WO2017216841A1 - Optical communication module - Google Patents

Optical communication module Download PDF

Info

Publication number
WO2017216841A1
WO2017216841A1 PCT/JP2016/067533 JP2016067533W WO2017216841A1 WO 2017216841 A1 WO2017216841 A1 WO 2017216841A1 JP 2016067533 W JP2016067533 W JP 2016067533W WO 2017216841 A1 WO2017216841 A1 WO 2017216841A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
laser diode
compensation
data
Prior art date
Application number
PCT/JP2016/067533
Other languages
French (fr)
Japanese (ja)
Inventor
享史 竹本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/067533 priority Critical patent/WO2017216841A1/en
Publication of WO2017216841A1 publication Critical patent/WO2017216841A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output

Definitions

  • the present invention relates to an optical communication module, and is a communication device that mutually converts an optical signal and an electric signal by pulse amplitude modulation using a direct modulation laser diode and a photodiode, and is compatible with high-speed transmission at low cost.
  • the present invention relates to an optical communication module suitable for improving quality.
  • the communication speed has changed from 10 Gbps to 25 Gbps, 50 Gbps, and the like.
  • an optical communication device compatible with an optical fiber cable is progressing as a server device or a router device in a data center.
  • An optical communication device is usually premised on long-distance transmission such as a kilometer order between devices, and it is important to ensure high speed and reliability associated with this transmission distance.
  • optical communication devices there are many devices having a relatively large size (for example, on the order of several tens of centimeters or metric order), but communication using electric signals is usually performed inside the devices.
  • the optical communication device converts an optical signal input from the outside into an electrical signal, performs a predetermined process while performing short-distance communication (for example, metric order) inside the device using this electrical signal, and then again performs the electrical signal. Is converted into an optical signal and output to the outside.
  • short-distance communication for example, communication using an electrical signal using a copper wire cable or the like is performed.
  • the transmission waveform quality of the copper wire cable significantly decreases.
  • the intersymbol interference caused by the insufficient bandwidth of the laser diode LD degrades the optical transmission waveform, making it difficult to achieve a communication speed exceeding 50 Gbps, for example.
  • As a means to improve the intersymbol interference of the optical transmission waveform it is conceivable to improve the operating band of the laser diode LD. Since the failure rate is higher than that of the device and the cost is increased, the transition from telecommunications to optical communication in short-distance communication is hindered.
  • PAM pulse amplitude modulation
  • NRZ Non-Return-to-Zero
  • Patent Document 1 discloses a technique for compensating for deterioration in transmission quality caused by a shortage of the band of the laser diode LD.
  • Patent Document 1 describes a laser diode driver circuit provided with an asymmetric pre-emphasis circuit for improving the operating band of a laser diode in a high-speed optical transmission circuit. Specifically, a pre-emphasis circuit including a delay circuit and a duty ratio adjustment circuit is shown. As a result, it is possible to compensate for the high-speed driving of the laser diode and the degradation (rise and fall asymmetry) of the optical signal transmission characteristics.
  • factors that degrade the optical transmission waveform include ringing in the optical transmission waveform due to the influence of the relaxation oscillation frequency of the laser diode LD in addition to the intersymbol interference caused by the insufficient bandwidth of the laser diode LD.
  • Ringing refers to a state in which the response becomes oscillating when the signal changes stepwise.
  • FIG. 19 is a graph showing the relationship between the input frequency and the optical output power in the laser diode LD.
  • FIG. 20 is a diagram for explaining that ringing occurs at the rise and fall of the step response waveform.
  • the laser diode LD has different optical output powers output in the vicinity of the relaxation oscillation frequencies (fr_L, fr_M, fr_H) depending on the bias current.
  • relaxation oscillation is a phenomenon in which optical output oscillates when a pulsed current is injected into a semiconductor laser, and the frequency at that time is called relaxation oscillation frequency.
  • the value of the relaxation oscillation frequency is determined by the device structure of the laser diode LD, and the response characteristic rapidly decreases above this frequency. Therefore, the upper limit frequency at which the laser diode LD can operate is determined based on this relaxation oscillation frequency.
  • the peak gain positions (fr_L, fr_M, fr_H) generated by the relaxation oscillation frequency are lower than the basic frequency of the communication speed. In the optical output waveform of the laser diode LD, ringing due to overshoot occurs at the rising edge, while ringing due to undershoot occurs at the falling edge, and transmission quality deteriorates.
  • the eye amplitude (the amplitude in the eye waveform, which will be described later) is 1 / N compared to NRZ transmission. It is necessary to increase the amplitude of the modulation current to be supplied. Therefore, the influence of ringing becomes larger than that for NRZ transmission. Further, since the value of the relaxation oscillation frequency increases as the bias current supplied to the laser diode LD increases, for example, when applied to PAM4 transmission, at the time of data transition from level 0 to level 3 at the rise, at the fall Is the ringing amount at the time of data transition from level 3 to level 0.
  • the amount of ringing generated by the laser diode LD differs for each amplitude level. Therefore, when compensation for ringing is attempted using a waveform equalization technique of an electric circuit, etc. On the other hand, it is necessary to change the optimum compensation amount. Furthermore, the rise time and fall time are degraded due to insufficient bandwidth of the laser diode LD, and the transition time is delayed until the steady state of each amplitude level is reached. The transmission quality is deteriorated. Further, as described above, since the relaxation oscillation frequency changes depending on the bias current, the deterioration of the fall time becomes larger than the rise time, and there arises a problem that the response characteristics of the rise and fall become asymmetric. .
  • the laser diode driver circuit LDD described in Patent Document 1 emphasizes rising and falling in advance (pre-emphasis) as means for compensating for transmission quality degradation caused by insufficient bandwidth of the laser diode LD. This will improve the lack of bandwidth.
  • FIG. 21 is a configuration diagram of a laser diode driver circuit LDD described in Patent Document 1. The symbols are changed for convenience of explanation.
  • FIG. 22 is a diagram showing step response waveforms of the rising and falling laser diode driver circuits of Patent Document 1. In FIG.
  • the configuration of the laser diode driver circuit LDD described in Patent Document 1 includes a laser characteristic compensation circuit LD_EQ and an output circuit Drv as shown in FIG.
  • the laser characteristic compensation circuit LD_EQ includes a delay circuit DEL, a duty ratio adjustment circuit DUTYAdj, a pre-buffer circuit PrBufm, a pre-buffer circuit PrBufe, and an addition / subtraction circuit ADD.
  • the input voltage signal of the laser diode driver circuit LDD is branched into the pre-buffer circuit PrBufm and the delay circuit DEL, respectively.
  • the voltage signal branched into the delay circuit DEL is the voltage signal branched into the pre-buffer circuit PrBufm. Is output with a certain delay difference.
  • the voltage signal having this delay difference is subtracted by the addition / subtraction circuit ADD from the other voltage signal having no delay difference, so that a voltage signal having a large rising and falling enhancement amount as shown in FIG. 22 is obtained. Generated.
  • the duty ratio is adjusted by the duty ratio adjustment circuit DUTYAdj so that the period of the “H” level becomes longer, and it is possible to generate a voltage signal that has a larger amount of fall emphasis (asymmetric pre-emphasis) than the rise. is there.
  • the voltage signal emphasized at the rise and fall is converted into a current signal by the output circuit Drv, and the current signal having the asymmetric pre-emphasis characteristic is driven to drive the laser diode LD, so that the band of the laser diode LD is insufficient.
  • an optical signal having a uniform rise time and fall time can be output.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical communication module that mutually converts an optical signal and an electrical signal by pulse amplitude modulation using a direct modulation laser diode and a photodiode.
  • An object of the present invention is to provide an optical communication module that supports high-speed transmission at low cost and improves communication quality.
  • the configuration of the optical communication module for solving the above-described problem is that an optical signal and an electric signal are expressed by an N-value multilevel signal (N is a positive integer) that is pulse-amplitude modulated so as to transmit N-bit information per symbol.
  • Communication module using a direct-modulation laser diode that mutually converts signals and generates an optical signal from an electrical signal, and inputs an N-value multilevel signal and supplies a current to the direct-modulation laser diode
  • the laser diode driver circuit has means for generating a ringing compensation waveform having a fixed time width and amplitude after data switching of the N-level multilevel signal and subtracting the ringing compensation waveform from the N-level multilevel signal.
  • the voltage signal of the ringing compensation circuit having the ringing compensation circuit output and the voltage signal of the ringing compensation circuit output is converted into a current signal in the laser diode.
  • an output circuit for supplying a regulated current signal and the bias current is supplied to a regulated current signal and
  • This configuration makes it possible to compensate for the band degradation peculiar to the laser diode LD characteristics, the influence of ringing due to relaxation oscillation, and the asymmetry of the rise and fall, and uses a directly modulated laser diode that is advantageous for low cost and downsizing. Thus, highly reliable high-speed communication by pulse amplitude modulation becomes possible.
  • an optical communication module that mutually converts an optical signal and an electrical signal by pulse amplitude modulation using a direct modulation laser diode and a photodiode
  • the optical communication module that supports high-speed transmission at low cost and improves communication quality.
  • a communication module can be provided.
  • FIG. 6 is a diagram showing an eye waveform of a PAM4 signal of LD output, comparing the case where the laser diode driver circuit LDD including the encoding logic circuit ENC_BK and the ringing compensation circuit LD_RING_COMP of the first embodiment is not used with the case where it is used. is there. It is a graph which shows the relationship between the input frequency and optical output power in laser diode LD which shows the waveform degradation by a hole burning effect. It is a figure explaining the waveform degradation by the hole burning effect generate
  • FIG. 14B is a circuit diagram of the laser diode driver circuit LDD shown in FIG. 14A.
  • FIG. 2 is a configuration diagram including a laser diode temperature compensation control circuit LD_TEMP_CNT in the transmission system (electrical ⁇ optical conversion) of the optical communication module shown in FIG. 1.
  • 14B is a configuration diagram including a laser diode temperature compensation control circuit LD_TEMP_CNT in the laser diode driver circuit LDD for compensating the hole burning effect of FIG. 14A.
  • FIG. FIG. 2 is a configuration diagram in which a hole burning compensation circuit is incorporated in a transimpedance amplifier circuit TIA in the receiving system (light ⁇ electrical conversion) of the optical communication module shown in FIG. 1.
  • FIG. 5 is a configuration diagram in which a receiver laser diode temperature compensation control circuit LD_TEMP_CNT_Rx for performing temperature compensation of a laser diode LD is incorporated in a configuration in which a hole burning compensation circuit is incorporated in a transimpedance amplifier circuit TIA. It is a graph which shows the relationship between the input frequency and optical output power in laser diode LD. It is a figure explaining that ringing occurs at the rise and fall of the step response waveform.
  • 2 is a configuration diagram of a laser diode driver circuit LDD described in Patent Document 1.
  • FIG. It is a figure which shows the step response waveform of the rising and falling laser diode driver circuit of patent document 1.
  • quaternary pulse amplitude modulation that transmits information of 2 bits per symbol as an example of pulse amplitude modulation.
  • PAM4 quaternary pulse amplitude modulation
  • the present invention may be applied to other multi-value numbers such as 8-value and 16-value.
  • each functional block of the embodiment are not particularly limited, but are formed on a semiconductor substrate such as single crystal silicon by an integrated circuit technology such as a CMOS (complementary MOS transistor) or a bipolar transistor.
  • CMOS complementary MOS transistor
  • a MOSFET Metal / Oxide / Semiconductor / Field / Effect / Transistor: MOS transistor
  • a bipolar transistor is used, but a non-oxide film is not excluded as a gate insulating film.
  • the connection of the substrate potential of the transistor is not specified in the drawing, but the connection method is not particularly limited as long as the transistor can operate normally.
  • Embodiment 1 Hereinafter, a first embodiment according to the present invention will be described with reference to FIGS. 1 to 11.
  • FIG. 1 is a block diagram showing a schematic configuration of the optical communication module OMD.
  • the optical communication module of the present embodiment is used for communication between information processing apparatuses such as servers and routers placed in a data center or the like, or between apparatuses.
  • the information processing apparatus is constituted by a housing having a width and a depth of several tens of centimeters and a height of 1 to 2 m, for example.
  • a large number of communication connectors are provided on the surface of the housing, and each is, for example, an Ethernet cable terminal or an optical fiber cable terminal.
  • the boards in the information processing apparatus and the apparatuses are connected via an optical communication path (typically, an optical fiber cable) OF.
  • the length of each optical communication line OF may reach several meters, for example.
  • the optical communication module OMD includes an encoding / decoding logic circuit LOG, an analog front end block AFE, and an optical element block OBK.
  • the optical element block OBK includes a laser diode LD and a photodiode PD.
  • the laser diode LD is an element that receives an electric signal (current signal) and outputs the electric signal to the transmission optical communication line OFtx.
  • the photodiode PD is an element that converts an optical signal input from the receiving optical communication line OFrx into an electric signal (current signal).
  • Each of the laser diode LD and the photodiode PD is composed of, for example, individual semiconductor chips. Actually, a plurality of laser diodes LD and photodiodes PD are integrated in an array in accordance with the number of communication channels. Exists as.
  • the analog front end block AFE includes a laser diode driver circuit LDD and a transimpedance amplifier circuit TIA.
  • the laser diode driver circuit LDD is a circuit that drives the laser diode LD.
  • the transimpedance amplifier circuit TIA is a circuit that amplifies the current signal from the photodiode PD and converts it into a voltage signal.
  • the analog front end block AFE and the encoding / decoding logic circuit LOG are formed in one semiconductor chip LSI_OP, but the laser diode driver circuit LDD and the transimpedance amplifier circuit TIA are individually provided. It is good also as another chip
  • the encoding logic circuit ENC_BK in the LOG converts the NRZ signal into a multi-value signal that has been subjected to pulse amplitude modulation (PAM), and in the reception system, the decoding logic circuit DEC_BK in the LOG. To convert the PAM signal into an NRZ signal.
  • PAM pulse amplitude modulation
  • FIG. 2 is a diagram showing an eye waveform of a PAM4 signal output from the laser diode LD.
  • the eye waveform (eye pattern) is obtained by sampling a large number of signal waveform transitions and overlaying them and displaying them graphically. If a plurality of waveforms are overlapped at the same position, the waveform is of good quality.
  • a 2-bit signal is transmitted between 1 symbol with 4 levels of signal amplitude (level 0 “00”, level 1 “01”, level 2 “10”, level 3 “11”). Ensuring eye opening of eye waveforms (upper eye, middle eye, lower eye) is necessary to improve transmission quality.
  • the optical communication module OMD is electrically connected to a logical operation processing circuit logic device LSI_LG that performs predetermined protocol processing required in a higher layer of communication outside the optical communication module OMD, and is included in the logical operation processing circuit logic device LSI_LG.
  • An electric voltage signal is transmitted / received to / from a transmission rate conversion circuit SDC (not shown) called SerDes (Serializer / Deserializer) or the like.
  • SDC transmission rate conversion circuit SDC
  • SerDes Serializer / Deserializer
  • 25 Gbps ⁇ 2 (2 channels) electrical signals are transmitted and received, and encoded / decoded into a PAM4 signal in the encoding / decoding logic circuit LOG.
  • Communication between the boards via the optical communication lines OFtx and OFrx is performed with a PAM4 optical signal (symbol rate of 25 Gbps) of 50 Gbps ⁇ 1 channel.
  • the burden of electrical transmission is reduced by reducing the transmission speed around the channel between the optical communication module OMD and the logic operation processing circuit logic device LSI_LG.
  • the front end block AFE and the encoding / decoding logic circuit LOG are integrated in the same semiconductor process, but are the analog front end block AFE and the encoding / decoding logic circuit LOG mounted as separate semiconductor chips, respectively?
  • the encoding / decoding logic circuit LOG may be integrated in an LSI_LG outside the OMD.
  • FIG. 3 is a configuration diagram of the laser diode driver circuit LDD, the encoding logic circuit ENC_BK, and the laser diode LD.
  • the laser diode driver circuit LDD, the encoding logic circuit ENC_BK, and the laser diode LD in FIG. 1 constitute a transmission system that receives an electrical signal from the logic operation processing circuit logic device LSI_LG and transmits an optical signal to the optical communication line OFtx. To do.
  • the relaxation oscillation frequency of the laser diode LD on the transmission side has a value lower than the fundamental frequency of the communication speed within the amplitude range of the modulation current supplied by the laser diode driver circuit LDD. It is assumed that a laser diode LD in which ringing due to overshoot or undershoot occurs in a steady state of each amplitude level of the signal is used.
  • the optical communication module OMD of this embodiment compensates for the influence of this ringing with an electric circuit, thereby enabling high-speed communication exceeding the operating band of the laser diode LD without requiring improvement of the band of the laser diode LD. Therefore, it is possible to reduce the cost and improve the reliability of the optical communication module.
  • the laser diode driver circuit LDD in this embodiment includes an output circuit Drv and a ringing compensation circuit LD_RING_COMP.
  • the output circuit Drv is a circuit that supplies a constant bias current and a modulation current to the laser diode LD.
  • the ringing compensation circuit LD_RING_COMP is a circuit that compensates for the influence of ringing generated by the laser diode LD.
  • the ringing compensation circuit LD_RING_COMP reduces the influence of ringing by subtracting a ringing compensation waveform having a fixed time width and amplitude from the main signal at the rising and falling edge timings of each amplitude level of the PAM signal.
  • the time width and amplitude of the ringing compensation waveform are independent of each amplitude level in accordance with the time width and amplitude of the ringing waveform observed in the step response of the laser diode LD with respect to each amplitude level of the PAM signal. Adjusted. With this configuration, the influence of ringing observed at each amplitude level of the PAM signal can be compensated with an optimum value, and the eye opening of all eye waveforms of the PAM signal can be enlarged and jitter can be reduced.
  • the encoding logic circuit ENC_BK includes a shift register SR, a PAM signal generation logic circuit PAM_GEN_LOG, a digital-analog converter DAC, a transition time adjustment circuit TRAN_ADJ_CNT, and a pre-data transition LD compensation circuit PRE_TRAN_LD_EQ.
  • the shift register SR is a circuit that holds data (data A) of the PAM signal immediately before a plurality of NRZ signals.
  • the PAM signal generation logic circuit PAM_GEN_LOG is, for example, a circuit that encodes an N-channel NRZ signal into an N-value PAM signal.
  • the digital-analog converter DAC is a circuit that converts a digital signal output from the PAM signal generation logic circuit PAM_GEN_LOG into an analog signal.
  • the transition time adjustment circuit TRAN_ADJ_CNT is a circuit that delays the transition start time by a fixed delay amount according to each amplitude level.
  • the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ is a circuit that performs waveform emphasis before rising and falling data transitions.
  • a 1-channel PAM4 signal is generated from a 2-channel NRZ signal.
  • the input signal may be a PAM signal, and the operation speed of the circuit and the electrical transmission path
  • reduce the bit rate of the input NRZ signal and increase the number of channels to generate a PAM signal for example, generate a 50 Gbps PAM4 signal from 4 channels x 12.5 Gbps NRZ signal
  • the transition time adjustment circuit TRAN_ADJ_CNT determines the data transition from the previous data (data A) and the next data (data B) to the rising edge and falling edge, and from data A to data B.
  • the later amplitude level is determined, and the transition start time delay of data B is adjusted so that the phase difference of the trajectory until the steady state of each amplitude level is reached in the data transition from data A to data B is minimized. It has become a thing. With this configuration, it is possible to reduce jitter due to deterioration of the data transition time caused by a lack of bandwidth of the laser diode LD and improve the signal quality of PAM transmission. Further, the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ determines the rising edge and falling edge and the data A to data B from the previous data (data A) and the next data (data B) information.
  • Waveform enhancement is performed by adding a compensation waveform having a fixed time width and amplitude to data A in the data transition from data A to data B.
  • the band of the laser diode LD can be improved without affecting the ringing compensation circuit LD_RING_COMP that performs the compensation process on the data B after the rising and falling edges, thereby compensating for the intersymbol interference. Can do.
  • FIG. 4 is a detailed configuration diagram of the ringing compensation circuit LD_RING_COMP.
  • FIG. 5 is a timing chart for explaining the operation of the ringing compensation circuit LD_RING_COMP.
  • FIG. 6 is a diagram showing the improvement of the step response waveform at the rise and fall due to the ringing compensation effect.
  • the ringing compensation circuit LD_RING_COMP includes a buffer circuit Bufm, an overshoot compensation circuit RISE_COMP, and an undershoot compensation circuit FALL_COMP.
  • Buffer circuit Bufm is a circuit for amplifying the primary voltage signal V M.
  • the overshoot compensation circuit RISE_COMP is a circuit that compensates for the influence of ringing due to overshoot at the rise from the voltage signal branched from the main signal.
  • the undershoot compensation circuit FALL_COMP is a circuit that compensates for the influence of ringing due to undershoot at the falling edge.
  • Each of the overshoot compensation circuit RISE_COMP and the undershoot compensation circuit FALL_COMP includes delay circuits DEL_R and DEL_F, edge detection circuits EdgeDec_R and EdgeDec_F, and compensation amount adjustment amplifiers Bupe_R and Bufe_F.
  • Delay circuit DEL_R, DEL_F is a circuit that provides a constant delay ⁇ T corresponding to each amplitude level of PAM signals to the branch voltage signal from the mains voltage signal V M.
  • the edge detection circuits EdgeDec_R and EdgeDec_F are circuits that detect a rising edge and a falling edge for each amplitude level of the PAM signal and generate a ringing compensation waveform having a time width of ⁇ T.
