. This is preferable because a network (continuous metal phase) can be formed through conductive particles and high thermal conductivity and low thermal resistance can be achieved.
 前記低融点金属粒子が、前記第1の熱伝導組成物の熱硬化処理条件下で前記熱伝導粒子と反応して、前記低融点金属粒子より高い融点を示す合金となることにより、高温下で溶融することを防止でき、信頼性が向上する。また、第1の熱伝導組成物の硬化物の耐熱性が向上する。 The low melting point metal particles react with the heat conductive particles under the thermosetting conditions of the first heat conductive composition to form an alloy having a higher melting point than the low melting point metal particles, so that It can prevent melting and improve reliability. Moreover, the heat resistance of the cured product of the first thermally conductive composition is improved.
 前記第1の熱伝導組成物の熱硬化処理は、例えば、150℃以上200℃の温度で30分間以上2時間以下の条件で行われる。 The heat curing treatment of the first thermally conductive composition is performed, for example, at a temperature of 150° C. or more and 200° C. for 30 minutes or more and 2 hours or less.
 前記低融点金属粒子の体積平均粒径は、10μm以下が好ましく、1μm以上5μm以下がより好ましい。低融点金属粒子の体積平均粒径が10μm以下であると、低融点金属粒子の熱伝導粒子に対する体積割合を小さくすることができ、第1の熱伝導層の高熱伝導性及び低熱抵抗を実現できる。前記低融点金属粒子の体積平均粒径は、上記第1の熱伝導粒子の体積平均粒径と同様にして測定することができる。 The volume average particle diameter of the low melting point metal particles is preferably 10 μm or less, more preferably 1 μm or more and 5 μm or less. When the volume average particle size of the low melting point metal particles is 10 μm or less, the volume ratio of the low melting point metal particles to the thermally conductive particles can be reduced, and high thermal conductivity and low thermal resistance of the first thermally conductive layer can be achieved. . The volume average particle size of the low melting point metal particles can be measured in the same manner as the volume average particle size of the first thermally conductive particles.
 前記第1の熱伝導粒子の体積平均粒径が前記低融点金属粒子の体積平均粒径よりも大きく、前記熱伝導粒子Aと前記低融点金属粒子Bとの体積平均粒径比(A/B)は2以上が好ましく、3以上がより好ましく、5以上が更に好ましい。前記体積平均粒径比(A/B)の上限値は20以下が好ましく、10以下がより好ましい。 The volume average particle size of the first heat conductive particles is larger than the volume average particle size of the low melting point metal particles, and the volume average particle size ratio of the heat conductive particles A and the low melting point metal particles B (A/B ) is preferably 2 or more, more preferably 3 or more, and even more preferably 5 or more. The upper limit of the volume average particle size ratio (A/B) is preferably 20 or less, more preferably 10 or less.
 前記第1の熱伝導粒子よりも体積平均粒径が小さい低融点金属粒子を用いることにより、第1の熱伝導組成物中で前記熱伝導粒子が主成分となり、前記第1の熱伝導粒子と前記第1の熱伝導粒子の間に存在する低融点金属粒子が加熱により溶融し、第1の熱伝導粒子と合金化してネットワークを形成するために、高熱伝導性及び低熱抵抗が実現できる。 By using low melting point metal particles having a smaller volume average particle diameter than the first thermally conductive particles, the thermally conductive particles become the main component in the first thermally conductive composition, and the first thermally conductive particles and Since the low melting point metal particles present between the first heat conductive particles are melted by heating and alloyed with the first heat conductive particles to form a network, high thermal conductivity and low thermal resistance can be achieved.
 第1の熱伝導層中での前記第1の熱伝導粒子Aと前記低融点金属粒子Bとの体積比(A/B)は、1以上が好ましく、1.5以上がより好ましく、2以上が更に好ましい。前記体積比(A/B)の上限値は5以下が好ましく、4以下がより好ましく、3以下が更に好ましい。
 前記体積比(A/B)が1以上であると、低融点金属粒子よりも体積平均粒径が大きい熱伝導粒子の体積割合が多くなるため、溶融した低融点金属粒子の流動を抑えることができる。また、低融点金属粒子が濡れにくい界面(例えば、シリコン)に対しても分離が発生しにくいため、界面の材質の影響を抑えることができ、界面材質の選択性が向上する。
The volume ratio (A/B) of the first heat conductive particles A and the low melting point metal particles B in the first heat conductive layer is preferably 1 or more, more preferably 1.5 or more, and 2 or more. is even more preferable. The upper limit of the volume ratio (A/B) is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less.
When the volume ratio (A/B) is 1 or more, the volume ratio of thermally conductive particles having a larger volume average particle diameter than the low melting point metal particles increases, so it is possible to suppress the flow of the molten low melting point metal particles. can. In addition, since separation is less likely to occur at an interface (for example, silicon) where low-melting point metal particles are difficult to wet, the influence of the material of the interface can be suppressed, and the selectivity of the interface material can be improved.
-ポリマー-
 第1の熱伝導層は、柔軟性などを付与するために、ポリマーを含有することが好ましい。
-polymer-
The first thermally conductive layer preferably contains a polymer in order to impart flexibility and the like.
 前記ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、分子内に、ポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、ポリアミド構造、ポリカーボネート構造から選択される少なくとも1種の構造を有するポリマーなどが挙げられる。 The polymer is not particularly limited and can be appropriately selected depending on the purpose. For example, the polymer may have a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, a polyalkylene structure, a polyalkyleneoxy structure, Examples include polymers having at least one structure selected from a polyisoprene structure, a polyisobutylene structure, a polyamide structure, and a polycarbonate structure.
 前記ポリマーの含有量は、第1の熱伝導層の全量に対して、1質量%以上50質量%以下が好ましく、1質量%以上30質量%以下がより好ましく、1質量%以上10質量%以下が更に好ましい。 The content of the polymer is preferably 1% by mass or more and 50% by mass or less, more preferably 1% by mass or more and 30% by mass or less, and 1% by mass or more and 10% by mass or less, based on the total amount of the first thermally conductive layer. is even more preferable.
-その他の成分-
 前記第1の熱伝導層は、本発明の効果を損なわない限りにおいてその他の成分を含有してもよい。前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属以外の熱伝導粒子(例えば、窒化アルミ、アルミナ、炭素繊維等)、添加剤(例えば、酸化防止剤、紫外線吸収剤、硬化促進剤、シランカップリング剤、レベリング剤、難燃剤等)などが挙げられる。
-Other ingredients-
The first thermally conductive layer may contain other components as long as the effects of the present invention are not impaired. The other components are not particularly limited and can be selected as appropriate depending on the purpose. inhibitors, ultraviolet absorbers, curing accelerators, silane coupling agents, leveling agents, flame retardants, etc.).
