TW202403342A - 高解析度寬條帶合成孔徑雷達(sar)成像 - Google Patents

高解析度寬條帶合成孔徑雷達(sar)成像 Download PDF

Info

Publication number
TW202403342A
TW202403342A TW111149226A TW111149226A TW202403342A TW 202403342 A TW202403342 A TW 202403342A TW 111149226 A TW111149226 A TW 111149226A TW 111149226 A TW111149226 A TW 111149226A TW 202403342 A TW202403342 A TW 202403342A
Authority
TW
Taiwan
Prior art keywords
satellite
steering
sar
strip
burst
Prior art date
Application number
TW111149226A
Other languages
English (en)
Inventor
艾倫 湯普森
肯尼 詹姆士
Original Assignee
芬蘭商冰眼公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芬蘭商冰眼公司 filed Critical 芬蘭商冰眼公司
Publication of TW202403342A publication Critical patent/TW202403342A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9041Squint mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9056Scan SAR mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本發明提供一種操作一合成孔徑雷達「SAR」以獲取包括一或多個子條帶之一條帶的影像資料之方法,其中該SAR係承載於沿著一飛行方向移動之一平台上且一輻射波束經引導朝向該條帶,該方法包括:針對各叢發沿著一個子條帶在方位角方向上電子轉向該波束;及在各叢發期間在與該飛行方向相反之一方向上機械轉向該波束。該方法容許獲得一經改良條帶對解析度比。

