RU2682169C1 - Способ повышения разрешающей способности рлс по азимуту и дальности и уменьшения времени сканирования наземных объектов при посадке самолета и приемное устройство, реализующее этот способ - Google Patents

Способ повышения разрешающей способности рлс по азимуту и дальности и уменьшения времени сканирования наземных объектов при посадке самолета и приемное устройство, реализующее этот способ Download PDF

Info

Publication number
RU2682169C1
RU2682169C1 RU2018113788A RU2018113788A RU2682169C1 RU 2682169 C1 RU2682169 C1 RU 2682169C1 RU 2018113788 A RU2018113788 A RU 2018113788A RU 2018113788 A RU2018113788 A RU 2018113788A RU 2682169 C1 RU2682169 C1 RU 2682169C1
Authority
RU
Russia
Prior art keywords
antenna
receiving
rays
azimuth
inputs
Prior art date
Application number
RU2018113788A
Other languages
English (en)
Inventor
Олег Александрович Морозов
Сергей Александрович Перегонов
Original Assignee
Закрытое акционерное общество "Научно-производственное предприятие "Магратеп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Научно-производственное предприятие "Магратеп" filed Critical Закрытое акционерное общество "Научно-производственное предприятие "Магратеп"
Priority to RU2018113788A priority Critical patent/RU2682169C1/ru
Application granted granted Critical
Publication of RU2682169C1 publication Critical patent/RU2682169C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Abstract

Изобретение относится к радиолокации, а именно к предназначенным для картографирования радиолокационным системам (РЛС) с использованием антенных решеток и может использоваться, например, в авиации для оснащения как пилотируемых, так и беспилотных летательных аппаратов. Достигаемый технический результат - повышение разрешения по азимуту и дальности бортовых РЛС и уменьшение времени сканирования наземных объектов. Технический результат достигается тем, что контролируемый телесный угол облучается непрерывно сигналом с линейно-частотной модуляцией (ЛЧМ) антенной передатчика, а в приемнике используется многолучевая многоканальная линейная объемная фазированная антенная решетка, состоящая из продольно и поперечно принимающих антенн, обеспечивающих обострение формируемых лучей, с включением фильтров дальности в каждый из приемных каналов. Приемное устройство, реализующее способ, выполнено определенным образом и представляет собой многолучевую сверхвысокочастотную (СВЧ) линейную антенную решетку, включающую N приемных модулей с антенными элементами и усилителями, причем антенный элемент каждого приемного модуля выполнен в виде антенны продольного приема, каждый приемный модуль выполнен с микрофазовращателем, каждый из которых включен между выходом антенного элемента и входом усилителя и обеспечивает микросканирование пучка лучей. 2 н.п. ф-лы, 7 ил.

