TW202404288A - Asymmetric feed-forward equalizer for high-speed optical transmitter - Google Patents

Asymmetric feed-forward equalizer for high-speed optical transmitter Download PDF

Info

Publication number
TW202404288A
TW202404288A TW111124647A TW111124647A TW202404288A TW 202404288 A TW202404288 A TW 202404288A TW 111124647 A TW111124647 A TW 111124647A TW 111124647 A TW111124647 A TW 111124647A TW 202404288 A TW202404288 A TW 202404288A
Authority
TW
Taiwan
Prior art keywords
data signal
input data
signal
adjustment unit
pulse
Prior art date
Application number
TW111124647A
Other languages
Chinese (zh)
Other versions
TWI829230B (en
Inventor
石家豪
彭朋瑞
Original Assignee
獵速科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 獵速科技股份有限公司 filed Critical 獵速科技股份有限公司
Priority to TW111124647A priority Critical patent/TWI829230B/en
Application granted granted Critical
Publication of TWI829230B publication Critical patent/TWI829230B/en
Publication of TW202404288A publication Critical patent/TW202404288A/en

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

An asymmetric feed-forward equalizer for optical transmitters includes a main driver configured to receive an input data signal and generate a gained main driver signal, a first phase adjustment unit for aligning the phase of the input data signal, a rising edge equalization driver for detecting a rising edge of the input data signal and generating a first adjusted data signal, a falling edge equalization driver for detecting a falling edge of the input data signal and generating a second adjusted data signal, a second phase adjustment unit for aligning the phases between the rising and falling edges of the input data signal, an equalization delay module generating a delay signal for determining an equalization delay, and a VCSEL output a combination of the gained main driver, the first adjusted data and the second adjusted data signals.

Description

用於高速光發射器之非對稱前饋等化器Asymmetric feedforward equalizer for high-speed optical transmitters

本發明涉及光發射器技術領域,特別是一種用於高速光發射器之非對稱前饋等化器。The present invention relates to the technical field of optical transmitters, and in particular to an asymmetric feedforward equalizer for high-speed optical transmitters.

現今許多電子系統需要傳輸大量資訊(數據),因而導致頻寬(bandwidth) 的需求快速增長。伴隨著未來高性能計算系統和網路數據速率的不斷提高,其可以達到數百 Gb/s 甚至更高,對這些電子系統互連 (interconnects)的 I/O 頻寬的需求也隨之增加。但是,用於晶片間 (inter-chip)通訊的電氣通道(electrical channels) 的頻寬並沒有以相同的方式擴展。在通訊路徑中,傳輸電訊號,高速數據可能會受到,例如電纜、電路板、輸出設備中的符碼間干擾(inter-symbol interference) 而劣化。為此,數種用於發射器 (transmitter)和接收器(receiver)的等化技術 (equalization techniques) 已經被提出來用於補償頻寬受限電信通道 (band-limited channels) 的頻率相關損耗。然而,這些等化技術需要相當大的晶粒面積並且相當消耗電力。Many electronic systems today need to transmit large amounts of information (data), resulting in rapid growth in bandwidth requirements. As future high-performance computing systems and network data rates continue to increase, reaching hundreds of Gb/s or even higher, the demand for I/O bandwidth in the interconnects of these electronic systems will also increase. However, the bandwidth of the electrical channels used for inter-chip communication has not expanded in the same way. In communication paths, electrical signals are transmitted and high-speed data may be degraded by inter-symbol interference in cables, circuit boards, and output devices. To this end, several equalization techniques for transmitters and receivers have been proposed to compensate for frequency-dependent losses in band-limited telecommunications channels. However, these equalization techniques require considerable die area and are quite power-consuming.

利用光學互連可以克服上述 I/O 頻寬的問題。光通道 (optical channels) 具有可忽略的頻率相關損耗。由於目前與 CMOS 技術整合的更高數據速率的光鏈路 (optical link) 設計正在成為可能,並且不會導致等化問題的額外複雜性。對於光通訊而言,電訊號是透過雷射二極體等非線性元件轉換為光訊號。垂直共振腔面射型雷射 (vertical cavity surface emitting lasers, VCSELs) 廣泛用於高速光通訊,因為它們之中的各自都具有較小的閾值電流並且可以用於構建二維陣列。因此,VCSEL 是光互連系統中的關鍵組件。然而,在互連中整合基於 VCSEL 的光發射器的最大挑戰在於是否能夠提供足夠的頻寬以在高數據速率(例如 > 25Gb/s)下運行,同時保持低電力消耗以最大限度地提高功率效率(通常以 mW/Gb/s 或 pJ/bit表示:亦即,傳輸一位元資訊所需的能量)。The aforementioned I/O bandwidth issues can be overcome using optical interconnects. Optical channels have negligible frequency-dependent losses. Due to the current integration of CMOS technology, higher data rate optical link designs are becoming possible without the additional complexity of equalization issues. For optical communications, electrical signals are converted into optical signals through nonlinear components such as laser diodes. Vertical cavity surface emitting lasers (VCSELs) are widely used in high-speed optical communications because each of them has a small threshold current and can be used to construct two-dimensional arrays. Therefore, VCSELs are critical components in optical interconnect systems. However, the biggest challenge in integrating VCSEL-based optical transmitters in interconnects is the ability to provide sufficient bandwidth to operate at high data rates (e.g., >25Gb/s) while maintaining low power consumption to maximize power Efficiency (usually expressed in mW/Gb/s or pJ/bit: that is, the energy required to transmit one bit of information).

隨著數據速率的增加,設計者採用了預加重 (pre-emphasis) 技術,該技術使用有限脈衝響應 (finite impulse response, FIR) 濾波器來補償 VCSEL 頻寬約束並允許較低的偏壓電流。然而,由於 FIR 濾波器是線性系統,而 VCSEL 的響應是非線性的,因此這種線性 FIR 濾波器技術對於未來的高性能計算系統和網路來說並不是最佳的選擇。As data rates increased, designers adopted pre-emphasis techniques, which use finite impulse response (FIR) filters to compensate for VCSEL bandwidth constraints and allow lower bias currents. However, since FIR filters are linear systems and the response of VCSELs is nonlinear, this linear FIR filter technology is not the best choice for future high-performance computing systems and networks.

為了解決上述問題,本發明提出將非對稱前饋等化器用於高速光發射器機系統上。In order to solve the above problems, the present invention proposes to use an asymmetric feedforward equalizer in a high-speed optical transmitter system.

在本發明中,上升沿和下降沿偵測電路是於於光發射器驅動器的低速狀態中實現,然後在數據訊號被多工選擇 (been multiplexed) 前利用相位內插器(phase interpolators, PIs)來提供等化延遲 (equaization delay) 以補償VCSEL的上升和下降響應,亦即透過非對稱非對稱前饋等化器 (feed-forward equalizer, FFE) 技術與用於可調節延遲的各別相位內插器 (phase interpolator, PI)相結合,用於對 VCSEL 提供等化的數據訊號。In the present invention, the rising and falling edge detection circuits are implemented in the low-speed state of the optical transmitter driver, and then utilize phase interpolators (PIs) before the data signal has been multiplexed. To provide an equalization delay to compensate for the rise and fall response of the VCSEL, that is, through an asymmetric feed-forward equalizer (FFE) technology and separate phase internals for adjustable delays Combined with a phase interpolator (PI), it is used to provide equalized data signals to the VCSEL.

基於上述目的,根據本發明的第一觀點,提出了一種用於高速光發射器的非對稱前饋等化器(feed-forward equalizer, FFE),其包括:一主驅動器,被配置用於接收一輸入數據訊號,以及放大該輸入數據訊號產生之增益主驅動器數據訊號;一第一相位調整單元,被配置用於對齊該輸入數據訊號的相位;一上升沿等化驅動器,被配置用於偵測該輸入數據訊號的上升沿,並生成一第一調整數據訊號;一下降沿等化驅動器,被配置用於偵測該輸入數據訊號的下降沿,並生成一第二調整數據訊號;一第二相位調整單元,被配置用於對齊該輸入數據訊號的上升沿與該輸入數據訊號的下降沿之間的相位;一等化延遲模組,由該第一相位調整單元以及該第二相位調整單元所組成,被配置透過調整該第一相位調整單元與該第二相位調整單元之間的相對相位以生成一延遲訊號,用於確定等化延遲;一垂直共振腔面射型雷射(VCSEL),被配置用於輸出該增益主驅動數據訊號、該第一調整數據訊號以及該第二調整數據訊號的線性組合訊號。Based on the above objectives, according to the first aspect of the present invention, an asymmetric feed-forward equalizer (FFE) for high-speed optical transmitters is proposed, which includes: a main driver configured to receive An input data signal, and a gain main driver data signal generated by amplifying the input data signal; a first phase adjustment unit configured to align the phase of the input data signal; a rising edge equalization driver configured to detect detecting the rising edge of the input data signal and generating a first adjustment data signal; a falling edge equalization driver configured to detect the falling edge of the input data signal and generating a second adjustment data signal; a first Two phase adjustment units are configured to align the phases between the rising edge of the input data signal and the falling edge of the input data signal; an equalization delay module is configured by the first phase adjustment unit and the second phase adjustment unit. The unit is configured to generate a delay signal by adjusting the relative phase between the first phase adjustment unit and the second phase adjustment unit for determining the equalization delay; a vertical resonant cavity surface emitting laser (VCSEL) ) is configured to output a linear combination signal of the gain main driving data signal, the first adjustment data signal and the second adjustment data signal.