Description

高解析度寬條帶合成孔徑雷達(SAR)成像
本發明係關於合成孔徑雷達(SAR)成像。更特定言之,本發明係在高解析度寬條帶(HRWS) SAR成像之領域中。
合成孔徑雷達(SAR)系統之主要用途之一係對地球表面成像及監視地球表面。在此等用途中,SAR系統通常承載於航載(air-borne)或星載(space-borne)平台上。SAR系統係主動雷達系統,其中無線電波之脈衝經傳輸朝向待成像區域,且藉由在來自脈衝之回波從所關注區域反射或散射回時接收及處理該等回波而建構影像。SAR系統在根本上不同於光學成像系統,因為其等使用不同波長電磁輻射,且此外,其等供應其等自身之輻射。與光學系統相比,其等具有能夠白天或晚上及亦穿過雲層(cloud cover)獲取影像的優點。
SAR系統在此項系統中熟知,且自20世紀50年代之SAR之發明起,持續例如關於可達成之解析度及可成像之區域之大小改良SAR系統對地球成像之能力。一般而言,一「真實孔徑」雷達成像系統中之一較長天線導致在承載天線之平台之行進方向上的較高可達成解析度(稱為方位角解析度)。然而,尤其對於星載系統,達成良好方位角解析度所需之天線長度可使其等在大小及重量方面令人望而卻步。SAR藉由使用承載SAR系統之平台之移動以產生可提供類似於一較長「真實孔徑」天線之方位角解析度但使用一遠更短且更小天線的一「合成孔徑」來解決此問題。然而,習知單孔徑SAR系統仍受可達成之方位角解析度與可成像之「條」之寬度(稱為條帶寬度)之間的一基本權衡之約束。基本上,權衡在於達成一較精細方位角解析度減小可成像之條帶之寬度,且無法在未使方位角解析度降級之情況下對一較寬條帶成像。
此權衡適用於熟知先前技術SAR掃描模式,諸如Stripmap、ScanSAR (掃描合成孔徑雷達)及TOPS (使用漸進掃描之地形觀測)。歸因於此限制,可期望容許在對一較寬條帶寬度成像之同時達成一高方位角解析度的一技術。
鑑於先前技術之限制,可能在提供獲得一經改良條帶對解析度比之一SAR成像方法時經歷本發明之基本技術問題。
下文描述之實施例不限於解決上文描述之已知方法之任何或全部缺點的實施方案。
提供本[發明內容]以依一簡化形式引入下文在[實施方式]中進一步描述的概念之一選擇。本[發明內容]不旨在識別所主張標的物之關鍵特徵或基本特徵,亦不旨在用於判定所主張標的物之範疇;促進本發明之工作及/或用於達成一實質上類似技術效果的變體及替代特徵應被視為落在本文中所揭示之本發明之範疇內。
在一第一態樣中,提供一種操作一合成孔徑雷達「SAR」以獲取包括一或多個子條帶之一條帶的影像資料之方法,其中該SAR係承載於沿著一飛行方向移動之一平台上且一輻射波束經引導朝向該條帶,該方法包括針對各叢發沿著一個子條帶在方位角方向上電子轉向該波束,及在各叢發期間在與該飛行方向相反之一方向上機械轉向該波束。
在一第二態樣中,提供一種用於在一繞地球軌道中操作之衛星,其包括一合成孔徑雷達「SAR」以獲取包括一或多個子條帶之一條帶的影像資料,其中該衛星經組態以沿著一飛行方向移動且該SAR經組態以引導一輻射波束朝向地球,其中該SAR進一步經組態以針對各叢發沿著一個子條帶在方位角方向上電子轉向該波束,且在各叢發期間在與該飛行方向相反之一方向上機械轉向該波束。
在一第三態樣中,提供一種經組態以控制視情況根據第二態樣之一衛星以實行第一態樣之方法的地面站。該地面站可經組態以將一控制信號發送至該衛星。
本文中所描述之方法可由軟體執行,該軟體呈一有形儲存媒體上之機器可讀形式,例如,呈包括電腦程式碼構件之一電腦程式之形式,該電腦程式碼構件經調適以當程式在一電腦上運行時執行本文中所描述之方法之任何者的全部步驟,且其中電腦程式可體現在一電腦可讀媒體上。有形(或非暫時性)儲存媒體之實例包含磁碟、隨身碟、記憶卡、RAM、快閃記憶體等且不包含經傳播信號。軟體可適於在一平行處理器或一串列處理器上執行,使得方法步驟可按任何適合順序或同時實行。
本申請案認可韌體及軟體可為有價值的、可分開交易的商品。其旨在涵蓋在「基本型(dumb)」或標準硬體上運行或控制「基本型」或標準硬體以實行所要功能的軟體及韌體。其亦旨在涵蓋「描述」或定義硬體之組態的軟體,諸如,如用於設計矽晶片或用於組態通用可程式化晶片以實行所要功能的HDL (硬體描述語言)軟體。
如熟習此項技術者將明白,較佳特徵可視情況組合且可與本發明之態樣之任何者組合。根據第一態樣之方法可使用如結合根據第二態樣之衛星描述的特徵進行闡述。根據第二態樣之衛星可使用結合根據第一態樣之方法描述的特徵進行闡述。
在一第一態樣中,本發明提供一種操作一合成孔徑雷達「SAR」以獲取包括一或多個子條帶之一條帶的影像資料之方法,其中SAR係承載於沿著一飛行方向移動之一平台上且一輻射波束經引導朝向條帶,方法包括針對各叢發沿著一個子條帶在方位角方向上電子轉向波束,及在各叢發期間在與飛行方向相反之一方向上機械轉向波束。
首先,將說明用於描述SAR成像之術語:
為產生一SAR影像,傳輸無線電波之連續脈衝以照明一目標場景,且接收及記錄各脈衝之回波。可使用一單一波束成形天線來傳輸脈衝及接收回波。經傳輸脈衝可被描述為一輻射波束。在接收模式中,天線接收來自此輻射波束之反射及回散射輻射。由於SAR係板載於一移動平台(諸如一衛星)上,且因此相對於目標移動,故相對於目標之天線位置隨著時間改變且經接收信號之頻率歸因於都卜勒(Doppler)效應而改變。連續記錄之雷達回波的信號處理容許來自多個天線位置之記錄之組合,藉此形成合成天線孔徑以容許產生較高解析度影像。
由SAR瞬時照明之地球上的一區域被稱為一覆蓋區。一條帶係在SAR在地球上方移動時覆蓋區掃掠之地形條。沿著SAR之飛行方向/行進方向之一方向通常被稱為方位角或「沿軌」。橫向於飛行方向之一方向通常被稱為距離或「跨軌」。與飛行方向相反之一方向對應於後向方位角方向。
一條帶包括一或多個子條帶。各子條帶可在距離(或仰角)上不同。作為一實例,為獲得一較大地面覆蓋範圍,一條帶可由至少兩個及至多五個子條帶組成。替代地,條帶可包括至多十個子條帶,或至多二十個子條帶,或至多五十個子條帶。在各子條帶中,影像資料可在方位角方向上被區塊化成叢發。換言之,各子條帶可在方位角方向上被劃分成區塊,其中在一叢發期間收集一個區塊之影像資料。各叢發包括複數個脈衝。通常,一叢發可包括從20個至幾百個脈衝。可使用一逐叢發方法獲取影像資料。
波束轉向係指輻射天線波束之指向。例如,可在具有相控陣列天線之SAR系統中藉由調整往返於天線元件之RF信號的相位而電子轉向一波束。此改變自相控陣列天線傳輸及接收之輻射的主波瓣之方向。電子波束轉向具有一高準確度且可快速地發生。在一實例中,當轉向需要快速發生且轉向所需之角度不大時使用電子轉向。此可被稱為快速小角度電子轉向。
電子波束轉向通常可在方位角「沿軌」方向上抑或在仰角或「跨軌」方向上或兩者上執行。
一獲取循環包括兩個或更多個方位角叢發,其中切換波束以在跨軌方向上指向不同子條帶。可藉由連續執行複數個獲取循環來對長度上之一連續條帶成像。
機械波束轉向係指藉由實體地定向天線或承載天線之平台來引導SAR系統之波束。機械波束轉向可容許寬轉向角且因此可提供寬地面覆蓋範圍。可轉向較大角度,但一轉向角速率通常遠比可用電子轉向達成之轉向角速率更慢。此亦被稱為大角度機械轉向。
如[先前技術]章節中所提及,存在方位角解析度與條帶寬度之間的一權衡。對於真實孔徑雷達(RAR)系統,方位角解析度取決於雷達波束之寬度(照明寬度)及從天線至目標之距離。波束寬度繼而通常與天線長度(亦稱為孔徑)成反比,因此較長天線將大體上導致一較精細方位角解析度。然而,若距目標之距離非常大(例如,若雷達系統係承載於一星載平台上),則除非天線非常長,否則方位角解析度將相當粗糙。取決於所需方位角解析度及距目標之距離,天線可需要數公里長。此對於航載或星載系統,及尤其對於星載系統而言顯然不切實際。
SAR系統藉由使用SAR平台之前向移動及回波資料之特殊處理而使用一遠更短的真實天線產生一非常長的合成天線長度(或孔徑)來解決此。在運用一聚焦波束之一SAR系統之情況中,方位角解析度 與距目標之距離無關,且按熟習SAR技術者所熟知之一方程式與天線之長度 有關,該方程式在下文被展示為方程式1: (方程式1)
在距離或跨軌方向上不存在衛星之相對移動,因此驅動距離解析度之因素稍微不同於方位角解析度。然而,方位角解析度取決於天線之長度,距離解析度取決於經傳輸脈衝頻寬。
回顧SAR系統在一脈衝模式中操作,在一傳輸模式中發送出雷達脈衝,且接著關閉傳輸信號以接收返回回波。在一些SAR系統中,例如,傳輸時間係完成一個傳輸/接收循環所需之時間的大約5%至20%。以稱為脈衝重複頻率(PRF)之一特定頻率發送出脈衝。歸因於奈奎斯特(Nyquist)取樣定理,且為了避免頻疊,PRF需要大於在瞬時視場中從全部目標接收之都卜勒頻寬 ,如方程式2中所展示: (方程式2)
對於經典帶狀地圖模式,地面上之波束速度 與地面上方之SAR平台之速度 基本上相同,且都卜勒頻寬 可被表達為依據SAR平台之地面速度及方位角解析度 而變化,如下文在方程式3中展示。 (方程式3)
此導致限制依據方位角解析度 及地面上方之SAR平台之速度 而變化的斜距條帶寬度 之一基本不等式: (不等式4)
在不等式4中, 係光速且 係如由脈衝重複頻率( PRF)之倒數給出之脈衝重複時間間隔。此不等式描述斜距條帶寬度與方位角解析度之間的基本權衡:較精細方位角解析度需要一較高脈衝重複頻率,及因此一較小脈衝重複時間間隔,藉此導致一較窄斜距條帶寬度。
應注意,斜距條帶寬度 係從天線至條帶之遠邊緣的距離與從天線至條帶之近邊緣的距離之間之差,而非沿著地面之條帶之實際寬度。地面條帶寬度亦取決於對條帶成像所依之角度,且實際值可使用此項技術中熟知之基本三角學及技術從斜距條帶寬度計算。無論如何,針對一給定傾斜角,較大斜距條帶寬度導致較大地面條帶寬度。
為提供如何基於方位角解析度計算斜距條帶寬度之一實例,考量承載在地球表面上方大約550 km處之近地軌道中操作的一單孔徑SAR系統之一衛星。在地球表面上方550 km之一距離處,在一以地球為中心之旋轉座標系中,衛星將具有大約7 km/s之一地面速度。將7 km/s之 以及大約300,000 km/s之光速 插入至不等式4中,斜距條帶寬度如不等式5中所展示: (不等式5)
接著,不等式5可用於計算此衛星可針對一給定解析度達成之最大斜距條帶寬度。例如,若所要方位角解析度係1.5 m,則此可達成之最大斜距條帶寬度將為大約32 km。在具有介於大約45°與47.7°之間之入射角及大約32 km之一斜距條帶寬度的一實例中,地面條帶寬度將為大約44 km。
在根據本發明之一實例中,描述承載一單孔徑SAR系統之一衛星及操作此一衛星之一方法,使得可達成一較高斜距條帶寬度對方位角解析度而無需多個孔徑。此係藉由組合方位角方向上之機械轉向與電子轉向而達成。根據此實例,在各方位角叢發期間在與飛行方向相反之一方向上機械轉向波束。此亦被稱為一(經疊加)機械後向掃描。
對於經典SAR帶狀地圖模式及ScanSAR模式, 與地面上方之SAR平台之速度基本上相同,如下文在方程式6中展示: (方程式6)