  • the compensation amount adjustment amplifiers Bufe_R and Bufe_F are circuits that adjust the amplitude of the ringing compensation waveform with a constant gain for each amplitude level of the PAM signal.
  • the input signal V M of the PAM4 signal three types of delay circuits overshoot compensation circuit RISE_COMP (Del_Lv3R, Del_Lv2R, Del_Lv1R), the fixed delay ( ⁇ T R1, ⁇ T R2, ⁇ T R3 ) Having a voltage signal V M (V M′R1 , V M′R2 , V M′R2 ).
  • ⁇ T R1 , ⁇ T R2 , and ⁇ T R3 are delay times applied when generating voltage waveforms from level 0 to level 3, level 0 to level 2, and level 0 to level 1, respectively, and T R1 ⁇
  • T R1 ⁇ There is a relationship of ⁇ T R2 ⁇ T R3 . That is, the ringing per unit time is most intense when the level is 0 to 3, and when the level is 0 to 2, the level 0 to level 1 corresponds to the second.
  • three edge detection circuit compares (EdgeDec_Lv1R, EdgeDec_Lv2R, EdgeDec_Lv3R) the V M 'and delayed by the delay circuit and the mains voltage signal V M at, by detecting a rising edge at each amplitude level of the PAM4 signal Then, a compensation waveform having a time width ( ⁇ T R1 , ⁇ T R2 , ⁇ T R3 ) corresponding to the delay amount of the delay circuit is generated.
  • V R1 , V R2 , V R3 adjusted to optimum amplitude values ( ⁇ 1R, ⁇ 2R, ⁇ 3R) are generated using three compensation amount adjusting amplifiers, and buffered adding these ringing compensation waveform subtraction circuit ADD_R at the output of circuit BUFM, it produces an output waveform V RC which blunted after a data transition of the rise of the amplitude level.
  • the undershoot compensation circuit FALL_COMP has a constant time width ( ⁇ T F0 , ⁇ T F1 , ⁇ T F2 ) and amplitude ( ⁇ 0F, (3) Generate three ringing compensation waveforms having ( ⁇ 1F, ⁇ 2F), and add these ringing compensation waveforms at the output of the buffer circuit Bufm by the adder / subtractor circuit ADD_F, thereby changing the output data gently after the falling data transition. Generate VRC . Again, there is a relationship of T F1 ⁇ T F2 ⁇ T F3 .
  • the effect of reducing the influence of ringing in this embodiment using step response waveforms at the rise and fall will be described.
  • the ringing compensation circuit LD_RING_COMP When the ringing compensation circuit LD_RING_COMP is not applied, a ringing waveform having a different time width and amplitude is generated for each amplitude level of the PAM4 signal at both rising and falling edges due to the influence of relaxation oscillation of the laser diode LD.
  • the ringing compensation circuit LD_RING_COMP the influence of the ringing of the laser diode LD is reduced by smoothly changing the waveform after the rising and falling edges in advance according to the time width and amplitude of these ringing waveforms. Is possible.
  • the laser diode is insufficient in the required communication band and has a large influence of ringing.
  • an LD it is possible to realize a high-speed and high-quality optical transmission / reception operation by pulse amplitude modulation with a low-cost and highly reliable optical communication module.
  • FIG. 7 is a detailed configuration diagram of the transition time adjustment circuit TRAN_ADJ_CNT of the encoding logic circuit ENC_BK.
  • FIG. 8 is a diagram illustrating improvement in the step response waveform of the rise and fall during PAM4 transmission by adjusting the transition time adjustment circuit TRAN_ADJ_CNT.
  • a 1-channel PAM4 signal is generated without increasing the symbol rate from 2-channel NRZ signals (Data 1 and Data 2).
  • 2-channel NRZ signals Data 1 and Data 2.
  • a PAM4 signal of 50 Gbps is generated from an NRZ signal of 2 channels ⁇ 25 Gbps.
  • the encoding logic circuit ENC_BK in this embodiment includes a shift register SR, a PAM signal generation logic circuit PAM_GEN_LOG, and a transition time adjustment circuit TRAN_ADJ_CNT.
  • the shift register SR is a circuit composed of four latch circuits LAT that hold data (Data A) immediately before the two-channel NRZ signal.
  • the PAM signal generation logic circuit PAM_GEN_LOG is a circuit that encodes a 2-channel NRZ signal into a PAM4 signal.
  • the digital-analog converter DAC is a circuit that converts a digital signal into an analog signal.
  • the transition time adjustment circuit TRAN_ADJ_CNT is a circuit that delays the transition start time by a fixed delay amount according to each amplitude level.
  • the transition time adjustment circuit TRAN_ADJ_CNT includes a phase control logic circuit PH_CNT_LOG and a phase rotation circuit IP.
  • the phase control logic circuit PH_CNT_LOG is a circuit that determines the direction of data transition to each amplitude level of the PAM4 signal from the information of DataA and the next data (DataB), and outputs a phase control signal for controlling the clock phase. is there.
  • the phase rotation circuit IP is a circuit that adjusts the phase of the clock signal CLK in accordance with the phase control signal.
  • the phase rotation circuit IP can adjust the clock phase with an accuracy of 1 ps or less by dividing the symbol rate into 64 phases, for example, when the baud rate exceeds 25 Gbps.
  • the timing of the clock when generating the PAM signal in the PAM signal generation logic circuit PAM_GEN_LOG is adjusted in accordance with the data transition to each amplitude level of the PAM signal, thereby obtaining a desired It is possible to delay the transition start time by a certain delay amount with respect to the data transition.
  • the clock signal is assumed to be a full rate. However, if it is difficult to configure the clock distribution system at the full rate due to the performance limit of the circuit and power consumption, the clock signal is The signal may be slowed down to 1/2 or 1/4 and may be configured at half rate or quarter rate.
  • step response waveforms for each amplitude level at the rise and fall in FIG.
  • the transition time adjustment circuit TRAN_ADJ_CNT when the transition time adjustment circuit TRAN_ADJ_CNT is not applied, the waveform is gently changed in advance by the insufficient bandwidth of the laser diode or by the ringing compensation circuit LD_RING_COMP described in FIG.
  • transition time deteriorates, and both the rising and falling trajectories to each data transition (rise: level 0 to level 1, level 2, level 3, falling: level 3 to level 2, level 1 and level 0) increase, jitter of the PAM signal increases, and transmission quality deteriorates.
  • the transition start time from level 3 to level 1 is delayed by ⁇ T_Tran_FLv1 with reference to the trajectory (level 3 to level 2) where the slope of the data transition to the steady state is the smoothest even at the fall, and from level 3 to level
  • ⁇ T_Tran_FLv0 By delaying the transition start time to 0 by ⁇ T_Tran_FLv0, trajectory variation between data transitions can be minimized, jitter can be reduced, and the transmission quality of the PAM signal can be improved. Note that there is a relationship of ⁇ T_Tran_FLv1 ⁇ T_Tran_FLv0.
  • optical communication module and the optical communication device including the encoding logic circuit ENC_BK shown in FIG. It is possible to realize a high-speed and high-quality optical transmission / reception operation by pulse amplitude modulation with an optical communication module having high performance.
  • FIG. 9 is a detailed configuration diagram of the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ of the encoding logic circuit ENC_BK.
  • FIG. 10 is a timing chart for explaining the operation of the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ.
  • the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ in this embodiment includes a data transition detection circuit DATA_TRAN_DEC_R, a pre-rise transition compensation waveform generation circuit PRE_TRAN_EQ_R, an addition / subtraction circuit ADD_R_2, a falling data transition detection circuit DATA_TRAN_DEC_F, and a pre-fall transition compensation waveform.
  • a generation circuit PRE_TRAN_EQ_F and an addition / subtraction circuit ADD_F_2 are included.
  • the data transition detection circuit DATA_TRAN_DEC_R is a circuit that detects a rising edge from information of the previous data (Data A) and the next data (Data B) and generates an LD compensation signal at a timing before the rising data transition.
  • the pre-rise transition compensation waveform generation circuit PRE_TRAN_EQ_R is a circuit that adjusts the amplitude of the compensation pulse before the rise transition.
  • the addition / subtraction circuit ADD_R_2 is a circuit that adds the output signal V EQ_R of the pre-rising transition compensation waveform generation circuit to the DAC output V PRE .
  • the falling data transition detection circuit DATA_TRAN_DEC_F is a circuit that detects a falling edge and generates an LD compensation signal at a timing before the falling data transition.
  • the pre-falling transition compensation waveform generation circuit PRE_TRAN_EQ_F is a circuit that adjusts the amplitude of the compensation pulse before the falling transition.
  • the addition / subtraction circuit ADD_F_2 is a circuit that adds the output signal V EQ_F of the pre-falling transition compensation waveform generation circuit to the DAC output V PRE .
  • the pre-rise transition compensation waveform generation circuit PRE_TRAN_EQ_R and the pre-fall transition compensation waveform generation circuit PRE_TRAN_EQ_F are the rise and fall timings from the information of the previous data (DataA) and the next data (DataB), respectively. Are detected , and LD compensation signals V EQ_R and V EQ_F for emphasizing rising and falling at the timing before data transition are generated.
  • the addition / subtraction circuit ADD_R_2 and the addition / subtraction circuit ADD_F_2 can enhance the waveform before the data transition by adding these LD compensation signals to the PAM4 signal generated from the two-channel NRZ signal.
  • the waveform is emphasized before data transition, so that the compensation signal is added after data transition without affecting the compensation operation of the ringing compensation circuit LD_RING_COMP shown in FIG.
  • the falling transition time can be increased, and the influence of ringing of the laser diode LD can be improved, and the band shortage of the laser diode LD can also be improved.
  • the asymmetry of the rise and fall caused by the bias current dependence of the frequency characteristics of the laser diode LD is compensated, and an equal optical transmission signal is obtained. Can be output.
  • an LD compensation signal having a constant amplitude and a time width is added before the rising and falling data transitions regardless of the amplitude level of the PAM signal.
  • the data transition detection circuit DATA_TRAN_DEC is parallelized so that it can detect the data transition of each amplitude level, and the frequency of the target laser diode for the data transition of each amplitude level
  • the amplitude and time width of the LD compensation signal may be changed according to the characteristics.
  • the laser diode LD in which the band is insufficient with respect to the necessary communication band and ringing occurs is used. It is possible to realize a high-speed and high-quality optical transmission / reception operation by pulse amplitude modulation with a low-cost and highly reliable optical communication module.
  • FIG. 11 shows the eye waveform of the PAM4 signal of the LD output in comparison with the case where the laser diode driver circuit LDD including the encoding logic circuit ENC_BK and the ringing compensation circuit LD_RING_COMP of the first embodiment is not used.
  • FIG. 11 shows the eye waveform of the PAM4 signal of the LD output in comparison with the case where the laser diode driver circuit LDD including the encoding logic circuit ENC_BK and the ringing compensation circuit LD_RING_COMP of the first embodiment is not used.
  • the laser diode driver circuit LDD and the encoding logic circuit ENC_BK of the first embodiment by using the optical communication module and the optical communication device including the laser diode driver circuit LDD and the encoding logic circuit ENC_BK of the first embodiment, the laser diode having a large influence of ringing due to insufficient bandwidth of the laser diode. Even with this, it is possible to realize a high-speed optical transmission / reception operation by low-cost and high-quality pulse amplitude modulation.
  • FIG. 12 is a graph showing the relationship between the input frequency and the optical output power in the laser diode LD showing the waveform deterioration due to the hole burning effect.
  • FIG. 13 is a diagram for explaining that waveform degradation due to the hole burning effect occurs in the optical output waveform of the laser diode LD.
  • transmission quality may deteriorate due to the hole burning effect in addition to the ringing waveform due to insufficient bandwidth and relaxation oscillation of the laser diode LD due to device performance limitations.
  • the hole burning effect is a phenomenon in which the gain of the optical output power deteriorates and falls like a hole at a low frequency f_HB as shown by the frequency characteristics of the laser diode LD in FIG.
  • the value of the frequency f_HB is, for example, about several GHz in the case of a laser diode LD whose -3 dB band is about 20 GHz.
  • the degradation of the optical output power at f_HB due to the hole burning effect reaches the steady state for each amplitude level of the PAM signal, and the light at the rising edge
  • the output waveform is gradually raised, and the optical output waveform is gradually lowered at the fall.
  • the degradation of the optical output power due to the hole burning effect does not depend on the magnitude of the bias current supplied to the laser diode LD, and is almost constant.
  • FIG. 14A is a configuration diagram of a laser diode driver circuit LDD for compensating for the hole burning effect.
  • FIG. 14B is a circuit diagram of the laser diode driver circuit LDD shown in FIG. 14A.
  • the laser diode driver circuit LDD includes a transmitter hole burning compensation circuit LD_HB_COM_Tx and an output circuit Drv.
  • the transmitter hole burning compensation circuit LD_HB_COM_Tx is a circuit that compensates for the deterioration of the optical output power in the low band due to the hole burning effect of the laser diode LD.
  • the output circuit Drv is a circuit that supplies a modulation current and a bias current to the laser diode LD.
  • the transmission unit hole burning effect compensation circuit LD_HB_COM_Tx includes a hole burning compensation filter HB_FIL, a compensation amount adjustment amplifier G_AMP, and an addition / subtraction circuit ADD.
  • the hole burning compensation filter HB_FIL is a circuit that generates a hole burning compensation signal for compensating for deterioration in optical output power due to the hole burning effect from a signal obtained by branching the input signal of the laser diode driver circuit LDD.
  • the compensation amount adjustment amplifier G_AMP is a circuit that adjusts the amplitude of the hole burning compensation signal from the output of the hole burning compensation filter HB_FIL.
  • the addition / subtraction circuit ADD is a circuit that adds the output of the compensation amount adjustment amplifier G_AMP to the input signal of the laser diode driver circuit LDD.
  • the band of the hole burning compensation filter HB_FIL is characterized by being adjusted according to the band f_HB in which the optical output power is degraded due to the hole burning effect of the laser diode LD to be driven. That is, by making the transfer characteristic of the hole burning compensation filter opposite to the deterioration of the optical output power due to the hole burning effect, the frequency characteristic at the laser diode output is flattened. This configuration compensates for the degradation of the low-frequency optical output power caused by the hole burning effect with the hole burning compensation signal generated by the electric circuit, so that even if a laser diode LD having a large influence of the hole burning effect is used, high quality is achieved. Can be transmitted.
  • the hole burning compensation circuit in this configuration example can obtain the same effect not only on the PAM signal but also on the NRZ signal.
  • the laser diode driver circuit LDD for compensating for the hole burning effect shown in FIG. 14A can be realized by a circuit as shown in FIG. 14B, for example.
  • the hole burning compensation filter HB_FIL includes a high-pass filter composed of a capacitive element and a resistance element, and an emitter follower circuit for adding a hole burning compensation signal to the output of the output circuit Drv at high speed. Consists of.
  • the resistance element used in the high-pass filter is adjusted so that the band of the filter coincides with the band f_HB of deterioration due to the hole burning effect of the laser diode LD to be driven.
  • the first-order high-pass filter is used.
  • the order of the high-pass filter is increased or the filter configuration is increased. May be changed.
  • the bipolar transistor is used in this configuration example, the current addition speed is increased by the emitter follower circuit.
  • the optical communication module and the optical communication device including the laser diode driver circuit LDD for compensating the hole burning effect shown in FIG. 14A, the optical output power in the low band due to the hole burning effect of the laser diode LD. It is possible to compensate for the degradation of the transmission and to perform the transmission / reception operation with high speed and high transmission quality.
  • FIG. 15 is a configuration diagram including a radar diode temperature compensation control circuit LD_TEMP_CNT in the transmission system (electrical-to-optical conversion) of the optical communication module shown in FIG.
  • the radar diode temperature compensation control circuit LD_TEMP_CNT includes an LD temperature monitor TEMP_SENS, an analog / digital converter ADC, and a register REG.
  • the LD temperature monitor TEMP_SENS is a circuit that monitors the temperature of the laser diode LD.
  • the analog-digital converter ADC is a circuit that converts an analog signal into a digital signal.
  • the register REG is a circuit that holds values in a plurality of tables against temperature fluctuations of the laser diode LD.
  • the relaxation oscillation frequency and ⁇ 3 dB frequency of the laser diode LD vary depending on the temperature
  • the ringing waveform generated by the overshoot and undershoot of the laser diode LD also varies depending on the temperature.
  • a Peltier element As a means for compensating for the temperature fluctuation of the laser diode LD, it is conceivable to use a Peltier element to keep the temperature of the laser diode LD constant.
  • temperature compensation by the Peltier element increases power consumption and downsizing also in size. It becomes difficult. Therefore, in this configuration example, the temperature of the laser diode LD is monitored by the laser diode LD temperature monitor TEMP_SENS, and each LD compensation function (shown in FIG.
  • the optical communication module and the optical communication device including the transmission system including the laser diode temperature compensation control circuit LD_TEMP_CNT shown in FIG. It is possible to perform transmission and reception operations with high speed and high transmission quality.
  • FIG. 16 is a block diagram of the laser diode driver circuit LDD for compensating for the hole burning effect of FIG. 14A, including a laser diode temperature compensation control circuit LD_TEMP_CNT.
  • the laser diode temperature compensation control circuit LD_TEMP_CNT is mounted on the transmitter hole burning effect compensation circuit LD_HB_COM_Tx shown in FIG. 14A, and the hole burning compensation filter HB_FIL and the compensation amount are mounted.
  • the loop band of the laser diode temperature compensation control circuit LD_TEMP_CNT is only required to compensate for optical signal deterioration (temperature drift) associated with the temperature change of the laser diode LD. Therefore, high-speed operation exceeding 25 Gbps is not required, and at most It only needs to operate in a band of about MHz.
  • the optical communication module and the optical communication device including the transmission system including the laser diode temperature compensation control circuit LD_TEMP_CNT shown in FIG. It is possible to perform transmission and reception operations with high speed and high transmission quality.
  • FIG. 17 is a configuration diagram in which a hole burning compensation circuit is incorporated in the transimpedance amplifier circuit TIA in the receiving system (light-to-electrical conversion) of the optical communication module shown in FIG.
  • the transimpedance amplifier circuit TIA in this embodiment includes a preamplifier PRAMP, a receiver hole burning compensation circuit LD_HB_COM_Rx, a limit amplifier LA, and a clock / data recovery CDR (Clock Data Recovery).
  • the preamplifier PRAMP is a circuit that converts a current signal from the photodiode PD into a voltage signal.
  • the receiver hole burning compensation circuit LD_HB_COM_Rx is a circuit that compensates for the hole burning effect of the laser diode LD on the receiver side.
  • the limit amplifier LA is a circuit that limits the output amplitude to a constant regardless of the input light power of the photodiode PD.
  • the clock / data recovery CDR is a circuit that is provided at the output of the LA and separates the clock and data.
  • the receiver hole burning compensation circuit LD_HB_COM_Rx is mounted before the voltage signal is limited, that is, within an amplitude range in which linear operation is ensured.
  • the receiving part hole burning effect compensation circuit LD_HB_COM_Rx is composed of a hole burning compensation filter HB_FIL, a compensation amount adjustment amplifier G_AMP, and an addition / subtraction circuit ADD.
  • the hole burning compensation filter HB_FIL is a circuit that generates a hole burning compensation signal for compensating for deterioration in optical output power due to the hole burning effect from a signal obtained by branching the input signal of the preamplifier PRAMP.
  • the compensation amount adjustment amplifier G_AMP is a circuit that adjusts the amplitude of the hole burning compensation signal from the output of the hole burning compensation filter HB_FIL.
  • the addition / subtraction circuit ADD is a circuit that adds the output of G_AMP to the input signal of PRAMP.
  • the band of the hole burning compensation filter HB_FIL is adjusted according to the band f_HB in which the optical output power is degraded due to the ruburning effect of the laser diode LD on the transmission side.
  • the output voltage of PRAMP is as low as several tens of mV compared to the output circuit Drv on the transmission side. Therefore, unlike the transmission part hole burning compensation circuit LD_HB_COM_Tx shown in FIG.
  • the hole burning compensation circuit in this configuration example can obtain the same effect not only on the PAM signal but also on the NRZ signal.
  • FIG. 18 is a configuration diagram in which a receiver laser diode temperature compensation control circuit LD_TEMP_CNT_Rx for implementing temperature compensation of the laser diode LD is incorporated in a configuration in which a hole burning compensation circuit is incorporated in the transimpedance amplifier circuit TIA.
  • the receiver laser diode temperature compensation control circuit LD_TEMP_CNT_Rx specifically observes an eye waveform such as the output of the limit amplifier LA with the eye monitor EYM, and the voltage component of the eye waveform and the eye opening degree in the time axis direction are determined.
  • the value of the resistance element for changing the constant of the hole burning compensation filter HB_FIL or the gain of the compensation amount adjustment amplifier G_AMP is adjusted so as to be maximized.
  • the receiver laser diode temperature compensation control circuit LD_TEMP_CNT_Rx is provided with, for example, an LMS algorithm logic circuit LMS_ALG to calculate an error voltage and an error phase between an optimum voltage signal assumed to be an output of a CDR and the like and a reference signal indicating a clock phase. Even if a configuration is adopted in which each parameter of the hole burning compensation filter HB_FIL and the compensation amount adjusting amplifier G_AMP is optimized so that the error is minimized by an optimization algorithm such as Sign-Sign LMS (Least Mean Square). Good.
  • Sign-Sign LMS Least Mean Square
  • the temperature compensation control circuit LD_TEMP_CNT_Rx only needs to compensate for the optical signal deterioration (temperature drift) associated with the temperature change of the laser diode LD. Therefore, high-speed operation exceeding 25 Gbps is not required, and at most about several MHz. It suffices to operate in the band.
  • LSI_LG logical operation processing circuit logic device OBK ... optical element block LD ... laser diode PD ... photodiode LDD ... laser diode driver circuit TIA ... transimpedance amplifier circuit AFE ... analog front end block OMD ... optical communication module LOG ... encoding / decoding logic Circuits OFtx, OFrx ... Optical communication line LSI_OP ... Semiconductor chip PAM ... Pulse amplitude modulation NRZ ... Binary transmission SR ... Shift register PAM_GEN_LOG ... PAM signal generation logic circuit DAC ... Digital analog converter TRAN_ADJ_CNT ... Transition time adjustment circuit PRE_TRAN_LD_EQ ...
  • Preamplifier LA Limit amplifier CDR ... Clock / data recovery LD_TEMP_CNT_Rx ... Receiver laser diode temperature compensation control circuit EYM ... Eye monitor LMS_ALG ... LMS algorithm logic circuit OPT_COM ... Optical characteristic compensation control TEMP_SENS ... LD temperature monitor ADC ... Analog / digital converter REG ... Registers PrBufm, PrBufe ... Pre-buffer circuit DUTYAdj ... Duty ratio adjustment circuit DEL ... Delay circuit LD_EQ ... Laser characteristic compensation circuit