Description

Изобретение относится к радиолокации, а именно, к предназначенным для картографирования радиолокационным системам (РЛС) с использованием антенных решеток и может использоваться, например, в авиации для оснащения как пилотируемых, так и беспилотных летательных аппаратов.
Требования к качеству изображения, формируемого РЛС посадки, достаточно жесткие: число пикселей на строку не менее 200, число строк в кадре не менее 200, частота смены кадров не менее 15 Герц, задержка индикации кадров не более 50 мс, азимутальная и угломестная зона обзора не менее 20×30 градусов. Минимальное значение дальности действия, по нашему мнению, не менее 5 км. Удовлетворить этим требованиям РЛС с синтезированием изображений по скорости отражения реальности не могут.
Известен способ повышения разрешающей способности радиолокационной станции по дальности и азимуту (патент РФ №2287879 С2; МПК: H01Q 21/00, G01S 13/42, G01S 13/90; 20.11.2006), в соответствии с которым предусматривается сканирование по азимуту одним лучом всей контролируемой зоны с последовательным смещением луча РЛС по азимуту на величину n-ой части ширины диаграммы луча с последующим синтезированием виртуальных лучей, имеющих более узкие диаграммы, чем реальный луч РЛС. Как показано на фиг. 1, с помощью РЛС, установленной на летательном аппарате (носителе РЛС), путем механического (или электронного для фазированных антенных решеток) смещения во времени на n-ю часть диаграммы направленности антенны (ДНА) по азимуту формируются азимутальные отсчеты радиолокационного изображения. Совокупность всех азимутальных отсчетов формируют зону обзора (ЗО) по азимуту от левой границы βзол до правой βзоп, разделенных биссектрисой сектора обзора (БСО). Луч ДНА имеет "игольчатую" форму с параметрами: по азимуту ξДНА и по углу места βДНА. Элемент разрешения по дальности образуется шаровым слоем с центром в точке нахождения РЛС, толщина которого соответствует разрешающей способности по дальности, и определяется минимальным временем накопления сигнала.
Недостатком этого способа является необходимость полного сканирования контролируемого пространства и выполнения операций синтезирования, что требует значительного времени и не позволяет выполнить требования, предъявляемые к РЛС посадки. Подобный способ применим для малоскоростных режимов полета, например, вертолетов или беспилотных летательных аппаратов (БПЛА).
Наиболее близким к сущности заявленного изобретения является техническое решение многолучевой СВЧ линейной антенной решетки (патент РФ №2541888 С1; МПК: H01Q 3/26, H01Q 21/00; 20.02.2015), которая включает N приемопередающих модулей, каждый из которых имеет антенный элемент, усилитель с СВЧ переключателями, делитель СВЧ и диаграммообразующее устройство. Антенная решетка выполнена линейной, каждый модуль расположен на плате, делитель СВЧ каждого модуля имеет М выходных каналов, диаграммообразующее устройство выполнено в виде многослойного пакета из М плат, на каждой из которых расположены N-1 элементарных сумматоров в n рядов, при условии N=2n-1. Каждый элементарный сумматор имеет два входа и один выход, причем N входов первого ряда подключены к одноименным выходам каналов делителей, при этом разность длин подводящих линий передачи входов элементарного сумматора Δг для каждого ряда определяется из соотношения:
Δг=2nhpλлsinϕ/λр,
где:
hp - шаг решетки в мм;
λл - длина волны в подводящих линиях в мм;
λр - длина волны в свободном пространстве в мм;
ϕ - угол падения фронта приходящей волны в градусах относительно нормали к фронтальной поверхности антенны по азимуту;
n - номер ряда элементарных сумматоров,
при этом последний ряд имеет один выход, к которому подключен вход монолитного усилителя, компенсирующего потери в линиях передачи, входы элементарных сумматоров первого ряда для каждого модуля сдвинуты относительно предыдущей платы на толщину платы, так что на передней стороне пакета входы образуют линию, расположенную под углом 45 градусов к основанию, шаг линий равен шагу решетки hp. М выходных сигналов усилителей соответствуют направленным лучам в пространстве.
Угловые шаги лучей, формируемых такой многолучевой антенной, при этом определяются шириной контролируемого азимутального угла деленного на число лучей, а их диаграммы перекрывают друг друга. Ширина лучей будет составлять от 1 до 3 градусов, что не обеспечивает нужного необходимого разрешения при сканировании наземных объектов.
Технический результат, достигаемый заявленным изобретением, заключается в повышении разрешения по азимуту и дальности бортовых РЛС и уменьшении времени сканирования наземных объектов.