 第1の熱伝導組成物は、前記硬化成分、前記硬化剤、前記第1の熱伝導粒子、前記低融点粒子、前記ポリマー、及び必要に応じてその他の成分を常法により均一に混合することにより調製することができる。 The first thermally conductive composition is prepared by uniformly mixing the curing component, the curing agent, the first thermally conductive particles, the low melting point particles, the polymer, and other components as necessary by a conventional method. It can be prepared by
 前記第1の熱伝導層の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、1μm以上100μm以下であることが好ましく、5μm以上50μm以下であることがより好ましい。 The average thickness of the first thermally conductive layer is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 1 μm or more and 100 μm or less, more preferably 5 μm or more and 50 μm or less.
<第2の熱伝導層>
 第2の熱伝導層は、硬化成分、該硬化成分を硬化させる硬化剤、第2の熱伝導粒子、及び低融点金属粒子を含有し、更に必要に応じてその他の成分を含有する。
<Second thermally conductive layer>
The second thermally conductive layer contains a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles, and further contains other components as necessary.
-第2の熱伝導粒子-
 前記第2の熱伝導粒子としては、銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかが好ましい。
-Second thermally conductive particles-
The second thermally conductive particles are preferably at least one of copper particles, silver-coated particles, and silver particles.
 前記銀被覆粒子としては、例えば、銀被覆銅粒子、銀被覆ニッケル粒子、銀被覆アルミニウム粒子などが挙げられる。 Examples of the silver-coated particles include silver-coated copper particles, silver-coated nickel particles, and silver-coated aluminum particles.
 前記第2の熱伝導粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、扁平状、粒状、針状などが挙げられる。 The shape of the second thermally conductive particles is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include spherical, flat, granular, and acicular shapes.
 前記第1の熱伝導層に含まれる第1の熱伝導粒子の一部と前記第2の熱伝導層に含まれる第2の熱伝導粒子の一部とが接触しており、前記第1の熱伝導粒子の体積平均粒径が前記第2の熱伝導粒子の体積平均粒径よりも小さいことが必要である。前記第1の熱伝導粒子の体積平均粒径が前記第2の熱伝導粒子の体積平均粒径よりも大きいと、積層体の熱伝導性が低下することがある。 A portion of the first thermally conductive particles contained in the first thermally conductive layer and a portion of the second thermally conductive particles contained in the second thermally conductive layer are in contact with each other, and the first thermally conductive particles are in contact with each other. It is necessary that the volume average particle size of the heat conductive particles is smaller than the volume average particle size of the second heat conductive particles. If the volume average particle size of the first heat conductive particles is larger than the volume average particle size of the second heat conductive particles, the thermal conductivity of the laminate may decrease.
 前記第1の熱伝導粒子の体積平均粒径Aと前記第2の熱伝導粒子の体積平均粒径Bとの比(A:B)は1:2~1:50であることが好ましく、1:10~1:40であることがより好ましい。 The ratio (A:B) of the volume average particle size A of the first thermally conductive particles to the volume average particle size B of the second thermally conductive particles is preferably 1:2 to 1:50, and 1 :10 to 1:40 is more preferable.
 前記第2の熱伝導粒子の体積平均粒径は、1μm以上100μm以下が好ましく、10μm以上70μm以下がより好ましく、10μm以上50μm以下が更に好ましい。第2の熱伝導粒子の体積平均粒径が1μm以上100μm以下であると、高熱伝導性及び低熱抵抗を実現できる。前記第2の熱伝導粒子の体積平均粒径は、上記第1の熱伝導粒子の体積平均粒径と同様にして、測定することができる。 The volume average particle diameter of the second thermally conductive particles is preferably 1 μm or more and 100 μm or less, more preferably 10 μm or more and 70 μm or less, and even more preferably 10 μm or more and 50 μm or less. When the volume average particle diameter of the second thermally conductive particles is 1 μm or more and 100 μm or less, high thermal conductivity and low thermal resistance can be achieved. The volume average particle size of the second thermally conductive particles can be measured in the same manner as the volume average particle size of the first thermally conductive particles.
 前記第2の熱伝導層における硬化成分、硬化剤、低融点金属粒子、ポリマー、及びその他の成分は、上述した第1の熱伝導層における硬化成分、硬化剤、低融点金属粒子、ポリマー及びその他の成分と同様であるため、これらの詳細については省略する。 The curing component, curing agent, low melting point metal particles, polymer, and other components in the second thermally conductive layer are the curing component, curing agent, low melting point metal particles, polymer, and other components in the first thermally conductive layer described above. Since the components are the same as those in , the details of these will be omitted.
 前記第2の熱伝導層の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、20μm以上300μm以下であることが好ましく、50μm以上200μm以下であることがより好ましい。 The average thickness of the second thermally conductive layer is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 20 μm or more and 300 μm or less, more preferably 50 μm or more and 200 μm or less.
<第3の熱伝導層>
 前記第3の熱伝導層は、前記第1の熱伝導層と前記第2の熱伝導層の間に形成され、前記第3の熱伝導層は単層であってもよく、又は2層以上の複数層であっても構わない。
<Third thermally conductive layer>
The third thermally conductive layer is formed between the first thermally conductive layer and the second thermally conductive layer, and the third thermally conductive layer may be a single layer, or may have two or more layers. There may be multiple layers.
 前記第3の熱伝導層は、熱伝導性の点から銅箔であることが好ましい。 The third thermally conductive layer is preferably a copper foil from the viewpoint of thermal conductivity.
 前記第3の熱伝導層の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、5μm以上200μm以下であることが好ましく、10μm以上100μm以下であることがより好ましい。 The average thickness of the third thermally conductive layer is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 5 μm or more and 200 μm or less, more preferably 10 μm or more and 100 μm or less.
<対向基材>
 前記対向基材は、前記基材と対向して配置され、その形状、構造、大きさ、材質などについては、特に制限はなく、目的に応じて適宜選択することができる。
<Opposing base material>
The facing base material is arranged to face the base material, and there are no particular limitations on its shape, structure, size, material, etc., and can be appropriately selected depending on the purpose.
 前記対向基材の形状としては、例えば、板状、シート状などが挙げられる。前記対向基材の構造としては、単層構造、積層構造などが挙げられる。前記対向基材の大きさとしては、用途等に応じて適宜選択することができる。 Examples of the shape of the facing substrate include a plate shape and a sheet shape. Examples of the structure of the opposing base material include a single layer structure and a laminated structure. The size of the opposing base material can be appropriately selected depending on the application and the like.