Abstract

An optical communication module uses a direct modulation laser diode for generating an optical signal from an electrical signal, and comprises a laser diode driver circuit to which an N-value multivalued signal is inputted and which supplies a current to the direct modulation laser diode. The laser diode driver circuit is provided with: a ringing compensation circuit which comprises a means for generating a ringing compensation waveform having constant duration and amplitude after data switching of the N-value multivalued signal, and subtracting the ringing compensation waveform from the N-value multivalued signal; and an output circuit which uses, as an input, a voltage signal outputted by the ringing compensation circuit and supplies, to a laser diode, a modulated current signal obtained by converting the voltage signal to a current signal, and a bias current. Consequently, the optical communication module which converts the optical signal and the electrical signal into each other by pulse amplitude modulation using the direct modulation laser diode and a photodiode makes it possible to support high-speed transmission at low cost and improve communication quality.

Description

光通信モジュールOptical communication module
 本発明は、光通信モジュールに係り、直接変調型レーザダイオードとフォトダイオードを用いてパルス振幅変調により光信号と電気信号を相互変換する通信装置であって、低コストで高速伝送に対応し、通信品質を向上させるのに好適な光通信モジュールに関する。 The present invention relates to an optical communication module, and is a communication device that mutually converts an optical signal and an electric signal by pulse amplitude modulation using a direct modulation laser diode and a photodiode, and is compatible with high-speed transmission at low cost. The present invention relates to an optical communication module suitable for improving quality.
 近年、データ処理装置間の通信速度の高速化に伴い、その通信速度は10Gbpsから25Gbps、50Gbps等へと遷移している。このような通信速度の高速化に伴い、例えば、データセンタ内のサーバ装置やルータ装置として、光ファイバケーブルに対応した光通信装置の適用が進んでいる。光通信装置は、通常、装置間におけるキロメートルオーダーといった長距離伝送を前提としており、この伝送距離に伴う高速性、信頼性の確保が重要となっている。 In recent years, with an increase in communication speed between data processing apparatuses, the communication speed has changed from 10 Gbps to 25 Gbps, 50 Gbps, and the like. With such an increase in communication speed, for example, application of an optical communication device compatible with an optical fiber cable is progressing as a server device or a router device in a data center. An optical communication device is usually premised on long-distance transmission such as a kilometer order between devices, and it is important to ensure high speed and reliability associated with this transmission distance.
 このような光通信装置の中には、比較的大型のサイズ(例えば、数十センチメートルオーダーやメートルオーダー)を持つ装置も多数存在するが、その装置内部では、通常、電気信号を用いた通信がおこなわれている。すなわち、光通信装置は、外部から入力された光信号を電気信号に変換し、この電気信号によって装置内部での短距離通信(例えば、メートルオーダー)をおこないながら所定の処理をおこない、再び電気信号を光信号に変換して外部に出力している。この短距離通信は、例えば、銅線ケーブル等を用いた電気信号による通信がおこなわれるが、通信速度の高速化が進むにつれて、銅線ケーブルでは伝送波形品質の著しい低下が生じてしまう。このため、装置間伝送に加えて、このような装置内部の短距離通信にも光通信を適用することが求められつつある。この場合、光通信ではルータなどの内部信号処理はすべて電気信号でおこなうため、光素子で電気信号を光信号に変換する必要がある。このため、銅線ケーブルから光ファイバケーブルへ移行するにあたって、電気通信は、光通信と比べて、比較的安価かつ信頼性が高い部品で構成されるため、光伝送波形の品質向上、光電変換部の低電力化、低コスト化、信頼性向上が重要となっている。 Among such optical communication devices, there are many devices having a relatively large size (for example, on the order of several tens of centimeters or metric order), but communication using electric signals is usually performed inside the devices. Has been done. That is, the optical communication device converts an optical signal input from the outside into an electrical signal, performs a predetermined process while performing short-distance communication (for example, metric order) inside the device using this electrical signal, and then again performs the electrical signal. Is converted into an optical signal and output to the outside. In this short-distance communication, for example, communication using an electrical signal using a copper wire cable or the like is performed. However, as the communication speed increases, the transmission waveform quality of the copper wire cable significantly decreases. For this reason, in addition to inter-device transmission, it has been required to apply optical communication to short-range communication inside such a device. In this case, in the optical communication, all internal signal processing of the router or the like is performed by an electrical signal, and therefore it is necessary to convert the electrical signal into an optical signal by an optical element. For this reason, in the transition from copper cable to optical fiber cable, telecommunications is composed of parts that are relatively inexpensive and highly reliable compared to optical communication. Low power, low cost, and improved reliability are important.
 しかしながら、通信速度の高速化に伴い、レーザダイオードLDの帯域不足によって生じる符号間干渉により、光伝送波形が劣化し、例えば50Gbpsを超えるような通信速度を実現することが困難となってきている。光伝送波形の符号間干渉を改善する手段として、レーザダイオードLDの動作帯域を改善することが考えられるが、このような最先端の光デバイスの活用は、既に流通している一世代前の光デバイスと比べて故障率が高く、また、コスト高になるため、短距離通信における電気通信から光通信への移行を阻害することとなる。このため、より高速動作が可能なレーザダイオードLDを使用する代わりに、電気回路による波形等化を用いて、レーザダイオードLDの帯域不足を補償することが、光電変換部の低コスト化、高信頼化の面で有効である。 However, as the communication speed increases, the intersymbol interference caused by the insufficient bandwidth of the laser diode LD degrades the optical transmission waveform, making it difficult to achieve a communication speed exceeding 50 Gbps, for example. As a means to improve the intersymbol interference of the optical transmission waveform, it is conceivable to improve the operating band of the laser diode LD. Since the failure rate is higher than that of the device and the cost is increased, the transition from telecommunications to optical communication in short-distance communication is hindered. For this reason, instead of using a laser diode LD capable of higher speed operation, it is possible to compensate for the shortage of the band of the laser diode LD by using waveform equalization by an electric circuit, thereby reducing the cost and high reliability of the photoelectric conversion unit. It is effective in terms of conversion.
 さらに、シンボルレートを上げずに通信速度を向上する手段として、従来の2値伝送(NRZ:Non Return to Zero)に代わり、パルス振幅変調(PAM:Pulse Amplitude Modulation)を利用することも有望であると考えられており、例えば、IEEE802.3委員会では、400ギガビットイーサネット用光トランシーバの光インタフェースの仕様に関して、伝送距離2km、10kmのカテゴリで50Gbps、4値パルス振幅変調(PAM4)の変調方式が採択されている。本変調方式では、1シンボル間に2ビットの信号を4段階の信号振幅(レベル0「00」、レベル1「01」、レベル2「10」、レベル3「11」)で伝送するため、同じ通信速度で必要な周波数帯域は1/2となる。このため、より高速動作が可能なレーザダイオードLDを使用することなく、通信速度の向上が可能となる。 Furthermore, it is promising to use pulse amplitude modulation (PAM) instead of conventional binary transmission (NRZ: Non-Return-to-Zero) as a means of improving the communication speed without increasing the symbol rate. For example, in the IEEE 802.3 committee, with regard to the specifications of the optical interface of a 400-Gigabit Ethernet optical transceiver, a modulation scheme of 50 Gbps, 4-level pulse amplitude modulation (PAM4) is available in the categories of transmission distances of 2 km and 10 km. It has been adopted. In this modulation system, a 2-bit signal is transmitted in one stage with four signal amplitudes (level 0 “00”, level 1 “01”, level 2 “10”, level 3 “11”). The frequency band required for the communication speed is 1/2. For this reason, it is possible to improve the communication speed without using a laser diode LD capable of higher speed operation.
 レーザダイオードLDの帯域不足によって発生する伝送品質の劣化を補償する技術については、例えば、特許文献1に開示がある。特許文献1には、高速光送信回路においてレーザダイオードの動作帯域を向上するための非対称プリエンファシス回路を設けたレーザダイオードドライバ回路が記載されている。具体的には、遅延回路とデューティ比調整回路から成るプリエンファシス回路が示されている。これによって、レーザダイオードの高速駆動と、光信号の伝送特性の劣化(立ち上がり、立ち下がり非対称)を補償できる。 For example, Patent Document 1 discloses a technique for compensating for deterioration in transmission quality caused by a shortage of the band of the laser diode LD. Patent Document 1 describes a laser diode driver circuit provided with an asymmetric pre-emphasis circuit for improving the operating band of a laser diode in a high-speed optical transmission circuit. Specifically, a pre-emphasis circuit including a delay circuit and a duty ratio adjustment circuit is shown. As a result, it is possible to compensate for the high-speed driving of the laser diode and the degradation (rise and fall asymmetry) of the optical signal transmission characteristics.
 一方、光伝送波形を劣化させる要因としては、レーザダイオードLDの帯域不足によって生じる符号間干渉に加えて、レーザダイオードLDが有する緩和振動周波数の影響により、光伝送波形にリンギング(Ringing)が発生し、伝送特性を劣化させることが挙げられる。リンギングとは、信号がステップ状に変化したとき,応答が振動的になるような状態をいう。 On the other hand, factors that degrade the optical transmission waveform include ringing in the optical transmission waveform due to the influence of the relaxation oscillation frequency of the laser diode LD in addition to the intersymbol interference caused by the insufficient bandwidth of the laser diode LD. Deteriorating transmission characteristics. Ringing refers to a state in which the response becomes oscillating when the signal changes stepwise.
 以下、図19および図20を用いてレーザダイオードLDにおける緩和振動周波数とリンギングの関係について説明する。
  図19は、レーザダイオードLDにおける入力周波数と光出力パワーの関係を示すグラフである。
  図20は、ステップ応答波形の立ち上がり、立下りに、リンギングが発生することを説明する図である。
  図19に示されるように、レーザダイオードLDは、バイアス電流に依存して、緩和振動周波数(fr_L、fr_M、fr_H)近傍の出力される光出力パワーが異なっている。ここで、緩和振動とは、半導体レーザにパルス状の電流を注入した時に光出力が振動する現象であり、その時の周波数が緩和振動周波数と呼ばれる。緩和振動周波数の値は、レーザダイオードLDのデバイス構造によって定まり、この周波数以上では応答特性が急激に低下するため、レーザダイオードLDが動作可能な上限周波数は、この緩和振動周波数に基づいて定められる。50Gbpsを超えるような通信速度においては、緩和振動周波数によって生じるピーク利得の位置(fr_L、fr_M、fr_H)が、通信速度の基本周波数よりも低い値となるため、図20のステップ波形に示すように、レーザダイオードLDの光出力波形に、立ち上がりにおいては、オーバーシュートによるリンギング発生し、一方、立ち下がりにおいてはアンダーシュートによるリンギングが発生し、伝送品質が劣化してしまう。
Hereinafter, the relationship between the relaxation oscillation frequency and the ringing in the laser diode LD will be described with reference to FIGS. 19 and 20.
FIG. 19 is a graph showing the relationship between the input frequency and the optical output power in the laser diode LD.
FIG. 20 is a diagram for explaining that ringing occurs at the rise and fall of the step response waveform.
As shown in FIG. 19, the laser diode LD has different optical output powers output in the vicinity of the relaxation oscillation frequencies (fr_L, fr_M, fr_H) depending on the bias current. Here, relaxation oscillation is a phenomenon in which optical output oscillates when a pulsed current is injected into a semiconductor laser, and the frequency at that time is called relaxation oscillation frequency. The value of the relaxation oscillation frequency is determined by the device structure of the laser diode LD, and the response characteristic rapidly decreases above this frequency. Therefore, the upper limit frequency at which the laser diode LD can operate is determined based on this relaxation oscillation frequency. At the communication speed exceeding 50 Gbps, the peak gain positions (fr_L, fr_M, fr_H) generated by the relaxation oscillation frequency are lower than the basic frequency of the communication speed. In the optical output waveform of the laser diode LD, ringing due to overshoot occurs at the rising edge, while ringing due to undershoot occurs at the falling edge, and transmission quality deteriorates.
 さらに、N値のPAM伝送においては、NRZ伝送と比べてアイ(Eye)振幅(アイ波形における振幅。後述)が1/Nとなるので、十分なSN比を確保するには、レーザダイオードLDに供給する変調電流の振幅をより大きくする必要がある。そのため、リンギングの影響がNRZ伝送用よりも大きくなる。また、レーザダイオードLDに供給するバイアス電流が大きいほど、緩和振動周波数の値は大きくなるので、例えば、PAM4伝送に適用した場合、立ち上がりにおいてはレベル0からレベル3へのデータ遷移時に、立ち下がりにおいてはレベル3からレベル0へのデータ遷移時にリンギング量が最大となる。 Furthermore, in N-value PAM transmission, the eye amplitude (the amplitude in the eye waveform, which will be described later) is 1 / N compared to NRZ transmission. It is necessary to increase the amplitude of the modulation current to be supplied. Therefore, the influence of ringing becomes larger than that for NRZ transmission. Further, since the value of the relaxation oscillation frequency increases as the bias current supplied to the laser diode LD increases, for example, when applied to PAM4 transmission, at the time of data transition from level 0 to level 3 at the rise, at the fall Is the ringing amount at the time of data transition from level 3 to level 0.
 このように、PAM4伝送においては、各振幅レベルに対してレーザダイオードLDによって発生するリンギング量が異なるため、電気回路の波形等化技術等を利用してリンギングの補償を試みた場合、各振幅レベル対して最適な補償量を変更する必要が出てくる。さらに、レーザダイオードLDの帯域不足により、立ち上がり時間および立ち下がり時間が劣化し、各振幅レベルの定常状態に到達するまでに遷移時間が遅くなるため、各振幅レベルの軌道の差が広がり、ジッタが増大し、伝送品質が劣化してしまう。また、上述したように、バイアス電流に依存して緩和振動周波数が変化するので、立ち上がり時間に比べて立ち下がり時間の劣化が大きくなり、立ち上がりと立ち下がりの応答特性が非対称になるという問題も生じる。 Thus, in PAM4 transmission, the amount of ringing generated by the laser diode LD differs for each amplitude level. Therefore, when compensation for ringing is attempted using a waveform equalization technique of an electric circuit, etc. On the other hand, it is necessary to change the optimum compensation amount. Furthermore, the rise time and fall time are degraded due to insufficient bandwidth of the laser diode LD, and the transition time is delayed until the steady state of each amplitude level is reached. The transmission quality is deteriorated. Further, as described above, since the relaxation oscillation frequency changes depending on the bias current, the deterioration of the fall time becomes larger than the rise time, and there arises a problem that the response characteristics of the rise and fall become asymmetric. .
特開2012-43933号公報JP 2012-43933 A
 上記特許文献1記載のレーザダイオードドライバ回路LDDは、レーザダイオードLDの帯域不足によって発生する伝送品質の劣化を補償する手段として、立ち上がりと立ち下がりをあらかじめ強調する(プリエンファシス)ことにより、レーザダイオードLDの帯域不足を改善するものである。 The laser diode driver circuit LDD described in Patent Document 1 emphasizes rising and falling in advance (pre-emphasis) as means for compensating for transmission quality degradation caused by insufficient bandwidth of the laser diode LD. This will improve the lack of bandwidth.
 以下、図21および図22を用いて特許文献1記載のレーザダイオードドライバ回路LDDの構成と動作について簡単に説明する。
  図21は、特許文献1記載のレーザダイオードドライバ回路LDDの構成図である。なお、記号は、説明の便宜のため変更している。
  図22は、特許文献1の立ち上がり、立ち下がりのレーザダイオードドライバ回路のステップ応答波形を示す図である。
Hereinafter, the configuration and operation of the laser diode driver circuit LDD described in Patent Document 1 will be briefly described with reference to FIGS. 21 and 22.
FIG. 21 is a configuration diagram of a laser diode driver circuit LDD described in Patent Document 1. The symbols are changed for convenience of explanation.
FIG. 22 is a diagram showing step response waveforms of the rising and falling laser diode driver circuits of Patent Document 1. In FIG.
 特許文献1記載のレーザダイオードドライバ回路LDDの構成は、図21に示されるように、レーザ特性補償回路LD_EQと出力回路Drvとで構成される。 The configuration of the laser diode driver circuit LDD described in Patent Document 1 includes a laser characteristic compensation circuit LD_EQ and an output circuit Drv as shown in FIG.
 レーザ特性補償回路LD_EQは、遅延回路DELと、デューティ比調整回路DUTYAdjと、プリバッファ回路PrBufm、プリバッファ回路PrBufeと、加減算回路ADDから成る。 The laser characteristic compensation circuit LD_EQ includes a delay circuit DEL, a duty ratio adjustment circuit DUTYAdj, a pre-buffer circuit PrBufm, a pre-buffer circuit PrBufe, and an addition / subtraction circuit ADD.
 レーザダイオードドライバ回路LDDの入力電圧信号は、それぞれ、プリバッファ回路PrBufmと、遅延回路DELの二つに分岐され、遅延回路DELに分岐された電圧信号は、プリバッファ回路PrBufmに分岐された電圧信号と比べて、ある一定の遅延差を持って出力される。この遅延差を持った電圧信号は、もう一方の遅延差を持たない電圧信号に、加減算回路ADDで減算することにより、図22に示されるような立ち上がりと立ち下がりの強調量が大きい電圧信号が生成される。また、デューティ比調整回路DUTYAdjにより、“H”レベルの期間が長くなるようにデューティ比が調整され、立ち上がりに比べて、立ち下がりの強調量が大きい(非対称プリエンファシス)電圧信号の生成も可能である。この立ち上がりと立ち下がりの強調された電圧信号は、出力回路Drvで電流信号に変換され、この非対称プリエンファシス特性をもった電流信号で、レーザダイオードLDを駆動することにより、レーザダイオードLDの帯域不足を改善し、さらに、立ち上がり時間と立ち下がり時間が均等な光信号を出力できる。 The input voltage signal of the laser diode driver circuit LDD is branched into the pre-buffer circuit PrBufm and the delay circuit DEL, respectively. The voltage signal branched into the delay circuit DEL is the voltage signal branched into the pre-buffer circuit PrBufm. Is output with a certain delay difference. The voltage signal having this delay difference is subtracted by the addition / subtraction circuit ADD from the other voltage signal having no delay difference, so that a voltage signal having a large rising and falling enhancement amount as shown in FIG. 22 is obtained. Generated. In addition, the duty ratio is adjusted by the duty ratio adjustment circuit DUTYAdj so that the period of the “H” level becomes longer, and it is possible to generate a voltage signal that has a larger amount of fall emphasis (asymmetric pre-emphasis) than the rise. is there. The voltage signal emphasized at the rise and fall is converted into a current signal by the output circuit Drv, and the current signal having the asymmetric pre-emphasis characteristic is driven to drive the laser diode LD, so that the band of the laser diode LD is insufficient. In addition, an optical signal having a uniform rise time and fall time can be output.
 しかしながら、上述した従来技術では、以下のような問題が生じる。従来技術の非対称プリエンファシスを適用することで、立ち上がり時間および立ち下がり時間が改善される一方で、レーザダイオードLDの緩和振動周波数の影響により、データ遷移後のオーバーシュートおよびアンダーシュートの影響も強調されてしまい、リンギング特性がより大きくなり、アイ開口(アイ波形における波形品質を評価するためのパターン。後述)が減少するという問題が生じる。さらに、従来技術では立ち上がりと立ち下がりで一定の強調量でレーザダイオードLDの特性を補償するため、PAM伝送に適用した場合、緩和振動周波数のバイアス電流依存性によって生じる、各振幅レベルのデータ遷移後に発生するリンギング量のばらつきを補償できないという問題も生じる。 However, the following problems occur in the above-described conventional technology. Applying the prior art asymmetric pre-emphasis improves the rise time and fall time, while the influence of the relaxation oscillation frequency of the laser diode LD also emphasizes the effects of overshoot and undershoot after data transition. As a result, the ringing characteristics become larger, and the eye opening (pattern for evaluating the waveform quality of the eye waveform, which will be described later) is reduced. Furthermore, in the prior art, the characteristics of the laser diode LD are compensated with a certain amount of enhancement at the rise and fall, so when applied to PAM transmission, after the data transition of each amplitude level caused by the bias current dependence of the relaxation oscillation frequency. There also arises a problem that variations in the amount of ringing that occurs cannot be compensated.
 本発明は、上記問題点を解決するためになされたもので、その目的は、直接変調型レーザダイオードとフォトダイオードを用いてパルス振幅変調により光信号と電気信号を相互変換する光通信モジュールにおいて、低コストで高速伝送に対応し、通信品質を向上させる光通信モジュールを提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical communication module that mutually converts an optical signal and an electrical signal by pulse amplitude modulation using a direct modulation laser diode and a photodiode. An object of the present invention is to provide an optical communication module that supports high-speed transmission at low cost and improves communication quality.
 上記課題を解決するための光通信モジュールの構成は、1シンボルあたりNビットの情報を伝送するようにパルス振幅変調されたN(Nは、正整数)値多値信号によって、光信号と電気信号を相互変換し、電気信号から光信号を発生させる直接変調型レーザダイオードを用いた光通信モジュールであって、N値多値信号を入力して、直接変調型レーザダイオードに電流を供給するレーザダイオードドライバ回路を有し、レーザダイオードドライバ回路は、N値多値信号のデータ切り替わり後に一定の時間幅と振幅を有するリンギング補償波形を生成し、N値多値信号からリンギング補償波形を減算する手段を有するリンギング補償回路と、リンギング補償回路出力の電圧信号を入力としてレーザダイオードに電圧信号を電流信号に変換した変調電流信号とバイアス電流を供給する出力回路を備えるものである。 The configuration of the optical communication module for solving the above-described problem is that an optical signal and an electric signal are expressed by an N-value multilevel signal (N is a positive integer) that is pulse-amplitude modulated so as to transmit N-bit information per symbol. Communication module using a direct-modulation laser diode that mutually converts signals and generates an optical signal from an electrical signal, and inputs an N-value multilevel signal and supplies a current to the direct-modulation laser diode The laser diode driver circuit has means for generating a ringing compensation waveform having a fixed time width and amplitude after data switching of the N-level multilevel signal and subtracting the ringing compensation waveform from the N-level multilevel signal. The voltage signal of the ringing compensation circuit having the ringing compensation circuit output and the voltage signal of the ringing compensation circuit output is converted into a current signal in the laser diode. In which an output circuit for supplying a regulated current signal and the bias current.
 この構成によって、レーザダイオードLD特性特有の帯域劣化、緩和振動によるリンギングの影響、立ち上がりと立ち下がりの非対称性を補償することが可能となり、低コスト・小型化に有利な直接変調型レーザダイオードを用いて、パルス振幅変調による高信頼な高速通信が可能となる。 This configuration makes it possible to compensate for the band degradation peculiar to the laser diode LD characteristics, the influence of ringing due to relaxation oscillation, and the asymmetry of the rise and fall, and uses a directly modulated laser diode that is advantageous for low cost and downsizing. Thus, highly reliable high-speed communication by pulse amplitude modulation becomes possible.
 本発明によれば、直接変調型レーザダイオードとフォトダイオードを用いてパルス振幅変調により光信号と電気信号を相互変換する光通信モジュールにおいて、低コストで高速伝送に対応し、通信品質を向上させる光通信モジュールを提供することができる。 According to the present invention, in an optical communication module that mutually converts an optical signal and an electrical signal by pulse amplitude modulation using a direct modulation laser diode and a photodiode, the optical communication module that supports high-speed transmission at low cost and improves communication quality. A communication module can be provided.