Технический результат достигается тем, что весь контролируемый телесный угол облучается непрерывно сигналом с линейно-частотной модуляцией (ЛЧМ) антенной передатчика, а в приемнике используется многолучевая многоканальная линейная объемная ФАР, состоящая из продольно и поперечно принимающих антенн, обеспечивающих существенное обострение формируемых лучей, с включением фильтров дальности в каждый из приемных каналов. Приемное устройство, реализующее этот способ, представляет собой многолучевую СВЧ линейную антенную решетку, включающую N приемных модулей с антенными элементами и усилителями, N делителей СВЧ, диаграммообразующее устройство. Антенная решетка выполнена линейной, каждый антенный модуль расположен на плате, каждый делитель СВЧ имеет М выходных каналов, диаграммообразующее устройство выполнено в виде многослойного пакета из М плат, на каждой из которых расположены N-1 элементарных сумматоров в n рядов, при условии N=2n-1. Каждый элементарный сумматор имеет два входа и один выход, причем N входов первого ряда подключены к одноименным выходам каналов делителей, при этом разность длин подводящих линий передачи входов элементарного сумматора Δг для каждого ряда определяется из соотношения Δr=2nhpλлsinϕ/λр, где: hp - шаг решетки в мм; λл - длина волны в подводящих линиях в мм; λр - длина волны в свободном пространстве в мм; ϕ - угол падения фронта приходящей волны в градусах относительно нормали к фронтальной поверхности антенны по азимуту; n - номер ряда элементарных сумматоров, при этом последний ряд имеет один выход, при этом М выходных сигналов сумматоров соответствуют направленным М лучам в пространстве, образующим веер из М одновременно существующих лучей высокого разрешения, Приемное устройство отличается тем, что антенный элемент каждого приемного модуля выполнен в виде антенны продольного приема, при этоми каждый приемный модуль выполнен с микрофазовращателем (МФВ).
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 поясняет формирование матрицы радиолокационного изображения в режиме реального луча в РЛС с синтезированием изображения повышенного разрешения, по патенту РФ №2287879.
Фиг. 2 поясняет сущность заявленного технического решения, основанного на широкоугольном облучении поверхности земли передатчиком и использовании многолучевой продольно-поперечной фазированной антенной решетки (ФАР).
На фиг. 3 схематично представлена многолучевая антенная решетка с непрерывным параллельным контролем пространства с продольно-поперечным приемом, поясняющая сущность заявленного технического решения.
На фиг. 4 для пояснения сущности заявленного технического решения представлены проекции диаграмм лучей приемной ФАР с продольно-поперечной структурой.
На фиг. 5 схематично представлен возможный вариант передатчика с антенной, облучающей весь контролируемый телесный угол, где: 1 передатчик, 2 - антенна передатчика, 17 - вход гетеродина …
На фигуре 6 представлен структурный состав приемного устройства. На антенны продольного приема 3 приходят СВЧ сигналы от наблюдаемой поверхности в пределах телесного угла 20×20 градусов. Эти сигналы усиливаются приемными модулями 4 до необходимой величины с учетом коэффициента деления на 64 делителями 6, а для усиления сигналов с учетом потерь в делителях 6 могут применяться компенсирующие усилители 7; с выходов приемных модулей усиленные сигналы поступают на входы делителей 8; выходные синфазные сигналы 9 32-х делителей 8 на 64 канала каждый соединяются построчно с 64-мя сумматорами 10 диаграммообразующего устройства (ДОУ), в каждом из которых конструктивно внесены фазовые сдвиги, формирующие лучи в заданном направлении; с 64-выходов сумматоров 11 выходные сигналы плат сумматоров 11 подаются на входы платы смесителей 12; на плату смесителей 12 одновременно подается сигнал 24 с гетеродина 13, разделяемый синфазно на 64 канала делителем 18, аналогичных излучаемому сигналу; выходные сигналы смесителей 19 подаются на входы платы гребенчатых фильтров дальности 14, где сигналы выделяются по дальности и преобразуются АЦП в цифровую форму для каждого из 64 лучей; выходные сигналы с платы фильтров дальности и АЦП поступают на входы блока памяти и формирования кадра, где запоминаются в ячейках платы памяти 15, в которой формируется кадр в цифровой форме в координатах «угол азимута - дальность» за время, необходимое для сканирования пучка лучей с помощью микрофазовращателей 16; с платы 15 сигналы, соответствующие сформированному кадру изображения поступают в дисплей 20.
На фиг. 7 представлен макет (без дисплея) возможного варианта компоновки 64-х канального приемника бортовой РЛС посадки самолета, где: 15 - блок памяти и формирования кадра; 21 - модуль питания, гетеродина и управления микрофазовращателями (МФВ); 22 - модуль пакета 64-х сумматоров ДОУ и смесителей; 23 - модуль усилителей сигналов приемников, фильтров дальности и АЦП.
Сущность настоящего технического решения заключается в том, что последовательное азимутальное сканирование одним лучом заменяется, как поясняется фиг. 2 - фиг. 4, формированием многолучевой линейной параллельно функционирующей многоканальной приемной системой из М лучей (десятков лучей), что сокращает требуемую амплитуду и время сканирования в 1/М раз.
Для реализации данного технического решения предлагается антенная система, сформированная из N продольно-принимающих антенн, установленных на входах N приемных модулей, образующих поперечно-принимающую часть антенной системы, составляющих в целом объемную приемную антенну. При этом ширина лучей, формируемых поперечной частью антенны, определяется ее апертурой, практически ограничиваемой объектом, на котором она устанавливается.
Обычно ширина луча бортовых РЛС находится в пределах 3÷1 градус, что не обеспечивает нужного разрешения наземных объектов. Такие же ширины лучей, как было уже отмечено, формировались бы поперечной частью многолучевой антенны по патенту РФ №2541888 С1 (фиг. 2). Угловые азимутальные шаги лучей при этом определяются шириной контролируемого азимутального угла деленного на число лучей, а их диаграммы перекрывают друг друга.