 前記対向基材の材質は、はんだが濡れやすい材質であり、銅、金、白金、パラジウム、銀、亜鉛、鉄、錫、ニッケル、マグネシウム、インジウム、及びこれらの合金から選択される少なくとも1種を含む。 The material of the opposing base material is a material easily wetted by solder, and includes at least one member selected from copper, gold, platinum, palladium, silver, zinc, iron, tin, nickel, magnesium, indium, and alloys thereof. include.
 前記対向基材の平均厚みは、特に制限はなく、目的に応じて適宜選択することができる。 The average thickness of the facing substrate is not particularly limited and can be appropriately selected depending on the purpose.
 前記対向基材は、放熱構造体におけるヒートスプレッダそのものであってもよい。 The opposing base material may be the heat spreader itself in the heat dissipation structure.
<その他の部材>
 その他の部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、保護層などが挙げられる。
<Other parts>
Other members are not particularly limited and can be appropriately selected depending on the purpose, and include, for example, a protective layer.
(積層体の製造方法)
 本発明の積層体の製造方法は、第1の熱伝導層形成工程と、第2の熱伝導層形成工程とを含み、更に必要に応じてその他の工程を含む。
(Method for manufacturing laminate)
The method for manufacturing a laminate of the present invention includes a first thermally conductive layer forming step, a second thermally conductive layer forming step, and further includes other steps as necessary.
<第1の熱伝導層形成工程>
 第1の熱伝導層形成工程は、前記基材上に、硬化成分、該硬化成分を硬化させる硬化剤、第1の熱伝導粒子、及び低融点金属粒子を含有する第1の熱伝導層を形成する工程である。
<First thermally conductive layer forming step>
In the first thermally conductive layer forming step, a first thermally conductive layer containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles is formed on the base material. This is the process of forming.
 前記基材は、シリコン、アルミニウム、タングステン、モリブデン、ガラス、モールド樹脂、ステンレス鋼、及びセラミックスから選択される少なくとも1種を含む。 The base material includes at least one selected from silicon, aluminum, tungsten, molybdenum, glass, mold resin, stainless steel, and ceramics.
 前記硬化成分、硬化剤、前記第1の熱伝導粒子、及び前記低融点金属粒子は、上記第1の熱伝導層に含まれる前記硬化成分、硬化剤、前記第1の熱伝導粒子、及び前記低融点金属粒子と同様であるため、その説明を省略する。 The curing component, curing agent, first thermally conductive particles, and low melting point metal particles are the curing component, curing agent, first thermally conductive particles, and low melting point metal particles contained in the first thermally conductive layer. Since it is similar to the low melting point metal particles, its explanation will be omitted.
 前記第1の熱伝導層の形成方法としては、例えば、(1)硬化成分、該硬化成分を硬化させる硬化剤、第1の熱伝導粒子、及び低融点金属粒子を含有する第1の熱伝導組成物を基材上に付与し、硬化させる方法、(2)剥離層付き支持体上に硬化成分、該硬化成分を硬化させる硬化剤、第1の熱伝導粒子、及び低融点金属粒子を含有する第1の熱伝導組成物の硬化物を含む硬化物層を形成し、基材上に硬化物層を転写する方法などが挙げられる。前記(2)においては、硬化物層を基材上に転写する際に支持体を剥離する。 As a method for forming the first thermally conductive layer, for example, (1) a first thermally conductive layer containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles; A method of applying a composition onto a substrate and curing it, (2) containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles on a support with a release layer. Examples include a method of forming a cured product layer containing a cured product of the first thermally conductive composition and transferring the cured product layer onto a substrate. In (2) above, the support is peeled off when transferring the cured material layer onto the base material.
 前記(1)における第1の熱伝導組成物を前記基材へ付与する手法としては、例えば、インクジェット法、ブレードコート法、グラビアコート法、グラビアオフセットコート法、バーコート法、ロールコート法、ナイフコート法、エアナイフコート法、コンマコート法、Uコンマコート法、AKKUコート法、スムージングコート法、マイクログラビアコート法、リバースロールコート法、4本ロールコート法、5本ロールコート法、ディップコート法、カーテンコート法、スライドコート法、ダイコート法などが挙げられる。 Examples of the method for applying the first thermally conductive composition to the base material in (1) include an inkjet method, a blade coating method, a gravure coating method, a gravure offset coating method, a bar coating method, a roll coating method, and a knife method. Coating method, air knife coating method, comma coating method, U comma coating method, AKKU coating method, smoothing coating method, micro gravure coating method, reverse roll coating method, 4 roll coating method, 5 roll coating method, dip coating method, Examples include curtain coating method, slide coating method, and die coating method.
<第2の熱伝導層形成工程>
 第2の熱伝導層形成工程は、前記第1の熱伝導層上に、硬化成分、該硬化成分を硬化させる硬化剤、第2の熱伝導粒子、及び低融点金属粒子を含有する第2の熱伝導層を形成する工程である。
<Second thermally conductive layer forming step>
In the second thermally conductive layer forming step, a second thermally conductive layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles is formed on the first thermally conductive layer. This is a step of forming a thermally conductive layer.
 前記硬化成分、前記硬化剤、前記第2の熱伝導粒子、及び前記低融点金属粒子は、上記第2の熱伝導層に含まれる前記硬化成分、前記硬化剤、前記第2の熱伝導粒子、及び前記低融点金属粒子と同様であるため、その説明を省略する。 The curing component, the curing agent, the second thermally conductive particles, and the low melting point metal particles are the curing component, the curing agent, the second thermally conductive particles contained in the second thermally conductive layer, and the above-mentioned low melting point metal particles, so the explanation thereof will be omitted.
 前記第2の熱伝導層の形成方法としては、例えば、(1)硬化成分、該硬化成分を硬化させる硬化剤、第2の熱伝導粒子、及び低融点金属粒子を含有する第2の熱伝導組成物を第1の熱伝導層上に付与し、硬化させる方法、(2)剥離層付き支持体上に硬化成分、該硬化成分を硬化させる硬化剤、第2の熱伝導粒子、及び低融点金属粒子を含有する第2の熱伝導組成物の硬化物を含む硬化物層を形成し、第1の熱伝導層上に硬化物層を転写する方法などが挙げられる。前記(2)においては、硬化物層を第1の熱伝導層上に転写する際に支持体を剥離する。 The method for forming the second thermally conductive layer includes, for example, (1) a second thermally conductive layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles; A method of applying a composition onto a first thermally conductive layer and curing it, (2) a curing component on a support with a release layer, a curing agent for curing the curing component, a second thermally conductive particle, and a low melting point Examples include a method of forming a cured material layer containing a cured product of a second thermally conductive composition containing metal particles, and transferring the cured material layer onto the first thermally conductive layer. In (2) above, the support is peeled off when transferring the cured material layer onto the first thermally conductive layer.