應注意,在由一衛星承載之一SAR系統之實例中,歸因於地球之旋轉及衛星在具有大於地球半徑的一半長軸線之一軌道中行進,在一地球旋轉座標系中在地面上方之衛星之速度可不同於衛星在其軌道路徑中之慣性速度。在航載系統中,出於實際目的,此差異係可忽略不計的。
在根據本發明之一實例中,在與飛行方向相反之一方向上機械轉向一衛星將相反方向上之一速度疊加在地面上方之衛星速度上,使得地面上方之波束有效速度 小於 ,如下文之不等式7中所展示: (不等式7)
在此實例中,不等式4中之 不再等於 ,且在與飛行方向相反之一方向上機械轉向波束將波束地面速度與衛星地面速度有效地解耦。
藉由將波束地面速度與衛星地面速度解耦,不等式4不再適用,且達成高於不等式4原本將允許之條帶寬度對解析度比變得可行。在一實例中,波束地面速度 可經由機械轉向選擇且可在從 一直減小至零之範圍內。一較快後向機械迴轉速率甚至可能導致一負 但將減小在一特定點上之總體停留時間。
獲取一個子條帶之影像資料可包括在一或多個叢發中獲取影像資料。兩個連續叢發可照明一相同區段、重疊區段、不同相鄰區段或一個子條帶之彼此間隔之不同區段。因此,可對對應於一個子條帶之一單一連續條成像。獲取兩個或更多個子條帶之影像資料可包括在兩個或更多個叢發中獲取影像資料,其中至少兩個叢發照明不同子條帶。
在一實例中,在一子條帶內獲取影像資料可包括在各方位角叢發期間之電子轉向。可在方位角方向上從後向至前向電子轉向波束(前向方位角叢發)。與經典ScanSAR相比,此可提供整個條帶內之更佳輻射均勻性。在一實例中,亦可在方位角方向上從前向至後向執行各叢發內之電子轉向(後向方位角叢發)。
可藉由使SAR相對於平台旋轉及/或使包含SAR之平台移動或迴轉來執行機械轉向波束。替代地,可使用一旋轉反射器來轉向SAR。為將波束引導至一特定目標,當平台(諸如一衛星)足夠小以進行機械轉向且天線剛性地附接至平台時,平台自身可實行旋轉。可在介於至少-10°與+10°、-23°與+23°、-30°與+30°、-45°與+45°或-60°與+60°之間之一視角範圍內機械轉向波束。
機械轉向波束可能減小地面上方之波束之一有效地面速度。小於衛星地面速度之機械後向掃描之任何掃描速度將減小地面上之波束之有效地面速度。當機械後向掃描之速度等於衛星地面速度時,有效地面速度可減小為零。在此實施例中,利用一聚光燈模式,其中波束朝向一固定點轉向以照明/停留在一特定區域上。長照明持續時間導致一增加的合成孔徑長度及因此一較佳解析度。
機械轉向波束之一轉向角速率可低於電子轉向波束之一轉向角速率。在一實例中,機械轉向角速率比電子轉向角速率低至少1/2或2/3。電子轉向之一良好可控性容許針對一方位角叢發選取一轉向角速率。例如,在一個方位角叢發期間,可依1°/s或更大之一轉向角速率電子轉向波束以達成一高照明時間。替代地,可在對相同目標執行兩個連續叢發時在各叢發期間依2°/s或更大之一轉向角速率電子轉向波束以增加視角之數目。此可幫助藉由平均化兩個或更多個「觀看」內之各像素的值而減少一影像中之斑點,或藉由增加目標照明時間而改良解析度。在方位角叢發之間,可以一遠更快速率(諸如100°/s或更高)電子轉向波束。通常,歸因於與機械系統相關聯之慣性,機械轉向依比電子轉向遠更緩慢且更連續的一速率進行。例如,可依1°/s或更小、2°/s或更小或5°/s或更小執行機械後向掃描。
在一實例中,視情況,機械轉向波束之一轉向角範圍之大小可為電子轉向波束之一轉向角範圍的至少5倍、至少10倍或至少30倍。此實施方案容許影像獲取可在目標仍在使用電子轉向可及之距離之外時已開始,及/或在目標不再在使用電子轉向可及之距離內時繼續。方位角上之電子轉向通常在±1°、±1.5°或±2°之一範圍內執行,其中機械轉向可實際上在高達±45°之一範圍內執行。可取決於所要影像大小/條帶長度及所要解析度來選取機械掃描之範圍。對電子轉向之可用角度範圍之限制在實體設備間變化,但在一實例中,限制可被設定為在仰角上高達±25°或更高及在方位角上為±2°或更高。
為增加總條帶寬度及因此影像之覆蓋區域,可在兩個叢發之間在仰角上電子轉向波束。二維電子轉向(在仰角及方位角上)容許由相同SAR波束對多個子條帶成像。在各子條帶內,一經成像區域可用一個叢發或用具有較短持續時間之兩個或更多個叢發來掃描。此可藉由在叢發之間在方位角上從前向至後向電子轉向波束,使得兩個或更多個叢發可各自被執行為一前向方位角叢發而達成。因此,用覆蓋相同區域之相同方位角天線場型執行兩個叢發。在叢發之間,可按一非常快速的實際上瞬時時間尺度在方位角、仰角或兩者上使用小角度電子轉向非常快速地轉向波束。
若需要一較寬條帶,則可在包括複數個叢發之一個獲取循環期間在仰角上連續地轉向波束,其中各叢發照明一不同子條帶。在一個獲取循環期間,場型未固定至一個子條帶而是連續轉向至對應於兩個或多個子條帶之不同仰角。在一或多個叢發期間照明各子條帶。
可執行兩個或更多個獲取循環,其中各獲取循環之各第一叢發照明相同子條帶。可在不同方位角位置處重複獲取循環。循環地重複仰角上之轉向以容許兩個或多個連續子條帶之成像。當照明最後一個子條帶時,天線經電子轉向回至第一子條帶,使得在相同子條帶之叢發之間未留下間隙。此獲取場型容許獲得寬條帶SAR影像。在此獲取場型中執行之電子轉向可對應於藉由漸進掃描之地形觀測「TOPS」成像模式的電子轉向。與僅使用仰角上之電子轉向的常規SCANSAR相比,運用TOPS獲取場型,可達成更佳輻射均勻性。尤其運用小且靈活的衛星,當方位角及仰角兩者上之電子轉向與機械轉向組合時,高解析度及寬條帶成像變得可行。在一實例中,可藉由僅具有約150 kg的一質量之一小型靈活衛星或微型衛星以精細達5 m之一解析度對至少100 km x 100 km之一條帶成像。
可在兩個或更多個獲取循環期間持續地執行在與飛行方向相反之方向上機械轉向波束。因此,一緩慢後向方位角掃描疊加在仰角及方位角上之快速電子轉向上以容許兩個或多個連續子條帶之成像。在整個獲取中從前向至後向之機械轉向可係以一恆定旋轉速率或以一變化速率,諸如維持有效地面速度恆定所需之變化速率。當從前向至後向機械轉向波束時,都卜勒頻移從>0改變為0至<0。歸因於經疊加機械掃描,電子掃描實質上始終不垂直於飛行方向。代替性地,例如,獲取期間之觀看方向可以實質上非垂直前視開始,轉變通過實質上垂直側視且以實質上非垂直後視結束。使用一單一持續機械後向掃描容許一增加的獲取時間,此係因為歸因於機械天線定位(諸如使一衛星或衛星上之一天線移動或迴轉/安定)而誘發之安定時間減少。
待用於影像獲取之參數可藉由以下來判定:選擇一影像大小,選擇一解析度,挑選一最大電子轉向角,計算一叢發持續時間,選擇一波束速度及導出一影像獲取時間。
在一第二態樣中,本發明提供一種用於在一繞地球軌道中操作之衛星,其包括一合成孔徑雷達「SAR」以獲取包括一或多個子條帶之一條帶的影像資料,其中該衛星經組態以沿著一飛行方向移動且該SAR經組態以引導一輻射波束朝向地球,其中該SAR進一步經組態以針對各叢發沿著一個子條帶在方位角方向上電子轉向該波束,且在各叢發期間在與飛行方向相反之一方向上機械轉向該波束。
衛星可包括包含經組態以藉由使包含SAR之衛星旋轉而控制波束之機械轉向的一或多個反作用輪之一姿態判定控制系統「ADCS」。在一實例中,衛星可使用三個或更多個反作用輪使得其等可繞全部三個軸線旋轉。ADCS可用於控制衛星之定向且可以若干方式實施。
衛星可經組態以藉由在方位角方向上以至多1°/秒迴轉而機械轉向波束。衛星可具有小於1000 kg、小於500 kg、小於250 kg或小於100 kg之一總質量。具有一低質量之一衛星具有遠低於傳統較大SAR衛星之一慣性矩。較大衛星歸因於其等較高慣性矩而需要較大能量及時間消耗以加速以依一給定迴轉速率旋轉,且再次使其等減慢同樣如此。對於具有較低慣性矩之較小衛星系統,使衛星以一給定速率迴轉之功率需求的負荷遠更低,此由於太空中之衛星可用的功率有限而為一優點。
SAR可包括容許在兩個維度上之電子波束轉向的一小型單孔徑雷達及/或一相控陣列。SAR可包括一單孔徑相控陣列雷達。運用一單孔徑雷達,使用一單一波束成形天線傳輸脈衝及接收回波。歸因於用於感測器酬載(payload)之有限可用空間,板載於(無人)移動平台(諸如一衛星)之緊湊型高解析度SAR系統的設計可期望單孔徑雷達(尤其較小單孔徑雷達)。根據本發明,可使用一小型單孔徑雷達同時獲得一精細方位角解析度及一寬條帶,此歸因於根據不等式4之基本限制而通常不可行。因此,一單孔徑雷達可克服先前僅可透過多孔徑方法以天線之增加的成本克服之限制。具有在垂直於雷達距離維度之兩個維度上空間分佈的天線元件之一相控陣列天線可容許在方位角及仰角上之二維波束轉向。
實體設備可經設計以提供不同電子轉向範圍。在一實例中,電子轉向一相控陣列天線之總可能範圍取決於天線之元件之間在方位角及仰角上的間距。元件之間距愈緊密,則可達成之範圍愈寬。一相位陣列天線中之天線元件可配置成二維柵格圖案,使得在一個方向上之間距可能與在另一方向上之間距完全不同。因而,在方位角上之角度範圍可能與在仰角上之角度範圍完全不同,即使在兩個方向上以一類似方式達成電子轉向。在一實例中,一相控陣列天線具有散佈在3.2 m內以用於在方位角方向上引導波束的20個天線元件,從而提供大約160 cm之一天線元件間距、方位角上約±1°之一電子轉向角。在相同實例中,相同相控陣列天線可具有散佈在40 cm內以用於在仰角方向上引導波束的16個天線元件,從而提供大約2.5 cm之一天線元件間距。更緊密間距容許在仰角方向上之±25°之一遠更寬電子轉向範圍。可藉由添加更多天線元件且將其等更緊密間隔在一起而在方位角方向上達成更高角度範圍,但此可能導致額外複雜性、重量、成本及其他權衡。在一第三態樣中,本發明提供一種經組態以控制視情況根據第二態樣之一衛星以實行第一態樣之方法的地面站。地面站可經組態以將一控制信號發送至衛星。
下文僅藉由實例描述本發明之實施例。此等實例表示申請人當前已知之將本發明付諸實踐的最佳模式,但其等並非可達成此之僅有方式。
圖1係在地球上方之軌道中的一衛星100之一透視圖,其作為可用於此處描述之用於地球觀測的方法及系統中之一平台之一實例。在200處指示待成像之地球上之一目標區域。衛星100包括一本體110、太陽能面板150及「翼」 160。一或多個天線可安裝於衛星翼上。各天線可包括一相控陣列天線,換言之,各天線可包括可經控制以電子轉向天線波束之方向以控制一經傳輸脈衝之方向及形狀,及/或控制可從其接收回波之方向及區域的多個天線元件。
除電子轉向之外,衛星100亦可經組態用於在傳輸及/或接收模式中時機械轉向天線及因此波束。在此實例中,藉由轉向整個衛星100而達成機械轉向。此可使用可具備一或多個反作用輪之衛星姿態判定及控制系統ADCS來達成,在170處指示該一或多個反作用輪之一者。在衛星100在其軌道中行進時,ADCS可用於機械轉向衛星以將目標區域200維持在雷達孔徑內(換言之,在衛星視線內)達長於在無機械轉向之情況下目標區域200可見的一時期。
參考圖6及圖7描述圖1之衛星之進一步細節。