Для значительного обужения сформированных лучей предлагается входы приемных модулей ФАР, образующих поперечную часть антенны, выполнить с (парциальными) антеннами продольного приема, (например, спиральными, цилиндрическими или бегущей волны), с диаграммами, равными угловой азимутальной ширине контролируемой зоны. В результате перемножения диаграмм парциальных антенн происходит сужение каждого из суммарных лучей в азимутальной плоскости обратно пропорционально числу антенн (модулей). При этом ширина лучей веерной диаграммы в угломестной плоскости сохранится широкой (фиг. 3), а в азимутальной плоскости существенно обуженной. Вид проекции приемных лучей на поверхности земли, сформировавшейся многолучевой антенны приведен на фиг. 4. Ширина обуженных лучей при числе парциальных лучей (модулей ФАР) равном, например, 32 составит 1/32 от ширины лучей поперечной антенны и составят порядка 0,1÷0,03 градуса, что лишь немного уступает человеческому глазу.
Между сформировавшимися лучами образуются мертвые зоны, которые необходимо просматривать за счет микросканирования всего пучка лучей в пределах расстояния между лучами, то есть долей градуса. Такое микросканирование может осуществляться либо механически, либо электрически с помощью микрофазовращателей. При этом число пикселей на строку изображения при ширине контроля по азимуту 20 градусов составит 200-666 единиц.
При работе РЛС в непрерывном режиме с линейно-частотной модуляцией (ЛЧМ) спектры выходных сигналов приемных каналов будут определяться обозреваемой поверхностью и дальностью до объектов. Выделение объектов по дальности, то есть по строкам изображения, может обеспечиваться известными способами с помощью фильтров дальности (например, гребенчатыми фильтрами), устанавливаемыми в каждом приемном канале.
Отсчеты сигналов, подаваемых на дисплей, должны производиться последовательно в моменты углового перемещения веера лучей на ширину обуженных лучей в пределах сканирования мертвых зон, что обеспечивает параллельно-последовательное формирование матрицы кадра.
При этом число лучей, обеспечивающих азимутальное разрешение будет определяться числом лучей в веере М и числом обуженных лучей, размещающихся в мертвых зонах при микросканировании с шагом, равным ширине обуженных лучей:
Рстр=М(1+Fмз/Fол), где:
Рстр - число пикселей в строке;
М - число лучей в веере;
Fмз - ширина мертвой зоны (градусов);
Fл - ширина обуженного луча (градусов).
Полученное число определяет число пикселей в строках изображения.
Число строк в кадре изображения определяется числом фильтров дальности в каждом канале.
Принятые антенной сигналы, после смешения с сигналами гетеродина и выделения сигналов фильтрами дальностей, оцифровываются с помощью аналого-цифровых преобразователей (АЦП) и в процессе параллельно-последовательного сканирования заносятся в матрицу памяти в координатах «азимут-дальность». Дальнейшая обработка сигналов и передача их на дисплей может выполняться существующими известными способами.
Передатчик с антенной (фиг. 5), облучающей весь контролируемый телесный угол, не имеет существенных особенностей, которые необходимо учитывать при проектировании, исходя из задаваемых диапазона, выходной мощности, дальности, нелинейности и других параметров. Структурный состав рассматриваемого в качестве примера 64-х лучевого приемника приведен на фиг. 6. Приемное устройство, как показано на фиг. 6, функционирует следующим образом. На антенны продольного приема 3 приходят СВЧ сигналы от наблюдаемой поверхности в пределах телесного угла 20×20 градусов. Эти сигналы усиливаются приемными модулями 4 до необходимой величины с учетом коэффициента деления на 64 делителями 6, а для усиления сигналов с учетом потерь в делителях 6 могут применяться компенсирующие усилители 7; с выходов приемных модулей усиленные сигналы поступают на входы делителей 8; выходные синфазные сигналы 9 32-х делителей 8 на 64 канала каждый соединяются построчно с 64-мя сумматорами 10 диаграммообразующего устройства (ДОУ), в каждом из которых конструктивно внесены фазовые сдвиги, формирующие лучи в заданном направлении; с 64 - выходов сумматоров 11 выходные сигналы плат сумматоров 11 подаются на входы платы смесителей 12; на плату смесителей 12 одновременно подается сигнал 24 с гетеродина 13, разделяемый синфазно на 64 канала делителем 18, аналогичных излучаемому сигналу; выходные сигналы смесителей 19 подаются на входы платы гребенчатых фильтров дальности 14, где сигналы выделяются по дальности и преобразуются АЦП в цифровую форму для каждого из 64 лучей; выходные сигналы с платы фильтров дальности и АЦП поступают на входы блока памяти и формирования кадра, где запоминаются в ячейках платы памяти 15, в которой формируется кадр в цифровой форме в координатах «угол азимута - дальность» за время, необходимое для сканирования пучка лучей с помощью микрофазовращателей 16; с платы 15 сигналы, соответствующие сформированному кадру изображения, поступают в дисплей 20.