 前記(1)における第2の熱伝導組成物を前記第1の熱伝導層へ付与する手法としては、例えば、インクジェット法、ブレードコート法、グラビアコート法、グラビアオフセットコート法、バーコート法、ロールコート法、ナイフコート法、エアナイフコート法、コンマコート法、Uコンマコート法、AKKUコート法、スムージングコート法、マイクログラビアコート法、リバースロールコート法、4本ロールコート法、5本ロールコート法、ディップコート法、カーテンコート法、スライドコート法、ダイコート法などが挙げられる。 Examples of the method for applying the second thermally conductive composition in (1) above to the first thermally conductive layer include an inkjet method, a blade coating method, a gravure coating method, a gravure offset coating method, a bar coating method, and a roll coating method. coating method, knife coating method, air knife coating method, comma coating method, U comma coating method, AKKU coating method, smoothing coating method, micro gravure coating method, reverse roll coating method, 4 roll coating method, 5 roll coating method, Examples include dip coating method, curtain coating method, slide coating method, and die coating method.
<その他の工程>
 その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、第3の熱伝導層形成工程などが挙げられる。
<Other processes>
Other steps are not particularly limited and can be appropriately selected depending on the purpose, and include, for example, the third thermally conductive layer forming step.
 ここで、本発明の積層体の実施形態について、図面を参照して詳細に説明する。なお、各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。また、下記構成部材の数、位置、形状などは本実施の形態に限定されず、本発明を実施する上で好ましい数、位置、形状などにすることができる。 Here, embodiments of the laminate of the present invention will be described in detail with reference to the drawings. In addition, in each drawing, the same components are given the same reference numerals, and duplicate explanations may be omitted. Further, the number, position, shape, etc. of the following constituent members are not limited to this embodiment, and can be set to a preferable number, position, shape, etc. for implementing the present invention.
<第1の実施形態>
 図1は、第1の実施形態に係る積層体の一例を示す概略図である。この図1の積層体10は、基材11上に、第1の熱伝導粒子15を含有する第1の熱伝導層12と、第1の熱伝導層12上に、第2の熱伝導粒子16を含有する第2の熱伝導層13と、第2の熱伝導層13上に、対向基材14を有する。
<First embodiment>
FIG. 1 is a schematic diagram showing an example of a laminate according to the first embodiment. The laminate 10 in FIG. 1 includes a first thermally conductive layer 12 containing first thermally conductive particles 15 on a base material 11, and a second thermally conductive layer 12 on the first thermally conductive layer 12. 16, and an opposing base material 14 on the second heat conductive layer 13.
 第1の熱伝導層12に含まれる第1の熱伝導粒子15の一部と第2の熱伝導層13に含まれる第2の熱伝導粒子16の一部とが接触しており、第1の熱伝導粒子15の体積平均粒径が第2の熱伝導粒子16の体積平均粒径よりも小さい。 A portion of the first thermally conductive particles 15 included in the first thermally conductive layer 12 and a portion of the second thermally conductive particles 16 included in the second thermally conductive layer 13 are in contact with each other, and the first thermally conductive particles 15 are in contact with each other. The volume average particle size of the second heat conductive particles 15 is smaller than the volume average particle size of the second heat conductive particles 16.
<第2の実施形態>
 図2は、第2の実施形態に係る積層体の一例を示す概略図である。この図2の積層体20は、基材11上に、第1の熱伝導粒子15を含有する第1の熱伝導層12と、第1の熱伝導層12上に、銅箔である第3の熱伝導層17と、第3の熱伝導層17上に、第2の熱伝導粒子16を含有する第2の熱伝導層13と、第2の熱伝導層13上に、対向基材14を有する。
<Second embodiment>
FIG. 2 is a schematic diagram showing an example of a laminate according to the second embodiment. The laminate 20 of FIG. 2 has a first thermally conductive layer 12 containing first thermally conductive particles 15 on a base material 11, and a third layer made of copper foil on the first thermally conductive layer 12. a second thermally conductive layer 13 containing second thermally conductive particles 16 on the third thermally conductive layer 17; and a counter substrate 14 on the second thermally conductive layer 13. has.
 第1の熱伝導層12に含まれる第1の熱伝導粒子15の一部と第2の熱伝導層13に含まれる第2の熱伝導粒子16の一部とが第3の熱伝導層17を介して接触しており、第1の熱伝導粒子15の体積平均粒径が第2の熱伝導粒子16の体積平均粒径よりも小さい。 A portion of the first thermally conductive particles 15 contained in the first thermally conductive layer 12 and a portion of the second thermally conductive particles 16 contained in the second thermally conductive layer 13 form the third thermally conductive layer 17. The volume average particle diameter of the first heat conductive particles 15 is smaller than the volume average particle diameter of the second heat conductive particles 16.
 本発明の積層体は、例えば、LSI等の熱源とヒートシンクとの間の微小な間隙を埋めることで、両者の間に熱がスムーズに流れるようにするサーマルインターフェイスマテリアル(TIM)、LEDチップ又はICチップを実装した放熱基板を、ヒートシンクに接着してパワーLEDモジュール又はパワーICモジュールを構成する際に好適に使用することができる。 The laminate of the present invention can be used, for example, with a thermal interface material (TIM), an LED chip, or an IC that fills a minute gap between a heat source such as an LSI and a heat sink to allow heat to flow smoothly between the two. The heat dissipation board on which the chip is mounted can be suitably used when bonding to a heat sink to configure a power LED module or a power IC module.
 ここで、パワーLEDモジュールとしては、ワイヤーボンディング実装タイプのものとフリップチップ実装タイプのものがあり、パワーICモジュールとしてはワイヤーボンディング実装タイプのものがある。 Here, power LED modules include wire bonding type and flip chip type, and power IC modules include wire bonding type.
 本発明に用いられる放熱構造体は、発熱体と、本発明の積層体と、放熱部材とから構成される。 The heat dissipation structure used in the present invention is composed of a heating element, the laminate of the present invention, and a heat dissipation member.