圖2係根據先前技術之在ScanSAR成像模式中操作的一衛星之一示意性繪示。衛星100係其中其發送及接收自一目標區域200至衛星100之側而非其正下方的信號之一熟知側視組態。在此側視組態中,翼160之底部(天線元件所定位之處)指向所成像區域。衛星100在飛行方向120上行進。目標區域200具有一寬度,在此項技術中亦稱為條帶。在此實例中,條帶包括子條帶200A、200B、200C。針對自衛星100傳輸之各雷達脈衝,可歸因於都卜勒效應而以不同頻率從跨條帶200之不同點接收呈回波形式的信號資料,此對於SAR極為重要。
衛星100被展示為在其軌道中相對於地球從右向左行進,如由箭頭指示。在ScanSAR模式中,待自其收集資料之一區域(例如,圖2中所指示之100 km x 100 km區域)被劃分成適合數目個子條帶,例如,三個子條帶200A、200B、200C,其中各子條帶在方位角上被劃分成此處所稱為的「區塊」。因此,在各子條帶中,經接收資料在方位角方向上被區塊化成雷達回波之叢發。在圖2之實例中,區塊形成一偏移場型。藉由交替地照明各子條帶而對由數個子條帶200A、200B、200C組成之一寬條帶200成像。雷達天線波束掃掠遍及不同仰角之子條帶200A、200B、200C以對一寬條帶200成像。在覆蓋地面上之不同區域或「區塊」之若干叢發之間共用可用照明時間,藉此針對較寬覆蓋範圍權衡方位角解析度。為在不同子條帶200A、200B、200C之間切換,非常快速地執行仰角上之電子轉向。
在如圖2中所描繪之經典ScanSAR中,地面上方之一波束速度與衛星地面速度相同。因此,在各叢發期間,未執行電子波束轉向且波束以衛星地面速度沿著其滑行。因此,方位角解析度受損,此係因為根據方程式4之每解析度之條帶約束適用。
在將在下文中更詳細描述之一些方法及系統中,執行在與飛行方向相反之一方向上之機械波束轉向,同時在各叢發期間,亦為了增加的輻射均勻性執行方位角上之電子波束轉向。
圖3示意性地繪示當在執行一機械後向掃描之同時在叢發模式中操作時如何獲取一條帶200之影像資料。在圖3中以誇大形式繪示機械轉向,其中衛星100被展示為在沿著其路徑之三個位置(a)、(b)及(c)之各者處具有一不同定向。在沿著飛行方向120之各位置之間,如由箭頭展示,衛星100已旋轉以在方位角方向上進一步指向後。旋轉與飛行方向120相反。在一第一位置(a)中,衛星100相對於行進方向120向前看,在一第二位置(b)中,衛星波束垂直於衛星之行進方向,且在一第三位置(c)中,衛星100相對於行進方向120向後看。因此,衛星100執行一機械後向掃描。歸因於經疊加機械掃描,觀看方向實質上不垂直於飛行方向,唯一例外狀況係位置(b)。此實施方案容許影像獲取可在位置(a)之前在目標200仍在使用電子轉向可及之距離之外時已開始,及/或在位置(c)之後在目標不再在使用電子轉向可及之距離內時繼續。
除機械後向掃描之外,在各叢發期間亦在方位角上電子轉向波束,此在圖3中藉由各位置中之波束之間的箭頭指示。在前向方向上執行方位角上之電子轉向,如由箭頭指示。在另一實例中,可在後向方向上執行方位角上之電子轉向。歸因於方位角波束轉向,每一點皆由一全方位角波束照明。與圖2中所展示之ScanSAR相比,在整個獲取中藉由電子轉向達成之方位角旋轉達成相同條帶覆蓋範圍但容許達成更佳輻射均勻性。
在獲取期間之地面上波束速度對應於一個叢發內之機械轉向與電子轉向之一加總,藉此將地面上波束速度與衛星地面速度解耦。換言之,波束地面速度取決於方位角叢發期間之掃描速度及機械後向掃描之速度。因此,波束地面速度可經由機械轉向選擇。在與飛行方向120相反之一方向上機械轉向波束減小波束在地球上之一有效地面速度,藉此容許較大照明及因此較佳解析度。減慢波束地面速度之效果係一較長叢發持續時間及一較長獲取時間,此導致一更精細解析度。因此,方位角解析度未受損,此係因為根據不等式4之每解析度之條帶約束不適用。
除各叢發期間之機械後向掃描及方位角上之電子轉向之外,亦在複數個獲取循環期間在仰角上連續地轉向波束。在圖3之實例中,條帶200包括三個子條帶200A、200B、200C,其中各子條帶包括複數個區塊。在例如一第一子條帶200A中之一叢發結束時,改變視角以照明一第二子條帶200B而再次指向後。當對一第三/最後一個子條帶成像時,波束往回指向第一子條帶,使得在相同子條帶之叢發之間未留下間隙。藉由快速小角度電子轉向來達成叢發之間之波束轉向。
圖3中所描繪之條帶200 (其係一100 km x 100 km區域)可以5 m解析度成像。衛星以7.5 km/s之一速度沿著飛行方向行進,其中機械轉向將-3.75 km/s之一速度疊加在衛星之實際地面速度上,而導致3.25 km/s之一有效地面速度。在此實例中,總機械轉向角係35°。
現將參考圖4及圖5描述疊加電子與機械轉向之進一步實例。
圖4a繪示可如何經由機械轉向選擇波束地面速度。圖4a中之頂部箭頭124表示沿著飛行方向120引導之衛星速度。箭頭126表示與飛行方向120相反引導且小於衛星速度124的機械轉向方向。箭頭202描繪沿著飛行方向120定向之所得波束有效地面速度。因此,藉由使用一經疊加機械後向掃描,減小波束之有效地面速度且將其與衛星地面速度解耦。波束有效地面速度202可經由機械轉向206選擇。圖4a中未展示在各方位角叢發內之電子轉向期間誘發的掃描速度,其可沿著飛行方向或與飛行方向相反引導。為完整起見,未展示仰角上之轉向,此係因為其不影響波束地面速度。
圖4b繪示在處理原始合成孔徑雷達資料之後叢發影像之偏移場型。圖4b描繪在一偏移場型中被劃分成更小區域或區塊之地面上之一區域,因為其可能用於SAR在ScanSAR或TOPS模式中之操作。因此,如先前描述,可電子轉向SAR波束以依數字順序依次從區塊1至15及在飛行方向120上從左至右(參見圖4a)收集資料。圖4b中之虛線內之交叉影線矩形對應於100 km x 100 km之一待成像區域或條帶。相較於圖3,條帶包括四個子條帶200A、200B、200C、200D。
將參考圖5之時間圖說明圖4b中所描繪之獲取場型。圖4b中被標記為1至10之區塊對應於圖5d中所展示之叢發1至10。因此,在一個(單一)叢發中對各區塊成像。代替在一單一叢發中對各區塊成像,可針對各區塊執行一個以上叢發以增加各區塊之視角之數目,但以較不精細的解析度為代價。當在一個叢發中對各區塊成像時,一獲取循環包括對應於在仰角上不同之四個相鄰子條帶200A、200B、200C、200D中的區塊之四個連續叢發。因此,為了對條帶成像,在一第一獲取循環中,對區塊1至4成像,在一第二連續獲取循環中,對區塊5至8成像,等等。
為進行此,週期性地在方位角上向前電子轉向波束,如圖5a中所展示,其中在一叢發期內,波束方位角從一負角轉向通過零而至一相等正角。在叢發期結束時,波束快速地轉向回至負角。此在圖5a中被指示為一實質上垂直線,此係因為其可在數微秒內發生。針對連續叢發,此在相同角度範圍內重複。
為在子條帶之間切換,週期性地在方位角上電子轉向波束,如圖5b中所展示。在各叢發期間,波束指向對應於各自子條帶200A、200B、200C、200D之各叢發期的一恆定仰角,此由圖5b中之水平線指示。在叢發期結束時,波束在方位角及跨軌方向上快速轉向(逐步)至下一子條帶。在各獲取循環結束時,波束快速地轉向回至第一子條帶。此在圖5b中被指示為實質上垂直線,此係因為其在數微秒內發生。
在一較大角度範圍內且針對一較長時段之方位角上的機械後向轉向疊加在方位角及仰角上之週期性電子轉向上,如圖5c中所展示。為繪示目的,圖5c展示機械轉向之兩個簡化實例。圖5c中所展示之實線對應於機械轉向之一恆定轉向角速率,諸如衛星之一恆速旋轉。圖5c中之虛線對應於可用於維持有效地面速度恆定之機械轉向的一非線性轉向角速率。非線性轉向角速率在開始及結束時(當轉向角最大時)提供較高速率且在轉向角約為零時(當觀看方向垂直於飛行方向時)提供較小速率。方位角上之機械後向轉向亦可對應於一線性及非線性轉向角速率之一組合。
可在獲取期內(圖5中僅描繪獲取期之開始)將方位角上之波束角度從一正角機械轉向通過零而至一相等負角。關於圖3中所展示之例示性旋轉,一正角對應於第一(向前看)位置(a),零對應於第二(垂直於飛行方向)位置(b),且一負角對應於第三(向後看)位置(c)。亦可在一非對稱轉向角範圍內(諸如(舉例而言)僅針對轉向角<0或>0)執行機械後向轉向。
如圖5中所展示,特定言之當比較圖5a及圖5c時,機械轉向波束之轉向角速率低於電子轉向波束之轉向角速率。電子轉向速率之良好可控性容許選取一特定電子掃描速率以增加各區塊之照明時間。此外,機械轉向波束之轉向角範圍遠高於電子轉向波束之一轉向角範圍。一典型轉向角範圍在方位角上係大約±1°且在仰角上高達±25°以用於電子轉向波束,而一機械轉向角範圍可高達±45°,或高達±60°。雖然理論上可用電子波束轉向達成較大方位轉向角,但其將需要一更複雜的、更大的且更昂貴的天線。藉由組合快速小角度電子轉向與大角度機械轉向,可達成使用其他已知單孔徑雷達成像技術不可行之一經改良條帶寬度對解析度比。
在一實際實施方案中,由圖4b中之矩形指示之區域(其包括三個或四個子條帶)的一總獲取時間係大約40秒且可達成5 m之一解析度。在此實例中,各叢發需要大約2.5 s至3 s。為比較起見,提及ScanSAR模式(如圖2中所展示)中之相同大小區域的一總獲取時間係約15秒且可達成15 m之一解析度。根據本發明之較長獲取時間藉由疊加在地面上衛星速度上的機械後向掃描變得可行,且導致波束之一較緩慢有效地面速度。在一替代實例中,包括兩個子條帶之60 km x 60 km之一區域可以3 m之一解析度及35秒之一總獲取時間成像。
如在別處提及,此處描述之方法尤其但非排他地適於結合承載在一衛星上之一SAR的實施方案。例如,SAR可承載在其他平台上(諸如一飛機上)。現將參考圖1、圖6及圖7描述適用於實施本發明之一衛星。
圖6係根據本發明之一些實施例之一衛星(例如,一微型衛星)的組件之一示意圖表示。組件之間之實線箭頭係用於指示電力連接,較粗實線箭頭係用於指示RF信號連接,且虛線係用於指示資料連接。
一些組件係由圖6中之一矩形指示的衛星「匯流排」 610之部分,且一些可為由圖6中之一矩形指示的「酬載」 660之部分。其他組件係亦由圖6中之一矩形指示的一天線模組670之部分。圖6中所展示之衛星組件包括一電源101及一電力分配系統102。電源101及電力分配系統102將電力供應至一推進系統190、推進控制器109、姿態判定及控制系統「ADCS」 131、運算系統103、緩衝器135及一通信系統104。電源101及電力分配系統102亦將電力供應至酬載660內之組件,諸如脈衝產生器620及功率放大器623。雖然被展示為一單獨品項,但緩衝器135亦可被包括在運算系統103中。推進控制器109在此處被展示為一單獨品項,但實務上,其可形成運算系統103之部分。推進控制器可透過使用在包括在推進控制器109中之一或多個處理器中實施的控制軟體抑或回應於例如來自運算系統103之經接收指令而控制。在自運算系統103傳輸指令之情況下,運算系統可被視為包括一推進控制器。推進控制器109之功能之一者可為將控制信號輸出至推進系統190中的推力器之離子源及電子源。