光通信モジュールOMDの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the optical communication module OMD. レーザダイオードLD出力のPAM4信号のアイ波形を示す図である。It is a figure which shows the eye waveform of the PAM4 signal of laser diode LD output. レーザダイオードドライバ回路LDDと符号化論理回路ENC_BKとレーザダイオードLDの構成図である。It is a block diagram of a laser diode driver circuit LDD, an encoding logic circuit ENC_BK, and a laser diode LD. リンギング補償回路LD_RING_COMPの詳細な構成図である。It is a detailed block diagram of the ringing compensation circuit LD_RING_COMP. リンギング補償回路LD_RING_COMPの動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of the ringing compensation circuit LD_RING_COMP. リンギング補償効果による立ち上がりと立ち下がりにおけるステップ応答波形の改善を示す図である。It is a figure which shows the improvement of the step response waveform in the rise and fall by the ringing compensation effect. 符号化論理回路ENC_BKの遷移時間調整回路TRAN_ADJ_CNTの詳細な構成図である。It is a detailed block diagram of the transition time adjustment circuit TRAN_ADJ_CNT of the encoding logic circuit ENC_BK. 遷移時間調整回路TRAN_ADJ_CNTの調整によるPAM4伝送時の立ち上がり、および、立ち下がりのステップ応答波形の改善を示す図である。It is a figure which shows the improvement of the step response waveform of the rise at the time of PAM4 transmission by adjustment of the transition time adjustment circuit TRAN_ADJ_CNT, and a fall. 符号化論理回路ENC_BKのデータ遷移前LD補償回路PRE_TRAN_LD_EQの詳細な構成図である。It is a detailed block diagram of the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ of the encoding logic circuit ENC_BK. データ遷移前LD補償回路PRE_TRAN_LD_EQの動作を説明するタイミングチャートである。6 is a timing chart for explaining the operation of the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ. 第一の実施形態の符号化論理回路ENC_BKとリンギング補償回路LD_RING_COMPを含むレーザダイオードドライバ回路LDDを用いない場合と、用いた場合を対比して、LD出力のPAM4信号のアイ波形を示した図である。FIG. 6 is a diagram showing an eye waveform of a PAM4 signal of LD output, comparing the case where the laser diode driver circuit LDD including the encoding logic circuit ENC_BK and the ringing compensation circuit LD_RING_COMP of the first embodiment is not used with the case where it is used. is there. ホールバーニング効果による波形劣化を示すレーザダイオードLDにおける入力周波数と光出力パワーの関係を示すグラフである。It is a graph which shows the relationship between the input frequency and optical output power in laser diode LD which shows the waveform degradation by a hole burning effect. レーザダイオードLDの光出力波形に、ホールバーニング効果による波形劣化が発生することを説明する図である。It is a figure explaining the waveform degradation by the hole burning effect generate | occur | produces in the optical output waveform of laser diode LD. ホールバーニング効果を補償するためのレーザダイオードドライバ回路LDDの構成図である。It is a block diagram of the laser diode driver circuit LDD for compensating the hole burning effect. 図14Aに示したレーザダイオードドライバ回路LDDの回路図である。FIG. 14B is a circuit diagram of the laser diode driver circuit LDD shown in FIG. 14A. 図1に示した光通信モジュールの送信系(電気→光変換)において、レーザダイオード温度補償制御回路LD_TEMP_CNTを備えた構成図である。FIG. 2 is a configuration diagram including a laser diode temperature compensation control circuit LD_TEMP_CNT in the transmission system (electrical → optical conversion) of the optical communication module shown in FIG. 1. 図14Aのホールバーニング効果を補償するためのレーザダイオードドライバ回路LDDにおいて、レーザダイオード温度補償制御回路LD_TEMP_CNTを備えた構成図である。14B is a configuration diagram including a laser diode temperature compensation control circuit LD_TEMP_CNT in the laser diode driver circuit LDD for compensating the hole burning effect of FIG. 14A. FIG. 図1に示した光通信モジュールの受信系(光→電気変換)において、トランスインピーダンスアンプ回路TIA内にホールバーニング補償回路を組み込んだ構成図である。FIG. 2 is a configuration diagram in which a hole burning compensation circuit is incorporated in a transimpedance amplifier circuit TIA in the receiving system (light → electrical conversion) of the optical communication module shown in FIG. 1. トランスインピーダンスアンプ回路TIA内にホールバーニング補償回路を組み込んだ構成において、レーザダイオードLDの温度補償を実施するための受信部レーザダイオード温度補償制御回路LD_TEMP_CNT_Rxを組み込んだ構成図である。FIG. 5 is a configuration diagram in which a receiver laser diode temperature compensation control circuit LD_TEMP_CNT_Rx for performing temperature compensation of a laser diode LD is incorporated in a configuration in which a hole burning compensation circuit is incorporated in a transimpedance amplifier circuit TIA. レーザダイオードLDにおける入力周波数と光出力パワーの関係を示すグラフである。It is a graph which shows the relationship between the input frequency and optical output power in laser diode LD. ステップ応答波形の立ち上がり、立下りに、リンギングが発生することを説明する図である。It is a figure explaining that ringing occurs at the rise and fall of the step response waveform. 特許文献1記載のレーザダイオードドライバ回路LDDの構成図である。2 is a configuration diagram of a laser diode driver circuit LDD described in Patent Document 1. FIG. 特許文献1の立ち上がり、立ち下がりのレーザダイオードドライバ回路のステップ応答波形を示す図である。It is a figure which shows the step response waveform of the rising and falling laser diode driver circuit of patent document 1. FIG.
 以下、図1ないし図18を用いて本発明に係る各実施形態を説明する。 Hereinafter, each embodiment according to the present invention will be described with reference to FIGS. 1 to 18.
 以下の実施の形態において、パルス振幅変調の一例として、1シンボルあたり2ビットの情報を伝送する4値パルス振幅変調(PAM4)を用いて説明するが、パルス振幅変調の多値数についても4値に限定されるものではなく、8値や16値等、別の多値数に適用してもよい。 In the following embodiments, description will be made using quaternary pulse amplitude modulation (PAM4) that transmits information of 2 bits per symbol as an example of pulse amplitude modulation. However, the present invention may be applied to other multi-value numbers such as 8-value and 16-value.
 また、実施の形態の各機能ブロックを構成する回路素子は、特に制限されないが、CMOS(相補型MOSトランジスタ)やバイポーラトランジスタ等の集積回路技術によって、単結晶シリコンのような半導体基板上に形成される。なお、実施の形態では、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:MOSトランジスタ)あるいはバイポーラトランジスタを用いるが、ゲート絶縁膜として非酸化膜を除外するものではない。図面にはトランジスタの基板電位の接続は特に明記していないが、トランジスタが正常動作可能な範囲であれば、その接続方法は特に限定しない。 The circuit elements constituting each functional block of the embodiment are not particularly limited, but are formed on a semiconductor substrate such as single crystal silicon by an integrated circuit technology such as a CMOS (complementary MOS transistor) or a bipolar transistor. The In the embodiment, a MOSFET (Metal / Oxide / Semiconductor / Field / Effect / Transistor: MOS transistor) or a bipolar transistor is used, but a non-oxide film is not excluded as a gate insulating film. The connection of the substrate potential of the transistor is not specified in the drawing, but the connection method is not particularly limited as long as the transistor can operate normally.
  〔実施形態1〕
 以下、図1ないし図11を用いて本発明に係る第一の実施形態を説明する。
Embodiment 1
Hereinafter, a first embodiment according to the present invention will be described with reference to FIGS. 1 to 11.
 先ず、図1により光通信モジュールOMDの概略構成について説明する。
  図1は、光通信モジュールOMDの概略構成を示すブロック図である。
First, a schematic configuration of the optical communication module OMD will be described with reference to FIG.
FIG. 1 is a block diagram showing a schematic configuration of the optical communication module OMD.
 本実施形態の光通信モジュールは、データセンタ内等に置かれるサーバやルータ等の情報処理装置内や装置間通信をおこなうのに使われる。情報処理装置は、例えば、幅および奥行きがそれぞれ数十センチ、高さが1~2m等といった筐体で構成されている。筐体表面には、多数の通信コネクタが設けられ、それぞれは、例えばイーサネットケーブル端子や、あるいは光ファイバケーブル端子等である。情報処理装置内のボード間や装置間は光通信経路(代表的には光ファイバケーブル)OFを介して接続される。このような情報処理装置において、各光通信線路OFの長さは、例えば、数メートルに達する場合がある。この場合、光通信経路OFの代わりに銅線ケーブル等を用いると、伝送損失により、例えば数十Gbpsレベルの通信に対応できない恐れがある。そこで、本実施形態の光通信モジュールを用いることが有益となる。 The optical communication module of the present embodiment is used for communication between information processing apparatuses such as servers and routers placed in a data center or the like, or between apparatuses. The information processing apparatus is constituted by a housing having a width and a depth of several tens of centimeters and a height of 1 to 2 m, for example. A large number of communication connectors are provided on the surface of the housing, and each is, for example, an Ethernet cable terminal or an optical fiber cable terminal. The boards in the information processing apparatus and the apparatuses are connected via an optical communication path (typically, an optical fiber cable) OF. In such an information processing apparatus, the length of each optical communication line OF may reach several meters, for example. In this case, if a copper wire cable or the like is used instead of the optical communication path OF, there is a possibility that it may not be able to cope with communication of several tens of Gbps level due to transmission loss. Therefore, it is beneficial to use the optical communication module of this embodiment.
 光通信モジュールOMDは、図1に示されるように、符号・復号論理回路LOG、アナログフロントエンドブロックAFE、光素子ブロックOBKを備えている。 As shown in FIG. 1, the optical communication module OMD includes an encoding / decoding logic circuit LOG, an analog front end block AFE, and an optical element block OBK.
 光素子ブロックOBKは、レーザダイオードLDと、フォトダイオードPDを備えている。レーザダイオードLDは、電気信号(電流信号)を入力して、送信用の光通信線路OFtxに出力をおこなう素子である。フォトダイオードPDは、受信用の光通信線路OFrxから入力された光信号を電気信号(電流信号)に変換する素子である。レーザダイオードLDおよびフォトダイオードPDは、例えば、それぞれ個別の半導体チップで構成され、実際には、通信チャネル数に応じてレーザダイオードLD,フォトダイオードPD共にそれぞれ複数個あるいは、アレイ状に集積した半導体チップとして存在する。 The optical element block OBK includes a laser diode LD and a photodiode PD. The laser diode LD is an element that receives an electric signal (current signal) and outputs the electric signal to the transmission optical communication line OFtx. The photodiode PD is an element that converts an optical signal input from the receiving optical communication line OFrx into an electric signal (current signal). Each of the laser diode LD and the photodiode PD is composed of, for example, individual semiconductor chips. Actually, a plurality of laser diodes LD and photodiodes PD are integrated in an array in accordance with the number of communication channels. Exists as.
 アナログフロントエンドブロックAFEは、レーザダイオードドライバ回路LDDと、トランスインピーダンスアンプ回路TIAを備えている。レーザダイオードドライバ回路LDDは、レーザダイオードLDを駆動する回路である。トランスインピーダンスアンプ回路TIAは、フォトダイオードPDからの電流信号を増幅し、電圧信号に変換する回路である。
  図1に示された例では、アナログフロントエンドブロックAFEと、符号・復号論理回路LOGは、一つの半導体チップLSI_OPに形成しているが、レーザダイオードドライバ回路LDDとトランスインピーダンスアンプ回路TIAは、個別に形成し別チップとしてもよい。
The analog front end block AFE includes a laser diode driver circuit LDD and a transimpedance amplifier circuit TIA. The laser diode driver circuit LDD is a circuit that drives the laser diode LD. The transimpedance amplifier circuit TIA is a circuit that amplifies the current signal from the photodiode PD and converts it into a voltage signal.
In the example shown in FIG. 1, the analog front end block AFE and the encoding / decoding logic circuit LOG are formed in one semiconductor chip LSI_OP, but the laser diode driver circuit LDD and the transimpedance amplifier circuit TIA are individually provided. It is good also as another chip | tip.
 通信速度が50Gbpsを超えると、光素子ブロックの電気回路の帯域限界や、伝送損失の影響により、従来の2値(NRZ)伝送では、伝送に必要なロスバジェットやジッタバジェットを満足することが困難となっている。このため、本実施形態においては、送信系でLOG内の符号化論理回路ENC_BKでNRZ信号からパルス振幅変調(PAM)された多値信号に変換し、受信系でLOG内の復号化論理回路DEC_BKでPAM信号をNRZ信号に変換する。 When the communication speed exceeds 50 Gbps, it is difficult to satisfy the loss budget and jitter budget required for transmission in the conventional binary (NRZ) transmission due to the band limit of the electric circuit of the optical element block and the influence of transmission loss. It has become. Therefore, in the present embodiment, in the transmission system, the encoding logic circuit ENC_BK in the LOG converts the NRZ signal into a multi-value signal that has been subjected to pulse amplitude modulation (PAM), and in the reception system, the decoding logic circuit DEC_BK in the LOG. To convert the PAM signal into an NRZ signal.
 ここで、図2を用いてPAM4信号のアイ波形について説明する。
  図2は、レーザダイオードLD出力のPAM4信号のアイ波形を示す図である。
Here, the eye waveform of the PAM4 signal will be described with reference to FIG.
FIG. 2 is a diagram showing an eye waveform of a PAM4 signal output from the laser diode LD.
 アイ波形(アイパターン)は、信号波形の遷移を多数サンプリングし、重ね合わせてグラフィカルに表示したものであり、波形が同じ位置で複数重ね合っていれば、品質のよい波形となる。 The eye waveform (eye pattern) is obtained by sampling a large number of signal waveform transitions and overlaying them and displaying them graphically. If a plurality of waveforms are overlapped at the same position, the waveform is of good quality.
 PAM4信号では、1シンボル間に2ビットの信号を4段階の信号振幅(レベル0「00」、レベル1「01」、レベル2「10」、レベル3「11」)で伝送し、3段階のアイ波形(上側アイ、中間アイ、下側アイ)のアイ開口確保が伝送品質改善のために必要となる。 In the PAM4 signal, a 2-bit signal is transmitted between 1 symbol with 4 levels of signal amplitude (level 0 “00”, level 1 “01”, level 2 “10”, level 3 “11”). Ensuring eye opening of eye waveforms (upper eye, middle eye, lower eye) is necessary to improve transmission quality.
 光通信モジュールOMDは、光通信モジュールOMD外部にある通信の上位階層で必要となる所定のプロトコル処理をおこなう論理演算処理回路論理デバイスLSI_LGと電気的に接続され、論理演算処理回路論理デバイスLSI_LG内に搭載されるSerDes(Serializer/Deserializer)等と呼ばれる伝送速度変換回路SDC(図示せず)と、電気電圧信号を送受信する。例えば、論理演算処理回路論理デバイスLSI_LGと光通信モジュールOMDの間では、25Gbps×2本(2チャネル)の電気信号が送受信され、符号・復号論理回路LOG内でPAM4信号に符号・復号化され、各ボード間の光通信線路OFtx、OFrxを介した通信は、50Gbps×1チャネルのPAM4光信号(シンボルレート25Gbps)でおこなわれる。図2に示された例では、光通信モジュールOMDと論理演算処理回路論理デバイスLSI_LG間との、チャネル辺りの伝送速度を落とすことにより電気伝送の負担低減を図っており、半導体チップLSI_OPは、アナログフロントエンドブロックAFEと符号・復号論理回路LOGが同一半導体プロセスで一体集積された構成とされているが、アナログフロントエンドブロックAFEと符号・復号論理回路LOGはそれぞれ別の半導体チップとして実装されるか、あるいは、符号・復号論理回路LOGはOMD外部にあるLSI_LG内に一体集積した構成としてもよい。 The optical communication module OMD is electrically connected to a logical operation processing circuit logic device LSI_LG that performs predetermined protocol processing required in a higher layer of communication outside the optical communication module OMD, and is included in the logical operation processing circuit logic device LSI_LG. An electric voltage signal is transmitted / received to / from a transmission rate conversion circuit SDC (not shown) called SerDes (Serializer / Deserializer) or the like. For example, between the logical operation processing circuit logic device LSI_LG and the optical communication module OMD, 25 Gbps × 2 (2 channels) electrical signals are transmitted and received, and encoded / decoded into a PAM4 signal in the encoding / decoding logic circuit LOG. Communication between the boards via the optical communication lines OFtx and OFrx is performed with a PAM4 optical signal (symbol rate of 25 Gbps) of 50 Gbps × 1 channel. In the example shown in FIG. 2, the burden of electrical transmission is reduced by reducing the transmission speed around the channel between the optical communication module OMD and the logic operation processing circuit logic device LSI_LG. The front end block AFE and the encoding / decoding logic circuit LOG are integrated in the same semiconductor process, but are the analog front end block AFE and the encoding / decoding logic circuit LOG mounted as separate semiconductor chips, respectively? Alternatively, the encoding / decoding logic circuit LOG may be integrated in an LSI_LG outside the OMD.
 次に、図3ないし図11を用いて光通信モジュールOMDの各部の詳細な構成と動作について説明する。
  図3は、レーザダイオードドライバ回路LDDと符号化論理回路ENC_BKとレーザダイオードLDの構成図である。
Next, the detailed configuration and operation of each part of the optical communication module OMD will be described with reference to FIGS.
FIG. 3 is a configuration diagram of the laser diode driver circuit LDD, the encoding logic circuit ENC_BK, and the laser diode LD.
 レーザダイオードドライバ回路LDDと符号化論理回路ENC_BKとレーザダイオードLDは、図1において、論理演算処理回路論理デバイスLSI_LGから電気信号を受信して、光信号を光通信線路OFtxに送信する送信系を構成する。 The laser diode driver circuit LDD, the encoding logic circuit ENC_BK, and the laser diode LD in FIG. 1 constitute a transmission system that receives an electrical signal from the logic operation processing circuit logic device LSI_LG and transmits an optical signal to the optical communication line OFtx. To do.
 本実施形態においては、送信側のレーザダイオードLDの緩和振動周波数は、レーザダイオードドライバ回路LDDが供給する変調電流の振幅範囲内で通信速度の基本周波数よりも低い値が存在し、その影響でPAM信号の各振幅レベルの定常状態においてオーバーシュート、あるいはアンダーシュートによるリンギングが発生するレーザダイオードLDを使用することを前提とする。本実施形態の光通信モジュールOMDにより、このリンギングの影響を電気回路で補償することにより、レーザダイオードLDの帯域向上を必要とすることなく、レーザダイオードLDの動作帯域を越えた高速通信が可能となり、光通信モジュールの低コスト化、信頼性向上が可能となる。 In this embodiment, the relaxation oscillation frequency of the laser diode LD on the transmission side has a value lower than the fundamental frequency of the communication speed within the amplitude range of the modulation current supplied by the laser diode driver circuit LDD. It is assumed that a laser diode LD in which ringing due to overshoot or undershoot occurs in a steady state of each amplitude level of the signal is used. The optical communication module OMD of this embodiment compensates for the influence of this ringing with an electric circuit, thereby enabling high-speed communication exceeding the operating band of the laser diode LD without requiring improvement of the band of the laser diode LD. Therefore, it is possible to reduce the cost and improve the reliability of the optical communication module.
 本実施形態におけるレーザダイオードドライバ回路LDDは、出力回路Drvと、リンギング補償回路LD_RING_COMPで構成される。出力回路Drvは、レーザダイオードLDに一定のバイアス電流と変調電流を供給する回路である。リンギング補償回路LD_RING_COMPは、レーザダイオードLDよって発生するリンギングの影響を補償する回路である。 The laser diode driver circuit LDD in this embodiment includes an output circuit Drv and a ringing compensation circuit LD_RING_COMP. The output circuit Drv is a circuit that supplies a constant bias current and a modulation current to the laser diode LD. The ringing compensation circuit LD_RING_COMP is a circuit that compensates for the influence of ringing generated by the laser diode LD.
 リンギング補償回路LD_RING_COMPは、PAM信号の各振幅レベルにおける立ち上がり、および、立ち下がりエッジのタイミングで、一定の時間幅と振幅を持ったリンギング補償波形を主信号から減算することにより、リンギングの影響を低減するものである。ここで、リンギング補償波形の時間幅と振幅は、PAM信号の各振幅レベルに対するレーザダイオードLDのステップ応答で観測されるリンギング波形の時間幅と振幅に合わせて、各振幅レベルに対してそれぞれ独立に調整される。本構成により、PAM信号の各振幅レベルで観測されるリンギングの影響をそれぞれ最適な値で補償でき、PAM信号の全てのアイ波形のアイ開口の拡大および、ジッタ低減が可能となる。 The ringing compensation circuit LD_RING_COMP reduces the influence of ringing by subtracting a ringing compensation waveform having a fixed time width and amplitude from the main signal at the rising and falling edge timings of each amplitude level of the PAM signal. To do. Here, the time width and amplitude of the ringing compensation waveform are independent of each amplitude level in accordance with the time width and amplitude of the ringing waveform observed in the step response of the laser diode LD with respect to each amplitude level of the PAM signal. Adjusted. With this configuration, the influence of ringing observed at each amplitude level of the PAM signal can be compensated with an optimum value, and the eye opening of all eye waveforms of the PAM signal can be enlarged and jitter can be reduced.
 次に、符号化論理回路ENC_BKの構成の詳細について説明する。 Next, details of the configuration of the encoding logic circuit ENC_BK will be described.
 符号化論理回路ENC_BKは、シフトレジスタSRと、PAM信号生成論理回路PAM_GEN_LOGと、デジタルアナログコンバータDACと、遷移時間調整回路TRAN_ADJ_CNTと、データ遷移前LD補償回路PRE_TRAN_LD_EQとで構成される。シフトレジスタSRは、複数のNRZ信号から一つ前のPAM信号のデータ(データA)を保持する回路である。PAM信号生成論理回路PAM_GEN_LOGは、例えば、NチャネルのNRZ信号からN値のPAM信号に符号化する回路である。デジタルアナログコンバータDACは、PAM信号生成論理回路PAM_GEN_LOGが出力するデジタル信号をアナログ信号に変換する回路である。遷移時間調整回路TRAN_ADJ_CNTは、各振幅レベルに応じて遷移開始時間を一定な遅延量で遅らせる回路である。データ遷移前LD補償回路PRE_TRAN_LD_EQは、立ち上がり、および、立ち下がりのデータ遷移前に波形強調をおこなう回路である。 The encoding logic circuit ENC_BK includes a shift register SR, a PAM signal generation logic circuit PAM_GEN_LOG, a digital-analog converter DAC, a transition time adjustment circuit TRAN_ADJ_CNT, and a pre-data transition LD compensation circuit PRE_TRAN_LD_EQ. The shift register SR is a circuit that holds data (data A) of the PAM signal immediately before a plurality of NRZ signals. The PAM signal generation logic circuit PAM_GEN_LOG is, for example, a circuit that encodes an N-channel NRZ signal into an N-value PAM signal. The digital-analog converter DAC is a circuit that converts a digital signal output from the PAM signal generation logic circuit PAM_GEN_LOG into an analog signal. The transition time adjustment circuit TRAN_ADJ_CNT is a circuit that delays the transition start time by a fixed delay amount according to each amplitude level. The pre-data transition LD compensation circuit PRE_TRAN_LD_EQ is a circuit that performs waveform emphasis before rising and falling data transitions.
 ここで、図3の例においては、2チャネルのNRZ信号から1チャネルのPAM4信号を生成しているが、入力信号はPAM信号であってもよく、また、回路の動作速度や電気伝送路の損失の影響を低減するため、入力のNRZ信号のビットレートを落とし、多チャネル化してPAM信号を生成(例えば、4チャネル×12.5GbpsのNRZ信号から50GbpsのPAM4信号を生成するなど)してもよい。遷移時間調整回路TRAN_ADJ_CNTは、具体的には、一つ前のデータ(データA)と次のデータ(データB)の情報から、立ち上がりエッジと立ち下がりエッジ、および、データAからデータBのデータ遷移後の振幅レベルを判断し、データAからデータBのデータ遷移において各振幅レベルの定常状態に到達するまでの軌道の位相差が最小となるように、データBの遷移開始時間の遅延調整をおこなうものとなっている。この構成によって、レーザダイオードLDの帯域不足等によって生じるデータ遷移時間の劣化によるジッタを低減し、PAM伝送の信号品質を改善することができる。また、データ遷移前LD補償回路PRE_TRAN_LD_EQは、一つ前のデータ(データA)と次のデータ(データB)の情報から、立ち上がりエッジと立ち下がりエッジ、および、データAからデータBのデータ遷移後の振幅レベルを判断し、データAからデータBのデータ遷移において一定の時間幅と振幅を持つ補償波形をデータAに加算することで、波形強調をおこなうものとなっている。そして、本構成により、立ち上がり、および、立ち下がりエッジ後のデータBに補償処理をおこなうリンギング補償回路LD_RING_COMPに影響を与えずに、レーザダイオードLDの帯域向上が可能となり、符号間干渉を補償することができる。 Here, in the example of FIG. 3, a 1-channel PAM4 signal is generated from a 2-channel NRZ signal. However, the input signal may be a PAM signal, and the operation speed of the circuit and the electrical transmission path To reduce the effect of loss, reduce the bit rate of the input NRZ signal and increase the number of channels to generate a PAM signal (for example, generate a 50 Gbps PAM4 signal from 4 channels x 12.5 Gbps NRZ signal) Also good. Specifically, the transition time adjustment circuit TRAN_ADJ_CNT determines the data transition from the previous data (data A) and the next data (data B) to the rising edge and falling edge, and from data A to data B. The later amplitude level is determined, and the transition start time delay of data B is adjusted so that the phase difference of the trajectory until the steady state of each amplitude level is reached in the data transition from data A to data B is minimized. It has become a thing. With this configuration, it is possible to reduce jitter due to deterioration of the data transition time caused by a lack of bandwidth of the laser diode LD and improve the signal quality of PAM transmission. Further, the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ determines the rising edge and falling edge and the data A to data B from the previous data (data A) and the next data (data B) information. Waveform enhancement is performed by adding a compensation waveform having a fixed time width and amplitude to data A in the data transition from data A to data B. With this configuration, the band of the laser diode LD can be improved without affecting the ringing compensation circuit LD_RING_COMP that performs the compensation process on the data B after the rising and falling edges, thereby compensating for the intersymbol interference. Can do.
 次に、図4ないし図6を用いてリンギング補償回路LD_RING_COMPの詳細な構成と動作について説明する。
  図4は、リンギング補償回路LD_RING_COMPの詳細な構成図である。
  図5は、リンギング補償回路LD_RING_COMPの動作を説明するタイミングチャートである。
  図6は、リンギング補償効果による立ち上がりと立ち下がりにおけるステップ応答波形の改善を示す図である。
Next, the detailed configuration and operation of the ringing compensation circuit LD_RING_COMP will be described with reference to FIGS.
FIG. 4 is a detailed configuration diagram of the ringing compensation circuit LD_RING_COMP.
FIG. 5 is a timing chart for explaining the operation of the ringing compensation circuit LD_RING_COMP.
FIG. 6 is a diagram showing the improvement of the step response waveform at the rise and fall due to the ringing compensation effect.
 リンギング補償回路LD_RING_COMPは、バッファ回路Bufmと、オーバーシュート補償回路RISE_COMPと、アンダーシュート補償回路FALL_COMPとで構成される。バッファ回路Bufmは、主電圧信号Vを増幅する回路である。オーバーシュート補償回路RISE_COMPは、主信号から分岐した電圧信号から、立ち上がりにおけるオーバーシュートによるリンギングの影響を補償する回路である。アンダーシュート補償回路FALL_COMPは、立ち下がりにおけるアンダーシュートによるリンギングの影響を補償する回路である。 The ringing compensation circuit LD_RING_COMP includes a buffer circuit Bufm, an overshoot compensation circuit RISE_COMP, and an undershoot compensation circuit FALL_COMP. Buffer circuit Bufm is a circuit for amplifying the primary voltage signal V M. The overshoot compensation circuit RISE_COMP is a circuit that compensates for the influence of ringing due to overshoot at the rise from the voltage signal branched from the main signal. The undershoot compensation circuit FALL_COMP is a circuit that compensates for the influence of ringing due to undershoot at the falling edge.
 オーバーシュート補償回路RISE_COMP、および、アンダーシュート補償回路FALL_COMPは、それぞれ、遅延回路DEL_R、DEL_Fと、エッジ検出回路EdgeDec_R、EdgeDec_Fと、補償量調整アンプBufe_R、Bufe_Fとで構成される。遅延回路DEL_R、DEL_Fは、主電圧信号Vから分岐された電圧信号にPAM信号の各振幅レベルに対応した一定の遅延ΔTを与える回路である。エッジ検出回路EdgeDec_R、EdgeDec_Fは、PAM信号の各振幅レベルに対して立ち上がり、および、立ち下がりエッジを検出してΔTの時間幅のリンギング補償波形を生成する回路である。補償量調整アンプBufe_R、Bufe_Fは、PAM信号の各振幅レベルに対してリンギング補償波形を一定のゲインで振幅調整する回路である。 Each of the overshoot compensation circuit RISE_COMP and the undershoot compensation circuit FALL_COMP includes delay circuits DEL_R and DEL_F, edge detection circuits EdgeDec_R and EdgeDec_F, and compensation amount adjustment amplifiers Bupe_R and Bufe_F. Delay circuit DEL_R, DEL_F is a circuit that provides a constant delay ΔT corresponding to each amplitude level of PAM signals to the branch voltage signal from the mains voltage signal V M. The edge detection circuits EdgeDec_R and EdgeDec_F are circuits that detect a rising edge and a falling edge for each amplitude level of the PAM signal and generate a ringing compensation waveform having a time width of ΔT. The compensation amount adjustment amplifiers Bufe_R and Bufe_F are circuits that adjust the amplitude of the ringing compensation waveform with a constant gain for each amplitude level of the PAM signal.
 次に、本構成例におけるリンギング補償回路LD_RING_COMPの動作について、図5のタイミングチャートを用いて説明する。 Next, the operation of the ringing compensation circuit LD_RING_COMP in this configuration example will be described with reference to the timing chart of FIG.