 前記発熱体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)等の電子部品などが挙げられる。 The heating element is not particularly limited and can be selected as appropriate depending on the purpose, for example, CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit). Electronic parts such as Can be mentioned.
 前記放熱部材としては、電子部品(発熱体)の発する熱を放熱する構造体であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒートスプレッダ、ヒートシンク、ベーパーチャンバー、ヒートパイプなどが挙げられる。 The heat dissipation member is not particularly limited as long as it is a structure that dissipates heat generated by electronic components (heat generating elements), and can be appropriately selected depending on the purpose.For example, heat spreaders, heat sinks, vapor chambers, heat Examples include pipes.
 前記ヒートスプレッダは、前記電子部品の熱を他の部品に効率的に伝えるための部材である。前記ヒートスプレッダの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、アルミニウムなどが挙げられる。前記ヒートスプレッダは、通常、平板形状である。 The heat spreader is a member for efficiently transmitting heat from the electronic component to other components. The material of the heat spreader is not particularly limited and can be appropriately selected depending on the purpose, such as copper and aluminum. The heat spreader usually has a flat plate shape.
 前記ヒートシンクは、前記電子部品の熱を空気中に放出するための部材である。前記ヒートシンクの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、銅、アルミニウムなどが挙げられる。前記ヒートシンクは、例えば、複数のフィンを有する。前記ヒートシンクは、例えば、ベース部と、前記ベース部の一方の面に対して非平行方向(例えば、直交する方向)に向かって延びるように設けられた複数のフィンを有する。 The heat sink is a member for releasing heat from the electronic component into the air. The material of the heat sink is not particularly limited and can be appropriately selected depending on the purpose, such as copper and aluminum. The heat sink has, for example, a plurality of fins. The heat sink includes, for example, a base portion and a plurality of fins extending in non-parallel directions (for example, perpendicular directions) to one surface of the base portion.
 前記ヒートスプレッダ、及び前記ヒートシンクは、一般的に、内部に空間を持たない中実構造である。 The heat spreader and the heat sink generally have a solid structure with no internal space.
 前記ベーパーチャンバーは、中空構造体である。前記中空構造体の内部空間には、揮発性の液体が封入されている。前記ベーパーチャンバーとしては、例えば、前記ヒートスプレッダを中空構造にしたもの、前記ヒートシンクを中空構造にしたような板状の中空構造体などが挙げられる。 The vapor chamber is a hollow structure. A volatile liquid is sealed in the internal space of the hollow structure. Examples of the vapor chamber include a plate-shaped hollow structure such as a hollow structure of the heat spreader and a hollow structure of the heat sink.
 前記ヒートパイプは、円筒状、略円筒状、又は扁平筒状の中空構造体である。前記中空構造体の内部空間には、揮発性の液体が封入されている。 The heat pipe is a cylindrical, substantially cylindrical, or flat cylindrical hollow structure. A volatile liquid is sealed in the internal space of the hollow structure.
 ここで、図3は、放熱構造体としての半導体装置の一例を示す概略断面図である。本発明の積層体7は、半導体素子等の電子部品3の発する熱を放熱するものであり、図3に示すように、ヒートスプレッダ2の電子部品3と対峙する主面2aに固定され、電子部品3と、ヒートスプレッダ2との間に挟持されるものである。また、熱伝導シート1は、ヒートスプレッダ2とヒートシンク5との間に挟持される。 Here, FIG. 3 is a schematic cross-sectional view showing an example of a semiconductor device as a heat dissipation structure. The laminate 7 of the present invention radiates heat generated by an electronic component 3 such as a semiconductor element, and as shown in FIG. 3 and the heat spreader 2. Further, the thermally conductive sheet 1 is sandwiched between the heat spreader 2 and the heat sink 5.
 ヒートスプレッダ2は、例えば、方形板状に形成され、電子部品3と対峙する主面2aと、主面2aの外周に沿って立設された側壁2bとを有する。ヒートスプレッダ2は、側壁2bに囲まれた主面2aに熱伝導シート1が設けられ、また主面2aと反対側の他面2cに熱伝導シート1を介してヒートシンク5が設けられる。ヒートスプレッダ2は、高い熱伝導率を有するほど、熱抵抗が減少し、効率よく半導体素子等の電子部品3の熱を吸熱することから、例えば、熱伝導性の良好な銅又はアルミニウムを用いて形成することができる。 The heat spreader 2 is formed into a rectangular plate shape, for example, and has a main surface 2a facing the electronic component 3, and a side wall 2b erected along the outer periphery of the main surface 2a. In the heat spreader 2, a heat conductive sheet 1 is provided on a main surface 2a surrounded by side walls 2b, and a heat sink 5 is provided on the other surface 2c opposite to the main surface 2a via the heat conductive sheet 1. The heat spreader 2 is formed using, for example, copper or aluminum, which has good thermal conductivity, because the higher the thermal conductivity, the lower the thermal resistance, and the more efficiently the heat spreader 2 absorbs the heat of the electronic components 3 such as semiconductor elements. can do.
 電子部品3は、例えば、BGA等の半導体素子であり、配線基板6へ実装される。またヒートスプレッダ2も、側壁2bの先端面が配線基板6に実装され、これにより側壁2bによって所定の距離を隔てて電子部品3を囲んでいる。
 そして、ヒートスプレッダ2の主面2aに、本発明の積層体7が設けられることにより、電子部品3の発する熱を吸収し、ヒートシンク5より放熱する放熱部材が形成される。
The electronic component 3 is, for example, a semiconductor element such as a BGA, and is mounted on the wiring board 6. Further, the heat spreader 2 also has the front end surface of the side wall 2b mounted on the wiring board 6, so that the side wall 2b surrounds the electronic component 3 at a predetermined distance.
By providing the laminate 7 of the present invention on the main surface 2a of the heat spreader 2, a heat radiating member is formed that absorbs the heat generated by the electronic component 3 and radiates the heat from the heat sink 5.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these Examples in any way.
(実施例1~5、比較例1~3、及び参考例1)
<熱伝導組成物の調製>
 表1~表3に記載の組成及び含有量を、撹拌装置(泡とり練太郎・自動公転ミキサー、株式会社シンキー製)を用いて均一に混合し、第1の熱伝導組成物及び第2の熱伝導組成物を調製した。なお、表1~表3中における各成分の含有量は質量部である。
(Examples 1 to 5, Comparative Examples 1 to 3, and Reference Example 1)
<Preparation of thermally conductive composition>
The compositions and contents listed in Tables 1 to 3 were uniformly mixed using a stirring device (foam remover Rentaro, automatic revolution mixer, manufactured by Shinky Co., Ltd.), and the first thermally conductive composition and the second thermally conductive composition were mixed uniformly. A thermally conductive composition was prepared. Note that the content of each component in Tables 1 to 3 is in parts by mass.