Выбор оптимального соотношения числа лучей, качества разрешения и частоты кадров должно определяться при реальном проектировании РЛС. Выбор рабочего диапазона частот диктуется условиями распространения, конструктивно-технологическими возможностями и разрешенными Регламентом Связи РФ диапазонами.
Задавая апертуру поперечно-принимающей антенны, число модулей в строке антенны и число продольно-принимающих антенн, а также период модуляции ЛЧМ сигнала передатчика, можно получать требуемое качество углового разрешения и частоты следования кадров.
Разрешение по дальности (число строк в кадре) определяется числом фильтров дальности гребенчатых фильтров.
Таким образом, использование данного изобретения позволяет существенно повысить разрешающую способность по азимуту и дальности бортовой РЛС
Ниже, для примера, приведены возможные параметры приемного устройства и формируемого изображения для двух вариантов исполнения устройства:
Figure 00000001
Figure 00000002
Рассмотрим вариант конструктивной реализации устройства с 32 модулями линейной ФАР с 64-х канальной приемной антенной.
Структурный состав устройства, реализующего предлагаемый способ, и макет возможного варианта компоновки 64-х канального приемника предлагаемого устройства, поясняется фиг. 5 - фиг.7.
Передатчик 1 с передающей (излучающей) антенной 2 (фиг. 5) и непрерывно излучаемым сверхвысокочастотным (СВЧ) ЛЧМ-сигналом облучает весь контролируемый телесный угол по азимуту и углу места (~20 × ~30 град.). Излучаемый сигнал подается на вход 17 передатчика с блока гетеродина 13 приемника (фиг. 6).
Отраженные от земли и объектов сигналы принимаются тридцатью двумя антеннами продольного приема 3, установленных на входах тридцати двух приемных модулей 4, образующих линейную антенну поперечного приема 5 с шагом размещения модулей 4 на 0,5-0,7 длины рабочей волны.
К выходам модулей 4 подключены 32 делителя 6 СВЧ сигналов, делящие равномерно входные сигналы на 64 синфазных выходных. Делители 6 изготовлены по микрополосковой технологии на диэлектрических платах (например, фирмы Rogers) и располагаются в вертикальном положении. Для компенсации потерь в микрополосках могут применяться компенсирующие усилители 7. Конструкции всех плат делителей идентичны, а сигналы на выходах каждой платы синфазны. Что касается сигналов на одноименных выходах (сверху-вниз от 1 до 64-ого) разных делителей, то фазовые сдвиги между ними определяются углами прихода фронтов сигналов от объектов относительно поверхности антенны 3.
Сигналы с одноименных выходов всех делителей группами из 32 сигналов построчно поступают на 32 входа каждого из 64-х собранных в многослойный пакет микрополосковых плат, выполняющих роль сумматоров 10 диаграммообразующих устройств (ДОУ). Путем частичного удлинения и укорочения отдельных участков микрополосок в ДОУ обеспечивается внесение фазовых поправок и формирование независимых друга от друга лучей в постоянно существующем веере из 64-х приемных лучей.
Каждая плата пакета сумматоров 10 имеет по одному выходу 11. Сигналы с выходов 11 сумматоров подаются на плату 64-х смесителей 12, при этом платы пакета сумматоров 10 ДОУ располагаются горизонтально и перпендикулярно к плате смесителей. На смесители с блока гетеродина 13 через синфазные делители 18 подаются сигналы гетеродина, в результате чего образуются сигналы разностных частот, отражающих расположение объектов по дальности.
Выходные сигналы смесителей с платы 12 подаются на плату фильтров дальности и аналого-цифровых преобразователей (АЦП) 14, где, в случае необходимости, усиливаются, оцифровываются и, по ходу микросканирования, запоминаются блоком памяти и формирования кадра 15. Сформированный кадр изображения передается на дисплей 20. По завершении цикла микросканирования процесс формирования кадра повторяется. Необходимый для построения кадра изображения диапазон сканирования лучами веера в М раз меньше диапазона сканирования однолучевой РЛС.
Такое микросканирование можно осуществлять механически, например, с помощью шаговых электродвигателей, с размахом сканирования в пределах мертвых зон (порядка 0,3-0,7 градуса) с шагом, примерно, 0,1 градуса и частотой циклов 10-20 Гц, что обеспечит частоту кадров 20-40 Гц, за счет использования прямого и обратного ходов сканирования.
В целях заявленного изобретения предпочтительно осуществлять сканирование веера лучей за счет использования, как показано на фиг. 6, микрофазовращателей (МФВ) 16, встроенных во входные СВЧ-модули. Но при этом дискреты изменения фаз должны составлять 0,1-0,05 градуса, чтобы последовательные смещения лучей равнялись ширине одного луча. Для управления фазовращателями можно использовать известные в технике ФАР способы.
Выигрыш во времени при сохранении скорости сканирования относительно полного времени сканирования однолучевой антенной будет равен числу лучей, то есть может составить десятки раз. При этом нет необходимости выполнять операции синтезирования, а изображение очень высокого разрешения может формироваться в картографическом режиме практически в реальном масштабе времени.
Таким образом, существенные признаки данного технического решения позволяют существенным образом повысить как разрешающую способность РЛС по азимуту и дальности, так и уменьшить время сканирования наземных объектов, что обеспечивает достижение заявленного технического результата.