衛星匯流排610可大體上定位於衛星之本體110中。電力分配系統102可包括如此項技術中已知之控制邏輯。通信系統104可包含例如定位於衛星本體上之一或多個通信天線。替代地,通信系統104可經由定位於衛星之一翼上的一或多個通信天線來發送及接收信號。
在一地球觀測衛星之情況中,衛星酬載660可包含可定位於衛星之一或多個翼160處的一或多個雷達天線陣列。圖6展示可為用於SAR成像之一相控陣列天線的部分之一單一天線元件625。天線元件625傳輸及接收信號626。天線元件625被展示為具有用於傳輸雷達信號之一相關聯功率放大器623及移相器624,及用於接收返回信號之一相關聯低雜訊放大器628及移相器627。此等在一起形成一天線模組670。相控陣列天線可包括多個天線模組670。在一實例中,一衛星搭載相控陣列天線包括320個天線元件以及相關聯放大器及移相器。不同相控陣列天線將取決於其等設計及預期目的而具有不同數目個天線元件。藉由經由移相器624及627使個別天線組件移相而達成天線之電子轉向,如此項技術中已知。
一脈衝產生器620產生被發送至雷達傳輸及接收模組621之一RF信號。雷達信號被發送至RF分配器622且RF分配器622劃分RF信號並將其發送至多個天線模組670。在圖6中展示一個天線模組670,但可存在多個天線模組。一RF組合器629接收來自多個天線模組670之組合信號且將經接收RF信號發送至雷達傳輸及接收模組630。資料儲存於記憶體631中。記憶體631可與記憶體108相同或與記憶體108分開。脈衝產生器620、雷達發射機621、雷達接收器630、RF分配器622及RF組合器629可定位於衛星本體110中抑或在衛星翼160上。從圖6中之RF分配器622延伸之額外箭頭指示自RF分配器622輸出至一或多個額外天線模組的一或多個額外RF輸出,且指向RF組合器629之額外箭頭指示自一或多個額外天線模組進入RF組合器629的一或多個額外RF輸入。
此處描述之方法及系統係指一單一天線或一單一孔徑之轉向。然而,其等可容易擴展至包括多個天線或多個孔徑之系統。
天線模組670乘以天線模組之數目共同形成衛星之影像獲取設備,如熟習此項技術者已知。其等可執行除影像資料之獲取外之功能。
在一典型衛星中,一天線可包括如上文提及之一相控陣列天線。具有在垂直於雷達距離維度之兩個維度上空間分佈的天線元件之一相控陣列天線可容許在方位角及仰角上之二維波束轉向。
一相控陣列天線之可用電子轉向可在方位角上之相位中心的距離及間距上受實體天線限制,若嘗試太多轉向,則導致減小的增益及增加的光柵波瓣。對可用角度範圍之限制將在實體設備間變化,但典型限制可被設定為在仰角上為±25°且在方位角上為±2°。
酬載660接收來自電力分配系統102之電力及來自運算系統103之指令。來自酬載660之資料(諸如經接收雷達信號)亦回流至運算系統103且可儲存於記憶體108中。資料可由運算系統103處理以例如產生如此處在別處描述之影像,該等影像接著可輸出至通信系統104以供轉交(onward transmission)。在圖6中所繪示之系統中,原始資料亦可由運算系統103輸出至通信系統104,通信系統104進一步將其發送出以由一遠端運算系統處理。在圖6中,例如,一SAR處理器133可定位於一地面站處,或在另一處理位置中。運算系統103可將操作指令發送至定位於酬載660中之其他組件,諸如雷達發射機621、雷達接收器630及/或移相器624及627,如熟習此項技術者將熟悉。原始SAR資料可儲存於衛星中之記憶體108或631中。記憶體108及631可為相同或不同記憶體模組或亦可為運算系統103之部分。
原始SAR資料儲存於緩衝器135中且傳達至一地面站600或一遠端SAR處理器133。在一實例中,30秒之影像資料可以全解析度(頻寬)儲存。更多可以較低解析度(例如,60秒以半解析度)儲存。在一實例中,一微型衛星具有一150 MB之下載鏈路。在此資料速率下,花費約3分鐘來下載30秒之全解析度影像資料。在操作期間,每秒可傳輸約5000個脈衝。此意謂在任何給定時間,27個脈衝可在空中。一叢發通常包括500個至1000個脈衝且花費2秒至3秒。
通信系統104可使用射頻通信、光(例如,雷射通信)或如此項技術中已知之任何其他形式之通信來與地球站或其他衛星通信。
一衛星(例如,圖1之衛星100)通常具備用於使用一經產生推力操縱衛星之一推進系統190。推進系統190在圖1中被展示為安裝在本體110上於與太陽能面板150相對之表面上。
如圖1中所展示,推進系統190包括在需要時產生推力用於操縱衛星100的複數個推力器105。
推力器105大體上經操作以將衛星維持在一特定軌道中。例如,推力器可用於相對於地球表面在一特定方向上推進衛星。
再參考圖6,ADCS 131通常定位於衛星本體110中且用於控制衛星之定向。ADCS可以若干方式實施。ADCS 131在圖中被展示為包括一組反作用輪,在圖1中示意性地指示該組反作用輪之一者。反作用輪通常但不必要定位於衛星本體110中。圖7係一衛星之一部分透視圖,且展示定位於衛星本體110中之一組三個反作用輪41、42、43。反作用輪有時亦稱為動量輪。
在此處描述之衛星中,在衛星在其軌道中行進時,ADCS可用於機械轉向衛星以將地球上之一目標區域200維持在雷達孔徑內(換言之,在衛星視線內)達長於在無機械轉向之情況下目標將可見的一時期。原則上,機械轉向之角度範圍僅受各方向上之地平線限制,但角度愈大,則距目標區域之距離愈大,且因此,經返回信號愈弱。
反作用輪41、42、43藉由使用一電動馬達以使一輪在太空船本體110內部自旋而起作用。藉由角動量守恆,使輪在一個方向上自旋引起太空船在相反方向上旋轉。使用反作用輪係定向太空船(諸如衛星)之一熟知方式。
在一實例中,三個反作用輪定位於一太空船本體內部,一個用於在各軸線上定向衛星。因此,反作用輪41、42、43被展示為具有正交軸線。
在另一實例中,可使用四個或更多個反作用輪以具有對衛星動力學之各種態樣的更佳控制,諸如迴轉速率(衛星可轉動多快)及精細定位控制,尤其針對具有較高慣性矩之衛星。
各種類別之衛星當前在繞地球軌道中,大體上由重量範圍定義,但類別之間之邊界略具易變性及任意性: 立方體衛星:1 kg至10 kg 微型衛星:50 kg至250 kg 小型衛星:500 kg至800 kg 常規衛星:800 kg至1200 kg 大型衛星:> 1200 kg
反作用輪在其等「動量能力」方面(其具有nms (牛頓-米-秒)之單位)評定。迴轉速率與輪之速度及衛星系統之慣性有關。具有一尤其低質量之一衛星具有遠低於傳統較大SAR衛星之一慣性矩。一適合低質量可為低於1000 kg,例如低於500 kg,低於250 kg,介於50 kg與250 kg之間,或低於100 kg。
非常小的立方體衛星目前不具有承載一當前SAR酬載之能力。較重衛星歸因於其等較高慣性而通常不太靈活。此處描述之衛星及操作方法之實施例已成功地在一微型衛星中實施。
本發明之實施例尤其適用於被稱為微型衛星的衛星類別。
待在此處進一步描述之一些方法獲益於一特定額定範圍內之反作用輪。例如,微型衛星之一適合範圍可為0.5 nms至2.5 nms。已成功地試驗具有1 nms的一額定值之反作用輪。此已實現在1°/秒之範圍中之迴轉,此足以追蹤地面上之一點及實施此處描述之方法之任何者而不會消耗過多電力。因此,在此處描述之衛星之任何者中,ADCS可經組態以使用機械轉向使衛星以至多1度/秒在方位角方向上迴轉。
已知較大衛星使用大約10 nms之反作用輪,但歸因於衛星之較大質量及所得高旋轉慣性,其等當前無法達成足夠迴轉速率,且其等亦消耗遠多於較小反作用輪之電力。
在一實例中,衛星在一近地軌道上繞地球運行。一近地軌道可在地球表面上方從160 km至1000 km。基於SAR之地球觀測衛星之實例可具有在地球上方450 km與650 km之間的軌道。在根據本發明之一實例中,一衛星具有在地球表面上方550 km之一軌道。在地球上方550 km之一軌道處,例如,衛星以約7.5 km/s或27,000 km/h有效地遍歷地面。在此軌道中之大多數衛星將以在7 km/s至8 km/s之範圍內的一速度遍歷地球。
在一些實施例中,一衛星(諸如一微型衛星)可以從地平線至地平線維持指向地球上之一點達約10分鐘所需的一速度迴轉。然而,在此範圍之極值處,距所成像之點或目標的距離可能太遠而無法獲得一良好SAR影像,因此存在一較小實際停留時間。
如此處在別處提及,本發明之實施例不限於改變整個衛星之定向,此在上文描述之小型、輕量、靈活衛星之情況中係方便的。例如,在一些實施例中,可藉由改變一天線相對於其上承載該天線之一衛星的定向而達成機械轉向。
在前文中,僅考量一個SAR波束。然而,將瞭解,此處描述之方法及系統可擴展至使用多個SAR波束。例如,一平台可能承載用於多個SAR之設備,該多個SAR之各者可根據此處描述之方法之任何者操作。
將從前文瞭解,此處描述之全部方法獲益於使用一靈活微型衛星。一適合大小之微型衛星可旋轉以觀測一目標達一延長時段。此為其等提供在一時段內以與距離解析度相同的解析度達成許多影像圖框之前所未有的能力。
在前文描述適於實施此處描述之操作方法之任何者的一衛星。對於已在軌道中之一衛星或其他平台,此處描述之方法可藉由使用一適合運算系統(例如,地面站運算系統600)例如從地面適合地控制衛星來實施。換言之,可從地面操作一SAR且此處描述之一些方法可在軟體中實施。因此,在一態樣中,本發明可提供包括指令之一電腦可讀媒體,該等指令在由一運算系統中之一處理器實施時引起該運算系統根據此處描述之方法之任何者操作一SAR。
如此處描述之SAR影像資料之獲取可具有許多不同實際應用。一端對端程序可以對一特定區域成像的一請求開始,例如,其可由一客戶請求或由一演算法識別為關注。取決於區域之大小及一所要解析度,可選擇適合數目個子條帶。基於子條帶之數目,接著可設計方位角上之一序列叢發以最佳獲取影像資料。在開始獲取之前,衛星可旋轉至一初始位置,諸如圖3中之位置(a)。自初始位置,可藉由與飛行方向相反地機械轉向波束且根據該序列叢發電子轉向波束而收集影像資料。
在一實例中,從一客戶接收對100 km x 100 km之一相對較大區域成像的一請求。使用其中在方位角及仰角兩者上使用電子轉向的先前技術TOPS (使用漸進掃描之地形觀測)模式,例如,可使用三個子條帶對100 km寬之條帶成像以達成15米之一解析度。使用TOPS模式,在衛星在所關注區域上方沿著其軌道軌行進100 km時,獲取將花費約15秒。
在一實例中,大約150 kg之一小型靈活衛星可使用本文中所描述之設備、方法及技術藉由組合電子轉向與衛星之機械轉向能力以減慢SAR波束之有效地面速度而以5 m之一解析度對100 km x 100 km的區域成像。在一實例中,可在100 km x 100 km之區域上方藉由將其劃分成四個子條帶且使用約42秒之一延長獲取時間來達成5 m之一解析度。此表示針對此大小之區域之成像,與例示性TOPS案例相比解析度改良三倍。