<積層体の形成>
 次に、実施例1~5及び比較例3では、表1~表3の記載に従って、30mm×30mm×2mmの基材(シリコン)上に、第1の熱伝導組成物を付与し、次に、第1の熱伝導層上に、第2の熱伝導組成物を付与し、この第2の熱伝導組成物上に30mm×30mm×2mmの対向基材(銅)を積層し、150℃で60分間加熱し、硬化させて、平均厚み10μmの第1の熱伝導層と平均厚み70μmの第2の熱伝導層を有する積層体を形成した。
<Formation of laminate>
Next, in Examples 1 to 5 and Comparative Example 3, the first thermally conductive composition was applied on a 30 mm x 30 mm x 2 mm base material (silicon) according to the descriptions in Tables 1 to 3, and then , a second thermally conductive composition was applied on the first thermally conductive layer, a 30 mm x 30 mm x 2 mm opposing base material (copper) was laminated on the second thermally conductive composition, and the layer was heated at 150°C. It was heated for 60 minutes and cured to form a laminate having a first thermally conductive layer with an average thickness of 10 μm and a second thermally conductive layer with an average thickness of 70 μm.
 実施例2では、第3の熱伝導層として平均厚み30μmの銅箔を用いた。 In Example 2, a copper foil with an average thickness of 30 μm was used as the third thermally conductive layer.
 参考例1及び比較例1では、第1の熱伝導組成物を用いない以外は、上記実施例1~5及び比較例3と同様にして、積層体を形成した。なお、参考例1では、30mm×30mm×2mmの基材(シリコン)の代わりに30mm×30mm×2mmの基材(銅)を用いた。 In Reference Example 1 and Comparative Example 1, laminates were formed in the same manner as in Examples 1 to 5 and Comparative Example 3, except that the first thermally conductive composition was not used. Note that in Reference Example 1, a 30 mm x 30 mm x 2 mm base material (copper) was used instead of the 30 mm x 30 mm x 2 mm base material (silicon).
 比較例2では、第2の熱伝導組成物を用いない以外は、実施例1~5及び比較例3と同様にして、積層体を形成した。 In Comparative Example 2, a laminate was formed in the same manner as Examples 1 to 5 and Comparative Example 3, except that the second thermally conductive composition was not used.
 次に、得られた各積層体について、以下のようにして、熱インピーダンス及び熱伝導性を評価した。結果を表1~表3に示した。 Next, the thermal impedance and thermal conductivity of each of the obtained laminates were evaluated as follows. The results are shown in Tables 1 to 3.
<熱インピーダンス>
 得られた各積層体について、ASTM-D5470に準拠した方法で熱抵抗(℃・cm/W)を測定した。その結果から基材及び対向基材の熱抵抗を引いて硬化物の熱抵抗を算出し、前記熱抵抗と硬化物の面積から、熱インピーダンス(Kmm/W)を算出した。
<Thermal impedance>
Thermal resistance (°C·cm 2 /W) of each of the obtained laminates was measured by a method based on ASTM-D5470. The thermal resistance of the cured product was calculated by subtracting the thermal resistance of the base material and the opposing substrate from the results, and the thermal impedance (Kmm 2 /W) was calculated from the thermal resistance and the area of the cured product.
<熱伝導性>
 得られた各積層体について、ASTM-D5470に準拠した方法で熱抵抗(℃・cm/W)を測定した。その結果から基材及び対向基材の熱抵抗を引いて硬化物の熱抵抗を算出し、前記熱抵抗と硬化物の厚みから、熱伝導率(W/m・K)を求め、下記の基準により熱伝導性を評価した。
[評価基準]
  ◎:熱伝導率が15W/m・K以上
  〇:熱伝導率が10W/m・K以上15W/m・K未満
  ×:熱伝導率が10W/m・K未満
<Thermal conductivity>
Thermal resistance (°C·cm 2 /W) of each of the obtained laminates was measured by a method based on ASTM-D5470. The thermal resistance of the cured product is calculated by subtracting the thermal resistance of the base material and the opposing substrate from the results, and the thermal conductivity (W/m・K) is determined from the thermal resistance and the thickness of the cured material, and the following criteria are used: The thermal conductivity was evaluated.
[Evaluation criteria]
◎: Thermal conductivity is 15 W/m・K or more ○: Thermal conductivity is 10 W/m・K or more and less than 15 W/m・K ×: Thermal conductivity is less than 10 W/m・K
 表1~表3中における各成分の詳細については、以下のとおりである。 Details of each component in Tables 1 to 3 are as follows.
-硬化成分-
*OXBP:宇部興産株式会社製、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル
-Curing component-
*OXBP: Manufactured by Ube Industries, Ltd., 4,4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl
-硬化剤-
*ポリカルボン酸、デクセリアルズ株式会社合成品
-Hardening agent-
*Polycarboxylic acid, synthetic product from Dexerials Co., Ltd.