Claims (2)

1. Способ повышения разрешающей способности РЛС по азимуту, дальности и уменьшения времени сканирования наземных объектов при посадке самолета, отличающийся тем, что весь контролируемый телесный угол облучается непрерывно сигналом с линейно-частотной модуляцией (ЛЧМ) антенной передатчика, а в приемнике используется многолучевая многоканальная линейная объемная ФАР, состоящая из продольно и поперечно принимающих антенн, обеспечивающих обострение формируемых лучей, с включением фильтров дальности в каждый из приемных каналов.
2. Приемное устройство, реализующее способ по п. 1, представляющее собой многолучевую СВЧ линейную антенную решетку, включающую N приемных модулей с антенными элементами и усилителями, выходы которых подключены к входам N делителей СВЧ, сигналы с выходов которых поступают на входы диаграммообразующего устройства, при этом антенная решетка выполнена линейной, каждый антенный модуль расположен на плате, каждый делитель СВЧ имеет М выходных каналов, диаграммообразующее устройство выполнено в виде многослойного пакета из М плат, на каждой из которых расположены N-1 элементарных сумматоров в n рядов, при условии N=2n-1, каждый элементарный сумматор имеет два входа и один выход, причем N входов первого ряда подключены к одноименным выходам каналов делителей, при этом разность длин подводящих линий передачи входов элементарного сумматора Δг для каждого ряда определяется из соотношения Δr=2nhpλлsinϕ/λр, где: hp - шаг решетки в мм; λл - длина волны в подводящих линиях в мм; λр - длина волны в свободном пространстве в мм; ϕ - угол падения фронта приходящей волны в градусах относительно нормали к фронтальной поверхности антенны по азимуту; n - номер ряда элементарных сумматоров, при этом последний ряд имеет один выход, при этом М выходных сигналов сумматоров соответствуют направленным М лучам в пространстве, образующим веер из М одновременно существующих лучей высокого разрешения, отличающееся тем, что антенный элемент каждого приемного модуля выполнен в виде антенны продольного приема и каждый приемный модуль выполнен с микрофазовращателем, каждый из которых включен между выходом антенного элемента и входом усилителя.
RU2018113788A 2018-04-16 2018-04-16 Способ повышения разрешающей способности рлс по азимуту и дальности и уменьшения времени сканирования наземных объектов при посадке самолета и приемное устройство, реализующее этот способ RU2682169C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018113788A RU2682169C1 (ru) 2018-04-16 2018-04-16 Способ повышения разрешающей способности рлс по азимуту и дальности и уменьшения времени сканирования наземных объектов при посадке самолета и приемное устройство, реализующее этот способ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2018113788A RU2682169C1 (ru) 2018-04-16 2018-04-16 Способ повышения разрешающей способности рлс по азимуту и дальности и уменьшения времени сканирования наземных объектов при посадке самолета и приемное устройство, реализующее этот способ
PCT/RU2019/000185 WO2019203689A1 (ru) 2018-04-16 2019-03-26 Способ повышения разрешающей способности рлс по азимуту и дальности и уменьшения времени сканирования наземных объектов при посадке самолета, и приемное устройство, реализующее этот способ