以一實施例而言,上述第一相位調整單元以及上述第二相位調整單元均為相位內插器。In one embodiment, the first phase adjustment unit and the second phase adjustment unit are both phase interpolators.

以一實施例而言,上述主驅動器更包含:一第一N對1多工器,接收該輸入數據訊號,並對其多工選擇以產生多工的輸入數據訊號;以及一個與該垂直共振腔面射型雷射(VCSEL)耦合的第一放大級,被配置用以接收該多工的輸入數據訊號並對其放大,產生對應於該增益主驅動器數據訊號的第一電流脈衝。In one embodiment, the above-mentioned main driver further includes: a first N-to-1 multiplexer that receives the input data signal and multiplexes it to generate multiplexed input data signals; and a vertical resonance with the A first amplification stage of a cavity surface emitting laser (VCSEL) coupling is configured to receive the multiplexed input data signal and amplify it to generate a first current pulse corresponding to the gain main driver data signal.

以一實施例而言,上述上升沿等化驅動器包含:一上升沿偵測器,被配置用於偵測該輸入數據訊號的上升沿脈衝;一第二N對1多工器,與該上升沿偵測器耦合,用以接收該上升沿脈衝,並利用該第二相位調整單元的時鐘訊號來調整對該第二N對1多工器之核心的對齊;以及一第二放大級,耦合該上升沿偵測器以及該垂直共振腔面射型雷射(VCSEL),用於產生對應於該第一調整數據訊號的第二電流脈衝,其中該第二電流脈衝對應於將該輸入數據訊號經過上升沿轉換和等化延遲後之電流訊號。In one embodiment, the above-mentioned rising edge equalization driver includes: a rising edge detector configured to detect the rising edge pulse of the input data signal; a second N-to-1 multiplexer connected to the rising edge pulse. An edge detector is coupled to receive the rising edge pulse and use the clock signal of the second phase adjustment unit to adjust the alignment of the core of the second N-to-1 multiplexer; and a second amplification stage, coupled The rising edge detector and the vertical resonant cavity surface emitting laser (VCSEL) are used to generate a second current pulse corresponding to the first adjustment data signal, wherein the second current pulse corresponds to the input data signal The current signal after rising edge conversion and equalization delay.

以一實施例而言,上述下降沿等化驅動器包含:一下降沿偵測器,被配置用於偵測該輸入數據訊號的下降沿脈衝;一第三N對1多工器,與該下降沿偵測器耦合,用以接收該下降沿脈衝,並利用該第二相位調整單元的時鐘訊號來調整對該第三N對1多工器之核心的對齊;以及一第三放大級,耦合該下降沿偵測模組以及該垂直共振腔面射型雷射(VCSEL),用於產生對應於該第一調整數據訊號的第三電流脈衝,其中該第三電流脈衝對應於將該輸入數據訊號經過下降沿轉換和等化延遲後之電流訊號。In one embodiment, the falling edge equalization driver includes: a falling edge detector configured to detect the falling edge pulse of the input data signal; a third N-to-1 multiplexer connected to the falling edge pulse. An edge detector is coupled to receive the falling edge pulse and use the clock signal of the second phase adjustment unit to adjust the alignment of the core of the third N-to-1 multiplexer; and a third amplification stage, coupled The falling edge detection module and the vertical resonant cavity surface emitting laser (VCSEL) are used to generate a third current pulse corresponding to the first adjustment data signal, wherein the third current pulse corresponds to the input data The signal is the current signal after falling edge conversion and equalization delay.

以一實施例而言,上述上升沿偵測器包括:一第一脈衝產生器,用於產生第一上升訊號脈衝,其包括具有兩個輸入端的第一邏輯AND閘,一個輸入端用於接收和反相該輸入數據訊號的第一分支,而另一個輸入端用於接收該輸入數據訊號的第二分支;以及一第二脈衝產生器,用於產生第二上升訊號脈衝,其包括具有兩個輸入端的第二邏輯AND閘,一個輸入端用於接收該輸入數據訊號的該第一分支,而另一個輸入端耦合到反相器以及由接收時鐘訊號控制的延遲元件,該延遲元件輸入該輸入數據訊號的該第二分支,其中該第一上升訊號脈衝和該第二上升訊號脈衝,分別透過它們所對應的該第一邏輯AND閘和該第二邏輯AND閘的輸出端,輸入到該第二N對1多工器。In one embodiment, the above-mentioned rising edge detector includes: a first pulse generator for generating a first rising signal pulse, which includes a first logical AND gate with two input terminals, one input terminal for receiving and inverting the first branch of the input data signal, and the other input terminal is used to receive the second branch of the input data signal; and a second pulse generator for generating a second rising signal pulse, which includes two A second logical AND gate with input terminals, one input terminal for receiving the first branch of the input data signal, and the other input terminal is coupled to an inverter and a delay element controlled by receiving a clock signal, the delay element inputs the The second branch of the input data signal, wherein the first rising signal pulse and the second rising signal pulse are respectively input to the output terminals of the first logical AND gate and the second logical AND gate. Second N-to-1 multiplexer.

以一實施例而言,上述下降沿偵測器包括:一第三脈衝產生器,用於產生第一下降訊號脈衝,其包括具有兩個輸入端的第三邏輯AND閘,一個輸入端用於接收該輸入數據訊號的第一分支,而另一個輸入端用於接收和反相該輸入數據訊號的第二分支;以及一第四脈衝產生器,用於產生第二下降訊號脈衝,其包括具有兩個輸入端的第四邏輯AND閘,一個輸入端用於接收和反相該輸入數據訊號的該第一分支,而另一個輸入端耦合到由接收時鐘訊號控制的延遲元件,該延遲元件輸入該輸入數據訊號的該第二分支,其中該第一下降訊號脈衝和該第二下降訊號脈衝,分別透過它們所對應的該第三邏輯AND閘和該第四邏輯AND閘的輸出端,輸入到該第三N對1多工器。In one embodiment, the falling edge detector includes: a third pulse generator for generating a first falling signal pulse, which includes a third logical AND gate with two input terminals, one input terminal for receiving The first branch of the input data signal, and the other input terminal is used to receive and invert the second branch of the input data signal; and a fourth pulse generator for generating a second falling signal pulse, which includes two A fourth logical AND gate with input terminals, one input terminal for receiving and inverting the first branch of the input data signal, and the other input terminal is coupled to a delay element controlled by receiving a clock signal, the delay element inputting the input The second branch of the data signal, in which the first falling signal pulse and the second falling signal pulse are respectively input to the third logical AND gate through their corresponding output terminals of the third logical AND gate and the fourth logical AND gate. Three N-to-1 multiplexers.

根據本發明的第二觀點,提出一種用於高速光發射器之非對稱前饋等化器,包括:一主驅動器,被配置用於接收一輸入數據訊號,以及放大該輸入數據訊號產生之增益主驅動器數據訊號; 一第一相位調整單元,被配置用於對齊該輸入數據訊號的相位;一上升沿等化驅動器,被配置用於偵測該輸入數據訊號的上升沿,並生成一第一調整數據訊號;一第二相位調整單元,被配置用於對齊該輸入數據訊號的上升沿的相位;一下降沿等化驅動器,被配置用於偵測該輸入數據訊號的下降沿,並生成一第二調整數據訊號;一第二相位調整單元,被配置用於對齊該輸入數據訊號的上升沿與該輸入數據訊號的下降沿之間的相位;一第三相位調整單元,用於對齊該輸入數據訊號的下降沿的相位;一等化延遲模組,由該第一相位調整單元、該第二相位調整單元以及該第三相位調整單元所組成,被配置為透過調整該第一相位調整單元與該第二相位調整單元之間的相對相位以生成一第一延遲訊號,以及透過調整該第一相位調整單元與該第三相位調整單元之間的相對相位以生成一第二延遲訊號,用於確定相對應的等化延遲;一垂直共振腔面射型雷射(VCSEL),被配置用於輸出該增益主驅動數據訊號、該第一調整數據訊號以及該第二調整數據訊號的線性組合訊號。According to a second aspect of the present invention, an asymmetric feedforward equalizer for a high-speed optical transmitter is proposed, including: a main driver configured to receive an input data signal and amplify the gain generated by the input data signal The main driver data signal; a first phase adjustment unit configured to align the phase of the input data signal; a rising edge equalization driver configured to detect the rising edge of the input data signal and generate a first Adjust the data signal; a second phase adjustment unit is configured to align the phase of the rising edge of the input data signal; a falling edge equalization driver is configured to detect the falling edge of the input data signal and generate a a second adjustment data signal; a second phase adjustment unit configured to align the phase between the rising edge of the input data signal and the falling edge of the input data signal; a third phase adjustment unit configured to align the input The phase of the falling edge of the data signal; the equalization delay module is composed of the first phase adjustment unit, the second phase adjustment unit and the third phase adjustment unit, and is configured to adjust the first phase adjustment unit by The relative phase between the first phase adjustment unit and the third phase adjustment unit is used to generate a first delay signal, and the relative phase between the first phase adjustment unit and the third phase adjustment unit is adjusted to generate a second delay signal. In order to determine the corresponding equalization delay; a vertical resonant cavity surface emitting laser (VCSEL) is configured to output a linear combination of the gain main drive data signal, the first adjustment data signal and the second adjustment data signal signal.