-低融点金属粒子(はんだ粒子)-
*Sn42Bi58:三井金属鉱業株式会社製、体積平均粒径Dv:4μm、融点139℃
-Low melting point metal particles (solder particles)-
*Sn 42 Bi 58 : manufactured by Mitsui Mining & Mining Co., Ltd., volume average particle diameter Dv: 4 μm, melting point 139°C
-第1の熱伝導粒子-
*第1の熱伝導粒子1:Ag粒子、DOWAエレクトロニクス株式会社製、体積平均粒径Dv:1μm
*第1の熱伝導粒子2:AgコートCu粒子、福田金属箔粉工業株式会社製、体積平均粒径Dv:5μm
*第1の熱伝導粒子3:AgコートCu粒子、福田金属箔粉工業株式会社製、体積平均粒径Dv:40μm
-First thermally conductive particles-
*First thermally conductive particles 1: Ag particles, manufactured by DOWA Electronics Co., Ltd., volume average particle diameter Dv: 1 μm
*First thermally conductive particles 2: Ag-coated Cu particles, manufactured by Fukuda Metal Foil and Powder Industries Co., Ltd., volume average particle diameter Dv: 5 μm
*First thermally conductive particles 3: Ag-coated Cu particles, manufactured by Fukuda Metal Foil and Powder Industries Co., Ltd., volume average particle diameter Dv: 40 μm
-第2の熱伝導粒子-
*第2の熱伝導粒子1:AgコートCu粒子、福田金属箔粉工業株式会社製、体積平均粒径Dv:40μm
*第2の熱伝導粒子2:Cu粒子、福田金属箔粉工業株式会社製、体積平均粒径Dv:40μm
*第2の熱伝導粒子3:Ag粒子、DOWAエレクトロニクス株式会社製、体積平均粒径Dv:1μm
-Second thermally conductive particles-
*Second thermally conductive particles 1: Ag-coated Cu particles, manufactured by Fukuda Metal Foil and Powder Industries Co., Ltd., volume average particle diameter Dv: 40 μm
*Second thermally conductive particles 2: Cu particles, manufactured by Fukuda Metal Foil and Powder Industries Co., Ltd., volume average particle diameter Dv: 40 μm
*Second thermally conductive particles 3: Ag particles, manufactured by DOWA Electronics Co., Ltd., volume average particle diameter Dv: 1 μm
-ポリマー-
*M1276:アルケマ株式会社製、ポリアミド化合物
-polymer-
*M1276: Manufactured by Arkema Corporation, polyamide compound
 本発明の積層体は、サーマルインターフェイスマテリアル(TIM)として高熱伝導性及び低熱抵抗を実現できるので、例えば、温度によって素子動作の効率や寿命等に悪影響が生じるCPU、MPU、パワートランジスタ、LED、レーザーダイオード等の各種の電気デバイス周りなどに好適に用いられる。 The laminate of the present invention can realize high thermal conductivity and low thermal resistance as a thermal interface material (TIM), so it can be used, for example, in CPUs, MPUs, power transistors, LEDs, lasers, etc. whose element operation efficiency and life span are adversely affected by temperature. Suitable for use around various electrical devices such as diodes.
 本出願は、2022年6月8日に日本国特許庁に出願した特願202-93004号に基づいて優先権を主張し、前記出願に記載された全ての内容を援用する。 This application claims priority based on Japanese Patent Application No. 202-93004 filed with the Japan Patent Office on June 8, 2022, and all contents described in said application are incorporated.
 1 熱伝導シート
 2 ヒートスプレッダ
 2a 主面
 3 発熱体(電子部品)
 3a 上面
 5 ヒートシンク
 6 配線基板
 7 積層体
 10 積層体
 11 基材
 12 第1の熱伝導層
 13 第2の熱伝導層
 14 対向基材
 15 第1の熱伝導粒子
 16 第2の熱伝導粒子
 17 第3の熱伝導層
 20 積層体
1 Heat conductive sheet 2 Heat spreader 2a Main surface 3 Heating element (electronic component)
3a Upper surface 5 Heat sink 6 Wiring board 7 Laminated body 10 Laminated body 11 Base material 12 First thermally conductive layer 13 Second thermally conductive layer 14 Opposing base material 15 First thermally conductive particles 16 Second thermally conductive particles 17 3 thermally conductive layer 20 laminate

Claims (12)

  1.  基材と、
     前記基材上に、硬化成分、該硬化成分を硬化させる硬化剤、第1の熱伝導粒子、及び低融点金属粒子を含有する第1の熱伝導層と、
     前記第1の熱伝導層上に、硬化成分、該硬化成分を硬化させる硬化剤、第2の熱伝導粒子、及び低融点金属粒子を含有する第2の熱伝導層と、
    を有し、
     前記第1の熱伝導層に含まれる第1の熱伝導粒子の一部と前記第2の熱伝導層に含まれる第2の熱伝導粒子の一部とが接触しており、前記第1の熱伝導粒子の体積平均粒径が前記第2の熱伝導粒子の体積平均粒径よりも小さく、
     前記基材が、シリコン、アルミニウム、タングステン、モリブデン、ガラス、モールド樹脂、ステンレス鋼、及びセラミックスから選択される少なくとも1種を含むことを特徴とする積層体。
    base material and
    a first thermally conductive layer containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles on the base material;
    a second thermally conductive layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles on the first thermally conductive layer;
    has
    A portion of the first thermally conductive particles contained in the first thermally conductive layer and a portion of the second thermally conductive particles contained in the second thermally conductive layer are in contact with each other, and the first thermally conductive particles are in contact with each other. The volume average particle size of the thermally conductive particles is smaller than the volume average particle size of the second thermally conductive particles,
    A laminate characterized in that the base material contains at least one selected from silicon, aluminum, tungsten, molybdenum, glass, mold resin, stainless steel, and ceramics.
  2.  前記第1の熱伝導粒子の体積平均粒径Aと前記第2の熱伝導粒子の体積平均粒径Bとの比(A:B)が1:2~1:50である、請求項1に記載の積層体。 According to claim 1, the ratio (A:B) of the volume average particle diameter A of the first heat conductive particles to the volume average particle diameter B of the second heat conductive particles is 1:2 to 1:50. The laminate described.
  3.  前記第1の熱伝導粒子の体積平均粒径が0.3μm以上30μm以下である、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the volume average particle diameter of the first thermally conductive particles is 0.3 μm or more and 30 μm or less.
  4.  前記第2の熱伝導粒子の体積平均粒径が1μm以上100μm以下である、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the second thermally conductive particles have a volume average particle diameter of 1 μm or more and 100 μm or less.
  5.  前記第1及び第2の熱伝導粒子が、銅粒子、銀被覆粒子、及び銀粒子の少なくともいずれかである、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the first and second thermally conductive particles are at least one of copper particles, silver-coated particles, and silver particles.
  6.  前記低融点金属粒子がSnと、Bi、Ag、Cu、及びInから選択される少なくとも1種とを含む、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the low melting point metal particles contain Sn and at least one selected from Bi, Ag, Cu, and In.
  7.  前記硬化剤が前記第1及び第2の熱伝導粒子に対してフラックス活性を有する、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the curing agent has flux activity with respect to the first and second thermally conductive particles.
  8.  前記硬化成分がオキシラン環化合物及びオキセタン化合物の少なくともいずれかである、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the curing component is at least one of an oxirane ring compound and an oxetane compound.
  9.  前記第1の熱伝導層と前記第2の熱伝導層の間に第3の熱伝導層を有する、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, comprising a third thermally conductive layer between the first thermally conductive layer and the second thermally conductive layer.
  10.  前記第3の熱伝導層が銅箔である、請求項9に記載の積層体。 The laminate according to claim 9, wherein the third thermally conductive layer is a copper foil.