圖8藉由標繪信號及歸因於方位角方向上之模糊度的潛在效能損失來展示此100 km x 100 km實例之效能。垂直軸係以分貝(dB)為單位給出,且水平軸係以度數為單位之方位角。一般而言,期望信號之最小降級以及一低方位角模糊度值。從圖8可見,在各叢發之邊緣處之信號降級達不多於大約-2.5 dB。總模糊度跡線(AmbTot)展示在最壞情況下在叢發之最邊緣處大約-17 dB的一值。此被視為在邊緣處之一可接受降級範圍內。方位角模糊度之一臨限值可被饋入用於判定可能成像區域及解析度之演算法中,如下文參考圖10描述。
圖9展示針對一單一叢發歸因於距離模糊度(Amb Total)及距離模糊度比(RAR)的效能損失對時間之一曲線圖。圖8及圖9兩者中所展示之跡線係從藉由天線場型之適當部分的數值積分來運算方位角模糊度值及距離模糊度值之一數學模型獲得。在以5 m之一解析度對一100 km x 100 km區域成像的此實例中,總模糊度跡線(Amb Total)之最高值係大約-28 dB,從而導致大約-24 dB之一較差情況RAR。此被視為在一可接受範圍內。如同方位角模糊度值,可使用一臨限值來判定可使用高解析度寬條帶技術達成之可能解析度及經成像區域。
在另一實例中,可使用高解析度寬條帶技術以藉由在35秒之一獲取期內使用兩個子條帶及疊加在電子轉向之上的機械轉向來以一甚至更精細3 m解析度對60 km x 60 km之一更小區域成像。在一實例中,甚至更精細解析度(諸如1 m解析度或更小)係可行的。
圖10展示可用於判定待用於一特定獲取之參數的一演算法之一實例。在一第一步驟1101中,選取一影像大小,例如100 km x 100 km,或60 km x 60 km。在一第二步驟1102中,選取一解析度,例如5 m。在步驟1103中,選取方位角上之一最大電子轉向角,且此判定地面上之圖塊大小。最大電子轉向角受天線設計之約束,更特定言之受在光柵波瓣歸因於方位角上之天線元件間距成為一問題之前天線可掃描多遠約束。
接著,解析度驅動叢發持續時間,在步驟1104中根據方程式9計算叢發持續時間: (方程式9)
在方程式9中, 係叢發持續時間, 係波長, R係斜距, 係衛星速度,且 係方位角解析度。在步驟1105中選擇波束速度 ,使得波束在所需時間 內在圖塊上方滑行。接著,在步驟1106中從沿軌影像大小導出影像獲取時間。根據此方法,可計算派任務給一衛星以獲取一影像所需之參數。在經受獲取時間約束及偏斜角限制之情況下,任何影像大小及任何解析度可行。
此處描述之運算系統之任何者可在具有多個功能之一單一運算系統中組合。類似地,本文中所描述之運算系統之任何者的功能可跨多個運算系統分佈。
本文中所描述之方法之一些操作可由呈機器可讀形式(例如,呈包括電腦程式碼之一電腦程式之形式)之軟體執行。因此,本發明之一些態樣提供當在一運算系統中實施時引起系統執行本文中所描述之方法之任何者的一些或全部操作之一電腦可讀媒體。電腦可讀媒體可呈一暫時性或有形(或非暫時性)形式,諸如儲存媒體,包含磁碟、隨身碟、記憶卡等。軟體可適合在一平行處理器或一串列處理器上執行,使得方法步驟可按任何適合順序或同時實行。
上文描述之實施例在很大程度上係自動化的。在一些實例中,系統之一使用者或操作者可人工地指示待實行方法之一些步驟。
在本發明之所述實施例中,系統可實施為如本文中在別處提及之一運算及/或電子系統之任何形式。例如,地面站可包括此一運算及/或電子系統。此一系統可包括一或多個處理器,該一或多個處理器可為微處理器、控制器或用於處理電腦可執行指令以控制裝置之操作以收集並記錄路由資訊的任何其他適合類型之處理器。在一些實例中,例如在使用一系統單晶片架構之情況下,處理器可包含在硬體(而非軟體或韌體)中實施方法的一部分之一或多個固定功能區塊(亦稱為加速器)。包括一作業系統或任何其他適合平台軟體之平台軟體可提供於基於運算之裝置處以使應用軟體能夠在裝置上執行。
在本文中使用術語「運算系統」以指代具有處理能力使得其可執行指令之任何裝置。熟習此項技術者將認知,此等處理能力可併入至許多不同裝置中,且因此,術語「運算系統」包含PC、伺服器、智慧型行動電話、個人數位助理及許多其他裝置。
將理解,上文描述之益處及優點可與一項實施例有關或可與數項實施例有關。實施例不限於解決任何或全部所陳述問題之實施例或具有任何或全部所陳述益處及優點之實施例。
對「一」品項或「件」之任何引用係指該等品項之一或多者,除非另有陳述。在本文中使用術語「包括」意謂包含所識別之方法步驟或元件,但此等步驟或元件不包括一排他性清單且一方法或設備可含有額外步驟或元件。
此外,就在[實施方式]抑或發明申請專利範圍中使用術語「包含」而言,此術語旨在以類似於術語「包括」之一方式為包含性,如「包括」在一請求項中用作一過渡詞時所解釋。
圖繪示例示性方法。雖然方法被展示及描述為以一特定序列執行之一系列動作,但應理解及明白,方法不受限於序列之順序。例如,一些動作可按不同於本文中所描述之順序之一順序發生。另外,一動作可與另一動作同時發生。此外,在一些例項中,實施本文中所描述之一方法可能不需要全部動作。
本文中所描述之方法之步驟之順序係例示性的,但步驟可在適當情況下按任何適合順序或同時實行。另外,可添加或取代步驟,或可從方法之任何者刪除個別步驟而不脫離本文中所描述之標的物之範疇。上文描述之實例之任何者的態樣可與所描述之其他實例之任何者的態樣組合以形成進一步實例。
將理解,一較佳實施例之上文描述僅藉由實例給出且熟習此項技術者可進行各種修改。上文已描述之內容包含一或多項實施例之實例。當然,無法為了描述前述態樣之目的而描述上述裝置或方法之每一可設想修改及更改,但一般技術者可認知,各種態樣之許多進一步修改及排列係可行的。因此,所述態樣旨在包括落在隨附發明申請專利範圍之範疇內之全部此等更改、修改及變動。
參考下文之子句,可理解本發明之實例及實施例: 1. 一種操作一合成孔徑雷達「SAR」以獲取包括一或多個子條帶之一條帶的影像資料,其中該SAR係承載於沿著一飛行方向移動之一平台上且一輻射波束經引導朝向該條帶,該方法包括: 針對各叢發沿著一個子條帶在方位角方向上電子轉向該波束;及 在各叢發期間在與該飛行方向相反之一方向上機械轉向該波束。 2. 如子句1之方法,其中藉由使該SAR相對於該平台旋轉及/或使包含該SAR之該平台移動或迴轉來執行機械轉向該波束。 3. 如前述子句之任何者之方法,其中機械轉向該波束減小地球上之該波束之一有效地面速度。 4. 如前述子句之任何者之方法,其中視情況,機械轉向該波束之一轉向角速率比電子轉向該波束之一轉向角速率低至少2/3。 5. 如前述子句之任何者之方法,其中視情況,機械轉向該波束之一轉向角範圍之大小為電子轉向該波束之一轉向角範圍的至少30倍。 6. 如前述子句之任何者之方法,其進一步包括: 在兩個叢發之間在仰角上電子轉向該波束。 7. 如前述子句之任何者之方法,其進一步包括: 在包括複數個叢發之一個獲取循環期間在仰角上連續地轉向該波束,其中各叢發照明一不同子條帶。 8. 如子句7之方法,其進一步包括: 執行兩個或更多個獲取循環,其中各獲取循環之各第一叢發照明相同子條帶。 9. 如子句7或8之方法,其進一步包括 在該一或多個獲取循環期間在與該飛行方向相反之該方向上持續地機械轉向該波束。 10. 如任何前述子句之方法,其中待用於影像獲取之參數係藉由以下來判定: a. 選擇一影像大小; b. 選擇一解析度; c. 挑選一最大電子轉向角; d. 計算一叢發持續時間; e. 選擇一波束速度;及 f. 導出一影像獲取時間。 11. 一種用於在一繞地球軌道中操作之衛星,其包括一合成孔徑雷達「SAR」以獲取包括一或多個子條帶之一條帶的影像資料,其中該衛星經組態以沿著一飛行方向移動且該SAR經組態以引導一輻射波束朝向該條帶,其中該SAR進一步經組態以 針對各叢發沿著一個子條帶在方位角方向上電子轉向該波束;及 在各叢發期間在與該飛行方向相反之一方向上機械轉向該波束。 12. 如子句11之衛星,其中該衛星包括包含經組態以藉由使包含該SAR之該衛星旋轉而控制該波束之該機械轉向的一或多個反作用輪之一姿態判定控制系統「ADCS」。 13. 如子句11或12之衛星,其中該衛星經組態以藉由在該方位角方向上以至多1°/秒迴轉而機械轉向該波束。 14. 如子句11至13之任何者之衛星,其中該衛星具有小於1000 kg、視情況小於100 kg之一總質量。 15. 如子句11至14之任何者之衛星,其中該SAR包括容許在兩個維度上之電子波束轉向的一小型單孔徑雷達及/或一相控陣列。 16. 一種地面站,其經組態以控制視情況根據子句11至15之任何者的一衛星以實行如子句1至10之任何者的方法。
41:反作用輪 42:反作用輪 43:反作用輪 100:衛星 101:電源 102:電力分配系統 103:運算系統 104:通信系統 105:推力器 108:記憶體 109:推進控制器 110:衛星本體/太空船本體 120:飛行方向/行進方向 124:衛星速度 126:機械轉向方向 131:姿態判定及控制系統(ADCS) 133:合成孔徑雷達(SAR)處理器 135:緩衝器 150:太陽能面板 160:翼 170:反作用輪 190:推進系統 200:目標區域/條帶/目標 200A:子條帶 200B:子條帶 200C:子條帶 200D:子條帶 202:波束有效地面速度 600:地面站 610:衛星匯流排 620:脈衝產生器 621:雷達傳輸及接收模組/雷達發射機 622:RF分配器 623:功率放大器 624:移相器 625:天線元件 627:移相器 628:低雜訊放大器 629:RF組合器 630:雷達傳輸及接收模組/雷達接收器 631:記憶體 660:衛星酬載 670:天線模組 1101:第一步驟 1102:第二步驟 1103:步驟 1104:步驟 1105:步驟 1106:步驟
將參考以下圖式藉由實例描述本發明之實施例,其中:
圖1係在地球上方之軌道中的一衛星之一示意性透視圖。
圖2係在ScanSAR模式中操作以獲取一條帶之影像資料的一衛星之一示意性繪示。
圖3係在執行一機械後向掃描時在方位角叢發期間操作以獲取一條帶之影像資料的一衛星之一示意性繪示。
圖4係繪示(a)衛星之一行進方向、機械轉向之一方向及衛星之波束之一所得有效地面速度及(b)一獲取場型的一示意圖。
圖5係繪示(a)方位角上之電子轉向、(b)仰角上之電子轉向、(c)方位角上之機械轉向及(d)根據圖4b之獲取場型的疊加之一系列圖表。
圖6係一衛星之組件之一示意圖。
圖7係一衛星之一部分透視圖。
圖8展示一信號及歸因於方位角方向上之模糊度(ambiguity)的潛在效能損失之一曲線圖。
圖9展示針對一單一叢發之距離模糊度比(RAR)對時間的一曲線圖。
圖10繪示可用於判定待用於影像獲取之參數的一例示性演算法。
在圖各處使用共同元件符號來指示類似特徵部。
100:衛星
120:飛行方向/行進方向
200:目標區域/條帶/目標
200A:子條帶
200B:子條帶
200C:子條帶