以一實施例而言,上述主驅動器更包含:一第一N對1多工器,接收該輸入數據訊號,並對其多工選擇以產生多工的輸入數據訊號;以及一個與該垂直共振腔面射型雷射(VCSEL)耦合的第一放大級,被配置用以接收該多工的輸入數據訊號並對其放大,產生對應於該增益主驅動器數據訊號的第一電流脈衝。In one embodiment, the above-mentioned main driver further includes: a first N-to-1 multiplexer that receives the input data signal and multiplexes it to generate multiplexed input data signals; and a vertical resonance with the A first amplification stage of a cavity surface emitting laser (VCSEL) coupling is configured to receive the multiplexed input data signal and amplify it to generate a first current pulse corresponding to the gain main driver data signal.

以一實施例而言,上述上升沿等化驅動器包含:一上升沿偵測器,被配置用於偵測該輸入數據訊號的上升沿脈衝;一第二N對1多工器,與該上升沿偵測器耦合,用以接收該上升沿脈衝,並利用該第二相位調整單元的時鐘訊號來調整對該第二N對1多工器之核心的對齊;以及一第二放大級,耦合該上升沿偵測器以及該垂直共振腔面射型雷射(VCSEL),用於產生對應於該第一調整數據訊號的第二電流脈衝,其中該第二電流脈衝對應於將該輸入數據訊號經過上升沿轉換和等化延遲後之電流訊號。In one embodiment, the above-mentioned rising edge equalization driver includes: a rising edge detector configured to detect the rising edge pulse of the input data signal; a second N-to-1 multiplexer connected to the rising edge pulse. An edge detector is coupled to receive the rising edge pulse and use the clock signal of the second phase adjustment unit to adjust the alignment of the core of the second N-to-1 multiplexer; and a second amplification stage, coupled The rising edge detector and the vertical resonant cavity surface emitting laser (VCSEL) are used to generate a second current pulse corresponding to the first adjustment data signal, wherein the second current pulse corresponds to the input data signal The current signal after rising edge conversion and equalization delay.

以一實施例而言,上述下降沿等化驅動器包含:一下降沿偵測器,被配置用於偵測該輸入數據訊號的下降沿脈衝;一第三N對1多工器,與該下降沿偵測器耦合,用以接收該下降沿脈衝,並利用該第二相位調整單元的時鐘訊號來調整對該第三N對1多工器之核心的對齊;以及一第三放大級,耦合該下降沿偵測模組以及該垂直共振腔面射型雷射(VCSEL),用於產生對應於該第一調整數據訊號的第三電流脈衝,其中該第三電流脈衝對應於將該輸入數據訊號經過下降沿轉換和等化延遲後之電流訊號。In one embodiment, the falling edge equalization driver includes: a falling edge detector configured to detect the falling edge pulse of the input data signal; a third N-to-1 multiplexer connected to the falling edge pulse. An edge detector is coupled to receive the falling edge pulse and use the clock signal of the second phase adjustment unit to adjust the alignment of the core of the third N-to-1 multiplexer; and a third amplification stage, coupled The falling edge detection module and the vertical resonant cavity surface emitting laser (VCSEL) are used to generate a third current pulse corresponding to the first adjustment data signal, wherein the third current pulse corresponds to the input data The signal is the current signal after falling edge conversion and equalization delay.

此處本發明將針對發明具體實施例及其觀點加以詳細描述,此類描述為解釋本發明之結構或步驟流程,其係供以說明之用而非用以限制本發明之申請專利範圍。因此,除說明書中之具體實施例與較佳實施例外,本發明亦可廣泛施行於其他不同的實施例中。以下藉由特定的具體實施例說明本發明之實施方式,熟悉此技術之人士可藉由本說明書所揭示之內容輕易地瞭解本發明之功效性與其優點。且本發明亦可藉由其他具體實施例加以運用及實施,本說明書所闡述之各項細節亦可基於不同需求而應用,且在不悖離本發明之精神下進行各種不同的修飾或變更。Here, the present invention will be described in detail with respect to specific embodiments and viewpoints of the invention. Such descriptions are to explain the structure or step process of the present invention, and are for illustration purposes rather than limiting the patentable scope of the present invention. Therefore, in addition to the specific embodiments and preferred embodiments in the specification, the present invention can also be widely implemented in other different embodiments. The following describes the implementation of the present invention through specific embodiments. Those familiar with the art can easily understand the efficacy and advantages of the present invention through the content disclosed in this specification. Moreover, the present invention can also be applied and implemented through other specific embodiments. Various details described in this specification can also be applied based on different needs, and various modifications or changes can be made without departing from the spirit of the present invention.

如背景部分所陳述,利用有限脈衝響應(finite impulse response, FIR)濾波器的預加重 (pre-emphasis) 技術無法處理VCSEL光發射器系統的非線性響應問題。為了解決此一問題,一種習知的非線性VCSEL 等化技術被提出,其整合了動態 VCSEL 模型方式來補償 VCSEL 光發射器固有的非線性響應。圖1顯示非線性VCSEL等化的實施方式。As stated in the background section, pre-emphasis techniques using finite impulse response (FIR) filters cannot handle the nonlinear response of VCSEL light emitter systems. In order to solve this problem, a conventional nonlinear VCSEL equalization technology is proposed, which integrates a dynamic VCSEL model approach to compensate for the inherent nonlinear response of the VCSEL optical emitter. Figure 1 shows an implementation of non-linear VCSEL equalization.

於圖1中,其描繪一個習知的VCSEL光發射器系統範例,被配置為用於執行非線性VCSEL等化。此一VCSEL光發射器系統可包括被配置為輸出光訊號162的VCSEL 102。輸入數據訊號A和B是由2:1多工器 (MUX) 110多工選擇,並且成為VCSEL 102的多工輸入訊號 D in 。多工輸入訊號 D in 可以是電數據的輸入訊號,2:1多工器 (MUX) 110的輸出可以耦合到放大級112的輸入端子、等化延遲模組120的輸入端子、上升沿偵測器130的輸入端子以及下降沿偵測器140的輸入端子。等化延遲模組120又可以耦合到上升沿偵測器130和下降沿偵測器 140。上升沿偵測器130可以耦合等化延遲模組120和放大級132,並且可以具有耦合到輸入訊號 D in 的輸入端子。類似地,下降沿偵測器140可以耦合到等化延遲模組120和放大級142,並且可以具有耦合到輸入訊號 D in 的輸入端子。其中,放大級112、132和142又可以透過加法器160耦合到VCSEL 102和偏壓電流源150。 In Figure 1, an example of a conventional VCSEL light emitter system configured to perform nonlinear VCSEL equalization is depicted. Such a VCSEL optical emitter system may include a VCSEL 102 configured to output an optical signal 162 . Input data signals A and B are multiplexed by a 2:1 multiplexer (MUX) 110 and become the multiplex input signal D in of the VCSEL 102 . The multiplex input signal D in can be an input signal of electrical data, and the output of the 2:1 multiplexer (MUX) 110 can be coupled to the input terminal of the amplifier stage 112 , the input terminal of the equalization delay module 120 , and rising edge detection. The input terminal of the detector 130 and the input terminal of the falling edge detector 140 . The equalization delay module 120 may in turn be coupled to the rising edge detector 130 and the falling edge detector 140 . The rising edge detector 130 may be coupled to the equalization delay module 120 and the amplifier stage 132, and may have an input terminal coupled to the input signal D in . Similarly, falling edge detector 140 may be coupled to equalization delay module 120 and amplifier stage 142, and may have an input terminal coupled to input signal Din . Among them, the amplification stages 112, 132 and 142 can be coupled to the VCSEL 102 and the bias current source 150 through the adder 160.

VCSEL系統100可以被配置為透過調整輸入訊號 D in 來執行等化,用以消除或減少光訊號162中的脈衝失真。在一些實施例中,VCSEL系統100可以基於等化延遲、上升沿增益和下降沿增益來調整輸入訊號 D in 中脈衝的上升沿和下降沿。其中,等化延遲模組120可以基於在一個模型化VCSEL調製響應和偏壓電流 150的頻率峰值來確定和/或提供等化延遲(equalization delay)。上升沿偵測器130,其可以利用互補金屬氧化物半導體 (CMOS) 技術來實現,作為檢測輸入數據訊號 D in 中的脈衝上升沿。放大級132可以在偵測到的輸入數據訊號 D in 的上升沿處提供上升增益,例如,作為基於模型化的VCSEL調製響應和輸入數據訊號 D in 的速率所確定的上升沿抽頭參數 (tap parameter)。下降沿偵測器140,可以使用CMOS技術實現,其可以被配置為偵測輸入數據訊號 D in 中的脈衝下降沿。與放大級132類似,放大級142可以提供下降沿增益,例如作為基於模型化的VCSEL調製響應和輸入數據訊號 D in 的數據速率所確定的下降沿抽頭參數 (tap parameter)。在一些實施例中,控制器還可以調整VCSEL的調製響應。 The VCSEL system 100 may be configured to perform equalization by adjusting the input signal D in to eliminate or reduce pulse distortion in the optical signal 162 . In some embodiments, the VCSEL system 100 may adjust the rising and falling edges of the pulses in the input signal Din based on the equalization delay, rising edge gain, and falling edge gain. The equalization delay module 120 may determine and/or provide an equalization delay based on a modeled VCSEL modulation response and a frequency peak of the bias current 150 . The rising edge detector 130 can be implemented using complementary metal oxide semiconductor (CMOS) technology to detect the rising edge of the pulse in the input data signal Din . The amplification stage 132 may provide rising gain at the detected rising edge of the input data signal Din , for example, as a rising edge tap parameter determined based on the modeled VCSEL modulation response and the rate of the input data signal Din . ). The falling edge detector 140 can be implemented using CMOS technology, and can be configured to detect the falling edge of the pulse in the input data signal Din . Similar to amplification stage 132, amplification stage 142 may provide falling edge gain, for example, as a falling edge tap parameter determined based on the modeled VCSEL modulation response and the data rate of the input data signal Din . In some embodiments, the controller may also adjust the modulation response of the VCSEL.