  11.  前記第2の熱伝導層上に、前記基材と対向する対向基材を有し、
     前記対向基材が、銅、金、白金、パラジウム、銀、亜鉛、鉄、錫、ニッケル、マグネシウム、インジウム、及びこれらの合金から選択される少なくとも1種を含む、請求項1又は2に記載の積層体。
    having a facing base material facing the base material on the second thermally conductive layer,
    3. The counter base material according to claim 1 or 2, wherein the opposing base material contains at least one selected from copper, gold, platinum, palladium, silver, zinc, iron, tin, nickel, magnesium, indium, and alloys thereof. laminate.
  12.  前記基材上に、硬化成分、該硬化成分を硬化させる硬化剤、第1の熱伝導粒子、及び低融点金属粒子を含有する第1の熱伝導層を形成する第1の熱伝導層形成工程と、
     前記第1の熱伝導層上に、硬化成分、該硬化成分を硬化させる硬化剤、第2の熱伝導粒子、及び低融点金属粒子を含有する第2の熱伝導層を形成する第2の熱伝導層形成工程と、
    を含み、
     前記基材が、シリコン、アルミニウム、タングステン、モリブデン、ガラス、モールド樹脂、ステンレス鋼、及びセラミックスから選択される少なくとも1種を含むことを特徴とする積層体の製造方法。
    A first thermally conductive layer forming step of forming a first thermally conductive layer containing a curing component, a curing agent for curing the curing component, first thermally conductive particles, and low melting point metal particles on the base material. and,
    A second thermally conductive layer containing a curing component, a curing agent for curing the curing component, second thermally conductive particles, and low melting point metal particles on the first thermally conductive layer. A conductive layer forming step,
    including;
    A method for producing a laminate, wherein the base material includes at least one selected from silicon, aluminum, tungsten, molybdenum, glass, mold resin, stainless steel, and ceramics.
PCT/JP2023/019593 2022-06-08 2023-05-25 Multilayer body and method for producing same WO2023238694A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-093004 2022-06-08
JP2022093004A JP2023179989A (en) 2022-06-08 2022-06-08 Laminate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2023238694A1 true WO2023238694A1 (en) 2023-12-14

Family

ID=89118190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019593 WO2023238694A1 (en) 2022-06-08 2023-05-25 Multilayer body and method for producing same

Country Status (3)

Country Link
JP (1) JP2023179989A (en)
TW (1) TW202406731A (en)
WO (1) WO2023238694A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094613A1 (en) * 2011-12-20 2013-06-27 デクセリアルズ株式会社 Thermally conductive sheet and method for manufacturing thermally conductive sheet
WO2015146349A1 (en) * 2014-03-27 2015-10-01 デクセリアルズ株式会社 Method for producing heat conductive sheet
US20190092994A1 (en) * 2017-09-27 2019-03-28 Intel Corporation Composite thermal interface materials, thermal interface components, and methods for making the same
WO2019065146A1 (en) * 2017-09-28 2019-04-04 富士フイルム株式会社 Heat dissipation sheet and heat dissipation sheet-equipped device
JP2020080345A (en) * 2018-11-12 2020-05-28 信越ポリマー株式会社 Electromagnetic wave shield film and print circuit board with the same
WO2022075411A1 (en) * 2020-10-08 2022-04-14 北川工業株式会社 Heat conductive sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094613A1 (en) * 2011-12-20 2013-06-27 デクセリアルズ株式会社 Thermally conductive sheet and method for manufacturing thermally conductive sheet
WO2015146349A1 (en) * 2014-03-27 2015-10-01 デクセリアルズ株式会社 Method for producing heat conductive sheet
US20190092994A1 (en) * 2017-09-27 2019-03-28 Intel Corporation Composite thermal interface materials, thermal interface components, and methods for making the same
WO2019065146A1 (en) * 2017-09-28 2019-04-04 富士フイルム株式会社 Heat dissipation sheet and heat dissipation sheet-equipped device
JP2020080345A (en) * 2018-11-12 2020-05-28 信越ポリマー株式会社 Electromagnetic wave shield film and print circuit board with the same
WO2022075411A1 (en) * 2020-10-08 2022-04-14 北川工業株式会社 Heat conductive sheet

Also Published As

Publication number Publication date
JP2023179989A (en) 2023-12-20
TW202406731A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
JP5299279B2 (en) Film-like resin composition for sealing filling, semiconductor package using the same, method for manufacturing semiconductor device, and semiconductor device
KR102190150B1 (en) Conductive adhesive film and dicing die-bonding film using the same
TWI503340B (en) Underfill composition and method of making electrical assembly using the same
JP2017025186A (en) Heat-conductive resin composition, laminate for circuit board, circuit board and semiconductor device
KR102368748B1 (en) Adhesive agent and connection structure
WO2023238694A1 (en) Multilayer body and method for producing same
JP7212831B2 (en) CONDUCTIVE ADHESIVE COMPOSITION AND CONNECTED STRUCTURE USING THE SAME
JP6430148B2 (en) Adhesive and connection structure
JP7445065B1 (en) Thermal conductive composition and method for producing laminate
WO2023238692A1 (en) Laminate and method for manufacturing same
JP4810836B2 (en) Adhesive, semiconductor device, and method for manufacturing semiconductor device
WO2024048358A1 (en) Laminate and method for manufacturing laminate
TW202408799A (en) Laminated body and manufacturing method thereof
WO2023182046A1 (en) Ester compound, method for producing same, thermally conductive composition and thermally conductive sheet
WO2023238693A1 (en) Multilayer body and method for producing same
WO2023037862A1 (en) Thermally conductive composition and thermally conductive sheet
JP5047632B2 (en) Mounting method using hot-pressure adhesive for flip chip connection
TW202413081A (en) Laminated body and method of manufacturing the laminated body
KR20210070639A (en) Underfill film for semiconductor package and method for manufacturing semiconductor packag using the same
JP2023140277A (en) Ester compound, method for producing the same, thermally conductive composition and thermally conductive sheet
JP7248007B2 (en) Adhesive for semiconductors and method for manufacturing semiconductor devices using the same
WO2024053494A1 (en) (meth)acrylic group-containing polycarboxylic acid compound, thermally conductive composition, and thermally conductive sheet
CN117916877A (en) Thermally conductive composition and thermally conductive sheet
JP2024047538A (en) Thermally conductive composition, thermally conductive sheet, method for producing thermally conductive composition, and method for producing thermally conductive sheet
TW202413537A (en) Thermal conductive composition, thermal conductive sheet, manufacturing method of thermal conductive composition and thermal conductive sheet manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819676

Country of ref document: EP

Kind code of ref document: A1