Claims (16)

  1. 一種操作一合成孔徑雷達「SAR」以獲取包括一或多個子條帶之一條帶的影像資料之方法,其中該SAR係承載於沿著一飛行方向移動之一平台上且一輻射波束經引導朝向該條帶,該方法包括: 針對各叢發沿著一個子條帶在方位角方向上電子轉向該波束;及 在各叢發期間在與該飛行方向相反之一方向上機械轉向該波束。
  2. 如請求項1之方法,其中藉由使該SAR相對於該平台旋轉及/或使包含該SAR之該平台移動或迴轉來執行機械轉向該波束。
  3. 如請求項1之方法,其中機械轉向該波束減小地球上之該波束之一有效地面速度。
  4. 如請求項1之方法,其中視情況,機械轉向該波束之一轉向角速率比電子轉向該波束之一轉向角速率低至少2/3。
  5. 如請求項1之方法,其中視情況,機械轉向該波束之一轉向角範圍之大小為電子轉向該波束之一轉向角範圍的至少30倍。
  6. 如請求項1之方法,其進一步包括: 在兩個叢發之間在仰角上電子轉向該波束。
  7. 如請求項1之方法,其進一步包括: 在包括複數個叢發之一個獲取循環期間在仰角上連續地轉向該波束,其中各叢發照明一不同子條帶。
  8. 如請求項7之方法,其進一步包括: 執行兩個或更多個獲取循環,其中各獲取循環之各第一叢發照明相同子條帶。
  9. 如請求項7之方法,其進一步包括 在該一或多個獲取循環期間在與該飛行方向相反之該方向上持續地機械轉向該波束。
  10. 如請求項1之方法,其中待用於影像獲取之參數係藉由以下來判定: a. 選擇一影像大小; b. 選擇一解析度; c. 挑選一最大電子轉向角; d. 計算一叢發持續時間; e. 選擇一波束速度;及 f. 導出一影像獲取時間。
  11. 一種用於在一繞地球軌道中操作之衛星,其包括一合成孔徑雷達「SAR」以獲取包括一或多個子條帶之一條帶的影像資料,其中該衛星經組態以沿著一飛行方向移動且該SAR經組態以引導一輻射波束朝向該條帶,其中該SAR進一步經組態以 針對各叢發沿著一個子條帶在方位角方向上電子轉向該波束;及 在各叢發期間在與該飛行方向相反之一方向上機械轉向該波束。
  12. 如請求項11之衛星,其中該衛星包括包含經組態以藉由使包含該SAR之該衛星旋轉而控制該波束之該機械轉向的一或多個反作用輪之一姿態判定控制系統「ADCS」。
  13. 如請求項11之衛星,其中該衛星經組態以藉由在該方位角方向上以至多1°/秒迴轉而機械轉向該波束。
  14. 如請求項11之衛星,其中該衛星具有小於1000 kg、視情況小於100 kg之一總質量。
  15. 如請求項11之衛星,其中該SAR包括容許在兩個維度上之電子波束轉向的一小型單孔徑雷達及/或一相控陣列。
  16. 一種地面站,其經組態以控制視情況如請求項11之一衛星以實行如請求項1之方法。
TW111149226A 2021-12-22 2022-12-21 高解析度寬條帶合成孔徑雷達(sar)成像 TW202403342A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2118749.7 2021-12-22
GB2118749.7A GB2614257A (en) 2021-12-22 2021-12-22 High resolution wide swath SAR imaging