圖1中所描繪的技術考慮了VCSEL 光發射器的隔離訊號“壹”和“零”的響應之間的不對稱響應的影響,透過偵測上升沿和下降沿並以不同方式來等化它們。然而,為了實現執行非線性 VCSEL 等化的範例 VCSEL 系統 100 的電路配置,該電路含有等化延遲模組 120,其可以包含多個反相器 (inverters) 或其他延遲元件,在高速狀態下執行操作,可能會潛在地增加電力消耗和由於等化模組中的大量電晶體增加了RC常數,因此而降低了頻寬。在執行上述非線性等化所整合 VCSEL 光發射器的互連中,由於上述等化延遲模組所引起的 VCSEL 頻寬限制,在不歸零 (non-return-to-zero, NRZ) 調製下數據速率高於 56Gb/s 之條件下,該技術會出現瓶頸。The technique depicted in Figure 1 takes into account the effect of the asymmetric response between the one and zero responses of the isolation signal of the VCSEL optical emitter by detecting rising and falling edges and equalizing them in different ways. . However, in order to implement the circuit configuration of the example VCSEL system 100 that performs nonlinear VCSEL equalization, the circuit includes an equalization delay module 120, which may include multiple inverters or other delay elements and perform at high speed. operation, may potentially increase power consumption and reduce bandwidth due to the increased RC constant due to the large number of transistors in the equalization module. In the interconnection of the integrated VCSEL optical transmitter that performs the above nonlinear equalization, due to the VCSEL bandwidth limitation caused by the above equalization delay module, under non-return-to-zero (NRZ) modulation At data rates higher than 56Gb/s, this technology will experience bottlenecks.

為了對高速光發射器提供非對稱前饋等化(asymmetric FFE),即在 NRZ 調製下數據速率高於 56Gb/s,本發明提議在光發射器驅動器的低速狀態下實現上升沿和下降沿偵測。然後,利用低功率相位內插器 (phase interpolators, PIs) 提供可調節延遲,用於在數據訊號被多工選擇(been multiplexed)之前補償 VCSEL 的上升和下降響應,亦即,利用非對稱 FFE 技術與用於可調節延遲的個別 PI相結合,以提供等化數據訊號(equalized data signal)來補償 VCSEL 的固有非線性響應。In order to provide asymmetric feedforward equalization (asymmetric FFE) for high-speed optical transmitters, that is, data rates higher than 56Gb/s under NRZ modulation, the present invention proposes to implement rising and falling edge detection in the low-speed state of the optical transmitter driver. Test. Low-power phase interpolators (PIs) are then used to provide adjustable delays to compensate for the rising and falling responses of the VCSEL before the data signal has been multiplexed, that is, using asymmetric FFE technology Combined with individual PIs for adjustable delay to provide an equalized data signal to compensate for the inherent nonlinear response of the VCSEL.

在傳統的方法中,VCSEL的輸出波形是利用基於速率方程的VCSEL模型來計算,並且電流響應由理想電流源施加到VCSEL。模擬的結果表明,由於弛豫振盪,在上升沿和下降沿都會出現振鈴(ringing),而且在上升沿/下降沿會出現一定幅度的下衝/過衝(undershoot/overshoot)。這些下衝 (undershoot)和過衝 (overshoot)嚴重劣化了數據的波形。因此,在本發明中,提出了一種解決此問題的概念,亦即,利用對上升沿處的下衝進行補償的正加重脈衝 (positive emphasis pulse)和對下降沿處的過衝進行補償的負加重脈衝(negative emphasis pulse)的非對稱加重(前饋均衡)技術。每個預加重脈衝(pre-emphasis pulse)的寬度和建立時間都可以針對下衝和過衝進行調整。In the traditional method, the output waveform of the VCSEL is calculated using a VCSEL model based on the rate equation, and the current response is applied to the VCSEL by an ideal current source. The simulation results show that due to relaxation oscillation, ringing will occur on the rising edge and falling edge, and there will be a certain amount of undershoot/overshoot on the rising edge/falling edge. These undershoots and overshoots severely degrade the data waveform. Therefore, in the present invention, a concept is proposed to solve this problem, that is, using a positive emphasis pulse to compensate for the undershoot at the rising edge and a negative emphasis pulse to compensate for the overshoot at the falling edge. Asymmetric emphasis (feedforward equalization) technology of negative emphasis pulse. The width and settling time of each pre-emphasis pulse can be adjusted for undershoot and overshoot.

圖2顯示了根據本發明的一個較佳實施例中,具有被配置為執行非線性(非對稱)VCSEL等化的非對稱FFE的光發射器系統200的建議架構。Figure 2 shows a proposed architecture of an optical transmitter system 200 with an asymmetric FFE configured to perform non-linear (asymmetric) VCSEL equalization in accordance with a preferred embodiment of the present invention.

光發射器系統200可以包括VCSEL 202,其被配置為輸出光訊號262。輸入數據訊號A和B可以是電數據輸入訊號,可以被分支並輸入到與第一放大級212的輸入端子耦合的第一多工器 (MUX) 210、被分支並輸入到與第二多工器(MUX) 210a 的輸入端子耦合的上升沿偵測器230,以及被分支並輸入到與第三多工器(MUX) 210b 的輸入端子耦合的下降沿偵測器 240,其中,第二多工器 210a 和第三多工器 210b 分別耦合到第二放大級232和第三放大級 242 的輸入端子。第一、第二和第三放大級(212、232和242)透過加法器260耦合到VCSEL 202。第一多工器(MUX) 210接收輸入數據訊號A、B並產生多工數據 D in 。上升沿偵測器230接收輸入數據訊號A、B,並於該數據訊號存在上升轉變時為數據訊號A和B產生相應的訊號脈衝 R 1 R 2 。生成的訊號脈衝 R 1 R 2 接著被多工選擇 (been multiplexed) 並產生多工的上升訊號脈衝 R。類似地,下降沿偵測器240接收輸入數據訊號A、B,並於該數據訊號存在下降轉變時為數據訊號A和B產生相應的訊號脈衝 F 1F 2。生成的訊號脈衝 F 1 F 2 接著被多工選擇並產生多工的下降訊號脈衝 FOptical transmitter system 200 may include a VCSEL 202 configured to output an optical signal 262 . Input data signals A and B may be electrical data input signals that may be branched and input to a first multiplexer (MUX) 210 coupled to an input terminal of the first amplification stage 212, branched to and input to a second multiplexer (MUX) 210 coupled to an input terminal of the first amplifier stage 212. The rising edge detector 230 is coupled to the input terminal of the multiplexer (MUX) 210a, and is branched and input to the falling edge detector 240 coupled to the input terminal of the third multiplexer (MUX) 210b, wherein the second multiplexer (MUX) 210b The multiplexer 210a and the third multiplexer 210b are coupled to the input terminals of the second amplification stage 232 and the third amplification stage 242, respectively. The first, second and third amplification stages (212, 232 and 242) are coupled to VCSEL 202 through adder 260. The first multiplexer (MUX) 210 receives input data signals A and B and generates multiplexed data D in . The rising edge detector 230 receives the input data signals A and B, and generates corresponding signal pulses R 1 and R 2 for the data signals A and B when there is a rising transition in the data signal. The generated signal pulses R 1 and R 2 are then multiplexed and generate a multiplexed rising signal pulse R . Similarly, the falling edge detector 240 receives the input data signals A and B, and generates corresponding signal pulses F 1 and F 2 for the data signals A and B when there is a falling transition in the data signal. The generated signal pulses F 1 and F 2 are then multiplexed and generate a multiplexed falling signal pulse F .

多工的主驅動數據訊號 D in 由第一多工器 (MUX) 210核心中的低功率相位內插器(第一相位調整單元)270對齊其相位,隨著被施加到第一放大級212並輸出增益主驅動數據訊號 I data 。經過多工選擇上升訊號脈衝 R和下降訊號脈衝 F,兩者的相位均分別由第二多工器(MUX) 210a和第三多工器(MUX) 210b核心中的低功率相位內插器 (第二相位調整單元) 272對齊,然後分別輸入到第二放大級232以及第三放大級242並且分別提供上升增益訊號 I R 和下降增益訊號 I F。接著,光發射器系統200可以透過應用上述上升增益訊號 I R 和下降增益訊號 I F 來等化上升沿和下降沿,以達到等化延遲 t eq 。在一個較佳實施例中,上述多工的主驅動訊號 D in 的相位可以由相位內插器(第一相位調整單元) 270來固定。經過多工選擇的上升訊號脈衝 R和下降訊號脈衝 F的等化延遲 t eq 可以由相位內插器(第二相位調整單元) 272控制,並且被設置為 不是 位元週期 (bit period) 的倍數,其中,第一相位調整單元270和第二相位調整單元272可以被配置為形成等化延遲模組,用於經由調整第一相位調整單元270和第二相位調整單元272之間的相對相位來產生延遲訊號,以確定等化延遲 t eq 。其中,上述增益主驅動數據訊號 I data 、上升增益訊號 I R 和下降增益訊號 I F均為電流脈衝訊號。 The multiplexed main driving data signal D in is phase-aligned by the low-power phase interpolator (first phase adjustment unit) 270 in the first multiplexer (MUX) 210 core, and is then applied to the first amplification stage 212 And output the gain main driving data signal I data . After multiplexing, the rising signal pulse R and the falling signal pulse F are selected, and the phases of both are determined by the low-power phase interpolator ( The second phase adjustment unit) 272 is aligned, and then input to the second amplification stage 232 and the third amplification stage 242 respectively and provides the rising gain signal IR and the falling gain signal IF respectively . Then, the optical transmitter system 200 can equalize the rising edges and falling edges by applying the above-mentioned rising gain signal IR and falling gain signal IF to achieve the equalized delay teq . In a preferred embodiment, the phase of the multiplexed main driving signal D in can be fixed by a phase interpolator (first phase adjustment unit) 270 . The equalization delay t eq of the multiplexed rising signal pulse R and falling signal pulse F can be controlled by the phase interpolator (second phase adjustment unit) 272 and is set to not be a multiple of the bit period (bit period) , wherein the first phase adjustment unit 270 and the second phase adjustment unit 272 may be configured to form an equalized delay module for adjusting the relative phase between the first phase adjustment unit 270 and the second phase adjustment unit 272 . A delay signal is generated to determine the equalization delay teq . Among them, the above-mentioned gain main driving data signal I data , rising gain signal IR and falling gain signal IF are all current pulse signals.