 先ず、立ち上がりに関しては、PAM4信号の入力信号Vに対して、オーバーシュート補償回路RISE_COMP内の3種類の遅延回路(Del_Lv3R、Del_Lv2R、Del_Lv1R)で、一定の遅延(ΔTR1、ΔTR2、ΔTR3)を持った電圧信号V(VM′R1、VM′R2、VM′R2)を生成する。ここで、ΔTR1、ΔTR2、ΔTR3は、それぞれレベル0からレベル3、レベル0からレベル2、レベル0からレベル1の電圧波形を生成するときに適用される遅延時間であり、TR1<ΔTR2<ΔTR3の関係がある。すなわち、レベル0からレベル3のときに、単位時間あたりのリンギングが最も激しくなり、レベル0からレベル2のとき、レベル0からレベル1のときがこれに次ぐことに対応している。 First, with regard to the rise, the input signal V M of the PAM4 signal, three types of delay circuits overshoot compensation circuit RISE_COMP (Del_Lv3R, Del_Lv2R, Del_Lv1R), the fixed delay (ΔT R1, ΔT R2, ΔT R3 ) Having a voltage signal V M (V M′R1 , V M′R2 , V M′R2 ). Here, ΔT R1 , ΔT R2 , and ΔT R3 are delay times applied when generating voltage waveforms from level 0 to level 3, level 0 to level 2, and level 0 to level 1, respectively, and T R1 < There is a relationship of ΔT R2 <ΔT R3 . That is, the ringing per unit time is most intense when the level is 0 to 3, and when the level is 0 to 2, the level 0 to level 1 corresponds to the second.
 次に、3つのエッジ検出回路(EdgeDec_Lv1R、EdgeDec_Lv2R、EdgeDec_Lv3R)で主電圧信号Vと遅延回路で遅延させたVM’とを比較し、PAM4信号の各振幅レベルにおいて立ち上がりエッジを検出することで、遅延回路の遅延量に対応した時間幅(ΔTR1、ΔTR2、ΔTR3)を有する補償波形を生成する。さらに、3つの補償量調整アンプを用いて、最適な振幅値(-α1R、-α2R、-α3R)に調整された3つのリンギング補償波形(VR1、VR2、VR3)を生成し、バッファ回路Bufmの出力でこれらのリンギング補償波形を加減算回路ADD_Rで加算し、各振幅レベルの立ち上がりのデータ遷移後をなまらせた出力波形VRCを生成する。 Next, three edge detection circuit compares (EdgeDec_Lv1R, EdgeDec_Lv2R, EdgeDec_Lv3R) the V M 'and delayed by the delay circuit and the mains voltage signal V M at, by detecting a rising edge at each amplitude level of the PAM4 signal Then, a compensation waveform having a time width (ΔT R1 , ΔT R2 , ΔT R3 ) corresponding to the delay amount of the delay circuit is generated. Furthermore, three ringing compensation waveforms (V R1 , V R2 , V R3 ) adjusted to optimum amplitude values (−α1R, −α2R, −α3R) are generated using three compensation amount adjusting amplifiers, and buffered adding these ringing compensation waveform subtraction circuit ADD_R at the output of circuit BUFM, it produces an output waveform V RC which blunted after a data transition of the rise of the amplitude level.
 同様に、立ち下がりに関しても、アンダーシュート補償回路FALL_COMPで、PAM4の各振幅レベル(レベル0、1,2)に対して一定の時間幅(ΔTF0、ΔTF1、ΔTF2)と振幅(β0F、β1F、β2F)を持つ3つのリンギング補償波形を生成し、バッファ回路Bufmの出力でこれらのリンギング補償波形を加減算回路ADD_Fで加算することにより、立ち下がりのデータ遷移後をなだらかに変化させた出力波形VRCを生成する。ここでも、TF1<ΔTF2<ΔTF3の関係がある。 Similarly, with respect to the fall, the undershoot compensation circuit FALL_COMP has a constant time width (ΔT F0 , ΔT F1 , ΔT F2 ) and amplitude (β0F, (3) Generate three ringing compensation waveforms having (β1F, β2F), and add these ringing compensation waveforms at the output of the buffer circuit Bufm by the adder / subtractor circuit ADD_F, thereby changing the output data gently after the falling data transition. Generate VRC . Again, there is a relationship of T F1 <ΔT F2 <ΔT F3 .
 ここで、図6により、立ち上がりと立ち下がりにおけるステップ応答波形を用いた、本実施形態におけるリンギングの影響の低減効果を説明する。リンギング補償回路LD_RING_COMPを適用しない場合、レーザダイオードLDの緩和振動の影響により、立ち上がり、立ち下がりエッジ共にPAM4信号の各振幅レベルに対して、時間幅と振幅が異なるリンギング波形が発生する。リンギング補償回路LD_RING_COMPにより、これらのリンギング波形の時間幅および振幅に合わせて、立ち上がり、および、立ち下がりエッジ後の波形を事前になだらかに変化させることにより、レーザダイオードLDのリンギングの影響を低減することが可能となる。 Here, with reference to FIG. 6, the effect of reducing the influence of ringing in this embodiment using step response waveforms at the rise and fall will be described. When the ringing compensation circuit LD_RING_COMP is not applied, a ringing waveform having a different time width and amplitude is generated for each amplitude level of the PAM4 signal at both rising and falling edges due to the influence of relaxation oscillation of the laser diode LD. By using the ringing compensation circuit LD_RING_COMP, the influence of the ringing of the laser diode LD is reduced by smoothly changing the waveform after the rising and falling edges in advance according to the time width and amplitude of these ringing waveforms. Is possible.
 以上のように、図3、図4に示されるレーザダイオードドライバ回路LDDを含む光通信モジュールおよび光通信装置を用いることにより、必要通信帯域に対して帯域が不足し、リンギングの影響が大きいレーザダイオードLDを用いて、低コストかつ信頼性が高い光通信モジュールで、パルス振幅変調による高速、かつ高品質な光送受信動作を実現することが可能となる。 As described above, by using the optical communication module and the optical communication device including the laser diode driver circuit LDD shown in FIGS. 3 and 4, the laser diode is insufficient in the required communication band and has a large influence of ringing. Using an LD, it is possible to realize a high-speed and high-quality optical transmission / reception operation by pulse amplitude modulation with a low-cost and highly reliable optical communication module.
 次に、図7および図8を用いて符号化論理回路ENC_BKの遷移時間調整回路TRAN_ADJ_CNTの詳細な構成と動作について説明する。
  図7は、符号化論理回路ENC_BKの遷移時間調整回路TRAN_ADJ_CNTの詳細な構成図である。
  図8は、遷移時間調整回路TRAN_ADJ_CNTの調整によるPAM4伝送時の立ち上がり、および、立ち下がりのステップ応答波形の改善を示す図である。
Next, a detailed configuration and operation of the transition time adjustment circuit TRAN_ADJ_CNT of the encoding logic circuit ENC_BK will be described with reference to FIGS.
FIG. 7 is a detailed configuration diagram of the transition time adjustment circuit TRAN_ADJ_CNT of the encoding logic circuit ENC_BK.
FIG. 8 is a diagram illustrating improvement in the step response waveform of the rise and fall during PAM4 transmission by adjusting the transition time adjustment circuit TRAN_ADJ_CNT.
 本構成例においては、2チャネルのNRZ信号(Data1、Data2)からシンボルレート上げずに1チャネルのPAM4信号を生成することにする。例えば、ボーレート25GbpsのPAM4伝送の場合、2チャネル×25GbpsのNRZ信号から50GbpsのPAM4信号を生成することになる。 In this configuration example, a 1-channel PAM4 signal is generated without increasing the symbol rate from 2-channel NRZ signals (Data 1 and Data 2). For example, in the case of PAM4 transmission with a baud rate of 25 Gbps, a PAM4 signal of 50 Gbps is generated from an NRZ signal of 2 channels × 25 Gbps.
 本実施形態における符号化論理回路ENC_BKは、シフトレジスタSRと、PAM信号生成論理回路PAM_GEN_LOGと、遷移時間調整回路TRAN_ADJ_CNTとで構成される。 The encoding logic circuit ENC_BK in this embodiment includes a shift register SR, a PAM signal generation logic circuit PAM_GEN_LOG, and a transition time adjustment circuit TRAN_ADJ_CNT.
 シフトレジスタSRは、2チャネルのNRZ信号から一つ前のデータ(DataA)を保持する四つのラッチ回路LATからなる回路である。PAM信号生成論理回路PAM_GEN_LOGは、2チャネルのNRZ信号からPAM4信号に符号化する回路である。デジタルアナログコンバータDACは、デジタル信号からアナログ信号に変換する回路である。遷移時間調整回路TRAN_ADJ_CNTは、各振幅レベルに応じて遷移開始時間を一定な遅延量で遅らせる回路である。 The shift register SR is a circuit composed of four latch circuits LAT that hold data (Data A) immediately before the two-channel NRZ signal. The PAM signal generation logic circuit PAM_GEN_LOG is a circuit that encodes a 2-channel NRZ signal into a PAM4 signal. The digital-analog converter DAC is a circuit that converts a digital signal into an analog signal. The transition time adjustment circuit TRAN_ADJ_CNT is a circuit that delays the transition start time by a fixed delay amount according to each amplitude level.
 遷移時間調整回路TRAN_ADJ_CNTは、位相制御論理回路PH_CNT_LOGと、位相回転回路IPとで構成される。位相制御論理回路PH_CNT_LOGは、DataAと次のデータ(DataB)の情報から、PAM4信号の各振幅レベルへのデータ遷移の方向を判断し、クロック位相を制御するための位相制御信号を出力する回路である。位相回転回路IPは、その位相制御信号に応じてクロック信号CLKの位相を調整する回路である。 The transition time adjustment circuit TRAN_ADJ_CNT includes a phase control logic circuit PH_CNT_LOG and a phase rotation circuit IP. The phase control logic circuit PH_CNT_LOG is a circuit that determines the direction of data transition to each amplitude level of the PAM4 signal from the information of DataA and the next data (DataB), and outputs a phase control signal for controlling the clock phase. is there. The phase rotation circuit IP is a circuit that adjusts the phase of the clock signal CLK in accordance with the phase control signal.
 ここで、位相回転回路IPは、シンボルレートを64相で分割することで、例えば、ボーレートが25Gbpsを超える場合、1ps以下の精度でクロック位相の調整が可能である。この位相調整されたクロック信号を用いて、PAM信号の各振幅レベルへのデータ遷移に応じて、PAM信号生成論理回路PAM_GEN_LOGでPAM信号を生成する際のクロックのタイミングを調整することにより、所望のデータ遷移に対して遷移開始時間を一定な遅延量で遅らせることが可能となる。ここで、本構成例においてクロック信号は、フルレートを想定しているが、回路の性能限界や消費電力の面で、フルレートでクロック分配系を構成することが困難な場合は、必要に応じてクロック信号を1/2や1/4に低速化し、ハーフレートやクォーターレートで構成してもよい。 Here, the phase rotation circuit IP can adjust the clock phase with an accuracy of 1 ps or less by dividing the symbol rate into 64 phases, for example, when the baud rate exceeds 25 Gbps. By using the phase-adjusted clock signal, the timing of the clock when generating the PAM signal in the PAM signal generation logic circuit PAM_GEN_LOG is adjusted in accordance with the data transition to each amplitude level of the PAM signal, thereby obtaining a desired It is possible to delay the transition start time by a certain delay amount with respect to the data transition. In this configuration example, the clock signal is assumed to be a full rate. However, if it is difficult to configure the clock distribution system at the full rate due to the performance limit of the circuit and power consumption, the clock signal is The signal may be slowed down to 1/2 or 1/4 and may be configured at half rate or quarter rate.
 次に、本構成例における遷移時間調整回路TRAN_ADJ_CNTの動作と効果について、図8の立ち上がり、立ち下がりにおける各振幅レベルに対するステップ応答波形を用いて説明する。図8の点線で示したステップ応答波形で示すように、遷移時間調整回路TRAN_ADJ_CNTを適用しない場合、レーザダイオードの帯域不足や図4で説明したリンギング補償回路LD_RING_COMPで波形を、事前に緩やかに変化するようにした影響により、遷移時間が劣化し、立ち上がり、および、立ち下がり共に各データ遷移への軌道(立ち上がり:レベル0からレベル1、レベル2、レベル3、立ち下がり:レベル3からレベル2、レベル1、レベル0)のばらつきが大きくなるため、PAM信号のジッタが増加し、伝送品質が劣化する。 Next, the operation and effect of the transition time adjustment circuit TRAN_ADJ_CNT in the present configuration example will be described using step response waveforms for each amplitude level at the rise and fall in FIG. As shown by the step response waveform indicated by the dotted line in FIG. 8, when the transition time adjustment circuit TRAN_ADJ_CNT is not applied, the waveform is gently changed in advance by the insufficient bandwidth of the laser diode or by the ringing compensation circuit LD_RING_COMP described in FIG. As a result, the transition time deteriorates, and both the rising and falling trajectories to each data transition (rise: level 0 to level 1, level 2, level 3, falling: level 3 to level 2, level 1 and level 0) increase, jitter of the PAM signal increases, and transmission quality deteriorates.
 本構成例においては、図8の実線で示すように、先ず、立ち上がりにおいては、定常状態までのデータ遷移の傾きが最もなだらかな軌道(レベル0からレベル1)を基準に、レベル0からレベル2への遷移開始時刻をΔT_Tran_RLv2遅延させ、レベル0からレベル3への遷移開始時刻をΔT_Tran_RLv3遅延させることにより、レベル0からレベル1の軌道に対する各データ遷移のばらつきを最小化することで、PAM信号のジッタ特性を改善する。なお、ΔT_Tran_RLv2<ΔT_Tran_RLv3の関係がある。同様に、立ち下がりにおいても定常状態までのデータ遷移の傾きが最もなだらかな軌道(レベル3からレベル2)を基準に、レベル3からレベル1への遷移開始時刻をΔT_Tran_FLv1遅延させ、レベル3からレベル0への遷移開始時刻をΔT_Tran_FLv0遅延させることにより、データ遷移間の軌道ばらつきを最小化し、ジッタを低減し、PAM信号の伝送品質の改善が可能となる。なお、ΔT_Tran_FLv1<ΔT_Tran_FLv0の関係がある。 In the present configuration example, as indicated by the solid line in FIG. 8, first, at the rising edge, from the level 0 to the level 2 on the basis of the orbit (level 0 to level 1) where the slope of the data transition to the steady state is the most gentle. By delaying the transition start time to ΔT_Tran_RLv2 and delaying the transition start time from level 0 to level 3 by ΔT_Tran_RLv3, the variation in each data transition with respect to the trajectory from level 0 to level 1 is minimized, so that the PAM signal Improve jitter characteristics. Note that there is a relationship of ΔT_Tran_RLv2 <ΔT_Tran_RLv3. Similarly, the transition start time from level 3 to level 1 is delayed by ΔT_Tran_FLv1 with reference to the trajectory (level 3 to level 2) where the slope of the data transition to the steady state is the smoothest even at the fall, and from level 3 to level By delaying the transition start time to 0 by ΔT_Tran_FLv0, trajectory variation between data transitions can be minimized, jitter can be reduced, and the transmission quality of the PAM signal can be improved. Note that there is a relationship of ΔT_Tran_FLv1 <ΔT_Tran_FLv0.
 以上のように、図7に示した符号化論理回路ENC_BKを含む光通信モジュールおよび光通信装置を用いることにより、必要通信帯域に対して帯域が不足したレーザダイオードLDを用いて、低コストかつ信頼性が高い光通信モジュールで、パルス振幅変調による高速、かつ高品質な光送受信動作を実現することが可能となる。 As described above, by using the optical communication module and the optical communication device including the encoding logic circuit ENC_BK shown in FIG. It is possible to realize a high-speed and high-quality optical transmission / reception operation by pulse amplitude modulation with an optical communication module having high performance.
 次に、図9および図10を用いて符号化論理回路ENC_BKのデータ遷移前LD補償回路PRE_TRAN_LD_EQの詳細な構成と動作について説明する。
  図9は、符号化論理回路ENC_BKのデータ遷移前LD補償回路PRE_TRAN_LD_EQの詳細な構成図である。
  図10は、データ遷移前LD補償回路PRE_TRAN_LD_EQの動作を説明するタイミングチャートである。
Next, a detailed configuration and operation of the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ of the encoding logic circuit ENC_BK will be described with reference to FIGS. 9 and 10.
FIG. 9 is a detailed configuration diagram of the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ of the encoding logic circuit ENC_BK.
FIG. 10 is a timing chart for explaining the operation of the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ.
 本実施形態におけるデータ遷移前LD補償回路PRE_TRAN_LD_EQは、データ遷移検出回路DATA_TRAN_DEC_Rと、立ち上がり遷移前補償波形生成回路PRE_TRAN_EQ_Rと、加減算回路ADD_R_2と、立ち下がりデータ遷移検出回路DATA_TRAN_DEC_Fと、立ち下がり遷移前補償波形生成回路PRE_TRAN_EQ_Fと、加減算回路ADD_F_2とで構成される。データ遷移検出回路DATA_TRAN_DEC_Rは、一つ前のデータ(DataA)と次のデータ(DataB)の情報から、立ち上がりエッジを検出し、立ち上がりのデータ遷移前のタイミングでLD補償信号を生成する回路である。立ち上がり遷移前補償波形生成回路PRE_TRAN_EQ_Rは、立ち上がり遷移前の補償パルスの振幅を調整する回路である。加減算回路ADD_R_2は、立ち上がり遷移前補償波形生成回路の出力信号VEQ_RをDAC出力VPREに加算する回路である。一方、立ち下がりデータ遷移検出回路DATA_TRAN_DEC_Fは、立ち下がりエッジを検出し、立ち下がりのデータ遷移前のタイミングでLD補償信号を生成する回路である。立ち下がり遷移前補償波形生成回路PRE_TRAN_EQ_Fは、立ち下がり遷移前の補償パルスの振幅を調整する回路である。加減算回路ADD_F_2は、立ち下がり遷移前補償波形生成回路の出力信号VEQ_FをDAC出力VPREに加算する回路である。 The pre-data transition LD compensation circuit PRE_TRAN_LD_EQ in this embodiment includes a data transition detection circuit DATA_TRAN_DEC_R, a pre-rise transition compensation waveform generation circuit PRE_TRAN_EQ_R, an addition / subtraction circuit ADD_R_2, a falling data transition detection circuit DATA_TRAN_DEC_F, and a pre-fall transition compensation waveform. A generation circuit PRE_TRAN_EQ_F and an addition / subtraction circuit ADD_F_2 are included. The data transition detection circuit DATA_TRAN_DEC_R is a circuit that detects a rising edge from information of the previous data (Data A) and the next data (Data B) and generates an LD compensation signal at a timing before the rising data transition. The pre-rise transition compensation waveform generation circuit PRE_TRAN_EQ_R is a circuit that adjusts the amplitude of the compensation pulse before the rise transition. The addition / subtraction circuit ADD_R_2 is a circuit that adds the output signal V EQ_R of the pre-rising transition compensation waveform generation circuit to the DAC output V PRE . On the other hand, the falling data transition detection circuit DATA_TRAN_DEC_F is a circuit that detects a falling edge and generates an LD compensation signal at a timing before the falling data transition. The pre-falling transition compensation waveform generation circuit PRE_TRAN_EQ_F is a circuit that adjusts the amplitude of the compensation pulse before the falling transition. The addition / subtraction circuit ADD_F_2 is a circuit that adds the output signal V EQ_F of the pre-falling transition compensation waveform generation circuit to the DAC output V PRE .
 次に、本構成例におけるデータ遷移前LD補償回路PRE_TRAN_LD_EQの動作について、図10のタイミングチャートを用いて説明する。立ち上がり遷移前補償波形生成回路PRE_TRAN_EQ_R、および、立ち下がり遷移前補償波形生成回路PRE_TRAN_EQ_Fは、一つ前のデータ(DataA)と次のデータ(DataB)の情報から、それぞれ立ち上がり、および、立ち下がりのタイミングを検出し、データ遷移前のタイミングで立ち上がり、および、立ち下がりを強調するためのLD補償信号VEQ_R、VEQ_Fを生成する。加減算回路ADD_R_2、および、加減算回路ADD_F_2は、これらのLD補償信号を2チャネルのNRZ信号から生成したPAM4信号に加算することにより、データ遷移前の波形強調が可能となる。上記特許文献1記載の従来技術と異なり、データ遷移前に波形強調をすることにより、データ遷移後に補償信号を加算する図4に示したリンギング補償回路LD_RING_COMPの補償動作に影響を与えずに、立ち上がり、および、立ち下がりの遷移時間の高速化が可能となり、レーザダイオードLDのリンギングの影響を改善すると共に、レーザダイオードLDの帯域不足も改善できる。また、立ち上がりよりも立ち下がりのLD補償信号の時間幅を長くすることにより、レーザダイオードLDの周波数特性のバイアス電流依存性によって生じる立ち上がりと立ち下がりの非対称性を補償し、均等な光送信信号を出力することができる。なお、本構成例においては、PAM信号の振幅レベルに関係なく、立ち上がり、および、立ち下がりのデータ遷移前に対して、それぞれ、一定の振幅および時間幅を持つLD補償信号を加算しているが、より高精度なLD補償が必要な場合、データ遷移検出回路DATA_TRAN_DECを各振幅レベルのデータ遷移に対して検出できるように並列化し、各振幅レベルのデータ遷移に対して対象とするレーザダイオードの周波数特性に合わせて、LD補償信号の振幅および時間幅を変更してもよい。 Next, the operation of the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ in this configuration example will be described with reference to the timing chart of FIG. The pre-rise transition compensation waveform generation circuit PRE_TRAN_EQ_R and the pre-fall transition compensation waveform generation circuit PRE_TRAN_EQ_F are the rise and fall timings from the information of the previous data (DataA) and the next data (DataB), respectively. Are detected , and LD compensation signals V EQ_R and V EQ_F for emphasizing rising and falling at the timing before data transition are generated. The addition / subtraction circuit ADD_R_2 and the addition / subtraction circuit ADD_F_2 can enhance the waveform before the data transition by adding these LD compensation signals to the PAM4 signal generated from the two-channel NRZ signal. Unlike the prior art described in Patent Document 1, the waveform is emphasized before data transition, so that the compensation signal is added after data transition without affecting the compensation operation of the ringing compensation circuit LD_RING_COMP shown in FIG. Further, the falling transition time can be increased, and the influence of ringing of the laser diode LD can be improved, and the band shortage of the laser diode LD can also be improved. Also, by increasing the time width of the LD compensation signal for the fall rather than the rise, the asymmetry of the rise and fall caused by the bias current dependence of the frequency characteristics of the laser diode LD is compensated, and an equal optical transmission signal is obtained. Can be output. In this configuration example, an LD compensation signal having a constant amplitude and a time width is added before the rising and falling data transitions regardless of the amplitude level of the PAM signal. When more precise LD compensation is required, the data transition detection circuit DATA_TRAN_DEC is parallelized so that it can detect the data transition of each amplitude level, and the frequency of the target laser diode for the data transition of each amplitude level The amplitude and time width of the LD compensation signal may be changed according to the characteristics.
 以上のように、図9に示した符号化論理回路ENC_BKを含む光通信モジュールおよび光通信装置を用いることにより、必要通信帯域に対して帯域が不足し、リンギングが発生するレーザダイオードLDを用いて、低コストかつ信頼性が高い光通信モジュールで、パルス振幅変調による高速、かつ高品質な光送受信動作を実現することが可能となる。 As described above, by using the optical communication module and the optical communication device including the encoding logic circuit ENC_BK illustrated in FIG. 9, the laser diode LD in which the band is insufficient with respect to the necessary communication band and ringing occurs is used. It is possible to realize a high-speed and high-quality optical transmission / reception operation by pulse amplitude modulation with a low-cost and highly reliable optical communication module.
 次に、図11を用いて本実施形態の符号化論理回路ENC_BKとリンギング補償回路LD_RING_COMPを含むレーザダイオードドライバ回路LDDを用いた場合の通信品質の改善の効果を説明する。
  図11は、第一の実施形態の符号化論理回路ENC_BKとリンギング補償回路LD_RING_COMPを含むレーザダイオードドライバ回路LDDを用いない場合と、用いた場合を対比して、LD出力のPAM4信号のアイ波形を示した図である。
  図11(a)に示すように、第一の実施形態の符号化論理回路ENC_BKとリンギング補償回路LD_RING_COMPを含むレーザダイオードドライバ回路LDDを用いない場合には、レーザダイオードLDの帯域不足による符号間干渉やリンギングの影響により、各振幅レベルにおいて、アイ振幅・アイ幅共に小さくなる。一方、図11(b)に示すように、第一の実施形態の符号化論理回路ENC_BKとリンギング補償回路LD_RING_COMPを含むレーザダイオードドライバ回路LDDを用いた場合には、リンギングの影響やレーザダイオードLDの動作帯域が改善されると共に、データ遷移間のばらつきが減り、全ての振幅レベル(上側アイ、中間アイ、下側アイ)においてアイ振幅・アイ幅共に拡大させることができる。
Next, the effect of improving the communication quality when the laser diode driver circuit LDD including the encoding logic circuit ENC_BK and the ringing compensation circuit LD_RING_COMP of the present embodiment is used will be described with reference to FIG.
FIG. 11 shows the eye waveform of the PAM4 signal of the LD output in comparison with the case where the laser diode driver circuit LDD including the encoding logic circuit ENC_BK and the ringing compensation circuit LD_RING_COMP of the first embodiment is not used. FIG.
As shown in FIG. 11A, when the laser diode driver circuit LDD including the encoding logic circuit ENC_BK and the ringing compensation circuit LD_RING_COMP of the first embodiment is not used, the intersymbol interference due to the insufficient band of the laser diode LD. Due to the influence of ringing, the eye amplitude and the eye width become smaller at each amplitude level. On the other hand, when the laser diode driver circuit LDD including the encoding logic circuit ENC_BK and the ringing compensation circuit LD_RING_COMP of the first embodiment is used as shown in FIG. As the operating band is improved, the variation between data transitions is reduced, and the eye amplitude and eye width can be increased at all amplitude levels (upper eye, middle eye, and lower eye).
 以上のように、第一の実施形態のレーザダイオードドライバ回路LDDと符号化論理回路ENC_BKを含む光通信モジュールおよび光通信装置を用いることにより、レーザダイオードの帯域不足により、リンギングの影響が大きいレーザダイオードを用いても、低コスト、かつ高品質なパルス振幅変調による高速光送受信動作を実現することが可能となる。 As described above, by using the optical communication module and the optical communication device including the laser diode driver circuit LDD and the encoding logic circuit ENC_BK of the first embodiment, the laser diode having a large influence of ringing due to insufficient bandwidth of the laser diode. Even with this, it is possible to realize a high-speed optical transmission / reception operation by low-cost and high-quality pulse amplitude modulation.
  〔実施形態2〕
 以下、図12ないし図14Bを用いて本発明に係る第二の実施形態を説明する。
[Embodiment 2]
A second embodiment according to the present invention will be described below with reference to FIGS. 12 to 14B.
 先ず、図12および図13を用いてホールバーニング効果について説明する。
  図12は、ホールバーニング効果による波形劣化を示すレーザダイオードLDにおける入力周波数と光出力パワーの関係を示すグラフである。
  図13は、レーザダイオードLDの光出力波形に、ホールバーニング効果による波形劣化が発生することを説明する図である。
First, the hole burning effect will be described with reference to FIGS.
FIG. 12 is a graph showing the relationship between the input frequency and the optical output power in the laser diode LD showing the waveform deterioration due to the hole burning effect.
FIG. 13 is a diagram for explaining that waveform degradation due to the hole burning effect occurs in the optical output waveform of the laser diode LD.
 高速かつ高光出力の直接変調型のレーザダイオードLDでは、デバイスの性能限界から、レーザダイオードLDの帯域不足や緩和振動によるリンギング波形に加えて、ホールバーニング効果によって伝送品質が劣化する場合がある。 In high-speed, high-light-power direct-modulation laser diodes LD, transmission quality may deteriorate due to the hole burning effect in addition to the ringing waveform due to insufficient bandwidth and relaxation oscillation of the laser diode LD due to device performance limitations.
 ホールバーニング効果は、図12のレーザダイオードLDの周波数特性で示すように、低域の周波数f_HBにおいて、光出力パワーのゲインが劣化して、ホールのように落ち込む現象をいう。周波数f_HBの値は、例えば、-3dB帯域が20GHz程度のレーザダイオードLDの場合は、数GHz程度である。図13の立ち上がり、および、立ち下がりのステップ応答波形で示すように、ホールバーニング効果によるf_HBにおける光出力パワーの劣化は、PAM信号の各振幅レベルに対して定常状態に到達後、立ち上がりにおいては光出力波形を徐々に上昇させ、立ち下がりにおいては光出力波形を徐々に下降させる。この結果、符号間干渉の影響が大きくなり、伝送品質を劣化させる。ここで、ホールバーニング効果による光出力パワーの劣化は、レーザダイオードLDに供給されるバイアス電流の大きさに依存せず、ほぼ一定である。 The hole burning effect is a phenomenon in which the gain of the optical output power deteriorates and falls like a hole at a low frequency f_HB as shown by the frequency characteristics of the laser diode LD in FIG. The value of the frequency f_HB is, for example, about several GHz in the case of a laser diode LD whose -3 dB band is about 20 GHz. As shown by the step response waveforms of the rising and falling edges in FIG. 13, the degradation of the optical output power at f_HB due to the hole burning effect reaches the steady state for each amplitude level of the PAM signal, and the light at the rising edge The output waveform is gradually raised, and the optical output waveform is gradually lowered at the fall. As a result, the influence of intersymbol interference becomes large and the transmission quality is deteriorated. Here, the degradation of the optical output power due to the hole burning effect does not depend on the magnitude of the bias current supplied to the laser diode LD, and is almost constant.