Publications (1)

Publication Number Publication Date
TW202403342A true TW202403342A (zh) 2024-01-16

Family

ID=80461025

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111149226A TW202403342A (zh) 2021-12-22 2022-12-21 高解析度寬條帶合成孔徑雷達(sar)成像

Country Status (4)

Country Link
CA (1) CA3238949A1 (zh)
GB (1) GB2614257A (zh)
TW (1) TW202403342A (zh)
WO (1) WO2023117390A1 (zh)

Also Published As

Publication number Publication date
WO2023117390A1 (en) 2023-06-29
GB2614257A (en) 2023-07-05
CA3238949A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
Walterscheid et al. Bistatic SAR experiments with PAMIR and TerraSAR-X—setup, processing, and image results
JP6437924B2 (ja) 高分解能ストリップマップsarイメージング
Rosen et al. An update on the NASA-ISRO dual-frequency DBF SAR (NISAR) mission
Walterscheid et al. Potential and limitations of forward-looking bistatic SAR
EP3631504B1 (en) Synthetic aperture radar imaging apparatus and methods
JPH02210285A (ja) スポットライトマッピングレーダ装置
CN110596704B (zh) 一种星载sar多方位角重复观测的卫星平台姿态机动方法
RU2429990C1 (ru) Многофункциональная радиолокационная станция высокого разрешения с активной фазированной решеткой для пилотируемых и беспилотных летательных аппаратов
Otten et al. Circular micro-SAR for mini-UAV
TW202403342A (zh) 高解析度寬條帶合成孔徑雷達(sar)成像
JP3649565B2 (ja) 合成開口レーダ装置
TW202403341A (zh) 使用合成孔徑雷達之多點成像
RU2719547C1 (ru) Бортовая радиолокационная станция
Walterscheid et al. Bistatic image processing for a hybrid SAR experiment between TerraSAR-X and PAMIR
JPH05341042A (ja) レーダ観測システム
RU2682169C1 (ru) Способ повышения разрешающей способности рлс по азимуту и дальности и уменьшения времени сканирования наземных объектов при посадке самолета и приемное устройство, реализующее этот способ
Espeter et al. Bistatic forward-looking SAR experiments using an airborne receiver
RU2680850C1 (ru) Способ формирования эллиптической диаграммы направленности цифровой активной фазированной антенной решетки на базе "стаи" микроспутников с применением сверхрегенеративных приемопередающих устройств
US20240150040A1 (en) Satellite with spot light mode for extended duration target imaging
KR102482742B1 (ko) 위성용 복합 임무를 위한 회전 가변 이동 피드 sar 탑재체 장치
JP2000298168A (ja) Sar装置
Han et al. Implementation method of mosaic mode based on satellite attitude maneuver
Otten et al. Multi-channel processing for digital beam forming SAR
Brookner Large phased‐array radars
Yan et al. Design Platform Test and Airborne Implementation of FMCW SAR System