其中,相位內插器(第一相位調整單元) 270以及272(第二相位調整單元)由時脈訊號產生器280提供同相 (I) 以及正交 (Q) 時脈訊號。Among them, the phase interpolators (first phase adjustment unit) 270 and 272 (second phase adjustment unit) are provided with in-phase (I) and quadrature (Q) clock signals by the clock signal generator 280.

上升訊號脈衝 R和下降訊號脈衝,經由第二放大級232和第三放大級242的個別調整以及執行等化延遲 t eq ,其等化脈衝的幅度和寬度在上升沿和下降沿可以被分別控制。這意味著,多工的上升訊號脈衝 R和下降訊號脈衝 F的增益對等化脈衝的幅度有貢獻,而由相位內插器272控制的等化延遲 t eq 對等化脈衝的寬度有貢獻。 The rising signal pulse R and the falling signal pulse are individually adjusted by the second amplification stage 232 and the third amplification stage 242 and the equalization delay t eq is performed. The amplitude and width of the equalization pulse can be controlled respectively on the rising edge and the falling edge. . This means that the gain of the multiplexed rising signal pulse R and falling signal pulse F contributes to the amplitude of the equalized pulse, and the equalizing delay t eq controlled by the phase interpolator 272 contributes to the width of the equalized pulse.

等化(equalization)可以透過主驅動器增益數據訊號(電流脈衝) I data 、生成的上升增益訊號 I R 和生成的下降增益訊號 I F 的線性組合來實現,亦即,生成的上升增益訊號(電流脈衝) I R 與主驅動器增益數據訊號(電流脈衝) I data 相加或是相減以對上升沿調整波形,且生成的下降增益訊號(電流脈衝) I F 與主驅動器增益訊號(電流脈衝) I data 相加或相減以對下降沿調整波形。 Equalization can be achieved through the linear combination of the main driver gain data signal (current pulse) I data , the generated rising gain signal I R and the generated falling gain signal IF , that is, the generated rising gain signal (current Pulse) I R is added or subtracted from the main driver gain data signal (current pulse) I data to adjust the waveform for the rising edge, and the generated falling gain signal (current pulse) I F is added to the main driver gain signal (current pulse) I data is added or subtracted to adjust the waveform for falling edges.

圖3顯示根據本發明的另一個較佳實施例中,具有被配置為執行非線性(非對稱)VCSEL等化的非對稱FFE的光發射器系統300的建議架構。圖 3 中所實現電路幾乎與圖2所示的相同,唯一的區別是,在本實施例中,相位內插器數目為三個,即三個低功率相位內插器 270、272 和 274,分別代表第一、第二和第三相位調整單元,被配置為用於個別調整多工數據訊號 D in RF之間的等化延遲。在一個較佳實施例中,主驅動數據訊號 I data 的相位可以透過第一多工器 (MUX) 210之核心中的相位內插器(第一相位調整單元) 270來固定。上升增益訊號 I R 的等化延遲 t eq1 可由 第二多工器 (MUX) 210a 之核心中的相位內插器(第二相位調整單元)272 單獨控制,而下降增益訊號 I F 的等化延遲 t eq2 可由位於第三多工器 (MUX) 210b之核心中的相位內插器(第三相位調整單元)274單獨控制。其中,等化延遲 t eq1 t eq2 均被設置為 不是 位元週期 (bit period) 的倍數,其中第一相位調整單元270、第二相位調整單元272和第三相位調整單元274可以配置為形成等化延遲模組,透過調整第一相位調整單元270和第二相位調整單元272之間的相對相位來產生第一延遲訊號,以及透過調整第一相位調整單元270和第三相位調整單元274之間的相對相位來產生第二延遲訊號。 Figure 3 shows a proposed architecture of an optical transmitter system 300 with an asymmetric FFE configured to perform non-linear (asymmetric) VCSEL equalization in accordance with another preferred embodiment of the present invention. The circuit implemented in Figure 3 is almost the same as that shown in Figure 2. The only difference is that in this embodiment, the number of phase interpolators is three, namely three low-power phase interpolators 270, 272 and 274. Represent first, second and third phase adjustment units respectively, configured for individually adjusting equalization delays between multiplexed data signals Din , R and F. In a preferred embodiment, the phase of the main driving data signal I data can be fixed through the phase interpolator (first phase adjustment unit) 270 in the core of the first multiplexer (MUX) 210 . The equalization delay teq1 of the rising gain signal I R can be independently controlled by the phase interpolator (second phase adjustment unit) 272 in the core of the second multiplexer (MUX) 210a, while the equalization delay t eq1 of the falling gain signal IF t eq2 can be controlled solely by the phase interpolator (third phase adjustment unit) 274 located in the core of the third multiplexer (MUX) 210b. Wherein, the equalization delays teq1 and teq2 are both set to not be multiples of the bit period, wherein the first phase adjustment unit 270, the second phase adjustment unit 272 and the third phase adjustment unit 274 may be configured to form The equalization delay module generates a first delay signal by adjusting the relative phase between the first phase adjustment unit 270 and the second phase adjustment unit 272, and by adjusting the relationship between the first phase adjustment unit 270 and the third phase adjustment unit 274. The relative phase between them is used to generate a second delayed signal.

其中,第一相位調整單元 270、第二相位調整單元 272以及第三相位調整單元 274由時脈訊號產生器280提供同相 (I) 以及正交 (Q) 時脈訊號。Among them, the first phase adjustment unit 270, the second phase adjustment unit 272 and the third phase adjustment unit 274 are provided with in-phase (I) and quadrature (Q) clock signals by the clock signal generator 280.

等化脈衝的幅度和寬度,分別經由上升沿和下降沿,透過第二放大級232和第三放大級242以及等化延遲 t eql t eq2 來進行個別調整。這意味著,多工上升訊號脈衝 R和多工下降訊號脈衝 F的增益貢獻於等化脈衝的幅度,而由相位內插器 272 和 274 個別控制的等化延遲 t eq1 t eq2 貢獻於等化脈衝的寬度。 The amplitude and width of the equalization pulse are individually adjusted through the rising edge and falling edge respectively through the second amplification stage 232 and the third amplification stage 242 and the equalization delays teq1 and teq2 . This means that the gains of the multiplexed rising signal pulse R and the multiplexed falling signal pulse F contribute to the amplitude of the equalizing pulses, while the equalizing delays t eq1 and t eq2 controlled individually by the phase interpolators 272 and 274 contribute to the equalizing pulses. The width of the pulse.

對於本發明而言,上升沿和下降沿偵測器係透過數位CMOS邏輯來實現。其中,圖4A-4B分別揭示了根據本發明的一個實施例的上升沿偵測器和下降沿偵測器的電路功能方塊圖。於圖4A中,其顯示用於輸入數據訊號A和B的上升沿偵測器430,其係由用於生成輸入數據訊號B的上升訊號脈衝 R 1 的第一脈衝產生器和用於生成輸入數據A的上升訊號脈衝 R 2的第二脈衝產生器所組成。其中,第一脈衝產生器包括具有兩個輸入端的第一邏輯AND閘422,用於分別接收輸入數據訊號B和反相輸入數據訊號A(透過一反相器),輸入數據訊號B的上升沿,即上升訊號脈衝 R 1,可由第一邏輯AND閘422偵測並透過其輸出端輸出。第二脈衝產生器包括具有兩個輸入端的第二邏輯AND閘424,其中一個輸入端耦接接收輸入數據訊號A,而另一個輸入端耦接反相器和延遲元件(例如,D型觸發器:DFF)並由時鐘訊號 (CK) 控制,用於將反相輸入訊號B轉換為具有一位元(one bit)延遲,輸入數據訊號A的上升沿,即上升訊號脈衝 R 2 ,可以被第二邏輯AND閘424偵測並經由其輸出端輸出。 For the present invention, the rising edge and falling edge detectors are implemented through digital CMOS logic. 4A-4B respectively reveal circuit functional block diagrams of a rising edge detector and a falling edge detector according to an embodiment of the present invention. In FIG. 4A, there is shown a rising edge detector 430 for input data signals A and B, which is composed of a first pulse generator for generating a rising signal pulse R 1 of the input data signal B and a first pulse generator for generating the input The rising signal pulse R2 of data A is composed of the second pulse generator. Among them, the first pulse generator includes a first logical AND gate 422 with two input terminals for respectively receiving the input data signal B and the inverted input data signal A (through an inverter). The rising edge of the input data signal B , that is, the rising signal pulse R 1 can be detected by the first logical AND gate 422 and output through its output terminal. The second pulse generator includes a second logical AND gate 424 having two input terminals, one of which is coupled to receive the input data signal A, and the other input terminal is coupled to an inverter and a delay element (eg, a D-type flip-flop :DFF) and controlled by the clock signal (CK), used to convert the inverted input signal B into a signal with one bit delay. The rising edge of the input data signal A, that is, the rising signal pulse R 2 , can be The two logic AND gates 424 detect and output via its output terminals.

如圖4B所示,用於輸入數據訊號A和B的下降沿偵測器440,由用於產生輸入數據訊號B的下降訊號脈衝 F 1 的第三脈衝產生器和用於生成輸入數據訊號A的下降訊號脈衝 F 2 的第四脈衝產生器所組成。其中,用於產生下降訊號脈衝 F 1 的第三脈衝產生器,包括具有兩個輸入端的第三邏輯AND閘422a,用於分別接收輸入數據訊號A和反相輸入數據訊號B(透過反相器),輸入數據訊號B的下降沿,即下降訊號脈衝 F 1 ,可以被第三邏輯AND閘422a檢測並透過其輸出端輸出。用於產生下降訊號脈衝 F 2 的第四脈衝產生器,包括具有兩個輸入端的第四邏輯AND閘424a,其中一個輸入端耦合到接收反相輸入數據訊號A,而另一個輸入端耦合到延遲元件(例如,D型觸發器:DFF) 由時鐘訊號 (CK) 所控制,用於以一位元 (one bit) 延遲轉換輸入訊號B,輸入數據訊號A的下降沿,即下降訊號脈衝 F 2 ,可以被第四邏輯AND閘偵測到並且透過其輸出端輸出。 As shown in FIG. 4B , the falling edge detector 440 for the input data signals A and B is composed of a third pulse generator for generating the falling signal pulse F 1 of the input data signal B and a third pulse generator for generating the input data signal A. The falling signal pulse F2 consists of the fourth pulse generator. Among them, the third pulse generator for generating the falling signal pulse F 1 includes a third logical AND gate 422a with two input terminals for respectively receiving the input data signal A and the inverted input data signal B (through an inverter ), the falling edge of the input data signal B, that is, the falling signal pulse F 1 , can be detected by the third logic AND gate 422a and output through its output terminal. The fourth pulse generator for generating the falling signal pulse F2 includes a fourth logical AND gate 424a having two input terminals, one of which is coupled to receive the inverted input data signal A, and the other input terminal is coupled to the delay The component (for example, D-type flip-flop: DFF) is controlled by the clock signal (CK) and is used to delay the conversion of the input signal B with one bit (one bit). The falling edge of the input data signal A, that is, the falling signal pulse F 2 , can be detected by the fourth logic AND gate and output through its output terminal.

圖4C-4D顯示了根據本發明的一個實施例中,使用兩個相位內插器的相位對齊操作的範例性時序圖。其中,上升沿訊號,包括上升訊號脈衝 R 1 R 2 ,可以被相位內插器272偵測並調整等化延遲時間 t eq ,用於補償由於VCSEL對每個躍遷的響應所造成的訊號失真。類似地,包括下降訊號脈衝 F 1 F 2 的下降沿訊號可以被相位內插器272偵測並調整等化延遲時間 t eq ,用於補償由於VCSEL對每個躍遷的響應而引起的訊號失真。透過這種方式,可以消除VCSEL的典型響應中的峰值。 4C-4D show exemplary timing diagrams of phase alignment operations using two phase interpolators in accordance with one embodiment of the present invention. Among them, the rising edge signal, including the rising signal pulses R 1 and R 2 , can be detected by the phase interpolator 272 and the equalization delay time teq is adjusted to compensate for the signal distortion caused by the VCSEL's response to each transition. . Similarly, falling edge signals including falling signal pulses F 1 and F 2 can be detected by the phase interpolator 272 and the equalization delay time teq can be adjusted to compensate for the signal distortion caused by the VCSEL's response to each transition. . In this way, the peaks in the typical response of VCSELs are eliminated.

簡而言之,透過本發明所提出的非對稱FFE技術能夠改善由於非線性VCSEL響應引起的波形劣化。In short, the waveform degradation caused by the nonlinear VCSEL response can be improved through the asymmetric FFE technology proposed in the present invention.

以上實施例僅用以說明本發明的技術方案,而非對其限制;儘管參照前述實施例對本發明及其效益進行詳細說明,本領域的普通技術人員應當理解:其依然可以對前述各實施例所記載的進行修改,或者對其中部分技術特徵進行等同替換;而這些修改或替換,並不使相應技術方案的本質脫離本發明權利要求的範圍。The above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them. Although the present invention and its benefits are described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that they can still modify the foregoing embodiments. Modifications are made as described, or equivalent substitutions are made to some of the technical features; however, these modifications or substitutions do not cause the essence of the corresponding technical solutions to depart from the scope of the claims of the present invention.

102:VCSEL 110:多工器 112,132,142:放大級 120:等化延遲模組 130:上升沿偵測器 140:下降沿偵測器 160:加法器 150:偏壓電流源 162:光訊號 200:光發射器系統 202:VCSEL 210:第一多工器 210a:第二多工器 210b:第三多工器 230:上升沿偵測器 240:下降沿偵測器 212:第一放大級 232:第二放大級 242:第三放大級 260:加法器 262:光訊號 270:第一相位調整單元 272:第二相位調整單元 274:第三相位調整單元 280:時脈訊號產生器 300:光發射器系統 430:上升沿偵測器 440:下降沿偵測器 422:第一邏輯AND閘 424:第二邏輯AND閘 422a:第三邏輯AND閘 424a:第四邏輯AND閘 102:VCSEL 110:Multiplexer 112,132,142: Amplification stage 120: Equalization delay module 130: rising edge detector 140: Falling edge detector 160: Adder 150: Bias current source 162:Light signal 200:Light transmitter system 202:VCSEL 210:First multiplexer 210a: Second multiplexer 210b: Third multiplexer 230: rising edge detector 240: Falling edge detector 212: First amplification stage 232: Second amplification stage 242: The third amplification stage 260: Adder 262:Light signal 270: First phase adjustment unit 272: Second phase adjustment unit 274: The third phase adjustment unit 280: Clock signal generator 300:Light transmitter system 430: rising edge detector 440: Falling edge detector 422: First logical AND gate 424: Second logical AND gate 422a: The third logical AND gate 424a: The fourth logical AND gate

本發明的組成、特徵和優點可以透過說明書中概述的較佳實施例的詳細描述和附圖來理解:The composition, features and advantages of the present invention can be understood through the detailed description of the preferred embodiments summarized in the specification and the accompanying drawings:

[圖1]顯示習知技術中執行非線性VCSEL等化的垂直共振腔面射型雷射(VCSEL) 光發射器系統範例。[Figure 1] shows an example of a vertical cavity surface-emitting laser (VCSEL) light emitter system that performs nonlinear VCSEL equalization in the prior art.

[圖2]顯示根據本發明的一個實施例中所提出,被配置為用於執行非線性(不對稱)VCSEL等化之具有非對稱FFE之光發射器系統架構。[Fig. 2] shows an optical transmitter system architecture with asymmetric FFE configured to perform nonlinear (asymmetric) VCSEL equalization according to one embodiment of the present invention.

[圖3]顯示根據本發明的另一個實施例中所提出,被配置為用於執行非線性(不對稱)VCSEL等化之具有非對稱FFE之光發射器系統架構。[Fig. 3] shows an optical transmitter system architecture with asymmetric FFE configured to perform nonlinear (asymmetric) VCSEL equalization according to another embodiment of the present invention.

[圖4A-4B]顯示根據本發明的一個實施例所提出的上升沿偵測和下降沿偵測的電路功能方塊圖。[Figure 4A-4B] shows a functional block diagram of a circuit for rising edge detection and falling edge detection proposed according to an embodiment of the present invention.

[圖4C-4D]顯示根據本發明的一個實施例所提出的執行上升沿偵測器的相位對齊之操作的時序圖範例。[FIG. 4C-4D] shows an example of a timing diagram of an operation of performing phase alignment of a rising edge detector according to an embodiment of the present invention.

200:光發射器系統 200:Light transmitter system

202:VCSEL 202:VCSEL

210:第一多工器 210:First multiplexer

210a:第二多工器 210a: Second multiplexer

210b:第三多工器 210b: Third multiplexer

230:上升沿偵測器 230: rising edge detector

240:下降沿偵測器 240: Falling edge detector

212:第一放大級 212: First amplification stage

232:第二放大級 232: Second amplification stage

242:第三放大級 242: The third amplification stage

260:加法器 260: Adder

262:光訊號 262:Light signal

270:第一相位調整單元 270: First phase adjustment unit

272:第二相位調整單元 272: Second phase adjustment unit

280:時脈訊號產生器 280: Clock signal generator

Claims (10)

一種用於高速光發射器之非對稱前饋等化器,包括: 一主驅動器,被配置用於接收一輸入數據訊號,以及放大該輸入數據訊號產生之增益主驅動器數據訊號; 一第一相位調整單元,被配置用於對齊該輸入數據訊號的相位; 一上升沿等化驅動器,被配置用於偵測該輸入數據訊號的上升沿,並生成一第一調整數據訊號; 一下降沿等化驅動器,被配置用於偵測該輸入數據訊號的下降沿,並生成一第二調整數據訊號; 一第二相位調整單元,被配置用於對齊該輸入數據訊號的上升沿與該輸入數據訊號的下降沿之間的相位; 一等化延遲模組,由該第一相位調整單元以及該第二相位調整單元所組成,被配置透過調整該第一相位調整單元與該第二相位調整單元之間的相對相位以生成一延遲訊號,用於確定等化延遲; 一垂直共振腔面射型雷射(VCSEL),被配置用於輸出該增益主驅動數據訊號、該第一調整數據訊號以及該第二調整數據訊號的線性組合訊號。 An asymmetric feedforward equalizer for high-speed optical transmitters, including: a main driver configured to receive an input data signal and amplify the gain main driver data signal generated by the input data signal; a first phase adjustment unit configured to align the phase of the input data signal; a rising edge equalization driver configured to detect the rising edge of the input data signal and generate a first adjustment data signal; a falling edge equalization driver configured to detect the falling edge of the input data signal and generate a second adjustment data signal; a second phase adjustment unit configured to align the phase between the rising edge of the input data signal and the falling edge of the input data signal; The equalized delay module is composed of the first phase adjustment unit and the second phase adjustment unit and is configured to generate a delay by adjusting the relative phase between the first phase adjustment unit and the second phase adjustment unit. Signal used to determine equalization delay; A vertical resonant cavity surface emitting laser (VCSEL) is configured to output a linear combination signal of the gain main driving data signal, the first adjustment data signal and the second adjustment data signal. 如請求項1所述的用於高速光發射器之非對稱前饋等化器,其中上述第一相位調整單元以及上述第二相位調整單元均為相位內插器。The asymmetric feedforward equalizer for a high-speed optical transmitter as claimed in claim 1, wherein the first phase adjustment unit and the second phase adjustment unit are both phase interpolators. 如請求項1所述的用於高速光發射器之非對稱前饋等化器,其中上述主驅動器更包含: 一第一N對1多工器,接收該輸入數據訊號,並對其多工選擇以產生多工的輸入數據訊號;以及 一個與該垂直共振腔面射型雷射(VCSEL)耦合的第一放大級,被配置用以接收該多工的輸入數據訊號並對其放大,產生對應於該增益主驅動器數據訊號的第一電流脈衝。 The asymmetric feedforward equalizer for high-speed optical transmitter as described in claim 1, wherein the above main driver further includes: a first N-to-1 multiplexer that receives the input data signal and multiplexes it to generate a multiplexed input data signal; and A first amplifier stage coupled to the vertical resonant cavity surface emitting laser (VCSEL) is configured to receive the multiplexed input data signal and amplify it to generate a first amplifier stage corresponding to the gain main driver data signal. current pulse. 如請求項1所述的用於高速光發射器之非對稱前饋等化器,其中上述上升沿等化驅動器包含: 一上升沿偵測器,被配置用於偵測該輸入數據訊號的上升沿脈衝; 一第二N對1多工器,與該上升沿偵測器耦合,用以接收該上升沿脈衝,並利用該第二相位調整單元的時鐘訊號來調整對該第二N對1多工器之核心的對齊;以及 一第二放大級,耦合該上升沿偵測器以及該垂直共振腔面射型雷射(VCSEL),用於產生對應於該第一調整數據訊號的第二電流脈衝,其中該第二電流脈衝對應於將該輸入數據訊號經過上升沿轉換和等化延遲後之電流訊號。 The asymmetric feedforward equalizer for high-speed optical transmitter as described in claim 1, wherein the above-mentioned rising edge equalization driver includes: a rising edge detector configured to detect rising edge pulses of the input data signal; A second N-to-1 multiplexer coupled to the rising edge detector for receiving the rising edge pulse and using the clock signal of the second phase adjustment unit to adjust the second N-to-1 multiplexer core alignment; and a second amplification stage coupled to the rising edge detector and the vertical resonant cavity surface emitting laser (VCSEL) for generating a second current pulse corresponding to the first adjustment data signal, wherein the second current pulse Corresponds to the current signal after rising edge conversion and equalization delay of the input data signal. 如請求項1所述的用於高速光發射器之非對稱前饋等化器,其中上述下降沿等化驅動器包含: 一下降沿偵測器,被配置用於偵測該輸入數據訊號的下降沿脈衝; 一第三N對1多工器,與該下降沿偵測器耦合,用以接收該下降沿脈衝,並利用該第二相位調整單元的時鐘訊號來調整對該第三N對1多工器之核心的對齊;以及 一第三放大級,耦合該下降沿偵測模組以及該垂直共振腔面射型雷射(VCSEL),用於產生對應於該第一調整數據訊號的第三電流脈衝,其中該第三電流脈衝對應於將該輸入數據訊號經過下降沿轉換和等化延遲後之電流訊號。 The asymmetric feedforward equalizer for high-speed optical transmitter as described in claim 1, wherein the falling edge equalization driver includes: a falling edge detector configured to detect falling edge pulses of the input data signal; A third N-to-1 multiplexer coupled to the falling edge detector for receiving the falling edge pulse and using the clock signal of the second phase adjustment unit to adjust the third N-to-1 multiplexer core alignment; and A third amplification stage, coupled to the falling edge detection module and the vertical resonant cavity surface emitting laser (VCSEL), for generating a third current pulse corresponding to the first adjustment data signal, wherein the third current The pulse corresponds to the current signal after falling edge conversion and equalization delay of the input data signal. 如請求項4所述的用於高速光發射器之非對稱前饋等化器,其中上述上升沿偵測器包括: 一第一脈衝產生器,用於產生第一上升訊號脈衝,其包括具有兩個輸入端的第一邏輯AND閘,一個輸入端用於接收和反相該輸入數據訊號的第一分支,而另一個輸入端用於接收該輸入數據訊號的第二分支;以及 一第二脈衝產生器,用於產生第二上升訊號脈衝,其包括具有兩個輸入端的第二邏輯AND閘,一個輸入端用於接收該輸入數據訊號的該第一分支,而另一個輸入端耦合到反相器以及由接收時鐘訊號控制的延遲元件,該延遲元件輸入該輸入數據訊號的該第二分支,其中該第一上升訊號脈衝和該第二上升訊號脈衝,分別透過它們所對應的該第一邏輯AND閘和該第二邏輯AND閘的輸出端,輸入到該第二N對1多工器。 The asymmetric feedforward equalizer for high-speed optical transmitter as described in claim 4, wherein the rising edge detector includes: A first pulse generator for generating a first rising signal pulse, which includes a first logical AND gate having two input terminals, one input terminal for receiving and inverting the first branch of the input data signal, and the other input terminal for receiving and inverting the first branch of the input data signal. The input terminal is used to receive the second branch of the input data signal; and A second pulse generator for generating a second rising signal pulse, which includes a second logical AND gate having two input terminals, one input terminal for receiving the first branch of the input data signal, and the other input terminal Coupled to the inverter and controlled by the received clock signal, the delay element inputs the second branch of the input data signal, wherein the first rising signal pulse and the second rising signal pulse pass through their corresponding The output terminals of the first logical AND gate and the second logical AND gate are input to the second N-to-1 multiplexer. 如請求項5所述的用於高速光發射器之非對稱前饋等化器,其中上述下降沿偵測器包括:。 一第三脈衝產生器,用於產生第一下降訊號脈衝,其包括具有兩個輸入端的第三邏輯AND閘,一個輸入端用於接收該輸入數據訊號的第一分支,而另一個輸入端用於接收和反相該輸入數據訊號的第二分支;以及 一第四脈衝產生器,用於產生第二下降訊號脈衝,其包括具有兩個輸入端的第四邏輯AND閘,一個輸入端用於接收和反相該輸入數據訊號的該第一分支,而另一個輸入端耦合到由接收時鐘訊號控制的延遲元件,該延遲元件輸入該輸入數據訊號的該第二分支,其中該第一下降訊號脈衝和該第二下降訊號脈衝,分別透過它們所對應的該第三邏輯AND閘和該第四邏輯AND閘的輸出端,輸入到該第三N對1多工器。 The asymmetric feedforward equalizer for high-speed optical transmitter as claimed in claim 5, wherein the falling edge detector includes:. A third pulse generator for generating a first falling signal pulse, which includes a third logical AND gate having two input terminals, one input terminal for receiving the first branch of the input data signal, and the other input terminal for receiving the first branch of the input data signal. a second branch for receiving and inverting the input data signal; and A fourth pulse generator for generating a second falling signal pulse, which includes a fourth logical AND gate having two input terminals, one input terminal for receiving and inverting the first branch of the input data signal, and the other input terminal for receiving and inverting the first branch of the input data signal. An input terminal is coupled to a delay element controlled by receiving a clock signal, and the delay element inputs the second branch of the input data signal, wherein the first falling signal pulse and the second falling signal pulse respectively pass through their corresponding The output terminals of the third logical AND gate and the fourth logical AND gate are input to the third N-to-1 multiplexer. 一種用於高速光發射器之非對稱前饋等化器,包括: 一主驅動器,被配置用於接收一輸入數據訊號,以及放大該輸入數據訊號產生之增益主驅動器數據訊號; 一第一相位調整單元,被配置用於對齊該輸入數據訊號的相位; 一上升沿等化驅動器,被配置用於偵測該輸入數據訊號的上升沿,並生成一第一調整數據訊號; 一第二相位調整單元,被配置用於對齊該輸入數據訊號的上升沿的相位; 一下降沿等化驅動器,被配置用於偵測該輸入數據訊號的下降沿,並生成一第二調整數據訊號; 一第二相位調整單元,被配置用於對齊該輸入數據訊號的上升沿與該輸入數據訊號的下降沿之間的相位; 一第三相位調整單元,用於對齊該輸入數據訊號的下降沿的相位; 一等化延遲模組,由該第一相位調整單元、該第二相位調整單元以及該第三相位調整單元所組成,被配置為透過調整該第一相位調整單元與該第二相位調整單元之間的相對相位以生成一第一延遲訊號,以及透過調整該第一相位調整單元與該第三相位調整單元之間的相對相位以生成一第二延遲訊號,用於確定相對應的等化延遲; 一垂直共振腔面射型雷射(VCSEL),被配置用於輸出該增益主驅動數據訊號、該第一調整數據訊號以及該第二調整數據訊號的線性組合訊號。 An asymmetric feedforward equalizer for high-speed optical transmitters, including: a main driver configured to receive an input data signal and amplify the gain main driver data signal generated by the input data signal; a first phase adjustment unit configured to align the phase of the input data signal; a rising edge equalization driver configured to detect the rising edge of the input data signal and generate a first adjustment data signal; a second phase adjustment unit configured to align the phase of the rising edge of the input data signal; a falling edge equalization driver configured to detect the falling edge of the input data signal and generate a second adjustment data signal; a second phase adjustment unit configured to align the phase between the rising edge of the input data signal and the falling edge of the input data signal; a third phase adjustment unit for aligning the phase of the falling edge of the input data signal; The equalization delay module is composed of the first phase adjustment unit, the second phase adjustment unit and the third phase adjustment unit, and is configured to adjust the relationship between the first phase adjustment unit and the second phase adjustment unit. The relative phase between the first phase adjustment unit and the third phase adjustment unit is adjusted to generate a first delay signal, and a second delay signal is generated by adjusting the relative phase between the first phase adjustment unit and the third phase adjustment unit for determining the corresponding equalization delay. ; A vertical resonant cavity surface emitting laser (VCSEL) is configured to output a linear combination signal of the gain main driving data signal, the first adjustment data signal and the second adjustment data signal. 如請求項1所述的用於高速光發射器之非對稱前饋等化器,其中上述主驅動器更包含: 一第一N對1多工器,接收該輸入數據訊號,並對其多工選擇以產生多工的輸入數據訊號;以及 一個與該垂直共振腔面射型雷射(VCSEL)耦合的第一放大級,被配置用以接收該多工的輸入數據訊號並對其放大,產生對應於該增益主驅動器數據訊號的第一電流脈衝。 The asymmetric feedforward equalizer for high-speed optical transmitter as described in claim 1, wherein the above main driver further includes: a first N-to-1 multiplexer that receives the input data signal and multiplexes it to generate a multiplexed input data signal; and A first amplifier stage coupled to the vertical resonant cavity surface emitting laser (VCSEL) is configured to receive the multiplexed input data signal and amplify it to generate a first amplifier stage corresponding to the gain main driver data signal. current pulse. 如請求項1所述的用於高速光發射器之非對稱前饋等化器,其中上述上升沿等化驅動器包含: 一上升沿偵測器,被配置用於偵測該輸入數據訊號的上升沿脈衝; 一第二N對1多工器,與該上升沿偵測器耦合,用以接收該上升沿脈衝,並利用該第二相位調整單元的時鐘訊號來調整對該第二N對1多工器之核心的對齊;以及 一第二放大級,耦合該上升沿偵測器以及該垂直共振腔面射型雷射(VCSEL),用於產生對應於該第一調整數據訊號的第二電流脈衝,其中該第二電流脈衝對應於將該輸入數據訊號經過上升沿轉換和等化延遲後之電流訊號; 上述下降沿等化驅動器包含: 一下降沿偵測器,被配置用於偵測該輸入數據訊號的下降沿脈衝; 一第三N對1多工器,與該下降沿偵測器耦合,用以接收該下降沿脈衝,並利用該第二相位調整單元的時鐘訊號來調整對該第三N對1多工器之核心的對齊;以及 一第三放大級,耦合該下降沿偵測模組以及該垂直共振腔面射型雷射(VCSEL),用於產生對應於該第一調整數據訊號的第三電流脈衝,其中該第三電流脈衝對應於將該輸入數據訊號經過下降沿轉換和等化延遲後之電流訊號。 The asymmetric feedforward equalizer for high-speed optical transmitter as described in claim 1, wherein the above-mentioned rising edge equalization driver includes: a rising edge detector configured to detect rising edge pulses of the input data signal; A second N-to-1 multiplexer coupled to the rising edge detector for receiving the rising edge pulse and using the clock signal of the second phase adjustment unit to adjust the second N-to-1 multiplexer core alignment; and a second amplification stage coupled to the rising edge detector and the vertical resonant cavity surface emitting laser (VCSEL) for generating a second current pulse corresponding to the first adjustment data signal, wherein the second current pulse Corresponds to the current signal after rising edge conversion and equalization delay of the input data signal; The falling edge equalization drivers described above include: a falling edge detector configured to detect falling edge pulses of the input data signal; A third N-to-1 multiplexer coupled to the falling edge detector for receiving the falling edge pulse and using the clock signal of the second phase adjustment unit to adjust the third N-to-1 multiplexer core alignment; and A third amplification stage, coupled to the falling edge detection module and the vertical resonant cavity surface emitting laser (VCSEL), for generating a third current pulse corresponding to the first adjustment data signal, wherein the third current The pulse corresponds to the current signal after falling edge conversion and equalization delay of the input data signal.
TW111124647A 2022-06-30 2022-06-30 Asymmetric feed-forward equalizer for high-speed optical transmitter TWI829230B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111124647A TWI829230B (en) 2022-06-30 2022-06-30 Asymmetric feed-forward equalizer for high-speed optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111124647A TWI829230B (en) 2022-06-30 2022-06-30 Asymmetric feed-forward equalizer for high-speed optical transmitter

Publications (2)

Publication Number Publication Date
TWI829230B TWI829230B (en) 2024-01-11
TW202404288A true TW202404288A (en) 2024-01-16

Family

ID=90457555

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111124647A TWI829230B (en) 2022-06-30 2022-06-30 Asymmetric feed-forward equalizer for high-speed optical transmitter

Country Status (1)

Country Link
TW (1) TWI829230B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166698B2 (en) * 2013-10-14 2015-10-20 Korea Advanced Institute Of Science And Technology Electronic dispersion compensation for low-cost distributed feedback-directly modulated laser
US9674025B2 (en) * 2014-07-01 2017-06-06 International Business Machines Corporation 4-level pulse amplitude modulation transmitter architectures utilizing quadrature clock phases
US9660847B2 (en) * 2014-11-26 2017-05-23 Rambus Inc. Equalized multi-signaling mode driver
US20170187463A1 (en) * 2015-12-28 2017-06-29 Fujitsu Limited Delay-based nonlinear equalizer
US10547387B2 (en) * 2018-03-30 2020-01-28 Mellanox Technologies Denmark ApS. Transition based feedforward equalization method and apparatus implemented with lookup table circuits

Also Published As

Publication number Publication date
TWI829230B (en) 2024-01-11

Similar Documents

Publication Publication Date Title
US9866185B2 (en) Optical transmission circuit with upper and lower threshold control
Wang et al. A 21-Gb/s 87-mW transceiver with FFE/DFE/analog equalizer in 65-nm CMOS technology
Lee et al. Design and comparison of three 20-Gb/s backplane transceivers for duobinary, PAM4, and NRZ data
US6975132B2 (en) DAC based driver with selectable pre-emphasis signal levels
JP4724117B2 (en) Tx line driver with common mode idle state and selectable slew rate
US7868804B2 (en) High speed driver equalization
US8283982B2 (en) Decision feedback equalizer circuit
JPH07183852A (en) Optical fiber transmission device
US8929747B1 (en) Reducing pulse narrowing in the transmitter signal that drives a limiting E/O converter for optical fiber channels
Rylyakov et al. Transmitter predistortion for simultaneous improvements in bit rate, sensitivity, jitter, and power efficiency in 20 Gb/s CMOS-driven VCSEL links
TW202037097A (en) Decision feed-forward equalizer,serializer/deserializer and method for reciver generating data
US7173965B2 (en) Equalizing a signal for transmission
Choi et al. A 35-Gb/s 0.65-pJ/b asymmetric push-pull inverter-based VCSEL driver with series inductive peaking in 65-nm CMOS
Peng et al. A 56-Gb/s PAM-4 transmitter/receiver chipset with nonlinear FFE for VCSEL-based optical links in 40-nm CMOS
TWI829230B (en) Asymmetric feed-forward equalizer for high-speed optical transmitter
CN109831257B (en) PAM-N CDR circuit and control method thereof
Ohhata et al. 17 Gb/s VCSEL driver using double-pulse asymmetric emphasis technique in 90-nm CMOS for optical interconnection
Hu et al. A $4\times25 $ Gb/s Optical Transmitter Using Low-Cost 10 Gb/s VCSELs in 40-nm CMOS
Peng et al. A 56-Gb/s PAM-4 optical transceiver with nonlinear FFE for VCSEL driver in 40nm CMOS
Khafaji et al. A 42 Gbps VCSEL driver with adjustable 2-tap feed-forward equalizer in 14 nm SOI CMOS
WO2017216841A1 (en) Optical communication module
Bhoja et al. Next-generation 10 GBaud module based on emerging SFP+ with host-based EDC [Topics in Optical Communications]
Chandramouli et al. 10-Gb/s optical fiber transmission using a fully analog electronic dispersion compensator (EDC) with unclocked decision-feedback equalization
US20240121009A1 (en) Waveguide delay based equalization with current summing in a differential transimpedance amplifier
Jeong et al. 25-Gb/s clocked pluggable optics for high-density data center interconnections