Publications (1)

Publication Number Publication Date
RU2682169C1 true RU2682169C1 (ru) 2019-03-15

Family

ID=65806132

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018113788A RU2682169C1 (ru) 2018-04-16 2018-04-16 Способ повышения разрешающей способности рлс по азимуту и дальности и уменьшения времени сканирования наземных объектов при посадке самолета и приемное устройство, реализующее этот способ

Country Status (2)

Country Link
RU (1) RU2682169C1 (ru)
WO (1) WO2019203689A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709483C1 (ru) * 2019-04-30 2019-12-18 ООО "Когнитив Роботикс" Способ динамического изменения ширины полосы захвата в радаре непрерывного излучения с синтезированием апертуры антенны

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334560A2 (en) * 1988-03-25 1989-09-27 Sperry Marine Inc. Radar video detector and target tracker
US5847673A (en) * 1996-07-11 1998-12-08 Northrop Grumman Corporation System and method for determining a position of an object using output from a radar system
WO2005036099A1 (en) * 2003-06-11 2005-04-21 Honeywell International, Inc. Systems and methods for target location
JP2008197034A (ja) * 2007-02-15 2008-08-28 Nec Corp 電子走査式精測レーダ装置および目標追尾方法
RU2416809C1 (ru) * 2009-09-22 2011-04-20 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Рязанский государственный радиотехнический университет Способ повышения разрешающей способности рлс по углу при переднебоковом обзоре
RU2480782C1 (ru) * 2011-10-06 2013-04-27 Открытое акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" Способ и устройство разрешения движущихся целей по угловым направлениям в обзорных рлс
RU146508U1 (ru) * 2014-04-04 2014-10-10 Закрытое акционерное общество "АЭРО-КОСМИЧЕСКИЕ ТЕХНОЛОГИИ" Короткоимпульсный радиолокатор с электронным сканированием в двух плоскостях и с высокоточным измерением координат и скорости объектов
RU2541888C1 (ru) * 2013-10-29 2015-02-20 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Исток" (ФГУП "НПП "Исток") Многолучевая свч линейная антенная решётка и двумерная антенная решётка на ее основе

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8466829B1 (en) * 2009-09-14 2013-06-18 Lockheed Martin Corporation Super-angular and range-resolution with phased array antenna and multifrequency dither

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334560A2 (en) * 1988-03-25 1989-09-27 Sperry Marine Inc. Radar video detector and target tracker
US5847673A (en) * 1996-07-11 1998-12-08 Northrop Grumman Corporation System and method for determining a position of an object using output from a radar system
WO2005036099A1 (en) * 2003-06-11 2005-04-21 Honeywell International, Inc. Systems and methods for target location
JP2008197034A (ja) * 2007-02-15 2008-08-28 Nec Corp 電子走査式精測レーダ装置および目標追尾方法
RU2416809C1 (ru) * 2009-09-22 2011-04-20 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Рязанский государственный радиотехнический университет Способ повышения разрешающей способности рлс по углу при переднебоковом обзоре
RU2480782C1 (ru) * 2011-10-06 2013-04-27 Открытое акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" Способ и устройство разрешения движущихся целей по угловым направлениям в обзорных рлс
RU2541888C1 (ru) * 2013-10-29 2015-02-20 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Исток" (ФГУП "НПП "Исток") Многолучевая свч линейная антенная решётка и двумерная антенная решётка на ее основе
RU146508U1 (ru) * 2014-04-04 2014-10-10 Закрытое акционерное общество "АЭРО-КОСМИЧЕСКИЕ ТЕХНОЛОГИИ" Короткоимпульсный радиолокатор с электронным сканированием в двух плоскостях и с высокоточным измерением координат и скорости объектов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709483C1 (ru) * 2019-04-30 2019-12-18 ООО "Когнитив Роботикс" Способ динамического изменения ширины полосы захвата в радаре непрерывного излучения с синтезированием апертуры антенны

Also Published As

Publication number Publication date
WO2019203689A1 (ru) 2019-10-24

Similar Documents

Publication Publication Date Title
US10367262B2 (en) Architectures and methods for novel antenna radiation optimization via feed repositioning
US9263801B2 (en) Directional mobile antenna with polarization switching by displacement of radiating panels
US7522095B1 (en) Polygonal cylinder array antenna
ES2674220T3 (es) Obtención de imágenes de SAR de mapa de franjas de alta resolución
US8633851B2 (en) Low power, space combined, phased array radar
Haupt et al. Antenna array developments: A perspective on the past, present and future
US3500422A (en) Sub-array horn assembly for phased array application
US2419205A (en) Directive antenna system
US9478858B1 (en) Multi-chip module architecture
RU2115141C1 (ru) Наземная обзорная радиолокационная станция аэропорта и радиолокационная установка
EP3416303B1 (en) System and method for high throughput fractionated satellites (htfs) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites
US3699574A (en) Scanned cylindrical array monopulse antenna
US10103428B2 (en) Low cost high performance aircraft antenna for advanced ground to air internet system
US5189433A (en) Slotted microstrip electronic scan antenna
Younis et al. Performance comparison of reflector-and planar-antenna based digital beam-forming SAR
US5059966A (en) Synthetic aperture radar system
CA2630379C (en) Frequency scanning antenna
US4843397A (en) Distributed-array radar system comprising an array of interconnected elementary satellites
US8947292B2 (en) Radar system and method for a synthetic aperture radar
US5206655A (en) High-yield active printed-circuit antenna system for frequency-hopping space radar
US3305867A (en) Antenna array system
US4277787A (en) Charge transfer device phased array beamsteering and multibeam beamformer
US3631503A (en) High-performance distributionally integrated subarray antenna
US4779097A (en) Segmented phased array antenna system with mechanically movable segments
US8432307B2 (en) Agile-beam radar notably for the obstacle ‘sense and avoid’ function