 次に、図14Aおよび図14Bを用いてホールバーニング効果を補償するためのレーザダイオードドライバ回路LDDについて説明する。
  図14Aは、ホールバーニング効果を補償するためのレーザダイオードドライバ回路LDDの構成図である。
  図14Bは、図14Aに示したレーザダイオードドライバ回路LDDの回路図である。
Next, a laser diode driver circuit LDD for compensating for the hole burning effect will be described with reference to FIGS. 14A and 14B.
FIG. 14A is a configuration diagram of a laser diode driver circuit LDD for compensating for the hole burning effect.
FIG. 14B is a circuit diagram of the laser diode driver circuit LDD shown in FIG. 14A.
 レーザダイオードドライバ回路LDDは、送信部ホールバーニング補償回路LD_HB_COM_Txと、出力回路Drvとで構成する。送信部ホールバーニング補償回路LD_HB_COM_Txは、レーザダイオードLDのホールバーニング効果による低域の光出力パワーの劣化を補償する回路である。出力回路Drvは、レーザダイオードLDに変調電流とバイアス電流を供給する回路である。 The laser diode driver circuit LDD includes a transmitter hole burning compensation circuit LD_HB_COM_Tx and an output circuit Drv. The transmitter hole burning compensation circuit LD_HB_COM_Tx is a circuit that compensates for the deterioration of the optical output power in the low band due to the hole burning effect of the laser diode LD. The output circuit Drv is a circuit that supplies a modulation current and a bias current to the laser diode LD.
 送信部ホールバーニング効果補償回路LD_HB_COM_Txは、ホールバーニング補償フィルタHB_FILと、補償量調整アンプG_AMPと、加減算回路ADDとで構成される。ホールバーニング補償フィルタHB_FILは、レーザダイオードドライバ回路LDDの入力信号を分岐した信号からホールバーニング効果による光出力パワーの劣化を補償するためのホールバーニング補償信号を生成する回路である。補償量調整アンプG_AMPは、ホールバーニング補償フィルタHB_FILの出力からホールバーニング補償信号の振幅を調整する回路である。加減算回路ADDは、補償量調整アンプG_AMPの出力をレーザダイオードドライバ回路LDDの入力信号に加算する回路である。 The transmission unit hole burning effect compensation circuit LD_HB_COM_Tx includes a hole burning compensation filter HB_FIL, a compensation amount adjustment amplifier G_AMP, and an addition / subtraction circuit ADD. The hole burning compensation filter HB_FIL is a circuit that generates a hole burning compensation signal for compensating for deterioration in optical output power due to the hole burning effect from a signal obtained by branching the input signal of the laser diode driver circuit LDD. The compensation amount adjustment amplifier G_AMP is a circuit that adjusts the amplitude of the hole burning compensation signal from the output of the hole burning compensation filter HB_FIL. The addition / subtraction circuit ADD is a circuit that adds the output of the compensation amount adjustment amplifier G_AMP to the input signal of the laser diode driver circuit LDD.
 ここで、ホールバーニング補償フィルタHB_FILの帯域は、駆動するレーザダイオードLDのホールバーニング効果による光出力パワーの劣化が生じる帯域f_HBに合わせて調整することを特徴としている。すなわち、ホールバーニング補償フィルタの伝達特性を、ホールバーニング効果による光出力パワーの劣化に対して逆特性とすることにより、レーザダイオ―ド出力における周波数特性が平坦化される。本構成により、ホールバーニング効果で生じる低域の光出力パワーの劣化を、電気回路で生成したホールバーニング補償信号で補償することで、ホールバーニング効果の影響が大きいレーザダイオードLDを用いても高品質で伝送が可能となる。また、本構成例におけるホールバーニング補償回路は、PAM信号だけでなく、NRZ信号に対しても同様な効果が得られる。
  図14Aに示すホールバーニング効果を補償するためのレーザダイオードドライバ回路LDDは、例えば、図14Bに示されるような回路で実現することができる。
  図14Bに示される構成例においては、ホールバーニング補償フィルタHB_FILは、容量素子と抵抗素子からなるハイパスフィルタと、高速で出力回路Drvの出力にホールバーニング補償信号を電流加算するためのエミッタフォロワ回路とで構成する。ここで、ハイパスフィルタで使用している抵抗素子は、駆動するレーザダイオードLDのホールバーニング効果による劣化の帯域f_HBに、フィルタの帯域が一致するように調整される。ここで、本実施形態においては、1次のハイパスフィルタで構成されているが、ホールバーニング効果の影響により、より急峻な補償信号が必要な場合は、ハイパスフィルタの次数の高次化やフィルタ構成を変更してもよい。また、本構成例ではバイポーラトランジスタを用いているため、電流加算の高速化をエミッタフォロワ回路で実現しているが、CMOS回路ではソースフォロワ回路、あるいは、ホールバーニング補償フィルタHB_FILの出力をドライブできる回路であれば、どのような回路構成でもよい。
Here, the band of the hole burning compensation filter HB_FIL is characterized by being adjusted according to the band f_HB in which the optical output power is degraded due to the hole burning effect of the laser diode LD to be driven. That is, by making the transfer characteristic of the hole burning compensation filter opposite to the deterioration of the optical output power due to the hole burning effect, the frequency characteristic at the laser diode output is flattened. This configuration compensates for the degradation of the low-frequency optical output power caused by the hole burning effect with the hole burning compensation signal generated by the electric circuit, so that even if a laser diode LD having a large influence of the hole burning effect is used, high quality is achieved. Can be transmitted. Further, the hole burning compensation circuit in this configuration example can obtain the same effect not only on the PAM signal but also on the NRZ signal.
The laser diode driver circuit LDD for compensating for the hole burning effect shown in FIG. 14A can be realized by a circuit as shown in FIG. 14B, for example.
In the configuration example shown in FIG. 14B, the hole burning compensation filter HB_FIL includes a high-pass filter composed of a capacitive element and a resistance element, and an emitter follower circuit for adding a hole burning compensation signal to the output of the output circuit Drv at high speed. Consists of. Here, the resistance element used in the high-pass filter is adjusted so that the band of the filter coincides with the band f_HB of deterioration due to the hole burning effect of the laser diode LD to be driven. Here, in the present embodiment, the first-order high-pass filter is used. However, when a steeper compensation signal is required due to the effect of the hole burning effect, the order of the high-pass filter is increased or the filter configuration is increased. May be changed. In addition, since the bipolar transistor is used in this configuration example, the current addition speed is increased by the emitter follower circuit. However, in the CMOS circuit, the source follower circuit or the circuit that can drive the output of the hole burning compensation filter HB_FIL. Any circuit configuration can be used.
 以上のように、図14Aに示されたホールバーニング効果を補償するレーザダイオードドライバ回路LDDを含む光通信モジュールおよび光通信装置を用いることにより、レーザダイオードLDのホールバーニング効果による低域の光出力パワーの劣化を補償し、高速かつ高伝送品質な、送受信動作が可能となる。 As described above, by using the optical communication module and the optical communication device including the laser diode driver circuit LDD for compensating the hole burning effect shown in FIG. 14A, the optical output power in the low band due to the hole burning effect of the laser diode LD. It is possible to compensate for the degradation of the transmission and to perform the transmission / reception operation with high speed and high transmission quality.
  〔実施形態3〕
 以下、図15を用いて本発明に係る第三の実施形態について説明する。
  図15は、図1に示した光通信モジュールの送信系(電気→光変換)において、レーダダイオード温度補償制御回路LD_TEMP_CNTを備えた構成図である。
[Embodiment 3]
Hereinafter, a third embodiment according to the present invention will be described with reference to FIG.
FIG. 15 is a configuration diagram including a radar diode temperature compensation control circuit LD_TEMP_CNT in the transmission system (electrical-to-optical conversion) of the optical communication module shown in FIG.
 レーダダイオード温度補償制御回路LD_TEMP_CNTは、LD温度モニタTEMP_SENSと、アナログデジタルコンバータADCと、レジスタREGとで構成される。LD温度モニタTEMP_SENSは、レーザダイオードLDの温度をモニタする回路である。アナログデジタルコンバータADCは、アナログ信号からデジタル信号に変換する回路である。レジスタREGは、レーザダイオードLDの温度変動に対して複数のテーブルに値を保持する回路である。 The radar diode temperature compensation control circuit LD_TEMP_CNT includes an LD temperature monitor TEMP_SENS, an analog / digital converter ADC, and a register REG. The LD temperature monitor TEMP_SENS is a circuit that monitors the temperature of the laser diode LD. The analog-digital converter ADC is a circuit that converts an analog signal into a digital signal. The register REG is a circuit that holds values in a plurality of tables against temperature fluctuations of the laser diode LD.
 レーザダイオードLDの緩和振動周波数および-3dB周波数は、温度によって変わるため、レーザダイオードLDのオーバーシュートおよびアンダーシュートによって生じるリンギング波形も温度によって変動する。このレーザダイオードLDの温度変動を補償する手段として、ペルチェ素子を用いてレーザダイオードLDの温度を一定にすることが考えられるが、ペルチェ素子による温度補償は消費電力が増大し、サイズ面でも小型化が困難となる。このため、本構成例においては、レーザダイオードLD温度モニタTEMP_SENSにより、レーザダイオードLDの温度をモニタし、モニタした温度に対応して予めテーブルとして用意された、図1に示した各LD補償機能(リンギング補償回路LD_RING_COMP、遷移時間調整回路TRAN_ADJ_CNT、データ遷移前LD補償回路PRE_TRAN_LD_EQ)の最適な設定値にレジスタREGの内容を書き変えることにより、レーザダイオードLDの温度変化に対する補償が可能となる。ここで、LD温度モニタTEMP_SENSの具体的な方法としては、モニタとするフォトダイオードPDを用いてレーザダイオードLDの光出力パワーの変化からレーザダイオードLDの温度をモニタするか、サーミスタ等を用いることにより実現する。 Since the relaxation oscillation frequency and −3 dB frequency of the laser diode LD vary depending on the temperature, the ringing waveform generated by the overshoot and undershoot of the laser diode LD also varies depending on the temperature. As a means for compensating for the temperature fluctuation of the laser diode LD, it is conceivable to use a Peltier element to keep the temperature of the laser diode LD constant. However, temperature compensation by the Peltier element increases power consumption and downsizing also in size. It becomes difficult. Therefore, in this configuration example, the temperature of the laser diode LD is monitored by the laser diode LD temperature monitor TEMP_SENS, and each LD compensation function (shown in FIG. 1) prepared in advance as a table corresponding to the monitored temperature ( By rewriting the contents of the register REG to optimum setting values of the ringing compensation circuit LD_RING_COMP, the transition time adjustment circuit TRAN_ADJ_CNT, and the pre-data transition LD compensation circuit PRE_TRAN_LD_EQ, it becomes possible to compensate for the temperature change of the laser diode LD. Here, as a specific method of the LD temperature monitor TEMP_SENS, by monitoring the temperature of the laser diode LD from the change in the optical output power of the laser diode LD using the photodiode PD as a monitor, or by using a thermistor or the like. Realize.
 以上のように、図15に示したレーザダイオード温度補償制御回路LD_TEMP_CNTを備えた送信系を含む光通信モジュールおよび光通信装置を用いることにより、レーザダイオードLD特性特有の波形劣化の補償が温度変動も含めて可能となり、高速かつ高伝送品質な送受信動作を実現できる。 As described above, by using the optical communication module and the optical communication device including the transmission system including the laser diode temperature compensation control circuit LD_TEMP_CNT shown in FIG. It is possible to perform transmission and reception operations with high speed and high transmission quality.
  〔実施形態4〕
 以下、図16を用いて本発明に係る第四の実施形態について説明する。
  図16は、図14Aのホールバーニング効果を補償するためのレーザダイオードドライバ回路LDDにおいて、レーザダイオード温度補償制御回路LD_TEMP_CNTを備えた構成図である。
[Embodiment 4]
Hereinafter, a fourth embodiment according to the present invention will be described with reference to FIG.
FIG. 16 is a block diagram of the laser diode driver circuit LDD for compensating for the hole burning effect of FIG. 14A, including a laser diode temperature compensation control circuit LD_TEMP_CNT.
 本実施形態では、図16に示すように、図14Aに示した送信部ホールバーニング効果補償回路LD_HB_COM_Txに対しても、レーザダイオード温度補償制御回路LD_TEMP_CNTを搭載し、ホールバーニング補償フィルタHB_FILと、補償量調整アンプG_AMPに最適な値になるように、レジスタREGの内容を書きかえることにより、レーザダイオードLDの温度変動に対する補償が可能である。また、レーザダイオード温度補償制御回路LD_TEMP_CNTのループ帯域は、レーザダイオードLDの温度変化に伴う光信号の劣化(温度ドリフト)を補償できればよいので、25Gbpsを超えるような高速動作は必要とせず、せいぜい数MHz程度の帯域で動作すればよい。 In the present embodiment, as shown in FIG. 16, the laser diode temperature compensation control circuit LD_TEMP_CNT is mounted on the transmitter hole burning effect compensation circuit LD_HB_COM_Tx shown in FIG. 14A, and the hole burning compensation filter HB_FIL and the compensation amount are mounted. By rewriting the contents of the register REG so that the adjustment amplifier G_AMP has an optimum value, it is possible to compensate for the temperature variation of the laser diode LD. In addition, the loop band of the laser diode temperature compensation control circuit LD_TEMP_CNT is only required to compensate for optical signal deterioration (temperature drift) associated with the temperature change of the laser diode LD. Therefore, high-speed operation exceeding 25 Gbps is not required, and at most It only needs to operate in a band of about MHz.
 以上のように、図16に示したレーザダイオード温度補償制御回路LD_TEMP_CNTを備えた送信系を含む光通信モジュールおよび光通信装置を用いることにより、レーザダイオードLD特性特有の波形劣化の補償が温度変動も含めて可能となり、高速かつ高伝送品質な送受信動作を実現できる。 As described above, by using the optical communication module and the optical communication device including the transmission system including the laser diode temperature compensation control circuit LD_TEMP_CNT shown in FIG. It is possible to perform transmission and reception operations with high speed and high transmission quality.
  〔実施形態5〕
 以下、図17を用いて本発明の第五の実施形態を説明する。
  図17は、図1に示した光通信モジュールの受信系(光→電気変換)において、トランスインピーダンスアンプ回路TIA内にホールバーニング補償回路を組み込んだ構成図である。
[Embodiment 5]
Hereinafter, the fifth embodiment of the present invention will be described with reference to FIG.
FIG. 17 is a configuration diagram in which a hole burning compensation circuit is incorporated in the transimpedance amplifier circuit TIA in the receiving system (light-to-electrical conversion) of the optical communication module shown in FIG.
 本実施形態におけるトランスインピーダンスアンプ回路TIAは、プリアンプPRAMPと、受信部ホールバーニング補償回路LD_HB_COM_Rxと、リミットアンプLAと、クロック・データリカバリCDR(Clock Data Recovery)とで構成される。プリアンプPRAMPは、フォトダイオードPDからの電流信号を電圧信号に変換する回路である。受信部ホールバーニング補償回路LD_HB_COM_Rxは、受信側でレーザダイオードLDのホールバーニング効果を補償する回路である。リミットアンプLAは、フォトダイオードPDの入力光パワーに関係なく一定の出力振幅に制限する回路である。クロック・データリカバリCDRは、LAの出力に設けられ、クロックとデータを分離する回路である。 The transimpedance amplifier circuit TIA in this embodiment includes a preamplifier PRAMP, a receiver hole burning compensation circuit LD_HB_COM_Rx, a limit amplifier LA, and a clock / data recovery CDR (Clock Data Recovery). The preamplifier PRAMP is a circuit that converts a current signal from the photodiode PD into a voltage signal. The receiver hole burning compensation circuit LD_HB_COM_Rx is a circuit that compensates for the hole burning effect of the laser diode LD on the receiver side. The limit amplifier LA is a circuit that limits the output amplitude to a constant regardless of the input light power of the photodiode PD. The clock / data recovery CDR is a circuit that is provided at the output of the LA and separates the clock and data.
 ここで、受信部ホールバーニング補償回路LD_HB_COM_Rxは、電圧信号がリミットする前、すなわち、線形動作が確保されている振幅範囲内に搭載することを前提とする。 Here, it is assumed that the receiver hole burning compensation circuit LD_HB_COM_Rx is mounted before the voltage signal is limited, that is, within an amplitude range in which linear operation is ensured.
 受信部ホールバーニング効果補償回路LD_HB_COM_Rxは、ホールバーニング補償フィルタHB_FILと、補償量調整アンプG_AMPと、加減算回路ADDとで構成される。ホールバーニング補償フィルタHB_FILは、プリアンプPRAMPの入力信号を分岐した信号からホールバーニング効果による光出力パワーの劣化を補償するためのホールバーニング補償信号を生成する回路である。補償量調整アンプG_AMPは、ホールバーニング補償フィルタHB_FILの出力からホールバーニング補償信号の振幅を調整する回路である。加減算回路ADDは、G_AMPの出力をPRAMPの入力信号に加算する回路である。 The receiving part hole burning effect compensation circuit LD_HB_COM_Rx is composed of a hole burning compensation filter HB_FIL, a compensation amount adjustment amplifier G_AMP, and an addition / subtraction circuit ADD. The hole burning compensation filter HB_FIL is a circuit that generates a hole burning compensation signal for compensating for deterioration in optical output power due to the hole burning effect from a signal obtained by branching the input signal of the preamplifier PRAMP. The compensation amount adjustment amplifier G_AMP is a circuit that adjusts the amplitude of the hole burning compensation signal from the output of the hole burning compensation filter HB_FIL. The addition / subtraction circuit ADD is a circuit that adds the output of G_AMP to the input signal of PRAMP.
 ここで、ホールバーニング補償フィルタHB_FILの帯域は、送信側のレーザダイオードLDのールバーニング効果による光出力パワーの劣化が生じる帯域f_HBに合わせて調整することを特徴としている。本構成により、送信側の出力回路Drvと比べて、PRAMPの出力電圧は数十mVと小さいので、図14Aに示した送信部ホールバーニング補償回路LD_HB_COM_Txとは異なり、送信側ではなく受信側にホールバーニング補償回路を搭載することにより、低電力でレーザダイオードLDのホールバーニング効果の補償が可能となる。また、本構成例におけるホールバーニング補償回路は、PAM信号だけでなく、NRZ信号に対しても同様な効果が得られる。 Here, the band of the hole burning compensation filter HB_FIL is adjusted according to the band f_HB in which the optical output power is degraded due to the ruburning effect of the laser diode LD on the transmission side. With this configuration, the output voltage of PRAMP is as low as several tens of mV compared to the output circuit Drv on the transmission side. Therefore, unlike the transmission part hole burning compensation circuit LD_HB_COM_Tx shown in FIG. By mounting the burning compensation circuit, it is possible to compensate for the hole burning effect of the laser diode LD with low power. Further, the hole burning compensation circuit in this configuration example can obtain the same effect not only on the PAM signal but also on the NRZ signal.
  〔実施形態6〕
 以下、図18を用いて本発明の第六の実施形態を説明する。
  図18は、トランスインピーダンスアンプ回路TIA内にホールバーニング補償回路を組み込んだ構成において、レーザダイオードLDの温度補償を実施するための受信部レーザダイオード温度補償制御回路LD_TEMP_CNT_Rxを組み込んだ構成図である。
[Embodiment 6]
The sixth embodiment of the present invention will be described below with reference to FIG.
FIG. 18 is a configuration diagram in which a receiver laser diode temperature compensation control circuit LD_TEMP_CNT_Rx for implementing temperature compensation of the laser diode LD is incorporated in a configuration in which a hole burning compensation circuit is incorporated in the transimpedance amplifier circuit TIA.
 ここで、受信部レーザダイオード温度補償制御回路LD_TEMP_CNT_Rxは、具体的には、リミットアンプLAの出力等のアイ波形をアイモニタEYMで観測し、アイ波形の電圧成分と時間軸方向のアイ開口度が最大となるように、例えば、ホールバーニング補償フィルタHB_FILの定数を変更するための抵抗素子の値や、あるいは、補償量調整アンプG_AMPの利得が調整される。また、受信部レーザダイオード温度補償制御回路LD_TEMP_CNT_Rxは、例えば、LMSアルゴリズム論理回路LMS_ALGを設けて、CDRの出力等と想定する最適な電圧信号とクロック位相を示すリファレンス信号との誤差電圧および誤差位相をモニタし、その誤差がSign-Sign LMS(Least Mean Square)等の最適化アルゴリズムで最小となるように、ホールバーニング補償フィルタHB_FILと補償量調整アンプG_AMPの各パラメータを最適化する構成を取ってもよい。このような構成を取ることにより、送信側にペルチェ素子やモニタとするフォトダイオードPD等のレーザダイオードLDの温度補償を実施するための機能ブロックを設けることなく、レーザダイオードLDの温度補償が可能となり、低コストかつ小型な光通信モジュールを実現できる。また、温度補償制御回路LD_TEMP_CNT_Rxのループ帯域は、レーザダイオードLDの温度変化に伴う光信号の劣化(温度ドリフト)を補償できればよいので、25Gbpsを超えるような高速動作は必要とせず、せいぜい数MHz程度の帯域で動作すればよい。 Here, the receiver laser diode temperature compensation control circuit LD_TEMP_CNT_Rx specifically observes an eye waveform such as the output of the limit amplifier LA with the eye monitor EYM, and the voltage component of the eye waveform and the eye opening degree in the time axis direction are determined. For example, the value of the resistance element for changing the constant of the hole burning compensation filter HB_FIL or the gain of the compensation amount adjustment amplifier G_AMP is adjusted so as to be maximized. In addition, the receiver laser diode temperature compensation control circuit LD_TEMP_CNT_Rx is provided with, for example, an LMS algorithm logic circuit LMS_ALG to calculate an error voltage and an error phase between an optimum voltage signal assumed to be an output of a CDR and the like and a reference signal indicating a clock phase. Even if a configuration is adopted in which each parameter of the hole burning compensation filter HB_FIL and the compensation amount adjusting amplifier G_AMP is optimized so that the error is minimized by an optimization algorithm such as Sign-Sign LMS (Least Mean Square). Good. By adopting such a configuration, it is possible to compensate the temperature of the laser diode LD without providing a functional block for performing temperature compensation of the laser diode LD such as a Peltier element or a photodiode PD as a monitor on the transmission side. A low-cost and small-sized optical communication module can be realized. The loop band of the temperature compensation control circuit LD_TEMP_CNT_Rx only needs to compensate for the optical signal deterioration (temperature drift) associated with the temperature change of the laser diode LD. Therefore, high-speed operation exceeding 25 Gbps is not required, and at most about several MHz. It suffices to operate in the band.
LSI_LG…論理演算処理回路論理デバイス
OBK…光素子ブロック
LD…レーザダイオード
PD…フォトダイオード
LDD…レーザダイオードドライバ回路
TIA…トランスインピーダンスアンプ回路
AFE…アナログフロントエンドブロック
OMD…光通信モジュール
LOG…符号・復号論理回路
OFtx、OFrx…光通信線路
LSI_OP…半導体チップ
PAM…パルス振幅変調
NRZ…2値伝送
SR…シフトレジスタ
PAM_GEN_LOG…PAM信号生成論理回路
DAC…デジタルアナログコンバータ
TRAN_ADJ_CNT…遷移時間調整回路
PRE_TRAN_LD_EQ…データ遷移前LD補償回路
CLK…クロック信号
ENC_BK…符号化論理回路
DEC_BK…復号化論理回路
LD_RING_COMP…リンギング補償回路
Drv…出力回路
ADD、ADD_R、ADD_F、ADD_R_2、ADD_F_2…加減算回路
DEL_R、DEL_F…遅延回路
EDeg_LOG_R…立ち上がりエッジ検出回路
EDeg_LOG_L…立ち下がりエッジ検出回路
Bufe_R、Bufe_L…補償量調整アンプ
RISE_COMP…オーバーシュート補償回路
FALL_COMP…アンダーシュート補償回路
LD_RING_COMP…リンギング補償回路
Bufm…バッファ回路
LAT…ラッチ回路
IP…位相回転回路
PH_CNT_LOG…位相制御論理回路
DATA_TRAN_DEC_R…立ち上がりデータ遷移検出回路
DATA_TRAN_DEC_F…立ち下がりデータ遷移検出回路
PRE_TRAN_EQ_R…立ち上がり遷移前補償波形生成回路
PRA_TRAN_EQ_F…立ち下がり遷移前補償波形生成回路
LD_HB_COM_Tx…送信部ホールバーニング効果補償回路
HB_FIL…ホールバーニング補償フィルタ
TERM…終端回路
DUM_LD…LDダミー回路
LD_TEMP_CNT…レーザダイオード温度補償制御回路
G_AMP…補償量調整アンプ
LD_HB_COM_Rx…受信部ホールバーニング効果補償回路
PRAMP…プリアンプ
LA…リミットアンプ
CDR…クロック・データリカバリ
LD_TEMP_CNT_Rx…受信部レーザダイオード温度補償制御回路
EYM…アイモニタ
LMS_ALG…LMSアルゴリズム論理回路
OPT_COM…光特性補償制御
TEMP_SENS…LD温度モニタ
ADC…アナログデジタルコンバータ
REG…レジスタ
PrBufm、PrBufe…プリバッファ回路
DUTYAdj…デューティ比調整回路
DEL…遅延回路
LD_EQ…レーザ特性補償回路
LSI_LG: logical operation processing circuit logic device OBK ... optical element block LD ... laser diode PD ... photodiode LDD ... laser diode driver circuit TIA ... transimpedance amplifier circuit AFE ... analog front end block OMD ... optical communication module LOG ... encoding / decoding logic Circuits OFtx, OFrx ... Optical communication line LSI_OP ... Semiconductor chip PAM ... Pulse amplitude modulation NRZ ... Binary transmission SR ... Shift register PAM_GEN_LOG ... PAM signal generation logic circuit DAC ... Digital analog converter TRAN_ADJ_CNT ... Transition time adjustment circuit PRE_TRAN_LD_EQ ... LD before data transition Compensation circuit CLK ... Clock signal ENC_BK ... Encoding logic circuit DEC_BK ... Decoding logic circuit LD_RING_COMP ... Ging compensation circuit Drv ... Output circuit ADD, ADD_R, ADD_F, ADD_R_2, ADD_F_2 ... Addition / subtraction circuit DEL_R, DEL_F ... Delay circuit EDeg_LOG_R ... Rising edge detection circuit EDeg_LOG_L ... Falling edge detection circuit Buffer_R, Bufe_SE ... Compensation amount adjustment amplifier MPR Compensation circuit FALL_COMP: Undershoot compensation circuit LD_RING_COMP: Ringing compensation circuit Bufm ... Buffer circuit LAT ... Latch circuit IP ... Phase rotation circuit PH_CNT_LOG ... Phase control logic circuit DATA_TRAN_DEC_R ... Rising data transition detection circuit DATA_TRAN_DEC_F ... Falling data transition detection circuit PRE_TRAN_EQ_ Before transition Compensation waveform generation circuit PRA_TRAN_EQ_F ... Compensation waveform generation circuit before falling transition LD_HB_COM_Tx ... Transmitter hole burning effect compensation circuit HB_FIL ... Hole burning compensation filter TERM ... Termination circuit DUM_LD ... LD dummy circuit LD_TEMP_CNT ... Laser diode temperature compensation control circuit G_AMP ... Compensation amount Adjustment amplifier LD_HB_COM_Rx: Receiver hole burning effect compensation circuit PRAMP ... Preamplifier LA ... Limit amplifier CDR ... Clock / data recovery LD_TEMP_CNT_Rx ... Receiver laser diode temperature compensation control circuit EYM ... Eye monitor LMS_ALG ... LMS algorithm logic circuit OPT_COM ... Optical characteristic compensation control TEMP_SENS ... LD temperature monitor ADC ... Analog / digital converter REG ... Registers PrBufm, PrBufe ... Pre-buffer circuit DUTYAdj ... Duty ratio adjustment circuit DEL ... Delay circuit LD_EQ ... Laser characteristic compensation circuit

Claims (16)

  1.  1シンボルあたりNビットの情報を伝送するようにパルス振幅変調されたN(Nは、正整数)値多値信号によって、光信号と電気信号を相互変換し、電気信号から光信号を発生させる直接変調型レーザダイオードを用いた光通信モジュールであって、
     前記N値多値信号を入力して、前記直接変調型レーザダイオードに電流を供給するレーザダイオードドライバ回路を有し、
     前記レーザダイオードドライバ回路は、
     前記N値多値信号のデータ切り替わり後に一定の時間幅と振幅を有するリンギング補償波形を生成し、前記N値多値信号から前記リンギング補償波形を減算するリンギング補償回路と、
     前記リンギング補償回路出力の電圧信号を入力として前記直接変調型レーザダイオードに電圧信号を電流信号に変換した変調電流信号とバイアス電流を供給する出力回路とを備えることを特徴とする光通信モジュール。
    An optical signal and an electrical signal are mutually converted by an N (N is a positive integer) -value multilevel signal that is pulse-amplitude modulated to transmit N bits of information per symbol, and an optical signal is generated from the electrical signal. An optical communication module using a modulation type laser diode,
    A laser diode driver circuit that inputs the N-value multilevel signal and supplies current to the direct modulation laser diode;
    The laser diode driver circuit is:
    A ringing compensation circuit that generates a ringing compensation waveform having a constant time width and amplitude after data switching of the N-value multilevel signal, and subtracts the ringing compensation waveform from the N-value multilevel signal;
    An optical communication module comprising: a modulation current signal obtained by converting a voltage signal into a current signal and an output circuit for supplying a bias current to the direct modulation laser diode by using a voltage signal output from the ringing compensation circuit.
  2.  前記直接変調型レーザダイオードの緩和振動周波数は、前記レーザダイオードドライバ回路から電流を供給する際の基本周波数より低速であり、
     前記リンギング補償により生成される回路前記リンギング補償信号の時間幅と振幅は、前記直接変調型レーザダイオードのデータ切り替わり後に発生するオーバーシュート、および、アンダーシュートによるリンギング波形の時間幅と振幅値に合わせて調整されることを特徴とする請求項1記載の光通信モジュール。
    The relaxation oscillation frequency of the direct modulation laser diode is lower than the fundamental frequency when supplying current from the laser diode driver circuit,
    The time width and amplitude of the ringing compensation signal generated by the ringing compensation match the time width and amplitude value of the ringing waveform caused by overshoot and undershoot that occur after data switching of the direct modulation laser diode. The optical communication module according to claim 1, wherein the optical communication module is adjusted.
  3.  前記リンギング補償回路により生成される前記リンギング補償波形の時間幅と振幅は、
     前記N値多値信号の立ち上がり時の各振幅レベルへのデータ切り替わり後に発生するリンギング波形と、
     前記N値多値信号の立ち下がり時の各振幅レベルへのデータ切り替わり後に発生するリンギング波形とに合わせて、それぞれ、独立に調整されることを特徴とする請求項2記載の光通信モジュール。
    The time width and amplitude of the ringing compensation waveform generated by the ringing compensation circuit are:
    A ringing waveform generated after data switching to each amplitude level at the rise of the N-value multilevel signal;
    3. The optical communication module according to claim 2, wherein the optical communication module is independently adjusted in accordance with a ringing waveform generated after data switching to each amplitude level when the N-value multilevel signal falls.
  4.  前記レーザダイオードドライバ回路に前記N値多値信号を入力する符号化論理回路を有し、
     前記符号化論理回路は、
     前記N値多値信号の前シンボル多値データと次シンボル多値データを保持するシフトレジスタ回路と、
     前記次シンボル多値データから前記N値多値信号を生成する振幅多値信号生成論理回路と、
     前記振幅多値信号生成論理回路の出力であるデジタル信号をアナログ信号に変換するデジタルアナログ変換回路と、
     前記前シンボル多値データと前記次シンボル多値データを入力として、前記次シンボル多値データ生成時に前記幅多値信号生成論理回路に供給されるクロック信号のタイミングに、前記前シンボル多値データから前記次シンボル多値データのデータ切り替わり後の振幅レベルに応じて一定の位相差を与える遷移時間調整回路とを備えることを特徴とする請求項1記載の光通信モジュール。
    An encoding logic circuit for inputting the N-value multilevel signal to the laser diode driver circuit;
    The encoding logic circuit includes:
    A shift register circuit for holding previous symbol multi-value data and next symbol multi-value data of the N-value multi-value signal;
    An amplitude multilevel signal generation logic circuit for generating the N-level multilevel signal from the next symbol multilevel data;
    A digital-analog conversion circuit that converts a digital signal that is an output of the amplitude multi-value signal generation logic circuit into an analog signal;
    The previous symbol multi-value data and the next symbol multi-value data are input to the timing of the clock signal supplied to the width multi-value signal generation logic circuit when the next symbol multi-value data is generated. The optical communication module according to claim 1, further comprising a transition time adjustment circuit that gives a constant phase difference according to an amplitude level after the data switching of the next symbol multilevel data.
  5.  前記遷移時間調整回路で調整される前記次シンボル多値データのデータ切り替わりにおける遷移開始時刻の遅延量は、
     データ切り替わり時の前記前シンボル多値データから前記次シンボル多値データまでのデータ遷移の傾きが最もなだらかな軌道を基準にして、
     前記N値多値信号の各振幅レベルに到達するまでのデータ遷移間の軌道ばらつきが最小となるように立ち上がり、および、立ち下がりが調整されることを特徴とする請求項4記載の光通信モジュール。
    The delay amount of the transition start time in the data switching of the next symbol multilevel data adjusted by the transition time adjustment circuit is:
    Based on the trajectory where the slope of the data transition from the previous symbol multi-value data to the next symbol multi-value data at the time of data switching is the most gentle,
    5. The optical communication module according to claim 4, wherein rise and fall are adjusted so that variation in trajectory between data transitions until reaching each amplitude level of the N-value multilevel signal is minimized. .
  6.  前記符号化論理回路は、前記データ遷移前レーザダイオード補償回路を有し、
     前記データ遷移前レーザダイオード補償回路は、
     前記前シンボル多値データと前記次シンボル多値データを入力として、前記N値多値信号の立ち上がりのデータ遷移前のタイミングにおいて、一定な時間幅と振幅を持つ立ち上がりに対して逆特性の立ち上がり強調波形を生成し、
     前記N値多値信号の立ち下がりのデータ遷移前のタイミングにおいて、一定な時間幅と振幅を持つ立ち下がりに対して逆特性の立ち下がり強調波形を生成し、
     前記立ち上がり強調波形と前記立ち下がり強調波形を前記デジタルアナログ変換回路の出力で加算することを特徴とする請求項4記載の光通信モジュール。
    The encoding logic circuit includes a laser diode compensation circuit before the data transition,
    The laser diode compensation circuit before data transition is
    Using the previous symbol multilevel data and the next symbol multilevel data as inputs, rising emphasis having reverse characteristics with respect to a rising edge having a constant time width and amplitude at the timing before the data transition of the rising edge of the N-level multilevel signal Generate waveforms,
    In the timing before the data transition of the falling edge of the N-value multilevel signal, a falling emphasis waveform having a reverse characteristic with respect to the falling edge having a constant time width and amplitude is generated,
    5. The optical communication module according to claim 4, wherein the rising emphasis waveform and the falling emphasis waveform are added at an output of the digital-analog conversion circuit.
  7.  前記リンギング補償回路は、
     前記レーザダイオードドライバ回路の入力信号を増幅するバッファ回路と、
     前記入力信号から分岐された電圧信号を入力として立ち上がりで発生するリンギング波形を補償するオーバーシュート補償回路と、
     前記レーザダイオードドライバ回路の入力信号から分岐された電圧信号を入力として立ち下がりで発生するリンギング波形を補償するアンダーシュート補償回路とを備え、
     前記オーバーシュート補償回路、および、アンダーシュート補償回路は、それぞれ前記入力信号から分岐された電圧信号に前記N値多値信号の各振幅レベルに対応した一定の遅延量を与えるN-1個の遅延回路と、
     前記N値多値信号の各振幅レベルに対して立ち上がり、および、立ち下がりエッジを検出して前記遅延量の時間幅のリンギング補償波形をデータ遷移後のタイミングで立ち上がり、および、立ち下がりに対して逆特性で生成するエッジ検出回路と、
     前記N値多値信号の各振幅レベルに対して前記リンギング補償波形を一定のゲインで振幅調整する補償量調整アンプと、
    前記補償量調整アンプの出力信号を前記バッファ回路の出力で加算する加減算回路とを備え、
     前記加減算回路の出力は前記出力回路に入力されることを特徴とする請求項1記載の光通信モジュール。
    The ringing compensation circuit includes:
    A buffer circuit for amplifying an input signal of the laser diode driver circuit;
    An overshoot compensation circuit that compensates for a ringing waveform generated at the rising edge using a voltage signal branched from the input signal as input,
    An undershoot compensation circuit that compensates for a ringing waveform generated at the falling edge using a voltage signal branched from an input signal of the laser diode driver circuit as an input;
    The overshoot compensation circuit and the undershoot compensation circuit each provide N−1 delays that give a constant delay amount corresponding to each amplitude level of the N-level multilevel signal to the voltage signal branched from the input signal. Circuit,
    The rising and falling edges are detected for each amplitude level of the N-level multilevel signal, and the ringing compensation waveform having the delay time width is detected at the timing after the data transition. An edge detection circuit that generates a reverse characteristic;
    A compensation amount adjusting amplifier that adjusts the amplitude of the ringing compensation waveform with a constant gain for each amplitude level of the N-value multilevel signal;
    An addition / subtraction circuit for adding the output signal of the compensation amount adjusting amplifier at the output of the buffer circuit;
    The optical communication module according to claim 1, wherein an output of the addition / subtraction circuit is input to the output circuit.
  8.  前記エッジ検出回路により生成されるリンギング補償波形の時間幅、および、振幅が、前記直接変調型レーザダイオードの出力における応答波形が前記N値多値信号の各振幅レベルに対する定常状態との差が最小となるように、
     前記遅延回路の遅延量、および、前記補償量調整アンプのゲインが調整されることを特徴とする請求項7記載の光通信モジュール。
    The time width and amplitude of the ringing compensation waveform generated by the edge detection circuit are such that the difference between the response waveform at the output of the direct modulation laser diode and the steady state for each amplitude level of the N-level multilevel signal is minimized. So that
    8. The optical communication module according to claim 7, wherein a delay amount of the delay circuit and a gain of the compensation amount adjusting amplifier are adjusted.
  9.  前記遷移時間調整回路は、
     前記前シンボル多値データと前記次シンボル多値データとクロック信号を入力として前記前シンボル多値データと前記次シンボル多値データから前記次シンボル多値データのデータ遷移の方向および前記N値多値信号の振幅レベルを判断し、クロック位相を調整するための位相制御信号を出力する位相制御論理回路と、
     前記位相制御信号に対応して前記振幅多値信号生成論理回路に供給するクロック信号の位相を調整する位相回転回路とを備え、
     前記クロック信号の位相調整により、前記N値多値信号の各振幅レベルに到達するまでのデータ遷移間の軌道ばらつきが最小となるように立ち上がり、および、立ち下がり波形が調整されることを特徴とする請求項4記載の光通信モジュール。
    The transition time adjustment circuit includes:
    Direction of data transition from the previous symbol multilevel data and the next symbol multilevel data to the next symbol multilevel data and the N-level multilevel with the previous symbol multilevel data and the next symbol multilevel data as input. A phase control logic circuit that determines the amplitude level of the signal and outputs a phase control signal for adjusting the clock phase;
    A phase rotation circuit that adjusts the phase of the clock signal supplied to the amplitude multilevel signal generation logic circuit in response to the phase control signal;
    The rising and falling waveforms are adjusted by the phase adjustment of the clock signal so that the variation in trajectory between data transitions until the amplitude level of the N-level multilevel signal is reached is minimized. The optical communication module according to claim 4.
  10.  前記データ遷移前レーザダイオード補償回路は、
     前記前シンボル多値データと前記次シンボル多値データを入力として、前記前シンボル多値データと前記次シンボル多値データから前記次シンボル多値データの立ち上がりエッジを検出し、立ち上がりのデータ遷移前のタイミングで立ち上がり強調信号を立ち上がりに対して逆特性で生成する立ち上がりデータ遷移検出回路と、
     前記立ち上がり強調信号の振幅を調整する立ち上がり前補償波形生成回路と、
     前記立ち上がり前補償波形生成回路出力の前記立ち上がり強調信号を前記デジタルアナログ変換回路の出力で加算する加減算回路と、
    前記前シンボル多値データと前記次シンボル多値データから前記次シンボル多値データの立ち下がりエッジを検出し、立ち下がりのデータ遷移前のタイミングで立ち下がり強調信号を立ち下がりに対して逆特性で生成する立ち下がりデータ遷移検出回路と、
     前記立ち下がり強調信号の振幅を調整する立ち下がり前補償波形生成回路と、前記立ち下がり前補償波形生成回路出力の前記立ち下がり強調信号を前記デジタルアナログ変換回路の出力で加算する加減算回路とを備えることを特徴とする請求項6記載の光通信モジュール。
    The laser diode compensation circuit before data transition is
    Using the preceding symbol multilevel data and the next symbol multilevel data as inputs, detecting a rising edge of the next symbol multilevel data from the previous symbol multilevel data and the next symbol multilevel data, and before the rising data transition A rising data transition detection circuit that generates a rising emphasis signal at a timing with a reverse characteristic with respect to the rising edge, and
    A pre-rise-up compensation waveform generation circuit that adjusts the amplitude of the rise-up signal,
    An addition / subtraction circuit for adding the rising emphasis signal of the output of the pre-rise compensation waveform generation circuit with the output of the digital-analog conversion circuit;
    A falling edge of the next symbol multi-value data is detected from the previous symbol multi-value data and the next symbol multi-value data, and the falling emphasis signal has a reverse characteristic with respect to the fall at the timing before the falling data transition. A falling data transition detection circuit to be generated;
    A pre-fall compensation waveform generation circuit that adjusts the amplitude of the fall emphasis signal; and an addition / subtraction circuit that adds the fall emphasis signal output from the pre-fall compensation waveform generation circuit at the output of the digital-analog conversion circuit. The optical communication module according to claim 6.
  11.  前記立ち上がり強調信号の時間幅と振幅、および、前記立ち下がり強調信号の時間幅と振幅は、
     前記直接変調型レーザダイオードの周波数特性に対応して前記N値多値信号の各振幅レベルと立ち上がり、および、立ち下がりに対して、それぞれ独立に調整することを特徴とする請求項10記載の光通信モジュール。
    The time width and amplitude of the rising emphasis signal and the time width and amplitude of the falling emphasis signal are:
    11. The light according to claim 10, wherein each of the amplitude level, rising edge, and falling edge of the N-value multilevel signal is adjusted independently corresponding to the frequency characteristic of the direct modulation laser diode. Communication module.
  12.  光信号と電気信号を相互変換し、電気信号から光信号を発生させる直接変調型レーザダイオードを用いた光通信モジュールであって、
     前記直接変調型レーザダイオードに電流を供給するレーザダイオードドライバ回路を有し、
     前記レーザダイオードドライバ回路は、
     ホールバーニング補償回路と、
     出力回路とを有し、
     前記ホールバーニング補償回路は、
     前記レーザダイオードドライバ回路の入力信号から分岐された電圧信号を入力として、前記直接変調型レーザダイオードのホールバーニング効果で発生する低域の光出力の劣化に対して逆特性の伝達特性を有するホールバーニング補償フィルタ、または、前記光出力の劣化が生じる帯域と同じ帯域を有するハイパスフィルタとを備えたホールバーニング補償フィルタと、
     前記ホールバーニング補償フィルタの出力信号の振幅を調整し、ホールバーニング補償信号を生成する補償量調整アンプと、
     前記補償量調整アンプの出力信号を前記レーザダイオードドライバ回路の入力で加算する加減算回路とを備え、
     前記出力回路は、前記ホールバーニング補償回路出力の電圧信号を入力として前記直接変調型レーザダイオードに電圧信号を電流信号に変換した変調電流信号とバイアス電流を供給することを特徴とする光通信モジュール。
    An optical communication module using a direct modulation laser diode that mutually converts an optical signal and an electrical signal and generates an optical signal from the electrical signal,
    A laser diode driver circuit for supplying current to the direct modulation laser diode;
    The laser diode driver circuit is:
    A hole burning compensation circuit;
    An output circuit,
    The hole burning compensation circuit is:
    Using a voltage signal branched from the input signal of the laser diode driver circuit as an input, hole burning having a reverse transfer characteristic with respect to the degradation of the light output in the low band caused by the hole burning effect of the direct modulation laser diode A hole-burning compensation filter comprising a compensation filter or a high-pass filter having the same band as that in which the degradation of the optical output occurs.
    A compensation amount adjusting amplifier that adjusts the amplitude of the output signal of the hole burning compensation filter and generates a hole burning compensation signal;
    An addition / subtraction circuit for adding the output signal of the compensation amount adjustment amplifier at the input of the laser diode driver circuit,
    The output circuit supplies a modulated current signal obtained by converting a voltage signal into a current signal and a bias current to the direct modulation laser diode by using the voltage signal output from the hole burning compensation circuit as an input.
  13.  前記レーザダイオードドライバ回路は、レーザダイオード温度補償制御回路を有し、
     前記レーザダイオード温度補償制御回路は、
     前記直接変調型レーザダイオードの温度をモニタするレーザダイオード温度モニタと、
     前記レーザダイオード温度モニタの出力信号デジタル信号に変換するデジタルアナログ変換回路と、
     前記リンギング補償回路と前記遷移時間調整回路と前記データ遷移前レーザダイオード補償回路の設定値を保持する記憶回路とを備え、
     前記レーザダイオード温度補償制御回路は、
     前記直接変調型レーザダイオードの温度変化に応じて前記記憶回路の設定値を予め用意された最適値に書き換えることにより、直接変調型レーザダイオードの温度変化で生じるリンギング波形と遷移時間の劣化による伝送品質の劣化を補償することを特徴とする請求項6記載の光通信モジュール。
    The laser diode driver circuit has a laser diode temperature compensation control circuit,
    The laser diode temperature compensation control circuit is:
    A laser diode temperature monitor for monitoring the temperature of the direct modulation laser diode;
    A digital-analog conversion circuit for converting the output signal digital signal of the laser diode temperature monitor;
    The ringing compensation circuit, the transition time adjustment circuit, and a storage circuit that holds a set value of the pre-data transition laser diode compensation circuit,
    The laser diode temperature compensation control circuit is:
    Transmission quality due to deterioration of ringing waveform and transition time caused by temperature change of direct modulation laser diode by rewriting the set value of the storage circuit to the optimum value prepared in advance according to temperature change of the direct modulation laser diode The optical communication module according to claim 6, wherein the deterioration is compensated.
  14.  前記レーザダイオードドライバ回路は、レーザダイオード温度補償制御回路を有し、
     前記レーザダイオード温度補償制御回路は、
     前記直接変調型レーザダイオードの温度をモニタするレーザダイオード温度モニタと、
     前記レーザダイオード温度モニタの出力信号デジタル信号に変換するデジタルアナログ変換回路と、
     前記ホールバーニング補償回路の設定値を保持する記憶回路とを備え、
     前記直接変調型レーザダイオードの温度変化に応じて前記記憶回路の設定値を予め用意された最適値に書き換えることにより、直接変調型レーザダイオードの温度変化で生じるリンギング波形と遷移時間の劣化による伝送品質の劣化を補償することを特徴とする請求項12記載の光通信モジュール。
    The laser diode driver circuit has a laser diode temperature compensation control circuit,
    The laser diode temperature compensation control circuit is:
    A laser diode temperature monitor for monitoring the temperature of the direct modulation laser diode;
    A digital-analog conversion circuit for converting the output signal digital signal of the laser diode temperature monitor;
    A storage circuit for holding a set value of the hole burning compensation circuit;
    Transmission quality due to deterioration of ringing waveform and transition time caused by temperature change of direct modulation laser diode by rewriting the set value of the storage circuit to the optimum value prepared in advance according to temperature change of the direct modulation laser diode The optical communication module according to claim 12, wherein the optical communication module is compensated for deterioration.
  15.  光信号と電気信号を相互変換し、電気信号から光信号を発生させる直接変調型レーザダイオードと、光信号から電気信号を発生させるフォトダイオードを用いた光通信モジュールであって、
     フォトダイオードからの電流信号を増幅し、電圧信号に変換するトランスインピーダンスアンプ回路を有し、
     前記トランスインピーダンスアンプ回路は、
     前記フォトダイオード出力である単相電流信号を入力として単相電圧信号に変換し増幅するプリアンプと、
     前記プリアンプ出力である電圧信号を入力とするホールバーニング補償回路とを備え、
     前記ホールバーニング補償回路により、前記直接変調型レーザダイオードのホールバーニング効果による低域の光出力パワーの劣化を補償することを特徴とする光通信モジュール。
    An optical communication module using a direct modulation laser diode that mutually converts an optical signal and an electrical signal and generates an optical signal from the electrical signal, and a photodiode that generates an electrical signal from the optical signal,
    It has a transimpedance amplifier circuit that amplifies the current signal from the photodiode and converts it into a voltage signal,
    The transimpedance amplifier circuit is:
    A preamplifier that converts the single-phase current signal, which is the photodiode output, into a single-phase voltage signal as input and amplifies it;
    A hole burning compensation circuit that receives the voltage signal that is the preamplifier output, and
    An optical communication module, wherein the hole burning compensation circuit compensates for a deterioration in optical output power in a low band due to a hole burning effect of the direct modulation laser diode.
  16.  さらに、レーザダイオード温度補償制御回路を有し、
     前記レーザダイオード温度補償制御回路は、
     前記直接変調型レーザダイオードの温度変化による前記フォトダイオードに入力される光波形の特性の変化に応じて、前記ホールバーニング補償回路出力のアイ開口度を検出し、前記アイ開口度を最大とする最適値と前記検出結果との誤差信号を生成し、前記誤差信号が小さくなるように前記ホールバーニング補償回路の設定値を自動調整することを特徴とする請求項15記載の光通信モジュール。
    Furthermore, it has a laser diode temperature compensation control circuit,
    The laser diode temperature compensation control circuit is:
    Optimum that maximizes the eye opening by detecting the eye opening degree of the hole burning compensation circuit output in accordance with the change in the characteristics of the optical waveform input to the photodiode due to the temperature change of the direct modulation laser diode. 16. The optical communication module according to claim 15, wherein an error signal between the value and the detection result is generated, and a set value of the hole burning compensation circuit is automatically adjusted so that the error signal becomes small.
PCT/JP2016/067533 2016-06-13 2016-06-13 Optical communication module WO2017216841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067533 WO2017216841A1 (en) 2016-06-13 2016-06-13 Optical communication module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067533 WO2017216841A1 (en) 2016-06-13 2016-06-13 Optical communication module

Publications (1)

Publication Number Publication Date
WO2017216841A1 true WO2017216841A1 (en) 2017-12-21

Family

ID=60663574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067533 WO2017216841A1 (en) 2016-06-13 2016-06-13 Optical communication module

Country Status (1)

Country Link
WO (1) WO2017216841A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614908A (en) * 2021-11-24 2022-06-10 杭州太明科技有限公司 Optical receiver and trans-impedance amplifier chip thereof
JP7367557B2 (en) 2020-02-21 2023-10-24 富士通オプティカルコンポーネンツ株式会社 Optical communication device and correction method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191059A1 (en) * 2004-01-12 2005-09-01 Clariphy Use of low-speed components in high-speed optical fiber transceivers
JP2010141138A (en) * 2008-12-11 2010-06-24 Kagoshima Univ Laser diode driving device
JP2011160257A (en) * 2010-02-02 2011-08-18 Hitachi Ltd Optical transmission circuit and optical communication system
JP2014204440A (en) * 2013-04-03 2014-10-27 タイコ エレクトロニクス スベンスカ ホールディングス アーベー Method for improving signal quality of digital signal transmitted through non-linear device and apparatus using the same
US20150222366A1 (en) * 2014-02-06 2015-08-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Efficient pulse amplitude modulation integrated circuit architecture and partition
WO2015195424A1 (en) * 2014-06-19 2015-12-23 Fci Asia Pte. Ltd Precompensation technique for improved vcsel-based data transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050191059A1 (en) * 2004-01-12 2005-09-01 Clariphy Use of low-speed components in high-speed optical fiber transceivers
JP2010141138A (en) * 2008-12-11 2010-06-24 Kagoshima Univ Laser diode driving device
JP2011160257A (en) * 2010-02-02 2011-08-18 Hitachi Ltd Optical transmission circuit and optical communication system
JP2014204440A (en) * 2013-04-03 2014-10-27 タイコ エレクトロニクス スベンスカ ホールディングス アーベー Method for improving signal quality of digital signal transmitted through non-linear device and apparatus using the same
US20150222366A1 (en) * 2014-02-06 2015-08-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Efficient pulse amplitude modulation integrated circuit architecture and partition
WO2015195424A1 (en) * 2014-06-19 2015-12-23 Fci Asia Pte. Ltd Precompensation technique for improved vcsel-based data transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KARINOU, FOTINI: "Directly PAM-4 Modulated 1530- nm VCSEL Enabling 56 Gb/s/lambda Data-Center Interconnects", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 27, no. 17, 1 September 2015 (2015-09-01), pages 1872 - 1875, XP011665172, ISSN: 1041-1135 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7367557B2 (en) 2020-02-21 2023-10-24 富士通オプティカルコンポーネンツ株式会社 Optical communication device and correction method
CN114614908A (en) * 2021-11-24 2022-06-10 杭州太明科技有限公司 Optical receiver and trans-impedance amplifier chip thereof
CN114614908B (en) * 2021-11-24 2022-11-08 杭州太明科技有限公司 Optical receiver and transimpedance amplifier chip thereof

Similar Documents

Publication Publication Date Title
JP6334183B2 (en) Optical transmission circuit
US10547387B2 (en) Transition based feedforward equalization method and apparatus implemented with lookup table circuits
US8989300B1 (en) Multi-level coding and distortion compensation
US9094151B2 (en) Frame structure for adaptive data communications over a plastic optical fibre
US9048954B2 (en) Optical interconnect using optical transmitter pre-distortion
US9246598B2 (en) Efficient pulse amplitude modulation integrated circuit architecture and partition
US9184834B1 (en) Method and apparatus for detection and correction of time skew in an optical transmitter
US9735879B2 (en) Near-threshold optical transmitter pre-distortion
Yoffe et al. Low-resolution digital pre-compensation enabled by digital resolution enhancer
US20140255037A1 (en) Optical transmission for binary and duobinary modulation formats
US20110044384A1 (en) Decision feedback equalizer circuit
US7474858B2 (en) Duobinary optical transmission device using at least one semiconductor optical amplifier
Wang et al. Advanced digital signal processing for reach extension and performance enhancement of 112 Gbps and beyond direct detected DML-based transmission
WO2017216841A1 (en) Optical communication module
JP6502663B2 (en) Optical communication device
WO2016194091A1 (en) Optical communication module and optical communication device provided with same
JP2010068029A (en) Optical transceiver
Hu et al. A 50Gb/s PAM-4 retimer-CDR+ VCSEL driver with asymmetric pulsed pre-emphasis integrated into a single CMOS die
Megahed et al. A 27 Gb/s 5.39 pJ/bit 8-ary Modulated Wireline Transceiver Using Pulse Width and Amplitude Modulation Achieving 9.5 dB SNR Improvement over PAM-8
JP2015076581A (en) Optical transmission circuit, optical transmission device, and optical transmission system
US10944601B2 (en) Reception circuit, receiver, and reception control method
US10598852B1 (en) Digital-to-analog converter (DAC)-based driver for optical modulators
Chong et al. 112G+ 7-bit DAC-based transmitter in 7-nm FinFET with PAM4/6/8 modulation
US9148129B2 (en) Driver circuit with asymmetric boost
Mowlavi et al. VCSEL integrated circuit drivers: A review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP