TW202402562A - Bicycle hub assembly - Google Patents
Bicycle hub assembly Download PDFInfo
- Publication number
- TW202402562A TW202402562A TW112126226A TW112126226A TW202402562A TW 202402562 A TW202402562 A TW 202402562A TW 112126226 A TW112126226 A TW 112126226A TW 112126226 A TW112126226 A TW 112126226A TW 202402562 A TW202402562 A TW 202402562A
- Authority
- TW
- Taiwan
- Prior art keywords
- hub assembly
- sprocket
- external spline
- wheel hub
- bicycle
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims description 58
- 230000004323 axial length Effects 0.000 claims description 41
- 230000002093 peripheral effect Effects 0.000 claims description 16
- 125000006850 spacer group Chemical group 0.000 description 35
- 239000000853 adhesive Substances 0.000 description 16
- 230000001070 adhesive effect Effects 0.000 description 16
- 101100365087 Arabidopsis thaliana SCRA gene Proteins 0.000 description 8
- 101100195396 Human cytomegalovirus (strain Merlin) RL11 gene Proteins 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 101100249083 Human cytomegalovirus (strain Merlin) RL12 gene Proteins 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 230000001351 cycling effect Effects 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/30—Chain-wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M9/00—Transmissions characterised by use of an endless chain, belt, or the like
- B62M9/04—Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
- B62M9/06—Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
- B62M9/10—Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B27/00—Hubs
- B60B27/0015—Hubs for driven wheels
- B60B27/0021—Hubs for driven wheels characterised by torque transmission means from drive axle
- B60B27/0026—Hubs for driven wheels characterised by torque transmission means from drive axle of the radial type, e.g. splined key
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B27/00—Hubs
- B60B27/02—Hubs adapted to be rotatably arranged on axle
- B60B27/023—Hubs adapted to be rotatably arranged on axle specially adapted for bicycles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B27/00—Hubs
- B60B27/02—Hubs adapted to be rotatably arranged on axle
- B60B27/04—Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B27/00—Hubs
- B60B27/02—Hubs adapted to be rotatably arranged on axle
- B60B27/04—Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets
- B60B27/047—Hubs adapted to be rotatably arranged on axle housing driving means, e.g. sprockets comprising a freewheel mechanisms
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Gears, Cams (AREA)
- Automatic Cycles, And Cycles In General (AREA)
- Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
- Steering Devices For Bicycles And Motorcycles (AREA)
Abstract
Description
本發明係關於一種自行車輪轂總成。The invention relates to a bicycle wheel hub assembly.
騎車正變成更日益流行的消遣形式以及交通方式。此外,騎車已變成業餘及專業人員兩者之非常流行的競技運動。不論自行車是用於消遣、交通抑或是用於競賽,自行車行業正不斷地改良自行車之各種組件。已經充分重新設計之一個自行車組件為輪轂總成。Cycling is becoming an increasingly popular form of recreation as well as transportation. Furthermore, cycling has become a very popular competitive sport among both amateurs and professionals. Whether the bicycle is used for recreation, transportation or competition, the bicycle industry is constantly improving the various components of the bicycle. One bicycle component that has been fully redesigned is the wheel hub assembly.
根據本發明之第一態樣,一種自行車輪轂總成包含一鏈輪支撐主體。該鏈輪支撐主體包括經結構設計以與一自行車後鏈輪總成嚙合之至少十個外部花鍵齒。該至少十個外部花鍵齒中之每一者具有一外部花鍵傳動表面及一外部花鍵非傳動表面。 在根據第一態樣之自行車輪轂總成之情況下,相比於包括九個或更少外部花鍵齒之鏈輪支撐主體,至少十個外部花鍵齒減少施加至至少十個外部花鍵齒中之每一者的旋轉力。此改良鏈輪支撐主體之耐久性及/或改良挑選鏈輪支撐主體之材料的自由度而不降低鏈輪支撐主體之耐久性。 根據本發明之第二態樣,如第一態樣之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒之一總數目等於或大於20。 在根據第二態樣之自行車輪轂總成之情況下,相比於包括九個或更少外部花鍵齒之鏈輪支撐主體,至少二十個外部花鍵齒進一步減少施加至至少二十個外部花鍵齒中之每一者的旋轉力。此進一步改良鏈輪支撐主體之耐久性及/或改良挑選鏈輪支撐主體之材料的自由度而不降低鏈輪支撐主體之耐久性。 根據本發明之第三態樣,如第二態樣之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒之該總數目等於或大於25。 在根據第三態樣之自行車輪轂總成之情況下,相比於包括九個或更少外部花鍵齒之鏈輪支撐主體,至少二十五個外部花鍵齒進一步減少施加至至少二十五個外部花鍵齒中之每一者的旋轉力。此進一步改良鏈輪支撐主體之耐久性及/或改良挑選鏈輪支撐主體之材料的自由度而不降低鏈輪支撐主體之耐久性。 根據本發明之第四態樣,如第一態樣至第三態樣中任一項之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒具有一第一外部周節角及不同於該第一外部周節角之一第二外部周節角。 在根據第四態樣之自行車輪轂總成之情況下,第一外部周節角與第二外部周節角之間的差異幫助使用者將自行車後鏈輪總成正確地安裝至鏈輪支撐主體,尤其是關於自行車後鏈輪總成之每一鏈輪之圓周位置。 根據本發明之第五態樣,如第一態樣至第四態樣中任一項之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒中之至少一者具有不同於該至少十個外部花鍵齒中之另一者之一第二花鍵形狀的一第一花鍵形狀。 在根據第五態樣之自行車輪轂總成之情況下,第一花鍵形狀與第二花鍵形狀之間的差異幫助使用者將自行車後鏈輪總成正確地安裝至鏈輪支撐主體,尤其是關於自行車後鏈輪總成之每一鏈輪之圓周位置。 根據本發明之第六態樣,如第一態樣至第五態樣中任一項之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒中之至少一者具有不同於該至少十個外部花鍵齒中之另一者之一第二花鍵大小的一第一花鍵大小。 在根據第六態樣之自行車輪轂總成之情況下,第一花鍵大小與第二花鍵大小之間的差異幫助使用者將自行車後鏈輪總成正確地安裝至鏈輪支撐主體,尤其是關於自行車後鏈輪總成之每一鏈輪之圓周位置。 根據本發明之第七態樣,如第一態樣至第六態樣中任一項之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒各自具有圓周最大寬度。該等圓周最大寬度之一總和等於或大於55 mm。 在根據第七態樣之自行車輪轂總成之情況下,有可能改良至少十個外部花鍵齒在剪切方向上之強度。 根據本發明之第八態樣,如第七態樣之自行車輪轂總成經結構設計以使得該等圓周最大寬度之該總和等於或大於60 mm。 在根據第八態樣之自行車輪轂總成之情況下,有可能進一步改良至少十個外部花鍵齒在剪切方向上之強度。 根據本發明之第九態樣,如第八態樣之自行車輪轂總成經結構設計以使得該等圓周最大寬度之該總和等於或大於65 mm。 在根據第九態樣之自行車輪轂總成之情況下,有可能進一步改良至少十個外部花鍵齒在剪切方向上之強度。 根據本發明之第十態樣,一種自行車輪轂總成包含一鏈輪支撐主體。該鏈輪支撐主體包括經結構設計以與一自行車後鏈輪總成嚙合之複數個外部花鍵齒。該複數個外部花鍵齒中之至少兩個外部花鍵齒相對於該自行車輪轂總成之一旋轉中心軸線以一第一外部周節角沿圓周配置。該第一外部周節角在10度至20度之範圍內。 在根據第十態樣之自行車輪轂總成之情況下,相比於具有大於第一外部周節角之外部周節角的鏈輪支撐主體,第一外部周節角減少施加至至少兩個外部花鍵齒中之每一者的旋轉力。此改良鏈輪支撐主體之耐久性及/或改良挑選鏈輪支撐主體之材料的自由度而不降低鏈輪支撐主體之耐久性。 根據本發明之第十一態樣,如第十態樣之自行車輪轂總成經結構設計以使得該第一外部周節角在12度至15度之範圍內。 在根據第十一態樣之自行車輪轂總成之情況下,相比於具有大於第一外部周節角之外部周節角的鏈輪支撐主體,第一外部周節角進一步減少施加至至少兩個外部花鍵齒中之每一者的旋轉力。此進一步改良鏈輪支撐主體之耐久性及/或改良挑選鏈輪支撐主體之材料的自由度而不降低鏈輪支撐主體之耐久性。 根據本發明之第十二態樣,如第十一態樣之自行車輪轂總成經結構設計以使得該第一外部周節角在13度至14度之範圍內。 在根據第十二態樣之自行車輪轂總成之情況下,相比於具有大於第一外部周節角之外部周節角的鏈輪支撐主體,第一外部周節角進一步減少施加至至少兩個外部花鍵齒中之每一者的旋轉力。此進一步改良鏈輪支撐主體之耐久性及/或改良挑選鏈輪支撐主體之材料的自由度而不降低鏈輪支撐主體之耐久性。 根據本發明之第十三態樣,如第十態樣至第十二態樣中任一項之自行車輪轂總成經結構設計以使得該複數個外部花鍵齒中之至少兩個外部花鍵齒相對於該自行車輪轂總成之該旋轉中心軸線以一第二外部周節角沿圓周配置。該第二外部周節角不同於該第一外部周節角。 在根據第十三態樣之自行車輪轂總成之情況下,第一外部周節角與第二外部周節角之間的差異幫助使用者將自行車後鏈輪總成正確地安裝至鏈輪支撐主體,尤其是關於自行車後鏈輪總成之每一鏈輪之圓周位置。 根據本發明之第十四態樣,一種自行車輪轂總成包含一鏈輪支撐主體。該鏈輪支撐主體包括經結構設計以與一自行車後鏈輪總成嚙合之至少一個外部花鍵齒。該至少一個外部花鍵齒具有等於或小於30 mm之一外部花鍵頂徑。 在根據第十四態樣之自行車輪轂總成之情況下,外部花鍵頂徑使得自行車輪轂總成能夠將包括具有十個或更少鏈輪齒之鏈輪的自行車後鏈輪總成安裝至自行車輪轂總成。此加寬了安裝至自行車輪轂總成之自行車後鏈輪總成的齒輪範圍。 根據本發明之第十五態樣,如第十四態樣之自行車輪轂總成進一步包含一制動轉子支撐主體,該制動轉子支撐主體包括經結構設計以與一自行車制動轉子嚙合之至少一個額外外部花鍵齒。該至少一個額外外部花鍵齒具有大於該外部花鍵頂徑之一額外外部花鍵頂徑。 在根據第十五態樣之自行車輪轂總成之情況下,制動轉子支撐主體藉由加寬安裝至自行車輪轂總成之自行車後鏈輪總成的齒輪範圍來改良制動效能。 根據本發明之第十六態樣,如第十四態樣或第十五態樣之自行車輪轂總成經結構設計以使得該外部花鍵頂徑等於或大於25 mm。 在根據第十六態樣之自行車輪轂總成之情況下,有可能在使得自行車輪轂總成能夠將包括具有十個或更少鏈輪齒之鏈輪的自行車後鏈輪總成安裝至自行車輪轂總成之情況下確保鏈輪支撐主體之強度。 根據本發明之第十七態樣,如第十六態樣之自行車後輪轂總成經結構設計以使得該外部花鍵頂徑等於或大於29 mm。 在根據第十七態樣之自行車輪轂總成之情況下,有可能在使得自行車輪轂總成能夠將包括具有十個或更少鏈輪齒之鏈輪的自行車後鏈輪總成安裝至自行車輪轂總成之情況下確保鏈輪支撐主體之強度。 根據本發明之第十八態樣,如第十四態樣至第十七態樣中任一項之自行車輪轂總成經結構設計以使得該至少一個外部花鍵齒具有一外部花鍵底徑,該外部花鍵底徑等於或小於28 mm。 在根據第十八態樣之自行車輪轂總成之情況下,外部花鍵底徑可增大至少一個外部花鍵齒之傳動表面之徑向長度。此改良鏈輪支撐主體之強度。 根據本發明之第十九態樣,如第十八態樣之自行車輪轂總成經結構設計以使得該外部花鍵底徑等於或大於25 mm。 在根據第十九態樣之自行車輪轂總成之情況下,有可能在加寬安裝至自行車輪轂總成之自行車後鏈輪總成之齒輪範圍的情況下確定地確保鏈輪支撐主體之強度。 根據本發明之第二十態樣,如第十九態樣之自行車輪轂總成經結構設計以使得該外部花鍵底徑等於或大於27 mm。 在根據第二十態樣之自行車輪轂總成之情況下,有可能在加寬安裝至自行車輪轂總成之自行車後鏈輪總成之齒輪範圍的情況下確定地確保鏈輪支撐主體之強度。 根據本發明之第二十一態樣,如第十四態樣至第二十態樣中任一項之自行車輪轂總成經結構設計以使得該至少一個外部花鍵齒包括複數個外部花鍵齒,該複數個外部花鍵齒包括用以在踩踏期間接收來自該自行車後鏈輪總成之一傳動旋轉力的複數個外部花鍵傳動表面。該複數個外部花鍵傳動表面各自包括一徑向最外邊緣、一徑向最內邊緣及自該徑向最外邊緣至該徑向最內邊緣界定之一徑向長度。該複數個外部花鍵傳動表面之該等徑向長度之一總和等於或大於7 mm。 在根據第二十一態樣之自行車輪轂總成之情況下,有可能增大複數個外部花鍵傳動表面之徑向長度。此改良鏈輪支撐主體之強度。 根據本發明之第二十二態樣,如第二十一態樣之自行車輪轂總成經結構設計以使得該等徑向長度之該總和等於或大於10 mm。 在根據第二十二態樣之自行車輪轂總成之情況下,有可能進一步增大複數個外部花鍵傳動表面之徑向長度。此進一步改良鏈輪支撐主體之強度。 根據本發明之第二十三態樣,如第二十二態樣之自行車輪轂總成經結構設計以使得該等徑向長度之該總和等於或大於15 mm。 在根據第二十三態樣之自行車輪轂總成之情況下,有可能進一步增大複數個外部花鍵傳動表面之徑向長度。此進一步改良鏈輪支撐主體之強度。 根據本發明之第二十四態樣,如第十四態樣至第二十三態樣中任一項之自行車輪轂總成經結構設計以使得該鏈輪支撐主體包括一較大直徑部分,該較大直徑部分具有大於該外部花鍵頂徑之一外徑。 在根據第二十四態樣之自行車輪轂總成之情況下,有可能改良自行車輪轂總成之內部結構之設計自由度。舉例而言,諸如單向聯軸結構之傳動結構可容納於鏈輪支撐主體之此較大直徑部分之內部空腔內。 根據本發明之第二十五態樣,如第二十四態樣之自行車輪轂總成經結構設計以使得該外徑在32 mm至40 mm之範圍內。 在根據第二十五態樣之自行車輪轂總成之情況下,有可能進一步改良自行車輪轂總成之內部結構之設計自由度。舉例而言,有可能易於將諸如單向聯軸結構之傳動結構安置於此較大直徑部分之內部空腔中。 根據本發明之第二十六態樣,如第二十四態樣之自行車輪轂總成進一步包含一輪轂軸,該輪轂軸包括用以接觸一自行車框架之一軸向接觸表面。該鏈輪支撐主體圍繞一旋轉中心軸線可旋轉地安裝於該輪轂軸上。一第一軸向長度係相對於該旋轉中心軸線在一軸向方向上自該軸向接觸表面至該較大直徑部分界定。該第一軸向長度在35 mm至41 mm之範圍內。 在根據第二十六態樣之自行車輪轂總成之情況下,有可能確保至少一個外部花鍵齒之軸向長度。 根據本發明之第二十七態樣,如第二十六態樣之自行車輪轂總成經結構設計以使得該第一軸向長度等於或大於39 mm。 在根據第二十七態樣之自行車輪轂總成之情況下,有可能進一步確保至少一個外部花鍵齒之徑向長度。 根據本發明之第二十八態樣,如第二十六態樣之自行車輪轂總成經結構設計以使得該第一軸向長度在35 mm至37 mm之範圍內。 在根據第二十八態樣之自行車輪轂總成之情況下,有可能進一步確保至少一個外部花鍵齒之軸向長度。 根據本發明之第二十九態樣,如第二十六態樣之自行車輪轂總成經結構設計以使得該較大直徑部分具有在該軸向方向上離該軸向接觸表面最遠的一軸向端。一第二軸向長度係在該軸向方向上自該軸向接觸表面至該軸向端界定。該第二軸向長度在38 mm至47 mm之範圍內。 在根據第二十九態樣之自行車輪轂總成之情況下,有可能確保至少一個外部花鍵齒之軸向長度,同時改良自行車輪轂總成之內部結構之設計自由度。 根據本發明之第三十態樣,如第二十九態樣之自行車輪轂總成經結構設計以使得該第二軸向長度在44 mm至45 mm之範圍內。 在根據第三十態樣之自行車輪轂總成之情況下,有可能進一步確保至少一個外部花鍵齒之軸向長度,同時改良自行車輪轂總成之內部結構之設計自由度。 根據本發明之第三十一態樣,如第二十九態樣之自行車輪轂總成經結構設計以使得該第二軸向長度在40 mm至41 mm之範圍內。 在根據第三十一態樣之自行車輪轂總成之情況下,有可能進一步確保至少一個外部花鍵齒之軸向長度,同時改良自行車輪轂總成之內部結構之設計自由度。 根據本發明之第三十二態樣,如第二十四態樣至第三十一態樣中任一項之自行車輪轂總成經結構設計以使得該較大直徑部分之一軸向長度在3 mm至6 mm之範圍內。 在根據第三十二態樣之自行車輪轂總成之情況下,有可能進一步改良自行車輪轂總成之內部結構之設計自由度。舉例而言,諸如單向聯軸結構之傳動結構可容納於鏈輪支撐主體之此較大直徑部分之內部空腔內。 根據本發明之第三十三態樣,一種自行車輪轂總成包含一鏈輪支撐主體。該鏈輪支撐主體包括經結構設計以與一自行車後鏈輪總成嚙合之至少九個外部花鍵齒。該至少九個外部花鍵齒中之至少一者相對於一圓周齒尖中心線具有一不對稱形狀。該至少九個外部花鍵齒中之該至少一者包含一外部花鍵傳動表面及一外部花鍵非傳動表面。該外部花鍵傳動表面具有界定於該外部花鍵傳動表面與一第一徑向線之間的一第一外部花鍵表面角,該第一徑向線自該自行車輪轂總成之一旋轉中心軸線延伸至該外部花鍵傳動表面之一徑向最外邊緣。該外部花鍵非傳動表面具有界定於該外部花鍵非傳動表面與一第二徑向線之間的一第二外部花鍵表面角,該第二徑向線自該自行車輪轂總成之該旋轉中心軸線延伸至該外部花鍵非傳動表面之一徑向最外邊緣。該第二外部花鍵表面角不同於該第一外部花鍵表面角。 在根據第三十三態樣之自行車輪轂總成之情況下,有可能減輕鏈輪支撐主體之重量,同時確保鏈輪支撐主體之外部花鍵齒之強度。 根據本發明之第三十四態樣,如第第三十三態樣之自行車輪轂總成經結構設計以使得該第一外部花鍵表面角小於該第二外部花鍵表面角。 在根據第三十四態樣之自行車輪轂總成之情況下,有可能有效地減輕鏈輪支撐主體之重量,同時確保鏈輪支撐主體之外部花鍵齒之強度。 根據本發明之第三十五態樣,如第三十三態樣或第三十四態樣之自行車輪轂總成經結構設計以使得該第一外部花鍵表面角在0度至10度之範圍內。 在根據第三十五態樣之自行車輪轂總成之情況下,第一外部花鍵表面角確保外部花鍵傳動表面之強度。 根據本發明之第三十六態樣,如第三十三態樣至第三十五態樣中任一項之自行車輪轂總成經結構設計以使得該第二外部花鍵表面角在0度至60度之範圍內。 在根據第三十六態樣之自行車輪轂總成之情況下,第二外部花鍵表面角減輕鏈輪支撐主體之外部花鍵齒之重量。 根據本發明之第三十七態樣,如第三十三態樣至第三十六態樣中任一項之自行車輪轂總成經結構設計以使得該至少十個外部花鍵齒具有一第一外部周節角及不同於該第一外部周節角之一第二外部周節角。 在根據第三十七態樣之自行車輪轂總成之情況下,第一外部周節角與第二外部周節角之間的差異幫助使用者將自行車後鏈輪總成正確地安裝至鏈輪支撐主體,尤其是關於自行車後鏈輪總成之每一鏈輪之圓周位置。 According to a first aspect of the present invention, a bicycle wheel hub assembly includes a sprocket support body. The sprocket support body includes at least ten external spline teeth structured to engage a bicycle rear sprocket assembly. Each of the at least ten external spline teeth has an external spline drive surface and an external spline non-drive surface. In the case of the bicycle wheel hub assembly according to the first aspect, the at least ten external spline teeth reduce the force applied to the at least ten external splines compared to a sprocket support body including nine or less external spline teeth. The rotational force of each of the teeth. This improves the durability of the sprocket support body and/or improves the freedom in selecting the material of the sprocket support body without reducing the durability of the sprocket support body. According to a second aspect of the invention, a bicycle hub assembly as in the first aspect is structurally designed such that a total number of the at least ten external spline teeth is equal to or greater than 20. In the case of the bicycle wheel hub assembly according to the second aspect, the at least twenty external spline teeth are further reduced to at least twenty as compared to a sprocket support body including nine or less external spline teeth. The rotational force of each of the external spline teeth. This further improves the durability of the sprocket support body and/or improves the freedom in selecting the material of the sprocket support body without reducing the durability of the sprocket support body. According to a third aspect of the invention, a bicycle hub assembly as in the second aspect is structurally designed such that the total number of the at least ten external spline teeth is equal to or greater than 25. In the case of the bicycle wheel hub assembly according to the third aspect, compared to a sprocket support body including nine or less external spline teeth, the at least twenty-five external spline teeth further reduces the applied force to at least twenty The rotational force of each of the five external spline teeth. This further improves the durability of the sprocket support body and/or improves the freedom in selecting the material of the sprocket support body without reducing the durability of the sprocket support body. According to a fourth aspect of the present invention, the bicycle wheel hub assembly of any one of the first to third aspects is structurally designed such that the at least ten external spline teeth have a first external peripheral pitch angle and A second outer pitch angle that is different from the first outer pitch angle. In the case of the bicycle wheel hub assembly according to the fourth aspect, the difference between the first outer pitch angle and the second outer pitch angle helps the user to correctly install the bicycle rear sprocket assembly to the sprocket support body , especially regarding the circumferential position of each sprocket of the bicycle rear sprocket assembly. According to a fifth aspect of the present invention, the bicycle wheel hub assembly of any one of the first to fourth aspects is structurally designed such that at least one of the at least ten external spline teeth has a function different from that of the A first spline shape of another one of the at least ten external spline teeth and a second spline shape. In the case of the bicycle wheel hub assembly according to the fifth aspect, the difference between the first spline shape and the second spline shape helps the user to correctly install the bicycle rear sprocket assembly to the sprocket support body, especially It is about the circumferential position of each sprocket of the bicycle rear sprocket assembly. According to a sixth aspect of the present invention, the bicycle wheel hub assembly of any one of the first to fifth aspects is structurally designed such that at least one of the at least ten external spline teeth has a function different from that of the At least one of the other one of the ten external spline teeth is a second spline size and a first spline size. In the case of the bicycle wheel hub assembly according to the sixth aspect, the difference between the first spline size and the second spline size helps the user to correctly install the bicycle rear sprocket assembly to the sprocket support body, especially It is about the circumferential position of each sprocket of the bicycle rear sprocket assembly. According to a seventh aspect of the present invention, the bicycle wheel hub assembly of any one of the first to sixth aspects is structurally designed such that each of the at least ten external spline teeth has a maximum circumferential width. The sum of one of the largest circumferential widths is equal to or greater than 55 mm. In the case of the bicycle wheel hub assembly according to the seventh aspect, it is possible to improve the strength of at least ten external spline teeth in the shear direction. According to an eighth aspect of the present invention, the bicycle wheel hub assembly of the seventh aspect is structurally designed such that the sum of the maximum widths of the circumferences is equal to or greater than 60 mm. In the case of the bicycle wheel hub assembly according to the eighth aspect, it is possible to further improve the strength of at least ten external spline teeth in the shear direction. According to a ninth aspect of the present invention, the bicycle wheel hub assembly of the eighth aspect is structurally designed such that the sum of the maximum circumferential widths is equal to or greater than 65 mm. In the case of the bicycle wheel hub assembly according to the ninth aspect, it is possible to further improve the strength of at least ten external spline teeth in the shear direction. According to a tenth aspect of the present invention, a bicycle hub assembly includes a sprocket support body. The sprocket support body includes a plurality of external spline teeth structured to engage a bicycle rear sprocket assembly. At least two of the plurality of external spline teeth are circumferentially arranged at a first external pitch angle with respect to a central axis of rotation of the bicycle hub assembly. The first outer peripheral pitch angle is in the range of 10 degrees to 20 degrees. In the case of the bicycle hub assembly according to the tenth aspect, compared to the sprocket support body having an outer pitch angle greater than the first outer pitch angle, the first outer pitch angle reduction is applied to at least two outer The rotational force of each of the spline teeth. This improves the durability of the sprocket support body and/or improves the freedom in selecting the material of the sprocket support body without reducing the durability of the sprocket support body. According to an eleventh aspect of the present invention, the bicycle wheel hub assembly of the tenth aspect is structurally designed such that the first outer peripheral pitch angle is in the range of 12 degrees to 15 degrees. In the case of the bicycle hub assembly according to the eleventh aspect, compared to the sprocket support body having an outer pitch angle greater than the first outer pitch angle, the first outer pitch angle is further reduced to at least two The rotational force of each of the external spline teeth. This further improves the durability of the sprocket support body and/or improves the freedom in selecting the material of the sprocket support body without reducing the durability of the sprocket support body. According to a twelfth aspect of the present invention, the bicycle wheel hub assembly of the eleventh aspect is structurally designed such that the first outer peripheral pitch angle is in the range of 13 degrees to 14 degrees. In the case of the bicycle hub assembly according to the twelfth aspect, compared to the sprocket support body having an outer pitch angle greater than the first outer pitch angle, the first outer pitch angle is further reduced to at least two The rotational force of each of the external spline teeth. This further improves the durability of the sprocket support body and/or improves the freedom in selecting the material of the sprocket support body without reducing the durability of the sprocket support body. According to a thirteenth aspect of the present invention, the bicycle wheel hub assembly of any one of the tenth to twelfth aspects is structurally designed such that at least two of the plurality of external spline teeth The teeth are circumferentially arranged at a second outer circumferential pitch angle relative to the central axis of rotation of the bicycle hub assembly. The second outer pitch angle is different from the first outer pitch angle. In the case of the bicycle wheel hub assembly according to the thirteenth aspect, the difference between the first outer pitch angle and the second outer pitch angle helps the user to correctly install the bicycle rear sprocket assembly to the sprocket support The main body, especially the circumferential position of each sprocket of the bicycle rear sprocket assembly. According to a fourteenth aspect of the present invention, a bicycle wheel hub assembly includes a sprocket support body. The sprocket support body includes at least one external spline tooth structured to engage a bicycle rear sprocket assembly. The at least one external spline tooth has an external spline tip diameter equal to or less than 30 mm. In the case of the bicycle hub assembly according to the fourteenth aspect, the external spline top diameter enables the bicycle hub assembly to mount a bicycle rear sprocket assembly including a sprocket having ten sprocket teeth or less to Bicycle wheel hub assembly. This widens the gear range of the bicycle rear sprocket assembly mounted to the bicycle hub assembly. According to a fifteenth aspect of the present invention, the bicycle hub assembly of the fourteenth aspect further includes a brake rotor support body including at least one additional outer portion structured to engage a bicycle brake rotor. Spline teeth. The at least one additional external spline tooth has an additional external spline top diameter that is greater than the external spline top diameter. In the case of the bicycle hub assembly according to the fifteenth aspect, the brake rotor support body improves braking performance by widening the gear range of the bicycle rear sprocket assembly mounted to the bicycle hub assembly. According to a sixteenth aspect of the present invention, the bicycle wheel hub assembly of the fourteenth aspect or the fifteenth aspect is structurally designed such that the external spline top diameter is equal to or greater than 25 mm. In the case of the bicycle hub assembly according to the sixteenth aspect, it is possible to mount a bicycle rear sprocket assembly including a sprocket having ten or less sprocket teeth to the bicycle hub in such a manner that the bicycle hub assembly can In the case of the assembly, ensure the strength of the sprocket support body. According to a seventeenth aspect of the present invention, the bicycle rear hub assembly of the sixteenth aspect is structurally designed such that the external spline top diameter is equal to or greater than 29 mm. In the case of the bicycle hub assembly according to the seventeenth aspect, it is possible to mount a bicycle rear sprocket assembly including a sprocket having ten or less sprocket teeth to the bicycle hub in such a manner that the bicycle hub assembly can In the case of the assembly, ensure the strength of the sprocket support body. According to an eighteenth aspect of the present invention, the bicycle wheel hub assembly of any one of the fourteenth to seventeenth aspects is structurally designed such that the at least one external spline tooth has an external spline bottom diameter. , the base diameter of the external spline is equal to or less than 28 mm. In the case of the bicycle wheel hub assembly according to the eighteenth aspect, the bottom diameter of the external spline can increase the radial length of the transmission surface of at least one external spline tooth. This improved sprocket supports the strength of the main body. According to a nineteenth aspect of the present invention, the bicycle wheel hub assembly of the eighteenth aspect is structurally designed such that the bottom diameter of the external spline is equal to or greater than 25 mm. In the case of the bicycle hub assembly according to the nineteenth aspect, it is possible to reliably ensure the strength of the sprocket support body while widening the gear range of the bicycle rear sprocket assembly mounted to the bicycle hub assembly. According to a twentieth aspect of the present invention, the bicycle wheel hub assembly of the nineteenth aspect is structurally designed such that the bottom diameter of the external spline is equal to or greater than 27 mm. In the case of the bicycle hub assembly according to the twentieth aspect, it is possible to reliably ensure the strength of the sprocket support body while widening the gear range of the bicycle rear sprocket assembly mounted to the bicycle hub assembly. According to a twenty-first aspect of the present invention, the bicycle hub assembly of any one of the fourteenth to twentieth aspects is structurally designed such that the at least one external spline tooth includes a plurality of external splines. teeth, the plurality of external spline teeth including a plurality of external spline transmission surfaces for receiving a transmission rotational force from a rear sprocket assembly of the bicycle during pedaling. The plurality of external spline transmission surfaces each includes a radially outermost edge, a radially innermost edge, and a radial length defined from the radially outermost edge to the radially innermost edge. The sum of one of the radial lengths of the plurality of external spline transmission surfaces is equal to or greater than 7 mm. In the case of the bicycle wheel hub assembly according to the twenty-first aspect, it is possible to increase the radial length of the plurality of external spline transmission surfaces. This improved sprocket supports the strength of the main body. According to a twenty-second aspect of the present invention, the bicycle wheel hub assembly of the twenty-first aspect is structurally designed such that the sum of the radial lengths is equal to or greater than 10 mm. In the case of the bicycle wheel hub assembly according to the twenty-second aspect, it is possible to further increase the radial length of the plurality of external spline transmission surfaces. This further improves the strength of the sprocket support body. According to a twenty-third aspect of the present invention, the bicycle wheel hub assembly of the twenty-second aspect is structurally designed such that the sum of the radial lengths is equal to or greater than 15 mm. In the case of the bicycle wheel hub assembly according to the twenty-third aspect, it is possible to further increase the radial length of the plurality of external spline transmission surfaces. This further improves the strength of the sprocket support body. According to a twenty-fourth aspect of the present invention, the bicycle hub assembly of any one of the fourteenth to twenty-third aspects is structurally designed such that the sprocket support body includes a larger diameter portion, The larger diameter portion has an outer diameter greater than the outer spline tip diameter. In the case of the bicycle wheel hub assembly according to the twenty-fourth aspect, it is possible to improve the design freedom of the internal structure of the bicycle wheel hub assembly. For example, a transmission structure such as a one-way coupling structure may be accommodated within the internal cavity of this larger diameter portion of the sprocket support body. According to the twenty-fifth aspect of the present invention, the bicycle wheel hub assembly of the twenty-fourth aspect is structurally designed such that the outer diameter is in the range of 32 mm to 40 mm. In the case of the bicycle wheel hub assembly according to the twenty-fifth aspect, it is possible to further improve the design freedom of the internal structure of the bicycle wheel hub assembly. For example, it may be possible to easily place a transmission structure such as a one-way coupling structure within the internal cavity of this larger diameter portion. According to a twenty-sixth aspect of the present invention, the bicycle hub assembly of the twenty-fourth aspect further includes a hub axle including an axial contact surface for contacting a bicycle frame. The sprocket support body is rotatably mounted on the hub shaft around a rotation center axis. A first axial length is defined in an axial direction relative to the central axis of rotation from the axial contact surface to the larger diameter portion. The first axial length is in the range of 35 mm to 41 mm. In the case of the bicycle wheel hub assembly according to the twenty-sixth aspect, it is possible to ensure the axial length of at least one external spline tooth. According to a twenty-seventh aspect of the present invention, the bicycle wheel hub assembly of the twenty-sixth aspect is structurally designed such that the first axial length is equal to or greater than 39 mm. In the case of the bicycle wheel hub assembly according to the twenty-seventh aspect, it is possible to further ensure the radial length of at least one external spline tooth. According to a twenty-eighth aspect of the present invention, the bicycle wheel hub assembly of the twenty-sixth aspect is structurally designed such that the first axial length is in the range of 35 mm to 37 mm. In the case of the bicycle wheel hub assembly according to the twenty-eighth aspect, it is possible to further ensure the axial length of at least one external spline tooth. According to a twenty-ninth aspect of the present invention, the bicycle wheel hub assembly of the twenty-sixth aspect is structurally designed such that the larger diameter portion has a point farthest from the axial contact surface in the axial direction. axial end. A second axial length is defined in the axial direction from the axial contact surface to the axial end. The second axial length is in the range of 38 mm to 47 mm. In the case of the bicycle hub assembly according to the twenty-ninth aspect, it is possible to ensure the axial length of at least one external spline tooth while improving the design freedom of the internal structure of the bicycle hub assembly. According to a thirtieth aspect of the present invention, the bicycle wheel hub assembly of the twenty-ninth aspect is structurally designed such that the second axial length is in the range of 44 mm to 45 mm. In the case of the bicycle wheel hub assembly according to the thirtieth aspect, it is possible to further ensure the axial length of at least one external spline tooth and at the same time improve the design freedom of the internal structure of the bicycle wheel hub assembly. According to the thirty-first aspect of the present invention, the bicycle wheel hub assembly of the twenty-ninth aspect is structurally designed such that the second axial length is in the range of 40 mm to 41 mm. In the case of the bicycle wheel hub assembly according to the thirty-first aspect, it is possible to further ensure the axial length of at least one external spline tooth and at the same time improve the design freedom of the internal structure of the bicycle wheel hub assembly. According to a thirty-second aspect of the present invention, the bicycle wheel hub assembly of any one of the twenty-fourth to thirty-first aspects is structurally designed such that an axial length of the larger diameter portion is within Within the range of 3 mm to 6 mm. In the case of the bicycle wheel hub assembly according to the thirty-second aspect, it is possible to further improve the design freedom of the internal structure of the bicycle wheel hub assembly. For example, a transmission structure such as a one-way coupling structure may be accommodated within the internal cavity of this larger diameter portion of the sprocket support body. According to a thirty-third aspect of the present invention, a bicycle wheel hub assembly includes a sprocket support body. The sprocket support body includes at least nine external spline teeth structured to engage a bicycle rear sprocket assembly. At least one of the at least nine external spline teeth has an asymmetric shape relative to a circumferential tooth tip centerline. The at least one of the at least nine external spline teeth includes an external spline drive surface and an external spline non-drive surface. The external spline drive surface has a first external spline surface angle defined between the external spline drive surface and a first radial line extending from a center of rotation of the bicycle hub assembly The axis extends to one of the radially outermost edges of the external splined drive surface. The external splined non-drive surface has a second external spline surface angle defined between the external splined non-drive surface and a second radial line extending from the bicycle wheel hub assembly. The center axis of rotation extends to the radially outermost edge of one of the external splined non-drive surfaces. The second outer spline surface angle is different from the first outer spline surface angle. In the case of the bicycle hub assembly according to the thirty-third aspect, it is possible to reduce the weight of the sprocket support body while ensuring the strength of the external spline teeth of the sprocket support body. According to a thirty-fourth aspect of the present invention, the bicycle wheel hub assembly of the thirty-third aspect is structurally designed such that the first external spline surface angle is smaller than the second external spline surface angle. In the case of the bicycle hub assembly according to the thirty-fourth aspect, it is possible to effectively reduce the weight of the sprocket support body while ensuring the strength of the external spline teeth of the sprocket support body. According to a thirty-fifth aspect of the present invention, the bicycle wheel hub assembly of the thirty-third aspect or the thirty-fourth aspect is structurally designed such that the first external spline surface angle is between 0 degrees and 10 degrees. within the range. In the case of the bicycle wheel hub assembly according to the thirty-fifth aspect, the first external spline surface angle ensures the strength of the external spline transmission surface. According to a thirty-sixth aspect of the present invention, the bicycle wheel hub assembly of any one of the thirty-third to thirty-fifth aspects is structurally designed such that the second external spline surface angle is at 0 degrees to within the range of 60 degrees. In the case of the bicycle hub assembly according to the thirty-sixth aspect, the second external spline surface angle reduces the weight of the external spline teeth of the sprocket support body. According to a thirty-seventh aspect of the present invention, the bicycle wheel hub assembly of any one of the thirty-third to thirty-sixth aspects is structurally designed such that the at least ten external spline teeth have a first an outer pitch angle and a second outer pitch angle different from the first outer pitch angle. In the case of the bicycle wheel hub assembly according to the thirty-seventh aspect, the difference between the first outer pitch angle and the second outer pitch angle helps the user to correctly install the bicycle rear sprocket assembly to the sprocket. The supporting body, especially the circumferential position of each sprocket of the bicycle rear sprocket assembly.
現將參看附圖描述實施例,其中相似參考數字指定在各種圖式中之對應或相同元件。 首先參考圖1,根據一實施例之自行車傳動系統10包含自行車輪轂總成12及自行車後鏈輪總成14。自行車輪轂總成12緊固至自行車框架BF。自行車後鏈輪總成14安裝於自行車輪轂總成12上。自行車制動轉子16安裝於自行車輪轂總成12上。 自行車傳動系統10進一步包含曲柄總成18及自行車鏈條20。曲柄總成18包括曲柄軸22、右曲柄臂24、左曲柄臂26及前鏈輪27。右曲柄臂24及左曲柄臂26緊固至曲柄軸22。前鏈輪27緊固至曲柄軸22及右曲柄臂24中之至少一者。自行車鏈條20與前鏈輪27及自行車後鏈輪總成14嚙合以將踩踏力自前鏈輪27傳輸至自行車後鏈輪總成14。曲柄總成18包括前鏈輪27作為所說明實施例中之單一鏈輪。然而,曲柄總成18可包括複數個前鏈輪。自行車後鏈輪總成14為後鏈輪總成。然而,自行車後鏈輪總成14之結構可應用於前鏈輪。 在本申請案中,以下方向性術語「前」、「後」、「向前」、「向後」、「左」、「右」、「橫向」、「向上」及「向下」以及任何其他類似方向性術語係指基於坐在自行車之車座(未展示)上且面向把手(未展示)的使用者(例如,騎乘者)而判定之彼等方向。因此,此等術語在用以描述自行車傳動系統10、自行車輪轂總成12或自行車後鏈輪總成14時,應關於配備有如在水平表面上在直立騎乘位置中所使用之自行車傳動系統10、自行車輪轂總成12或自行車後鏈輪總成14的自行車而加以解譯。 如圖2及圖3中所見,自行車輪轂總成12及自行車後鏈輪總成14具有旋轉中心軸線A1。自行車後鏈輪總成14相對於自行車框架BF (圖1)圍繞旋轉中心軸線A1由自行車輪轂總成12可旋轉地支撐。自行車後鏈輪總成14經結構設計以與自行車鏈條20嚙合,從而在踩踏期間在自行車鏈條20與自行車後鏈輪總成14之間傳輸傳動旋轉力F1。在踩踏期間,自行車後鏈輪總成14在傳動旋轉方向D11上圍繞旋轉中心軸線A1旋轉。傳動旋轉方向D11係沿自行車輪轂總成12或自行車後鏈輪總成14之圓周方向D1界定。反向旋轉方向D12為傳動旋轉方向D11之相反方向,且係沿圓周方向D1界定。 如圖2中所見,自行車輪轂總成12包含鏈輪支撐主體28。自行車後鏈輪總成14安裝於鏈輪支撐主體28上以在鏈輪支撐主體28與自行車後鏈輪總成14之間傳輸傳動旋轉力F1。自行車輪轂總成12進一步包含輪轂軸30。鏈輪支撐主體28圍繞旋轉中心軸線A1可旋轉地安裝於輪轂軸30上。自行車輪轂總成12包含鎖環32。鎖環32緊固至鏈輪支撐主體28以在平行於旋轉中心軸線A1之軸向方向D2上相對於鏈輪支撐主體28固持自行車後鏈輪總成14。 如圖4中所見,自行車輪轂總成12藉由車輪緊固結構WS緊固至自行車框架BF。輪轂軸30具有通孔30A。車輪緊固結構WS之緊固桿WS1延伸穿過輪轂軸30之通孔30A。輪轂軸30包括第一軸端30B及第二軸端30C。輪轂軸30沿旋轉中心軸線A1在第一軸端30B與第二軸端30C之間延伸。第一軸端30B設置於自行車框架BF之第一框架BF1之第一凹槽BF11中。第二軸端30C設置於自行車框架BF之第二框架BF2之第二凹槽BF21中。輪轂軸30藉由車輪緊固結構WS固持於第一框架BF1與第二框架BF2之間。車輪緊固結構WS包括在所申請之自行車中已知的結構。因此,出於簡潔起見,此處將不作詳細描述。 如圖4及圖5中所見,自行車輪轂總成12進一步包含制動轉子支撐主體34。制動轉子支撐主體34圍繞旋轉中心軸線A1可旋轉地安裝於輪轂軸30上。制動轉子支撐主體34耦接至自行車制動轉子16 (圖1)以將制動旋轉力自自行車制動轉子16傳輸至制動轉子支撐主體34。 如圖5中所見,自行車輪轂總成12進一步包含輪轂主體36。輪轂主體36圍繞旋轉中心軸線A1可旋轉地安裝於輪轂軸30上。在此實施例中,鏈輪支撐主體28為來自輪轂主體36之單獨構件。制動轉子支撐主體34與輪轂主體36一體地設置為單件式整體構件。然而,鏈輪支撐主體28可與輪轂主體36一體地設置。制動轉子支撐主體34可為來自輪轂主體36之單獨構件。 輪轂主體36包括第一凸緣36A及第二凸緣36B。第一輪輻(未展示)耦接至第一凸緣36A。第二輪輻(未展示)耦接至第二凸緣36B。第二凸緣36B在軸向方向D2上與第一凸緣36A間隔開。第一凸緣36A在軸向方向D2上設置於鏈輪支撐主體28與第二凸緣36B之間。第二凸緣36B在軸向方向D2上設置於第一凸緣36A與制動轉子支撐主體34之間。 鎖環32包括外部帶螺紋部分32A。鏈輪支撐主體28包括內部帶螺紋部分28A。在鎖環32緊固至鏈輪支撐主體28之狀態中,外部帶螺紋部分32A與內部帶螺紋部分28A螺紋嚙合。 如圖6中所見,自行車輪轂總成12進一步包含棘輪結構38。鏈輪支撐主體28藉由棘輪結構38可操作地耦接至輪轂主體36。棘輪結構38經結構設計以將鏈輪支撐主體28耦接至輪轂主體36,從而在踩踏期間使鏈輪支撐主體28連同輪轂主體36在傳動旋轉方向D11 (圖5)上旋轉。棘輪結構38經結構設計以允許鏈輪支撐主體28在惰轉期間在反向旋轉方向D12 (圖5)上相對於輪轂主體36旋轉。因此,棘輪結構38可解釋為單向聯軸結構38。棘輪結構38包括自行車領域中已知的結構。因此,出於簡潔起見,此處將不作詳細描述。 自行車輪轂總成12包括第一軸承39A及第二軸承39B。第一軸承39A及第二軸承39B設置於鏈輪支撐主體28與輪轂軸30之間以圍繞旋轉中心軸線A1相對於輪轂軸30可旋轉地支撐鏈輪支撐主體28。 在此實施例中,鏈輪支撐主體28、制動轉子支撐主體34及輪轂主體36中之每一者由諸如鋁、鐵或鈦之金屬材料製成。然而,鏈輪支撐主體28、制動轉子支撐主體34及輪轂主體36中之至少一者可由非金屬材料製成。 如圖7及圖8中所見,鏈輪支撐主體28包括經結構設計以與自行車後鏈輪總成14 (圖6)嚙合之至少一個外部花鍵齒40。鏈輪支撐主體28包括經結構設計以與自行車後鏈輪總成14 (圖6)嚙合之複數個外部花鍵齒40。亦即,至少一個外部花鍵齒40包括複數個外部花鍵齒40。鏈輪支撐主體28包括經結構設計以與自行車後鏈輪總成14 (圖6)嚙合之至少九個外部花鍵齒40。鏈輪支撐主體28包括經結構設計以與自行車後鏈輪總成14 (圖6)嚙合之至少十個外部花鍵齒40。 鏈輪支撐主體28包括具有管狀形狀之基座支撐件41。基座支撐件41沿旋轉中心軸線A1延伸,並具有一單一直徑部分(如圖7所示)。外部花鍵齒40自基座支撐件41徑向向外延伸。鏈輪支撐主體28包括較大直徑部分42、凸緣44及複數個螺旋外部花鍵齒46。較大直徑部分42及凸緣44自基座支撐件41徑向向外延伸。較大直徑部分42在軸向方向D2上設置於複數個外部花鍵齒40與凸緣44之間。較大直徑部分42及凸緣44在軸向方向D2上設置於複數個外部花鍵齒40與複數個螺旋外部花鍵齒46之間。如圖6中所見,自行車後鏈輪總成14在軸向方向D2上固持於較大直徑部分42與鎖環32之鎖定凸緣32B之間。較大直徑部分42可具有內部空腔,使得諸如單向聯軸結構之傳動結構可容納於內部空腔內。根據需要,可自自行車輪轂總成12省略較大直徑部分42。 如圖9中所見,至少十個外部花鍵齒40之總數目等於或大於20。至少十個外部花鍵齒40之總數目等於或大於25。在此實施例中,至少十個外部花鍵齒40之總數目為26。然而,外部花鍵齒40之總數目不限於此實施例及以上範圍。 至少十個外部花鍵齒40具有第一外部周節角PA11及第二外部周節角PA12。複數個外部花鍵齒40中之至少兩個外部花鍵齒相對於自行車輪轂總成12之旋轉中心軸線A1以第一外部周節角PA11沿圓周配置。複數個外部花鍵齒40中之至少兩個外部花鍵齒相對於自行車輪轂總成12之旋轉中心軸線A1以第二外部周節角PA12沿圓周配置。在此實施例中,第二外部周節角PA12不同於第一外部周節角PA11。然而,第二外部周節角PA12可實質上等於第一外部周節角PA11。 在此實施例中,外部花鍵齒40係在圓周方向D1上以第一外部周節角PA11配置。外部花鍵齒40中之兩個外部花鍵齒係在圓周方向D1上以第二外部周節角PA12配置。然而,外部花鍵齒40中之至少兩個外部花鍵齒可在圓周方向D1上以另一外部周節角配置。 第一外部周節角PA11在10度至20度之範圍內。第一外部周節角PA11在12度至15度之範圍內。第一外部周節角PA11在13度至14度之範圍內。在此實施例中,第一外部周節角PA11為13.3度。然而,第一外部周節角PA11不限於此實施例及以上範圍。 第二部周節角PA12在5度至30度之範圍內。在此實施例中,第二外部周節角PA12為26度。然而,第二外部周節角PA12不限於此實施例及以上範圍。 外部花鍵齒40具有實質上彼此相同的形狀。外部花鍵齒40具有實質上彼此相同的花鍵大小。當沿旋轉中心軸線A1檢視時,外部花鍵齒40具有實質上彼此相同的輪廓。然而,如圖10中所見,至少十個外部花鍵齒40中之至少一者可具有不同於至少十個外部花鍵齒40中之另一者之第二花鍵形狀的第一花鍵形狀。至少十個外部花鍵齒40中之至少一者可具有不同於至少十個外部花鍵齒40中之另一者之第二花鍵大小的第一花鍵大小。當沿旋轉中心軸線A1檢視時,至少十個外部花鍵齒40中之至少一者可具有不同於至少十個外部花鍵齒40中之另一者之輪廓的輪廓。在圖10中,外部花鍵齒40中之一者具有不同於外部花鍵齒40中之其他齒之花鍵形狀的花鍵形狀。外部花鍵齒40中之一者具有不同於外部花鍵齒40中之其他齒之花鍵大小的花鍵大小。當沿旋轉中心軸線A1檢視時,外部花鍵齒40中之一者具有不同於外部花鍵齒40中之其他齒之輪廓的輪廓。 如圖11中所見,至少十個外部花鍵齒40中之每一者具有外部花鍵傳動表面48及外部花鍵非傳動表面50。複數個外部花鍵齒40包括用以在踩踏期間接收來自自行車後鏈輪總成14 (圖6)之傳動旋轉力F1的複數個外部花鍵傳動表面48。複數個外部花鍵齒40包括複數個外部花鍵非傳動表面50。外部花鍵傳動表面48可與自行車後鏈輪總成14接觸以在踩踏期間接收來自自行車後鏈輪總成14 (圖6)之傳動旋轉力F1。外部花鍵傳動表面48面向反向旋轉方向D12。外部花鍵非傳動表面50在圓周方向D1上設置於外部花鍵傳動表面48之反向側上。外部花鍵非傳動表面50面向傳動旋轉方向D11,從而在踩踏期間不接收來自自行車後鏈輪總成14之傳動旋轉力F1。 至少十個外部花鍵齒40分別具有圓周最大寬度MW1。外部花鍵齒40分別具有圓周最大寬度MW1。圓周最大寬度MW1定義為接收施加至外部花鍵齒40之推力F2的最大寬度。圓周最大寬度MW1定義為基於外部花鍵傳動表面48之直線距離。 複數個外部花鍵傳動表面48各自包括徑向最外邊緣48A及徑向最內邊緣48B。外部花鍵傳動表面48自徑向最外邊緣48A延伸至徑向最內邊緣48B。第一參考圓RC11界定於徑向最內邊緣48B上且以旋轉中心軸線A1為中心。第一參考圓RC11與外部花鍵非傳動表面50相交在參考點50R。圓周最大寬度MW1在圓周方向D1上自徑向最內邊緣48B直線延伸至參考點50R。 複數個外部花鍵非傳動表面50各自包括徑向最外邊緣50A及徑向最內邊緣50B。外部花鍵非傳動表面50自徑向最外邊緣50A延伸至徑向最內邊緣50B。參考點50R設置於徑向最外邊緣50A與徑向最內邊緣50B之間。然而,參考點50R可與徑向最內邊緣50B重合。 圓周最大寬度MW1之總和等於或大於55 mm。圓周最大寬度MW1之總和等於或大於60 mm。圓周最大寬度MW1之總和等於或大於65 mm。在此實施例中,圓周最大寬度MW1之總和為68 mm。然而,圓周最大寬度MW1之總和不限於此實施例及以上範圍。 如圖12中所見,至少一個外部花鍵齒40具有外部花鍵頂徑DM11。外部花鍵頂徑DM11等於或大於25 mm。外部花鍵頂徑DM11等於或大於29 mm。外部花鍵頂徑DM11等於或小於30 mm。在此實施例中,外部花鍵頂徑DM11為29.6 mm。然而,外部花鍵頂徑DM11不限於此實施例及以上範圍。 至少一個外部花鍵齒40具有外部花鍵底徑DM12。至少一個外部花鍵齒40具有外部花鍵齒根圓RC12,外部花鍵齒根圓RC12具有外部花鍵底徑DM12。然而,外部花鍵齒根圓RC12可具有不同於外部花鍵底徑DM12之另一直徑。外部花鍵底徑DM12等於或小於28 mm。外部花鍵底徑DM12等於或大於25 mm。外部花鍵底徑DM12等於或大於27 mm。在此實施例中,外部花鍵底徑DM12為27.2 mm。然而,外部花鍵底徑DM12不限於此實施例及以上範圍。 較大直徑部分42具有大於外部花鍵頂徑DM11之外徑DM13。外徑DM13在32 mm至40 mm之範圍內。在此實施例中,外徑DM13為35 mm。然而,外徑DM13不限於此實施例。 如圖11中所見,複數個外部花鍵傳動表面48各自包括自徑向最外邊緣48A至徑向最內邊緣48B界定之徑向長度RL11。複數個外部花鍵傳動表面48之徑向長度RL11之總和等於或大於7 mm。徑向長度RL11之總和等於或大於10 mm。徑向長度RL11之總和等於或大於15 mm。在此實施例中,徑向長度RL11之總和為19.5 mm。然而,徑向長度RL11之總和不限於此實施例。 複數個外部花鍵齒40具有額外徑向長度RL12。額外徑向長度RL12分別自外部花鍵齒根圓RC12至複數個外部花鍵齒40之徑向最外端40A界定。額外徑向長度RL12之總和等於或大於12 mm。在此實施例中,額外徑向長度RL12之總和為31.85 mm。然而,額外徑向長度RL12之總和不限於此實施例。 至少九個外部花鍵齒40中之至少一者相對於圓周齒尖中心線CL1具有不對稱形狀。圓周齒尖中心線CL1為連接旋轉中心軸線A1與外部花鍵齒40之徑向最外端40A之圓周中心點CP1的線。然而,外部花鍵齒40中之至少一者可相對於圓周齒尖中心線CL1具有對稱形狀。至少九個外部花鍵齒40中之至少一者包含外部花鍵傳動表面48及外部花鍵非傳動表面50。 外部花鍵傳動表面48具有第一外部花鍵表面角AG11。第一外部花鍵表面角AG11界定於外部花鍵傳動表面48與第一徑向線L11之間。第一徑向線L11自自行車輪轂總成12之旋轉中心軸線A1延伸至外部花鍵傳動表面48之徑向最外邊緣48A。第一外部周節角PA11或第二外部周節角PA12界定於鄰近第一徑向線L11 (參見例如圖9)之間。 外部花鍵非傳動表面50具有第二外部花鍵表面角AG12。第二外部花鍵表面角AG12界定於外部花鍵非傳動表面50與第二徑向線L12之間。第二徑向線L12自自行車輪轂總成12之旋轉中心軸線A1延伸至外部花鍵非傳動表面50之徑向最外邊緣50A。 在此實施例中,第二外部花鍵表面角AG12不同於第一外部花鍵表面角AG11。第一外部花鍵表面角AG11小於第二外部花鍵表面角AG12。然而,第一外部花鍵表面角AG11可等於或大於第二外部花鍵表面角AG12。 第一外部花鍵表面角AG11在0度至10度之範圍內。第二外部花鍵表面角AG12在0度至60度之範圍內。在此實施例中,第一外部花鍵表面角AG11為5度。第二外部花鍵表面角AG12為45度。然而,第一外部花鍵表面角AG11及第二外部花鍵表面角AG12不限於此實施例及以上範圍。 如圖13及圖14中所見,制動轉子支撐主體34包括經結構設計以與自行車制動轉子16 (圖4)嚙合之至少一個額外外部花鍵齒52。在此實施例中,制動轉子支撐主體34包括額外基座支撐件54及複數個額外外部花鍵齒52。額外基座支撐件54具有管狀形狀,且沿旋轉中心軸線A1自輪轂主體36延伸。額外外部花鍵齒52自額外基座支撐件54徑向向外延伸。額外外部花鍵齒52之總數目為52。然而,額外外部花鍵齒52之總數目不限於此實施例。 如圖14中所見,至少一個額外外部花鍵齒52具有額外外部花鍵頂徑DM14。如圖15中所見,額外外部花鍵頂徑DM14大於外部花鍵頂徑DM11。額外外部花鍵頂徑DM14實質上等於較大直徑部分42之外徑DM13。然而,額外外部花鍵頂徑DM14可等於或小於外部花鍵頂徑DM11。額外外部花鍵頂徑DM14可不同於較大直徑部分42之外徑DM13。 如圖16中所見,輪轂軸30包括用以接觸自行車框架BF之軸向接觸表面30B1。在此實施例中,軸向接觸表面30B1可與自行車框架BF之第一框架BF1接觸。第一框架BF1包括框架接觸表面BF12。在自行車輪轂總成12藉由車輪緊固結構WS緊固至自行車框架BF之狀態中,軸向接觸表面30B1與框架接觸表面BF12接觸。 第一軸向長度AL11係相對於旋轉中心軸線A1在軸向方向D2上自軸向接觸表面30B1至較大直徑部分42界定。第一軸向長度AL11在35 mm至41 mm之範圍內。第一軸向長度AL11可等於或大於39 mm。第一軸向長度AL11亦可在35 mm至37 mm之範圍內。在此實施例中,第一軸向長度AL11為36.2 mm。然而,第一軸向長度AL11不限於此實施例及以上範圍。 較大直徑部分42具有在軸向方向D2上離軸向接觸表面30B1最遠的軸向端42A。第二軸向長度AL12係在軸向方向D2上自軸向接觸表面30B1至軸向端42A界定。第二軸向長度AL12在38 mm至47 mm之範圍內。第二軸向長度AL12可在44 mm至45 mm之範圍內。第二軸向長度AL12亦可在40 mm至41 mm之範圍內。在此實施例中,第二軸向長度AL12為40.75 mm。然而,第二軸向長度AL12不限於此實施例及以上範圍。 較大直徑部分42之軸向長度AL13在3 mm至6 mm之範圍內。在此實施例中,軸向長度AL13為4.55 mm。然而,軸向長度AL13不限於此實施例及以上範圍。 如圖17中所見,自行車後鏈輪總成14包含至少一個鏈輪。至少一個鏈輪包括最小鏈輪SP1及最大鏈輪SP12。最小鏈輪SP1亦可被稱作鏈輪SP1。最大鏈輪SP12亦可被稱作鏈輪SP12。在此實施例中,至少一個鏈輪進一步包括鏈輪SP2至SP11。鏈輪SP1對應於高速齒輪。鏈輪SP12對應於低速齒輪。自行車後鏈輪總成14之鏈輪之總數目不限於此實施例。 最小鏈輪SP1包括至少一個鏈輪齒SP1B。最小鏈輪SP1之至少一個鏈輪齒SP1B之總數目等於或小於10。在此實施例中,最小鏈輪SP1之至少一個鏈輪齒SP1B之總數目為10。然而,最小鏈輪SP1之至少一個鏈輪齒SP1B之總數目不限於此實施例及以上範圍。 最大鏈輪SP12包括至少一個鏈輪齒SP12B。最大鏈輪SP12之至少一個鏈輪齒SP12B之總數目等於或大於46。最大鏈輪SP12之至少一個鏈輪齒SP12B之總數目等於或大於50。在此實施例中,最大鏈輪SP12之至少一個鏈輪齒SP12B之總數目為51。然而,最大鏈輪SP12之至少一個鏈輪齒SP12B之總數目不限於此實施例及以上範圍。 鏈輪SP2包括至少一個鏈輪齒SP2B。鏈輪SP3包括至少一個鏈輪齒SP3B。鏈輪SP4包括至少一個鏈輪齒SP4B。鏈輪SP5包括至少一個鏈輪齒SP5B。鏈輪SP6包括至少一個鏈輪齒SP6B。鏈輪SP7包括至少一個鏈輪齒SP7B。鏈輪SP8包括至少一個鏈輪齒SP8B。鏈輪SP9包括至少一個鏈輪齒SP9B。鏈輪SP10包括至少一個鏈輪齒SP10B。鏈輪SP11包括至少一個鏈輪齒SP11B。 至少一個鏈輪齒SP2B之總數目為12。至少一個鏈輪齒SP3B之總數目為14。至少一個鏈輪齒SP4B之總數目為16。至少一個鏈輪齒SP5B之總數目為18。至少一個鏈輪齒SP6B之總數目為21。至少一個鏈輪齒SP7B之總數目為24。至少一個鏈輪齒SP8B之總數目為28。至少一個鏈輪齒SP9B之總數目為33。至少一個鏈輪齒SP10B之總數目為39。至少一個鏈輪齒SP11B之總數目為45。鏈輪SP2至SP11中之每一者之鏈輪齒的總數目不限於此實施例。 如圖18中所見,鏈輪SP1至SP12為彼此分開的構件。然而,鏈輪SP1至SP12中之至少一者可至少部分地與鏈輪SP1至SP12中之另一者一體地提供。自行車後鏈輪總成14包含鏈輪支撐件56、複數個間隔件58、第一環59A及第二環59B。在所說明之實施例中,鏈輪SP1至SP12附接至鏈輪支撐件56。 如圖19中所見,鏈輪SP1包括鏈輪主體SP1A及複數個鏈輪齒SP1B。複數個鏈輪齒SP1B自鏈輪主體SP1A徑向向外延伸。鏈輪SP2包括鏈輪主體SP2A及複數個鏈輪齒SP2B。複數個鏈輪齒SP2B自鏈輪主體SP2A徑向向外延伸。鏈輪SP3包括鏈輪主體SP3A及複數個鏈輪齒SP3B。複數個鏈輪齒SP3B自鏈輪主體SP3A徑向向外延伸。鏈輪SP4包括鏈輪主體SP4A及複數個鏈輪齒SP4B。複數個鏈輪齒SP4B自鏈輪主體SP4A徑向向外延伸。鏈輪SP5包括鏈輪主體SP5A及複數個鏈輪齒SP5B。複數個鏈輪齒SP5B自鏈輪主體SP5A徑向向外延伸。第一環59A設置於鏈輪SP3與鏈輪SP4之間。第二環59B設置於鏈輪SP4與鏈輪SP5之間。 如圖20中所見,鏈輪SP6包括鏈輪主體SP6A及複數個鏈輪齒SP6B。複數個鏈輪齒SP6B自鏈輪主體SP6A徑向向外延伸。鏈輪SP7包括鏈輪主體SP7A及複數個鏈輪齒SP7B。複數個鏈輪齒SP7B自鏈輪主體SP7A徑向向外延伸。鏈輪SP8包括鏈輪主體SP8A及複數個鏈輪齒SP8B。複數個鏈輪齒SP8B自鏈輪主體SP8A徑向向外延伸。 如圖21中所見,鏈輪SP9包括鏈輪主體SP9A及複數個鏈輪齒SP9B。複數個鏈輪齒SP9B自鏈輪主體SP9A徑向向外延伸。鏈輪SP10包括鏈輪主體SP10A及複數個鏈輪齒SP10B。複數個鏈輪齒SP10B自鏈輪主體SP10A徑向向外延伸。鏈輪SP11包括鏈輪主體SP11A及複數個鏈輪齒SP11B。複數個鏈輪齒SP11B自鏈輪主體SP11A徑向向外延伸。鏈輪SP12包括鏈輪主體SP12A及複數個鏈輪齒SP12B。複數個鏈輪齒SP12B自鏈輪主體SP12A徑向向外延伸。 如圖22中所見,鏈輪支撐件56包括輪轂嚙合部分60及複數個支撐臂62。複數個支撐臂62自輪轂嚙合部分60徑向向外延伸。支撐臂62包括第一附接部分62A至第八附接部分62H。複數個間隔件58包括複數個第一間隔件58A、複數個第二間隔件58B、複數個第三間隔件58C、複數個第四間隔件58D、複數個第五間隔件58E、複數個第六間隔件58F及複數個第七間隔件58G。 如圖23中所見,第一間隔件58A設置於鏈輪SP5與鏈輪SP6之間。第二間隔件58B設置於鏈輪SP6與鏈輪SP7之間。第三間隔件58C設置於鏈輪SP7與鏈輪SP8之間。第四間隔件58D設置於鏈輪SP8與鏈輪SP9之間。第五間隔件58E設置於鏈輪SP9與鏈輪SP10之間。第六間隔件58F設置於鏈輪SP10與鏈輪SP11之間。第七間隔件58G設置於鏈輪SP11與鏈輪SP12之間。 鏈輪SP6及第一間隔件58A藉由諸如黏附劑之黏合結構附接至第一附接部分62A。鏈輪SP7及第二間隔件58B藉由諸如黏附劑之黏合結構附接至第二附接部分62B。鏈輪SP8及第三間隔件58C藉由諸如黏附劑之黏合結構附接至第三附接部分62C。鏈輪SP9及第四間隔件58D藉由諸如黏附劑之黏合結構附接至第四附接部分62D。鏈輪SP10及第五間隔件58E藉由諸如黏附劑之黏合結構附接至第五附接部分62E。鏈輪SP11及第六間隔件58F藉由諸如黏附劑之黏合結構附接至第六附接部分62F。鏈輪SP12及第七間隔件58G藉由諸如黏附劑之黏合結構附接至第七附接部分62G。鏈輪SP5及第二環59B藉由諸如黏附劑之黏合結構附接至第八附接部分62H。輪轂嚙合部分60、鏈輪SP1至SP4、第一環59A及第二環59B在軸向方向D2上固持於較大直徑部分42與鎖環32之鎖定凸緣32B之間。 在此實施例中,鏈輪SP1至SP12中之每一者由諸如鋁、鐵或鈦之金屬材料製成。鏈輪支撐件56、第一間隔件58A至第七間隔件58G、第一環59A及第二環59B中之每一者由諸如樹脂材料之非金屬材料製成。然而,鏈輪SP1至SP12中之至少一者可至少部分地由非金屬材料製成。鏈輪支撐件56、第一間隔件58A至第七間隔件58G、第一環59A及第二環59B中之至少一者可至少部分地由諸如鋁、鐵或鈦之金屬材料製成。 至少一個鏈輪包括經結構設計以與自行車輪轂總成12嚙合之至少一個內部花鍵齒。如圖24及圖25中所見,至少一個鏈輪包括經結構設計以與自行車輪轂總成12嚙合之至少十個內部花鍵齒。至少一個內部花鍵齒包括複數個內部花鍵齒。因此,至少一個鏈輪包括經結構設計以與自行車輪轂總成12嚙合之複數個內部花鍵齒。在此實施例中,鏈輪SP1包括經結構設計以與自行車輪轂總成12嚙合之至少十個內部花鍵齒64。在此實施例中,鏈輪SP1包括經結構設計以與自行車輪轂總成12之鏈輪支撐主體28之外部花鍵齒40嚙合的內部花鍵齒64。鏈輪主體SP1A具有環狀形狀。內部花鍵齒64自鏈輪主體SP1A徑向向內延伸。 如圖26中所見,至少十個內部花鍵齒64之總數目等於或大於20。至少十個內部花鍵齒64之總數目等於或大於25。在此實施例中,內部花鍵齒64之總數目為26。然而,內部花鍵齒64之總數目不限於此實施例及以上範圍。 至少十個內部花鍵齒64具有第一內部周節角PA21及第二內部周節角PA22。複數個內部花鍵齒64中之至少兩個內部花鍵齒相對於自行車後鏈輪總成14之旋轉中心軸線A1以第一內部周節角PA21沿圓周配置。複數個內部花鍵齒64中之至少兩個內部花鍵齒相對於旋轉中心軸線A1以第二內部周節角PA22沿圓周配置。在此實施例中,第二內部周節角PA22不同於第一內部周節角PA21。然而,第二內部周節角PA22可實質上等於第一內部周節角PA21。 在此實施例中,內部花鍵齒64係在圓周方向D1上以第一內部周節角PA21沿圓周配置。內部花鍵齒64中之兩個內部花鍵齒係在圓周方向D1上以第二內部周節角PA22配置。然而,內部花鍵齒64中之至少兩個內部花鍵齒可在圓周方向D1上以另一內部周節角配置。 第一內部周節角PA21在10度至20度之範圍內。第一內部周節角PA21在12度至15度之範圍內。第一內部周節角PA21在13度至14度之範圍內。在此實施例中,第一內部周節角PA21為13.3度。然而,第一內部周節角PA21不限於此實施例及以上範圍。 第二內部周節角PA22在5度至30度之範圍內。在此實施例中,第二內部周節角PA22為26度。然而,第二內部周節角PA22不限於此實施例及以上範圍。 至少十個內部花鍵齒64中之至少一者具有不同於至少十個內部花鍵齒64中之另一者之第二花鍵形狀的第一花鍵形狀。至少十個內部花鍵齒64中之至少一者具有不同於至少十個內部花鍵齒64中之另一者之第二花鍵大小的第一花鍵大小。至少十個內部花鍵齒64中之至少一者具有不同於至少十個內部花鍵齒64中之另一者之橫截面形狀的橫截面形狀。然而,如圖27中所見,內部花鍵齒64可具有彼此相同的形狀。內部花鍵齒64可具有彼此相同的大小。內部花鍵齒64可具有彼此相同的橫截面形狀。 如圖28中所見,至少一個內部花鍵齒64包含內部花鍵傳動表面66及內部花鍵非傳動表面68。至少一個內部花鍵齒64包括複數個內部花鍵齒64。複數個內部花鍵齒64包括用以在踩踏期間接收來自自行車輪轂總成12 (圖6)之傳動旋轉力F1的複數個內部花鍵傳動表面66。複數個內部花鍵齒64包括複數個內部花鍵非傳動表面68。內部花鍵傳動表面66可與鏈輪支撐主體28接觸以在踩踏期間將傳動旋轉力F1自鏈輪SP1傳輸至鏈輪支撐主體28。內部花鍵傳動表面66面向傳動旋轉方向D11。內部花鍵非傳動表面68在圓周方向D1上設置於內部花鍵傳動表面66之反向側上。內部花鍵非傳動表面68面向反向旋轉方向D12,從而在踩踏期間不將傳動旋轉力F1自鏈輪SP1傳輸至鏈輪支撐主體28。 至少十個內部花鍵齒64分別具有圓周最大寬度MW2。內部花鍵齒64分別具有圓周最大寬度MW2。圓周最大寬度MW2定義為接收施加至內部花鍵齒64之推力F3的最大寬度。圓周最大寬度MW2定義為基於內部花鍵傳動表面66之直線距離。 內部花鍵傳動表面66包括徑向最外邊緣66A及徑向最內邊緣66B。內部花鍵傳動表面66自徑向最外邊緣66A延伸至徑向最內邊緣66B。第二參考圓RC21界定於徑向最外邊緣66A上且以旋轉中心軸線A1為中心。第二參考圓RC21與內部花鍵非傳動表面68相交在參考點68R。圓周最大寬度MW2在圓周方向D1上自徑向最內邊緣66B直線延伸至參考點68R。 內部花鍵非傳動表面68包括徑向最外邊緣68A及徑向最內邊緣68B。內部花鍵非傳動表面68自徑向最外邊緣68A延伸至徑向最內邊緣68B。參考點68R設置於徑向最外邊緣68A與徑向最內邊緣68B之間。 圓周最大寬度MW2之總和等於或大於40 mm。圓周最大寬度MW2之總和等於或大於45 mm。圓周最大寬度MW2之總和等於或大於50 mm。在此實施例中,圓周最大寬度MW2之總和為50.8 mm。然而,圓周最大寬度MW2之總和不限於此實施例。 如圖29中所見,至少一個內部花鍵齒64具有內部花鍵頂徑DM21。至少一個內部花鍵齒64具有內部花鍵齒根圓RC22,內部花鍵齒根圓RC22具有內部花鍵頂徑DM21。然而,內部花鍵齒根圓RC22可具有不同於內部花鍵頂徑DM21之另一直徑。內部花鍵頂徑DM21等於或小於30 mm。內部花鍵頂徑DM21等於或大於25 mm。內部花鍵頂徑DM21等於或大於29 mm。在此實施例中,內部花鍵頂徑DM21為29.8 mm。然而,內部花鍵頂徑DM21不限於此實施例及以上範圍。 至少一個內部花鍵齒64具有等於或小於28 mm之內部花鍵底徑DM22。內部花鍵底徑DM22等於或大於25 mm。內部花鍵底徑DM22等於或大於27 mm。在此實施例中,內部花鍵底徑DM22為27.7 mm。然而,內部花鍵底徑DM22不限於此實施例及以上範圍。 如圖28中所見,複數個內部花鍵傳動表面66包括徑向最外邊緣66A及徑向最內邊緣66B。複數個內部花鍵傳動表面66各自包括自徑向最外邊緣66A至徑向最內邊緣66B界定之徑向長度RL21。複數個內部花鍵傳動表面66之徑向長度RL21之總和等於或大於7 mm。徑向長度RL21之總和等於或大於10 mm。徑向長度RL21之總和等於或大於15 mm。在此實施例中,徑向長度RL21之總和為19.5 mm。然而,徑向長度RL21之總和不限於此實施例及以上範圍。 複數個內部花鍵齒64具有額外徑向長度RL22。額外徑向長度RL22分別自內部花鍵齒根圓RC22至複數個內部花鍵齒64之徑向最內端64A界定。額外徑向長度RL22之總和等於或大於12 mm。在此實施例中,額外徑向長度RL22之總和為27.95 mm。然而,額外徑向長度RL22之總和不限於此實施例及以上範圍。 內部花鍵齒64中之至少一者相對於圓周齒尖中心線CL2具有不對稱形狀。圓周齒尖中心線CL2為連接旋轉中心軸線A1及內部花鍵齒64之徑向最內端64A之圓周中心點CP2的線。然而,內部花鍵齒64中之至少一者可相對於圓周齒尖中心線CL2具有對稱形狀。內部花鍵齒64中之至少一者包含內部花鍵傳動表面66及內部花鍵非傳動表面68。 內部花鍵傳動表面66具有第一內部花鍵表面角AG21。第一內部花鍵表面角AG21界定於內部花鍵傳動表面66與第一徑向線L21之間。第一徑向線L21自自行車後鏈輪總成14之旋轉中心軸線A1延伸至內部花鍵傳動表面66之徑向最外邊緣66A。第一內部周節角PA21或第二內部周節角PA22界定於相鄰第一徑向線L21 (參見例如圖26)之間。 內部花鍵非傳動表面68具有第二內部花鍵表面角AG22。第二內部花鍵表面角AG22界定於內部花鍵非傳動表面68與第二徑向線L22之間。第二徑向線L22自自行車後鏈輪總成14之旋轉中心軸線A1延伸至內部花鍵非傳動表面68之徑向最外邊緣68A。 在此實施例中,第二內部花鍵表面角AG22不同於第一內部花鍵表面角AG21。第一內部花鍵表面角AG21小於第二內部花鍵表面角AG22。然而第一內部花鍵表面角AG21可等於或大於第二內部花鍵表面角AG22。 第一內部花鍵表面角AG21在0度至10度之範圍內。第二內部花鍵表面角AG22在0度至60度之範圍內。在此實施例中,第一內部花鍵表面角AG21為5度。第二內部花鍵表面角AG22為45度。然而,第一內部花鍵表面角AG21及第二內部花鍵表面角AG22不限於此實施例及以上範圍。 如圖30中所見,內部花鍵齒64與外部花鍵齒40嚙合以將傳動旋轉力F1自鏈輪SP1傳輸至鏈輪支撐主體28。內部花鍵傳動表面66可與外部花鍵傳動表面48接觸以將傳動旋轉力F1自鏈輪SP1傳輸至鏈輪支撐主體28。在內部花鍵傳動表面66與外部花鍵傳動表面48接觸之狀態中,內部花鍵非傳動表面68與外部花鍵非傳動表面50間隔開。 如圖31中所見,鏈輪SP2包括複數個內部花鍵齒70。鏈輪SP3包括複數個內部花鍵齒72。鏈輪SP4包括複數個內部花鍵齒74。第一環59A包括複數個內部花鍵齒76。如圖32中所見,鏈輪支撐件56之輪轂嚙合部分60包括複數個內部花鍵齒78。複數個內部花鍵齒70具有與複數個內部花鍵齒64之結構實質上相同的結構。複數個內部花鍵齒72具有與複數個內部花鍵齒64之結構實質上相同的結構。複數個內部花鍵齒74具有與複數個內部花鍵齒64之結構實質上相同的結構。複數個內部花鍵齒76具有與複數個內部花鍵齒64之結構實質上相同的結構。複數個內部花鍵齒78具有與複數個內部花鍵齒64之結構實質上相同的結構。因此,出於簡潔起見,此處將不作詳細描述。 如本文中所使用之術語「包含」及其派生詞意欲為指定所陳述特徵、元件、組件、群組、整數及/或步驟之存在但不排除其他未陳述特徵、元件、組件、群組、整數及/或步驟之存在的開放術語。此概念亦適用於類似含義之詞語,例如術語「具有」、「包括」及其派生詞。 術語「構件」、「區段」、「部分」、「部件」、「元件」、「主體」及「結構」當以單數形式使用時可具有單一部件或複數個部件之雙重含義。 諸如本申請案中敍述的「第一」及「第二」之序數數目僅為標識符,而不具有任何其他含義,例如特定次序及類似者。此外,例如,術語「第一元件」自身不暗示「第二元件」之存在,且術語「第二元件」自身不暗示「第一元件」之存在。 如本文中所使用之術語「對」可涵蓋除其中成對元件具有彼此相同的形狀或結構之組態外之其中成對元件具有彼此不同的形狀或結構之組態。 因此,術語「一」、「一或多個」及「至少一個」在本文中可互換地使用。 最後,如本文中所使用之諸如「實質上」、「大約」及「大致」之程度術語意謂所修飾之術語之合理量之偏差以使得最終結果並無顯著改變。本申請案中所描述之所有數值可被理解為包括諸如「實質上」、「大約」及「大致」之術語。 顯然,鑒於以上教示,本發明之眾多修改及變化係可能的。因此應理解,在所附申請專利範圍之範疇內,可以不同於如本文中特定描述之方式的其他方式實踐本發明。 Embodiments will now be described with reference to the accompanying drawings, wherein like reference numerals designate corresponding or identical elements throughout the various views. Referring first to FIG. 1 , a bicycle transmission system 10 according to an embodiment includes a bicycle hub assembly 12 and a bicycle rear sprocket assembly 14 . The bicycle hub assembly 12 is fastened to the bicycle frame BF. The bicycle rear sprocket assembly 14 is installed on the bicycle wheel hub assembly 12 . The bicycle brake rotor 16 is installed on the bicycle wheel hub assembly 12 . The bicycle transmission system 10 further includes a crank assembly 18 and a bicycle chain 20 . The crank assembly 18 includes a crankshaft 22 , a right crank arm 24 , a left crank arm 26 and a front sprocket 27 . Right crank arm 24 and left crank arm 26 are secured to crankshaft 22 . The front sprocket 27 is secured to at least one of the crankshaft 22 and the right crank arm 24 . The bicycle chain 20 is engaged with the front sprocket 27 and the bicycle rear sprocket assembly 14 to transmit the pedaling force from the front sprocket 27 to the bicycle rear sprocket assembly 14 . Crank assembly 18 includes front sprocket 27 as a single sprocket in the illustrated embodiment. However, the crank assembly 18 may include a plurality of front sprockets. Bicycle rear sprocket assembly 14 is a rear sprocket assembly. However, the structure of the bicycle rear sprocket assembly 14 can be applied to the front sprocket. In this application, the following directional terms "front", "back", "forward", "backward", "left", "right", "lateral", "upward" and "downward" and any other Similar directional terms refer to directions based on a user (eg, a rider) sitting on the saddle (not shown) of a bicycle and facing the handlebars (not shown). Accordingly, these terms, when used to describe a bicycle drivetrain 10, a bicycle hub assembly 12, or a bicycle rear sprocket assembly 14, shall refer to a bicycle drivetrain 10 equipped as if used in an upright riding position on a horizontal surface. , a bicycle hub assembly 12 or a bicycle rear sprocket assembly 14. As seen in FIGS. 2 and 3 , the bicycle hub assembly 12 and the bicycle rear sprocket assembly 14 have a rotation center axis A1 . The bicycle rear sprocket assembly 14 is rotatably supported by the bicycle hub assembly 12 about the rotation center axis A1 relative to the bicycle frame BF (Fig. 1). The bicycle rear sprocket assembly 14 is structurally designed to engage the bicycle chain 20 to transmit transmission rotational force F1 between the bicycle chain 20 and the bicycle rear sprocket assembly 14 during pedaling. During pedaling, the bicycle rear sprocket assembly 14 rotates around the rotation center axis A1 in the transmission rotation direction D11. The transmission rotation direction D11 is defined along the circumferential direction D1 of the bicycle hub assembly 12 or the bicycle rear sprocket assembly 14 . The reverse rotation direction D12 is the opposite direction of the transmission rotation direction D11 and is defined along the circumferential direction D1. As seen in FIG. 2 , the bicycle hub assembly 12 includes a sprocket support body 28 . The bicycle rear sprocket assembly 14 is installed on the sprocket support body 28 to transmit the transmission rotation force F1 between the sprocket support body 28 and the bicycle rear sprocket assembly 14 . The bicycle hub assembly 12 further includes a hub axle 30 . The sprocket support body 28 is rotatably mounted on the hub shaft 30 around the rotation center axis A1. The bicycle hub assembly 12 includes a locking ring 32 . The locking ring 32 is fastened to the sprocket support body 28 to retain the bicycle rear sprocket assembly 14 relative to the sprocket support body 28 in an axial direction D2 parallel to the central axis of rotation A1. As seen in Figure 4, the bicycle hub assembly 12 is fastened to the bicycle frame BF by the wheel fastening structure WS. The hub shaft 30 has a through hole 30A. The fastening rod WS1 of the wheel fastening structure WS extends through the through hole 30A of the hub shaft 30 . The hub shaft 30 includes a first shaft end 30B and a second shaft end 30C. The hub shaft 30 extends along the rotation center axis A1 between the first shaft end 30B and the second shaft end 30C. The first shaft end 30B is disposed in the first groove BF11 of the first frame BF1 of the bicycle frame BF. The second shaft end 30C is disposed in the second groove BF21 of the second frame BF2 of the bicycle frame BF. The hub shaft 30 is held between the first frame BF1 and the second frame BF2 by the wheel fastening structure WS. The wheel fastening structures WS include structures known from the claimed bicycle. Therefore, for the sake of brevity, it will not be described in detail here. As seen in FIGS. 4 and 5 , the bicycle hub assembly 12 further includes a brake rotor support body 34 . The brake rotor support body 34 is rotatably mounted on the hub shaft 30 about the rotation center axis A1. The brake rotor support body 34 is coupled to the bicycle brake rotor 16 ( FIG. 1 ) to transmit braking rotational force from the bicycle brake rotor 16 to the brake rotor support body 34 . As seen in FIG. 5 , the bicycle hub assembly 12 further includes a hub body 36 . The hub body 36 is rotatably mounted on the hub shaft 30 around the rotation center axis A1. In this embodiment, the sprocket support body 28 is a separate component from the hub body 36 . The brake rotor support body 34 is integrally provided with the hub body 36 as a one-piece unitary member. However, the sprocket support body 28 may be provided integrally with the hub body 36 . Brake rotor support body 34 may be a separate component from hub body 36 . The hub body 36 includes a first flange 36A and a second flange 36B. A first spoke (not shown) is coupled to first flange 36A. A second spoke (not shown) is coupled to second flange 36B. The second flange 36B is spaced apart from the first flange 36A in the axial direction D2. The first flange 36A is provided between the sprocket support body 28 and the second flange 36B in the axial direction D2. The second flange 36B is provided between the first flange 36A and the brake rotor support body 34 in the axial direction D2. Locking ring 32 includes an outer threaded portion 32A. The sprocket support body 28 includes an interior threaded portion 28A. In the state where the lock ring 32 is fastened to the sprocket support body 28, the outer threaded portion 32A threadably engages the inner threaded portion 28A. As seen in FIG. 6 , the bicycle hub assembly 12 further includes a ratchet structure 38 . The sprocket support body 28 is operably coupled to the hub body 36 by a ratchet structure 38 . The ratchet structure 38 is structurally designed to couple the sprocket support body 28 to the hub body 36, thereby causing the sprocket support body 28 together with the hub body 36 to rotate in the transmission rotation direction D11 (Fig. 5) during pedaling. The ratchet structure 38 is structurally designed to allow the sprocket support body 28 to rotate relative to the hub body 36 in the counter-rotational direction D12 (Fig. 5) during idle. Therefore, the ratchet structure 38 can be interpreted as a one-way coupling structure 38 . The ratchet structure 38 includes structures known in the bicycle art. Therefore, for the sake of brevity, it will not be described in detail here. The bicycle hub assembly 12 includes a first bearing 39A and a second bearing 39B. The first bearing 39A and the second bearing 39B are provided between the sprocket support body 28 and the hub shaft 30 to rotatably support the sprocket support body 28 around the rotation center axis A1 relative to the hub shaft 30 . In this embodiment, each of the sprocket support body 28, the brake rotor support body 34, and the hub body 36 are made of a metallic material such as aluminum, iron, or titanium. However, at least one of sprocket support body 28, brake rotor support body 34, and hub body 36 may be made from non-metallic materials. As seen in Figures 7 and 8, the sprocket support body 28 includes at least one external spline tooth 40 structured to engage the bicycle rear sprocket assembly 14 (Fig. 6). The sprocket support body 28 includes a plurality of external spline teeth 40 structured to engage the bicycle rear sprocket assembly 14 (FIG. 6). That is, at least one external spline tooth 40 includes a plurality of external spline teeth 40 . The sprocket support body 28 includes at least nine external spline teeth 40 structured to engage the bicycle rear sprocket assembly 14 (FIG. 6). The sprocket support body 28 includes at least ten external spline teeth 40 structured to engage the bicycle rear sprocket assembly 14 (FIG. 6). The sprocket support body 28 includes a base support 41 having a tubular shape. The base support 41 extends along the rotation center axis A1 and has a single diameter portion (as shown in FIG. 7 ). External spline teeth 40 extend radially outward from the base support 41 . The sprocket support body 28 includes a larger diameter portion 42 , a flange 44 and a plurality of helical external spline teeth 46 . The larger diameter portion 42 and flange 44 extend radially outward from the base support 41 . The larger diameter portion 42 is disposed in the axial direction D2 between the plurality of external spline teeth 40 and the flange 44 . The larger diameter portion 42 and the flange 44 are disposed in the axial direction D2 between the plurality of external spline teeth 40 and the plurality of helical external spline teeth 46 . As seen in FIG. 6 , the bicycle rear sprocket assembly 14 is held in the axial direction D2 between the larger diameter portion 42 and the locking flange 32B of the locking ring 32 . The larger diameter portion 42 may have an internal cavity such that a transmission structure such as a one-way coupling structure may be accommodated within the internal cavity. The larger diameter portion 42 may be omitted from the bicycle hub assembly 12 if desired. As seen in Figure 9, the total number of at least ten external spline teeth 40 is equal to or greater than 20. The total number of at least ten external spline teeth 40 is equal to or greater than 25. In this embodiment, the total number of at least ten external spline teeth 40 is twenty-six. However, the total number of external spline teeth 40 is not limited to this embodiment and the above range. At least ten external spline teeth 40 have a first external peripheral pitch angle PA11 and a second external peripheral pitch angle PA12. At least two of the plurality of external spline teeth 40 are circumferentially arranged at a first external pitch angle PA11 with respect to the rotation center axis A1 of the bicycle hub assembly 12 . At least two of the plurality of external spline teeth 40 are circumferentially arranged at a second external pitch angle PA12 with respect to the rotation center axis A1 of the bicycle hub assembly 12 . In this embodiment, the second outer pitch angle PA12 is different from the first outer pitch angle PA11. However, the second outer pitch angle PA12 may be substantially equal to the first outer pitch angle PA11. In this embodiment, the external spline teeth 40 are arranged at a first external pitch angle PA11 in the circumferential direction D1. Two of the external spline teeth 40 are arranged at a second external pitch angle PA12 in the circumferential direction D1. However, at least two of the external spline teeth 40 may be arranged at another external pitch angle in the circumferential direction D1. The first outer peripheral pitch angle PA11 is in the range of 10 degrees to 20 degrees. The first outer peripheral pitch angle PA11 is in the range of 12 degrees to 15 degrees. The first outer peripheral pitch angle PA11 is in the range of 13 degrees to 14 degrees. In this embodiment, the first outer peripheral pitch angle PA11 is 13.3 degrees. However, the first outer peripheral pitch angle PA11 is not limited to this embodiment and the above range. The second peripheral pitch angle PA12 is in the range of 5 degrees to 30 degrees. In this embodiment, the second outer peripheral pitch angle PA12 is 26 degrees. However, the second outer peripheral pitch angle PA12 is not limited to this embodiment and the above range. The outer spline teeth 40 have substantially the same shape as each other. The outer spline teeth 40 have substantially the same spline size as each other. The outer spline teeth 40 have substantially the same profile as each other when viewed along the rotational center axis A1. However, as seen in FIG. 10 , at least one of the at least ten external spline teeth 40 may have a first spline shape that is different from a second spline shape of another of the at least ten external spline teeth 40 . . At least one of the at least ten external spline teeth 40 may have a first spline size that is different from a second spline size of another of the at least ten external spline teeth 40 . When viewed along the rotational center axis A1 , at least one of the at least ten external spline teeth 40 may have a profile that is different from the profile of another of the at least ten external spline teeth 40 . In FIG. 10 , one of the outer spline teeth 40 has a spline shape that is different from the spline shape of the other teeth of the outer spline teeth 40 . One of the external spline teeth 40 has a spline size that is different from the spline size of the other teeth of the external spline teeth 40 . When viewed along the rotational center axis A1 , one of the outer spline teeth 40 has a profile that is different from the profile of the other teeth of the outer spline teeth 40 . As seen in FIG. 11 , each of the at least ten external spline teeth 40 has an external spline drive surface 48 and an external spline non-drive surface 50 . The plurality of external spline teeth 40 includes a plurality of external spline transmission surfaces 48 for receiving transmission rotational force F1 from the bicycle rear sprocket assembly 14 (FIG. 6) during pedaling. The plurality of external spline teeth 40 includes a plurality of external spline non-drive surfaces 50 . The external splined transmission surface 48 may contact the bicycle rear sprocket assembly 14 to receive transmission rotational force F1 from the bicycle rear sprocket assembly 14 (FIG. 6) during pedaling. The outer splined drive surface 48 faces the counter-rotational direction D12. The external splined non-drive surface 50 is provided on the opposite side of the external splined drive surface 48 in the circumferential direction D1. The outer splined non-drive surface 50 faces the drive rotation direction D11 so as not to receive the drive rotation force F1 from the bicycle rear sprocket assembly 14 during pedaling. At least ten external spline teeth 40 each have a maximum circumferential width MW1. The external spline teeth 40 each have a maximum circumferential width MW1. The maximum circumferential width MW1 is defined as the maximum width that receives the thrust force F2 applied to the outer spline teeth 40 . The maximum circumferential width MW1 is defined as the straight-line distance from the outer splined drive surface 48 . The plurality of outer splined drive surfaces 48 each include a radially outermost edge 48A and a radially innermost edge 48B. The outer splined drive surface 48 extends from the radially outermost edge 48A to the radially innermost edge 48B. The first reference circle RC11 is defined on the radially innermost edge 48B and is centered on the rotation center axis A1. The first reference circle RC11 intersects the external splined non-drive surface 50 at the reference point 50R. The maximum circumferential width MW1 extends straight from the radially innermost edge 48B to the reference point 50R in the circumferential direction D1. The plurality of external splined non-drive surfaces 50 each include a radially outermost edge 50A and a radially innermost edge 50B. The outer splined non-drive surface 50 extends from the radially outermost edge 50A to the radially innermost edge 50B. The reference point 50R is provided between the radially outermost edge 50A and the radially innermost edge 50B. However, the reference point 50R may coincide with the radially innermost edge 50B. The sum of the maximum circumferential widths MW1 is equal to or greater than 55 mm. The sum of the maximum circumferential widths MW1 is equal to or greater than 60 mm. The sum of the maximum circumferential widths MW1 is equal to or greater than 65 mm. In this embodiment, the sum of the maximum circumferential widths MW1 is 68 mm. However, the sum of the maximum circumferential widths MW1 is not limited to this embodiment and the above range. As seen in Figure 12, at least one external spline tooth 40 has an external spline tip diameter DM11. The external spline top diameter DM11 is equal to or greater than 25 mm. The external spline top diameter DM11 is equal to or greater than 29 mm. The external spline top diameter DM11 is equal to or less than 30 mm. In this example, the external spline tip diameter DM11 is 29.6 mm. However, the external spline top diameter DM11 is not limited to this embodiment and the above range. At least one external spline tooth 40 has an external spline base diameter DM12. At least one external spline tooth 40 has an external spline root circle RC12 having an external spline base diameter DM12. However, the external spline root circle RC12 may have another diameter than the external spline base diameter DM12. External spline base diameter DM12 is equal to or less than 28 mm. The base diameter of the external spline DM12 is equal to or greater than 25 mm. The base diameter of the external spline DM12 is equal to or greater than 27 mm. In this example, the external spline base diameter DM12 is 27.2 mm. However, the outer spline bottom diameter DM12 is not limited to this embodiment and the above range. The larger diameter portion 42 has an outer diameter DM13 that is larger than the outer spline top diameter DM11. The outer diameter DM13 is in the range of 32 mm to 40 mm. In this example, the outer diameter DM13 is 35 mm. However, the outer diameter DM13 is not limited to this embodiment. As seen in FIG. 11 , the plurality of outer splined drive surfaces 48 each include a radial length RL11 bounded from a radially outermost edge 48A to a radially innermost edge 48B. The sum of the radial lengths RL11 of the plurality of external spline transmission surfaces 48 is equal to or greater than 7 mm. The sum of the radial lengths RL11 is equal to or greater than 10 mm. The sum of the radial lengths RL11 is equal to or greater than 15 mm. In this embodiment, the sum of the radial lengths RL11 is 19.5 mm. However, the sum of the radial lengths RL11 is not limited to this embodiment. The plurality of external spline teeth 40 have an additional radial length RL12. The additional radial length RL12 is respectively defined from the outer spline tooth root circle RC12 to the radially outermost ends 40A of the plurality of outer spline teeth 40 . The sum of the additional radial lengths RL12 is equal to or greater than 12 mm. In this embodiment, the sum of the additional radial lengths RL12 is 31.85 mm. However, the sum of the additional radial lengths RL12 is not limited to this embodiment. At least one of the at least nine external spline teeth 40 has an asymmetric shape relative to the circumferential tooth tip centerline CL1. The circumferential tooth tip center line CL1 is a line connecting the rotation center axis A1 and the circumferential center point CP1 of the radially outermost end 40A of the external spline teeth 40 . However, at least one of the outer spline teeth 40 may have a symmetrical shape relative to the circumferential tooth tip centerline CL1. At least one of the at least nine external spline teeth 40 includes an external spline drive surface 48 and an external spline non-drive surface 50 . External spline drive surface 48 has a first external spline surface angle AG11. A first outer spline surface angle AG11 is defined between the outer spline drive surface 48 and the first radial line L11. The first radial line L11 extends from the rotational center axis A1 of the bicycle hub assembly 12 to the radially outermost edge 48A of the outer spline transmission surface 48 . The first outer pitch angle PA11 or the second outer pitch angle PA12 is defined between adjacent first radial lines L11 (see, for example, FIG. 9 ). The outer splined non-drive surface 50 has a second outer spline surface angle AG12. A second outer spline surface angle AG12 is defined between the outer spline non-drive surface 50 and the second radial line L12. The second radial line L12 extends from the rotational center axis A1 of the bicycle hub assembly 12 to the radially outermost edge 50A of the outer splined non-drive surface 50 . In this embodiment, the second outer spline surface angle AG12 is different from the first outer spline surface angle AG11. The first outer spline surface angle AG11 is smaller than the second outer spline surface angle AG12. However, the first outer spline surface angle AG11 may be equal to or greater than the second outer spline surface angle AG12. The first external spline surface angle AG11 is in the range of 0 degrees to 10 degrees. The second external spline surface angle AG12 is in the range of 0 degrees to 60 degrees. In this embodiment, the first outer spline surface angle AG11 is 5 degrees. The second external spline surface angle AG12 is 45 degrees. However, the first external spline surface angle AG11 and the second external spline surface angle AG12 are not limited to this embodiment and the above range. As seen in Figures 13 and 14, the brake rotor support body 34 includes at least one additional external spline tooth 52 structured to engage the bicycle brake rotor 16 (Figure 4). In this embodiment, the brake rotor support body 34 includes an additional base support 54 and a plurality of additional external spline teeth 52 . The additional base support 54 has a tubular shape and extends from the hub body 36 along the central axis of rotation A1. Additional external spline teeth 52 extend radially outwardly from the additional base support 54 . The total number of additional external spline teeth 52 is 52. However, the total number of additional external spline teeth 52 is not limited to this embodiment. As seen in Figure 14, at least one additional external spline tooth 52 has an additional external spline tip diameter DM14. As seen in Figure 15, the additional outer spline crown diameter DM14 is larger than the outer spline crown diameter DM11. The additional outer spline tip diameter DM14 is substantially equal to the larger diameter portion 42 outer diameter DM13. However, the additional outer spline crown diameter DM14 may be equal to or smaller than the outer spline crown diameter DM11. The additional outer spline tip diameter DM14 may be different than the larger diameter portion 42 outer diameter DM13. As seen in Figure 16, the hub axle 30 includes an axial contact surface 30B1 for contacting the bicycle frame BF. In this embodiment, the axial contact surface 30B1 may be in contact with the first frame BF1 of the bicycle frame BF. The first frame BF1 includes a frame contact surface BF12. In a state where the bicycle hub assembly 12 is fastened to the bicycle frame BF by the wheel fastening structure WS, the axial contact surface 30B1 is in contact with the frame contact surface BF12. The first axial length AL11 is defined in the axial direction D2 relative to the rotational center axis A1 from the axial contact surface 30B1 to the larger diameter portion 42 . The first axial length AL11 is in the range of 35 mm to 41 mm. The first axial length AL11 may be equal to or greater than 39 mm. The first axial length AL11 can also be in the range of 35 mm to 37 mm. In this embodiment, the first axial length AL11 is 36.2 mm. However, the first axial length AL11 is not limited to this embodiment and the above range. The larger diameter portion 42 has an axial end 42A furthest from the axial contact surface 30B1 in the axial direction D2. The second axial length AL12 is defined in the axial direction D2 from the axial contact surface 30B1 to the axial end 42A. The second axial length AL12 is in the range of 38 mm to 47 mm. The second axial length AL12 may be in the range of 44 mm to 45 mm. The second axial length AL12 can also be in the range of 40 mm to 41 mm. In this embodiment, the second axial length AL12 is 40.75 mm. However, the second axial length AL12 is not limited to this embodiment and the above range. The axial length AL13 of the larger diameter portion 42 is in the range of 3 mm to 6 mm. In this example, the axial length AL13 is 4.55 mm. However, the axial length AL13 is not limited to this embodiment and the above range. As seen in Figure 17, the bicycle rear sprocket assembly 14 includes at least one sprocket. At least one sprocket includes the smallest sprocket SP1 and the largest sprocket SP12. The smallest sprocket SP1 may also be called sprocket SP1. The largest sprocket SP12 may also be called sprocket SP12. In this embodiment, the at least one sprocket further includes sprockets SP2 to SP11. Sprocket SP1 corresponds to the high-speed gear. Sprocket SP12 corresponds to the low speed gear. The total number of sprockets of the bicycle rear sprocket assembly 14 is not limited to this embodiment. The smallest sprocket SP1 includes at least one sprocket tooth SP1B. The total number of at least one sprocket tooth SP1B of the smallest sprocket SP1 is equal to or less than 10. In this embodiment, the total number of at least one sprocket tooth SP1B of the smallest sprocket SP1 is ten. However, the total number of at least one sprocket tooth SP1B of the smallest sprocket SP1 is not limited to this embodiment and the above range. The largest sprocket SP12 includes at least one sprocket tooth SP12B. The total number of at least one sprocket tooth SP12B of the largest sprocket SP12 is equal to or greater than 46. The total number of at least one sprocket tooth SP12B of the largest sprocket SP12 is equal to or greater than 50. In this embodiment, the total number of at least one sprocket tooth SP12B of the largest sprocket SP12 is 51. However, the total number of at least one sprocket tooth SP12B of the largest sprocket SP12 is not limited to this embodiment and the above scope. Sprocket SP2 includes at least one sprocket tooth SP2B. Sprocket SP3 includes at least one sprocket tooth SP3B. Sprocket SP4 includes at least one sprocket tooth SP4B. Sprocket SP5 includes at least one sprocket tooth SP5B. Sprocket SP6 includes at least one sprocket tooth SP6B. Sprocket SP7 includes at least one sprocket tooth SP7B. Sprocket SP8 includes at least one sprocket tooth SP8B. Sprocket SP9 includes at least one sprocket tooth SP9B. Sprocket SP10 includes at least one sprocket tooth SP10B. Sprocket SP11 includes at least one sprocket tooth SP11B. The total number of at least one sprocket tooth SP2B is twelve. The total number of at least one sprocket tooth SP3B is 14. The total number of at least one sprocket tooth SP4B is 16. The total number of at least one sprocket tooth SP5B is 18. The total number of at least one sprocket tooth SP6B is 21. The total number of at least one sprocket tooth SP7B is 24. The total number of at least one sprocket tooth SP8B is 28. The total number of at least one sprocket tooth SP9B is 33. The total number of at least one sprocket tooth SP10B is 39. The total number of at least one sprocket tooth SP11B is 45. The total number of sprocket teeth of each of the sprockets SP2 to SP11 is not limited to this embodiment. As seen in Fig. 18, the sprockets SP1 to SP12 are separate members from each other. However, at least one of the sprockets SP1 to SP12 may be provided at least partially integrally with the other of the sprockets SP1 to SP12. The bicycle rear sprocket assembly 14 includes a sprocket support 56, a plurality of spacers 58, a first ring 59A and a second ring 59B. In the illustrated embodiment, sprockets SP1 - SP12 are attached to sprocket support 56 . As seen in FIG. 19 , the sprocket SP1 includes a sprocket body SP1A and a plurality of sprocket teeth SP1B. A plurality of sprocket teeth SP1B extend radially outward from the sprocket body SP1A. Sprocket SP2 includes a sprocket body SP2A and a plurality of sprocket teeth SP2B. A plurality of sprocket teeth SP2B extend radially outward from the sprocket body SP2A. The sprocket SP3 includes a sprocket body SP3A and a plurality of sprocket teeth SP3B. A plurality of sprocket teeth SP3B extend radially outward from the sprocket body SP3A. The sprocket SP4 includes a sprocket body SP4A and a plurality of sprocket teeth SP4B. A plurality of sprocket teeth SP4B extend radially outward from the sprocket body SP4A. The sprocket SP5 includes a sprocket body SP5A and a plurality of sprocket teeth SP5B. A plurality of sprocket teeth SP5B extend radially outward from the sprocket body SP5A. The first ring 59A is provided between sprockets SP3 and SP4. The second ring 59B is provided between sprockets SP4 and SP5. As seen in FIG. 20 , the sprocket SP6 includes a sprocket body SP6A and a plurality of sprocket teeth SP6B. A plurality of sprocket teeth SP6B extend radially outward from the sprocket body SP6A. The sprocket SP7 includes a sprocket body SP7A and a plurality of sprocket teeth SP7B. A plurality of sprocket teeth SP7B extend radially outward from the sprocket body SP7A. The sprocket SP8 includes a sprocket body SP8A and a plurality of sprocket teeth SP8B. A plurality of sprocket teeth SP8B extend radially outward from the sprocket body SP8A. As seen in FIG. 21 , the sprocket SP9 includes a sprocket body SP9A and a plurality of sprocket teeth SP9B. A plurality of sprocket teeth SP9B extend radially outward from the sprocket body SP9A. Sprocket SP10 includes a sprocket body SP10A and a plurality of sprocket teeth SP10B. A plurality of sprocket teeth SP10B extend radially outward from the sprocket body SP10A. Sprocket SP11 includes a sprocket body SP11A and a plurality of sprocket teeth SP11B. A plurality of sprocket teeth SP11B extend radially outward from the sprocket body SP11A. Sprocket SP12 includes a sprocket body SP12A and a plurality of sprocket teeth SP12B. A plurality of sprocket teeth SP12B extend radially outward from the sprocket body SP12A. As seen in FIG. 22 , the sprocket support 56 includes a hub engaging portion 60 and a plurality of support arms 62 . A plurality of support arms 62 extend radially outward from the hub engaging portion 60 . The support arm 62 includes first to eighth attachment portions 62A to 62H. The plurality of spacers 58 include a plurality of first spacers 58A, a plurality of second spacers 58B, a plurality of third spacers 58C, a plurality of fourth spacers 58D, a plurality of fifth spacers 58E, a plurality of sixth spacers 58E, and a plurality of sixth spacers 58C. Spacer 58F and a plurality of seventh spacers 58G. As seen in Fig. 23, the first spacer 58A is provided between sprockets SP5 and SP6. The second spacer 58B is provided between sprocket SP6 and sprocket SP7. The third spacer 58C is provided between the sprocket SP7 and the sprocket SP8. The fourth spacer 58D is provided between sprockets SP8 and SP9. The fifth spacer 58E is provided between the sprocket SP9 and the sprocket SP10. The sixth spacer 58F is provided between the sprocket SP10 and the sprocket SP11. The seventh spacer 58G is provided between the sprocket SP11 and the sprocket SP12. Sprocket SP6 and first spacer 58A are attached to first attachment portion 62A by an adhesive structure such as adhesive. The sprocket SP7 and the second spacer 58B are attached to the second attachment portion 62B by an adhesive structure such as adhesive. Sprocket SP8 and third spacer 58C are attached to third attachment portion 62C by an adhesive structure such as adhesive. The sprocket SP9 and the fourth spacer 58D are attached to the fourth attachment portion 62D by an adhesive structure such as adhesive. The sprocket SP10 and the fifth spacer 58E are attached to the fifth attachment portion 62E by an adhesive structure such as adhesive. The sprocket SP11 and the sixth spacer 58F are attached to the sixth attachment portion 62F by an adhesive structure such as adhesive. The sprocket SP12 and the seventh spacer 58G are attached to the seventh attachment portion 62G by an adhesive structure such as adhesive. Sprocket SP5 and second ring 59B are attached to eighth attachment portion 62H by an adhesive structure such as adhesive. The hub engaging portion 60 , the sprockets SP1 to SP4 , the first ring 59A and the second ring 59B are held in the axial direction D2 between the larger diameter portion 42 and the locking flange 32B of the locking ring 32 . In this embodiment, each of the sprockets SP1 to SP12 is made of a metal material such as aluminum, iron, or titanium. Each of the sprocket support 56 , the first to seventh spacers 58A to 58G, the first ring 59A and the second ring 59B is made of a non-metal material such as a resin material. However, at least one of the sprockets SP1 to SP12 may be at least partially made of non-metallic material. At least one of the sprocket support 56 , the first to seventh spacers 58A to 58G, the first ring 59A and the second ring 59B may be at least partially made of a metal material such as aluminum, iron, or titanium. At least one sprocket includes at least one internal spline tooth structured to engage the bicycle hub assembly 12 . As seen in FIGS. 24 and 25 , at least one sprocket includes at least ten internal spline teeth structured to engage the bicycle hub assembly 12 . At least one internal spline tooth includes a plurality of internal spline teeth. Accordingly, at least one sprocket includes a plurality of internal spline teeth structured to engage the bicycle hub assembly 12 . In this embodiment, sprocket SP1 includes at least ten internal spline teeth 64 structured to engage the bicycle hub assembly 12 . In this embodiment, sprocket SP1 includes internal spline teeth 64 configured to engage external spline teeth 40 of sprocket support body 28 of bicycle hub assembly 12 . The sprocket body SP1A has an annular shape. Internal spline teeth 64 extend radially inwardly from sprocket body SP1A. As seen in Figure 26, the total number of at least ten internal spline teeth 64 is equal to or greater than twenty. The total number of at least ten internal spline teeth 64 is equal to or greater than 25. In this embodiment, the total number of internal spline teeth 64 is twenty-six. However, the total number of internal spline teeth 64 is not limited to this embodiment and the above scope. At least ten internal spline teeth 64 have a first internal pitch angle PA21 and a second internal pitch angle PA22. At least two of the plurality of internal spline teeth 64 are circumferentially arranged at a first internal pitch angle PA21 with respect to the rotation center axis A1 of the bicycle rear sprocket assembly 14 . At least two of the plurality of internal spline teeth 64 are circumferentially arranged at a second internal pitch angle PA22 with respect to the rotation center axis A1. In this embodiment, the second inner pitch angle PA22 is different from the first inner pitch angle PA21. However, the second inner pitch angle PA22 may be substantially equal to the first inner pitch angle PA21. In this embodiment, the internal spline teeth 64 are circumferentially arranged at a first internal pitch angle PA21 in the circumferential direction D1. Two of the internal spline teeth 64 are arranged at a second internal pitch angle PA22 in the circumferential direction D1. However, at least two of the internal spline teeth 64 may be arranged at another internal pitch angle in the circumferential direction D1. The first internal pitch angle PA21 is in the range of 10 degrees to 20 degrees. The first internal pitch angle PA21 is in the range of 12 degrees to 15 degrees. The first internal pitch angle PA21 is in the range of 13 degrees to 14 degrees. In this embodiment, the first internal pitch angle PA21 is 13.3 degrees. However, the first internal pitch angle PA21 is not limited to this embodiment and the above range. The second internal pitch angle PA22 is in the range of 5 degrees to 30 degrees. In this embodiment, the second internal pitch angle PA22 is 26 degrees. However, the second internal pitch angle PA22 is not limited to this embodiment and the above range. At least one of the at least ten internal spline teeth 64 has a first spline shape that is different from a second spline shape of another of the at least ten internal spline teeth 64 . At least one of the at least ten internal spline teeth 64 has a first spline size that is different from a second spline size of another of the at least ten internal spline teeth 64 . At least one of the at least ten internal spline teeth 64 has a cross-sectional shape that is different from the cross-sectional shape of another of the at least ten internal spline teeth 64 . However, as seen in Figure 27, the internal spline teeth 64 may have the same shape as each other. The internal spline teeth 64 may be the same size as each other. The internal spline teeth 64 may have the same cross-sectional shape as each other. As seen in Figure 28, at least one internal spline tooth 64 includes an internal spline drive surface 66 and an internal spline non-drive surface 68. At least one internal spline tooth 64 includes a plurality of internal spline teeth 64 . The plurality of internal spline teeth 64 includes a plurality of internal spline transmission surfaces 66 for receiving transmission rotational force F1 from the bicycle hub assembly 12 (FIG. 6) during pedaling. The plurality of internal spline teeth 64 includes a plurality of internal spline non-drive surfaces 68 . Internal splined transmission surface 66 may contact sprocket support body 28 to transmit transmission rotational force F1 from sprocket SP1 to sprocket support body 28 during pedaling. The internal splined drive surface 66 faces the drive rotation direction D11. The internal splined non-drive surface 68 is provided on the opposite side of the internal splined drive surface 66 in the circumferential direction D1. The internal splined non-drive surface 68 faces the counter-rotational direction D12 so that no drive rotational force F1 is transmitted from the sprocket SP1 to the sprocket support body 28 during pedaling. At least ten internal spline teeth 64 each have a maximum circumferential width MW2. The internal spline teeth 64 each have a maximum circumferential width MW2. The circumferential maximum width MW2 is defined as the maximum width that receives the thrust F3 applied to the inner spline teeth 64 . Maximum circumferential width MW2 is defined as the linear distance based on the internal splined transmission surface 66. Internal splined drive surface 66 includes a radially outermost edge 66A and a radially innermost edge 66B. Internal splined drive surface 66 extends from radially outermost edge 66A to radially innermost edge 66B. The second reference circle RC21 is defined on the radially outermost edge 66A and is centered on the rotation center axis A1. The second reference circle RC21 intersects the internal splined non-drive surface 68 at the reference point 68R. The maximum circumferential width MW2 extends straight from the radially innermost edge 66B to the reference point 68R in the circumferential direction D1. The internal splined non-drive surface 68 includes a radially outermost edge 68A and a radially innermost edge 68B. The internal splined non-drive surface 68 extends from the radially outermost edge 68A to the radially innermost edge 68B. Reference point 68R is provided between radially outermost edge 68A and radially innermost edge 68B. The sum of the maximum circumferential widths MW2 is equal to or greater than 40 mm. The sum of the maximum circumferential widths MW2 is equal to or greater than 45 mm. The sum of the maximum circumferential widths MW2 is equal to or greater than 50 mm. In this embodiment, the sum of the maximum circumferential widths MW2 is 50.8 mm. However, the sum of the circumferential maximum widths MW2 is not limited to this embodiment. As seen in Figure 29, at least one internal spline tooth 64 has an internal spline tip diameter DM21. At least one internal spline tooth 64 has an internal spline root circle RC22 having an internal spline crown diameter DM21. However, the internal spline root circle RC22 may have another diameter than the internal spline top diameter DM21. Internal spline top diameter DM21 is equal to or less than 30 mm. The internal spline top diameter DM21 is equal to or greater than 25 mm. Internal spline top diameter DM21 is equal to or greater than 29 mm. In this example, the internal spline tip diameter DM21 is 29.8 mm. However, the inner spline top diameter DM21 is not limited to this embodiment and the above range. At least one internal spline tooth 64 has an internal spline base diameter DM22 equal to or less than 28 mm. Internal spline bottom diameter DM22 is equal to or greater than 25 mm. Internal spline bottom diameter DM22 is equal to or greater than 27 mm. In this example, the internal spline base diameter DM22 is 27.7 mm. However, the inner spline bottom diameter DM22 is not limited to this embodiment and the above range. As seen in Figure 28, the plurality of internal splined transmission surfaces 66 includes a radially outermost edge 66A and a radially innermost edge 66B. The plurality of internal spline transmission surfaces 66 each include a radial length RL21 bounded from a radially outermost edge 66A to a radially innermost edge 66B. The sum of the radial lengths RL21 of the plurality of internal spline transmission surfaces 66 is equal to or greater than 7 mm. The sum of the radial lengths RL21 is equal to or greater than 10 mm. The sum of the radial lengths RL21 is equal to or greater than 15 mm. In this embodiment, the sum of the radial lengths RL21 is 19.5 mm. However, the total radial length RL21 is not limited to this embodiment and the above range. The plurality of internal spline teeth 64 have an additional radial length RL22. The additional radial length RL22 is defined from the internal spline tooth root circle RC22 to the radially innermost ends 64A of the plurality of internal spline teeth 64 respectively. The sum of the additional radial lengths RL22 is equal to or greater than 12 mm. In this embodiment, the sum of the additional radial lengths RL22 is 27.95 mm. However, the sum of the additional radial lengths RL22 is not limited to this embodiment and the above range. At least one of the internal spline teeth 64 has an asymmetric shape relative to the circumferential tooth tip centerline CL2. The circumferential tooth tip center line CL2 is a line connecting the rotation center axis A1 and the circumferential center point CP2 of the radially innermost end 64A of the internal spline teeth 64 . However, at least one of the internal spline teeth 64 may have a symmetrical shape relative to the circumferential tooth tip centerline CL2. At least one of the internal spline teeth 64 includes an internal spline drive surface 66 and an internal spline non-drive surface 68 . Internal spline drive surface 66 has a first internal spline surface angle AG21. A first internal spline surface angle AG21 is defined between the internal spline drive surface 66 and the first radial line L21. The first radial line L21 extends from the rotational center axis A1 of the bicycle rear sprocket assembly 14 to the radially outermost edge 66A of the internal spline transmission surface 66 . The first internal pitch angle PA21 or the second internal pitch angle PA22 is defined between adjacent first radial lines L21 (see, for example, Figure 26). The internal splined non-drive surface 68 has a second internal spline surface angle AG22. A second internal spline surface angle AG22 is defined between the internal spline non-drive surface 68 and the second radial line L22. The second radial line L22 extends from the central axis of rotation A1 of the bicycle rear sprocket assembly 14 to the radially outermost edge 68A of the internal splined non-drive surface 68 . In this embodiment, the second internal spline surface angle AG22 is different from the first internal spline surface angle AG21. The first internal spline surface angle AG21 is smaller than the second internal spline surface angle AG22. However, the first internal spline surface angle AG21 may be equal to or greater than the second internal spline surface angle AG22. The first internal spline surface angle AG21 is in the range of 0 degrees to 10 degrees. The second internal spline surface angle AG22 is in the range of 0 degrees to 60 degrees. In this example, the first internal spline surface angle AG21 is 5 degrees. The second internal spline surface angle AG22 is 45 degrees. However, the first internal spline surface angle AG21 and the second internal spline surface angle AG22 are not limited to this embodiment and the above range. As seen in FIG. 30 , inner spline teeth 64 mesh with outer spline teeth 40 to transmit transmission rotational force F1 from sprocket SP1 to sprocket support body 28 . The inner splined drive surface 66 may contact the outer splined drive surface 48 to transmit the drive rotational force F1 from the sprocket SP1 to the sprocket support body 28 . In the state where the inner spline drive surface 66 is in contact with the outer spline drive surface 48 , the inner spline non-drive surface 68 is spaced apart from the outer spline non-drive surface 50 . As seen in Figure 31, sprocket SP2 includes a plurality of internal spline teeth 70. Sprocket SP3 includes a plurality of internal spline teeth 72 . Sprocket SP4 includes a plurality of internal spline teeth 74 . The first ring 59A includes a plurality of internal spline teeth 76 . As seen in FIG. 32 , the hub engaging portion 60 of the sprocket support 56 includes a plurality of internal spline teeth 78 . The plurality of internal spline teeth 70 have substantially the same structure as the plurality of internal spline teeth 64 . The plurality of internal spline teeth 72 has substantially the same structure as the plurality of internal spline teeth 64 . The plurality of internal spline teeth 74 has substantially the same structure as the plurality of internal spline teeth 64 . The plurality of internal spline teeth 76 has substantially the same structure as the plurality of internal spline teeth 64 . The plurality of internal spline teeth 78 has substantially the same structure as the plurality of internal spline teeth 64 . Therefore, for the sake of brevity, it will not be described in detail here. As used herein, the term "comprising" and its derivatives are intended to specify the presence of stated features, elements, components, groups, integers and/or steps but not to exclude the presence of other unstated features, elements, components, groups, Open term for the existence of integers and/or steps. This concept also applies to words of similar meaning, such as the terms "have", "include" and their derivatives. The terms "member", "section", "section", "part", "element", "body" and "structure" when used in the singular may have the dual meaning of a single part or a plurality of parts. Ordinal numbers such as "first" and "second" described in this application are merely identifiers and do not have any other meaning, such as a specific order and the like. Furthermore, for example, the term "first element" by itself does not imply the presence of a "second element," and the term "second element" by itself does not imply the presence of a "first element." The term "pair" as used herein may encompass configurations in which pairs of elements have different shapes or structures from each other in addition to configurations in which pairs of elements have the same shape or structure as each other. Accordingly, the terms "a," "one or more," and "at least one" are used interchangeably herein. Finally, terms of degree such as "substantially," "approximately," and "approximately" as used herein mean a reasonable amount of deviation from the modified term such that the end result does not materially alter. All numerical values described in this application may be understood to include terms such as "substantially," "approximately," and "approximately." Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
10:自行車傳動系統 12:自行車輪轂總成 14:自行車後鏈輪總成 16:自行車制動轉子 18:曲柄總成 20:自行車鏈條 22:曲柄軸 24:右曲柄臂 26:左曲柄臂 27:前鏈輪 28:鏈輪支撐主體 28A:內部帶螺紋部分 30:輪轂軸 30A:通孔 30B:第一軸端 30B1:軸向接觸表面 30C:第二軸端 32:鎖環 32A:外部帶螺紋部分 32B:鎖定凸緣 34:制動轉子支撐主體 36:輪轂主體 36A:第一凸緣 36B:第二凸緣 38:棘輪結構/單向聯軸結構 39A:第一軸承 39B:第二軸承 40:外部花鍵齒 40A:徑向最外端 41:基座支撐件 42:較大直徑部分 42A:軸向端 44:凸緣 46:螺旋外部花鍵齒 48:外部花鍵傳動表面 48A:徑向最外邊緣 48B:徑向最內邊緣 50:外部花鍵非傳動表面 50A:徑向最外邊緣 50B:徑向最內邊緣 50R:參考點 52:額外外部花鍵齒 54:額外基座支撐件 56:鏈輪支撐件 58:間隔件/鏈輪支撐件 58A:第一間隔件 58B:第二間隔件 58C:第三間隔件 58D:第四間隔件 58E:第五間隔件 58F:第六間隔件 58G:第七間隔件 59A:第一環 59B:第二環 60:輪轂嚙合部分 62:支撐臂 62A:第一附接部分 62B:第二附接部分 62C:第三附接部分 62D:第四附接部分 62E:第五附接部分 62F:第六附接部分 62G:第七附接部分 62H:第八附接部分 64:內部花鍵齒 64A:徑向最內端 66:內部花鍵傳動表面 66A:徑向最外邊緣 66B:徑向最內邊緣 68:內部花鍵非傳動表面 68A:徑向最外邊緣 68B:徑向最內邊緣 68R:參考點 70:內部花鍵齒 72:內部花鍵齒 74:內部花鍵齒 76:內部花鍵齒 78:內部花鍵齒 A1:旋轉中心軸線 AG11:第一外部花鍵表面角 AG12:第二外部花鍵表面角 AG21:第一內部花鍵表面角 AG22:第二內部花鍵表面角 AL11:第一軸向長度 AL12:第二軸向長度 AL13:軸向長度 BF:自行車框架 BF1:第一框架 BF2:第二框架 BF11:第一凹槽 BF12:框架接觸表面 BF21:第二凹槽 CL1:圓周齒尖中心線 CL2:圓周齒尖中心線 CP1:圓周中心點 CP2:圓周中心點 D1:圓周方向 D2:軸向方向 D11:傳動旋轉方向 D12:反向旋轉方向 DM11:外部花鍵頂徑 DM12:外部花鍵底徑 DM13:外徑 DM14:額外外部花鍵頂徑 DM21:內部花鍵頂徑 DM22:內部花鍵底徑 F1:傳動旋轉力 F2:推力 F3:推力 IV-IV:線 L11:第一徑向線 L12:第二徑向線 L21:第一徑向線 L22:第二徑向線 MW1:圓周最大寬度 MW2:圓周最大寬度 PA11:第一外部周節角 PA12:第二外部周節角 PA21:第一內部周節角 PA22:第二內部周節角 RC11:第一參考圓 RC12:外部花鍵齒根圓 RC21:第二參考圓 RC22:內部花鍵齒根圓 RL11:徑向長度 RL12:額外徑向長度 RL21:徑向長度 RL22:額外徑向長度 SP1:鏈輪 SP1A:鏈輪主體 SP1B:鏈輪齒 SP2:鏈輪 SP2A:鏈輪主體 SP2B:鏈輪齒 SP3:鏈輪 SP3A:鏈輪主體 SP3B:鏈輪齒 SP4:鏈輪 SP4A:鏈輪主體 SP4B:鏈輪齒 SP5:鏈輪 SP5A:鏈輪主體 SP5B:鏈輪齒 SP6:鏈輪 SP6A:鏈輪主體 SP6B:鏈輪齒 SP7:鏈輪 SP7A:鏈輪主體 SP7B:鏈輪齒 SP8:鏈輪 SP8A:鏈輪主體 SP8B:鏈輪齒 SP9:鏈輪 SP9A:鏈輪主體 SP9B:鏈輪齒 SP10:鏈輪 SP10A:鏈輪主體 SP10B:鏈輪齒 SP11:鏈輪 SP11A:鏈輪主體 SP11B:鏈輪齒 SP12:鏈輪 SP12A:鏈輪主體 SP12B:鏈輪齒 WS:車輪緊固結構 WS1:緊固桿 XVI-XVI:線 XXIII-XXIII:線 10:Bicycle transmission system 12:Bicycle wheel hub assembly 14: Bicycle rear sprocket assembly 16:Bicycle brake rotor 18:Crank assembly 20:Bicycle chain 22:Crankshaft 24:Right crank arm 26:Left crank arm 27:Front sprocket 28: Sprocket support body 28A: Internal threaded part 30: hub shaft 30A:Through hole 30B: First shaft end 30B1: Axial contact surface 30C: Second shaft end 32:Lock ring 32A: External threaded part 32B: Locking flange 34: Brake rotor support body 36: Wheel hub body 36A:First flange 36B: Second flange 38: Ratchet structure/one-way coupling structure 39A:First bearing 39B: Second bearing 40: External spline teeth 40A: Radially outermost end 41:Base support 42: Larger diameter part 42A: Axial end 44:Flange 46:Helical external spline teeth 48: External spline drive surface 48A: Radial outermost edge 48B: Radial innermost edge 50: External splined non-drive surface 50A: Radial outermost edge 50B: Radial innermost edge 50R: reference point 52:Extra external spline teeth 54: Additional base support 56:Sprocket support 58: Spacer/Sprocket Support 58A: First spacer 58B: Second spacer 58C:Third spacer 58D: The fourth spacer 58E:Fifth spacer 58F:Sixth spacer 58G:Seventh spacer 59A:First ring 59B:Second ring 60: Hub meshing part 62:Support arm 62A: First attachment part 62B: Second attachment part 62C: Third attachment part 62D: Fourth attachment part 62E: Fifth attachment part 62F: Sixth attachment part 62G:Seventh attachment part 62H: The eighth attachment part 64: Internal spline teeth 64A: Radially innermost end 66: Internal spline transmission surface 66A: Radially outermost edge 66B: Radial innermost edge 68: Internal splined non-drive surface 68A: Radially outermost edge 68B: Radial innermost edge 68R: Reference point 70: Internal spline teeth 72: Internal spline teeth 74: Internal spline teeth 76: Internal spline teeth 78: Internal spline teeth A1: Rotation center axis AG11: First external spline surface angle AG12: Second external spline surface angle AG21: First internal spline surface angle AG22: Second internal spline surface angle AL11: first axial length AL12: Second axial length AL13: Axial length BF: bicycle frame BF1: first frame BF2: Second frame BF11: first groove BF12: Frame contact surface BF21: Second groove CL1: Circumferential tooth tip center line CL2: Circumferential tooth tip center line CP1: Circle center point CP2: Circle center point D1: Circumferential direction D2: Axial direction D11: Transmission rotation direction D12: Reverse rotation direction DM11: External spline top diameter DM12: External spline bottom diameter DM13: outer diameter DM14: Extra external spline top diameter DM21: Internal spline top diameter DM22: Internal spline bottom diameter F1: Transmission rotation force F2:Thrust F3:Thrust IV-IV: line L11: first radial line L12: Second radial line L21: first radial line L22: Second radial line MW1: maximum circumferential width MW2: maximum circumferential width PA11: First external pitch angle PA12: Second external pitch angle PA21: First internal pitch angle PA22: Second internal pitch angle RC11: First reference circle RC12: External spline root circle RC21: Second reference circle RC22: Internal spline root circle RL11: Radial length RL12: additional radial length RL21: Radial length RL22: additional radial length SP1: sprocket SP1A: sprocket body SP1B: sprocket teeth SP2: sprocket SP2A: sprocket body SP2B: sprocket teeth SP3: sprocket SP3A: sprocket body SP3B: sprocket teeth SP4: sprocket SP4A: sprocket body SP4B: sprocket teeth SP5: sprocket SP5A: sprocket body SP5B: sprocket teeth SP6: sprocket SP6A: sprocket body SP6B: sprocket teeth SP7: sprocket SP7A: sprocket body SP7B: sprocket teeth SP8: sprocket SP8A: sprocket body SP8B: sprocket teeth SP9: sprocket SP9A: sprocket body SP9B: sprocket teeth SP10: sprocket SP10A: sprocket body SP10B: sprocket teeth SP11: sprocket SP11A: sprocket body SP11B: sprocket teeth SP12: sprocket SP12A: sprocket body SP12B: sprocket teeth WS: wheel fastening structure WS1: Fastening rod XVI-XVI: line XXIII-XXIII: line
當結合附圖考慮時,參考以下詳細描述,本發明之更完整評價及其許多伴隨優點將易於獲得,同樣變得更好理解,其中: 圖1為根據一實施例之自行車傳動系統的示意圖。 圖2為圖1中所說明之自行車傳動系統的分解透視圖。 圖3為圖2中所說明之自行車傳動系統的另一透視圖。 圖4為沿圖2之線IV-IV截取之自行車傳動系統的橫截面圖。 圖5為圖2中所說明之自行車傳動系統之自行車輪轂總成的分解透視圖。 圖6為圖4中所說明之自行車傳動系統的放大橫截面圖。 圖7為圖2中所說明之自行車傳動系統之自行車輪轂總成之鏈輪支撐主體的透視圖。 圖8為圖2中所說明之自行車傳動系統之自行車輪轂總成之鏈輪支撐主體的另一透視圖。 圖9為圖7中所說明之鏈輪支撐主體的側視圖。 圖10為根據修改之自行車輪轂總成之鏈輪支撐主體的側視圖。 圖11為圖7中所說明之鏈輪支撐主體的放大橫截面圖。 圖12為圖7中所說明之鏈輪支撐主體的橫截面圖。 圖13為圖2中所說明之自行車傳動系統之自行車輪轂總成的透視圖。 圖14為圖2中所說明之自行車傳動系統之自行車輪轂總成的側視圖。 圖15為圖2中所說明之自行車傳動系統之自行車輪轂總成的後視圖。 圖16為沿圖5之線XVI-XVI截取之自行車輪轂總成的橫截面圖。 圖17為圖2中所說明之自行車傳動系統之自行車後鏈輪總成的側視圖。 圖18為圖17中所說明之自行車後鏈輪總成的分解透視圖。 圖19為圖17中所說明之自行車後鏈輪總成的部分分解透視圖。 圖20為圖17中所說明之自行車後鏈輪總成的另一部分分解透視圖。 圖21為圖17中所說明之自行車後鏈輪總成的另一部分分解透視圖。 圖22為圖17中所說明之自行車後鏈輪總成的另一部分分解透視圖。 圖23為沿圖17之線XXIII-XXIII截取之自行車後鏈輪總成的透視橫截面圖。 圖24為圖17中所說明之自行車後鏈輪總成之最小鏈輪的透視圖。 圖25為圖17中所說明之自行車後鏈輪總成之最小鏈輪的另一透視圖。 圖26為圖17中所說明之自行車後鏈輪總成之最小鏈輪的側視圖。 圖27為根據修改之最小鏈輪的側視圖。 圖28為圖24中所說明之最小鏈輪的放大截面視圖。 圖29為圖24中所說明之最小鏈輪的橫截面圖。 圖30為圖2中所說明之自行車傳動系統之鏈輪支撐主體及最小鏈輪的橫截面圖。 圖31為圖17中所說明之自行車後鏈輪總成的部分分解透視圖。 圖32為圖17中所說明之自行車後鏈輪總成之鏈輪支撐件的透視圖。 A more complete evaluation of the present invention and its many attendant advantages will readily be obtained, and likewise become better understood, with reference to the following detailed description when considered in conjunction with the accompanying drawings, in which: Figure 1 is a schematic diagram of a bicycle transmission system according to an embodiment. FIG. 2 is an exploded perspective view of the bicycle transmission system illustrated in FIG. 1 . FIG. 3 is another perspective view of the bicycle transmission system illustrated in FIG. 2 . 4 is a cross-sectional view of the bicycle transmission system taken along line IV-IV of FIG. 2 . FIG. 5 is an exploded perspective view of the bicycle hub assembly of the bicycle transmission system illustrated in FIG. 2 . FIG. 6 is an enlarged cross-sectional view of the bicycle transmission system illustrated in FIG. 4 . FIG. 7 is a perspective view of a sprocket support body of the bicycle hub assembly of the bicycle transmission system illustrated in FIG. 2 . 8 is another perspective view of the sprocket support body of the bicycle hub assembly of the bicycle transmission system illustrated in FIG. 2 . FIG. 9 is a side view of the sprocket support body illustrated in FIG. 7 . Figure 10 is a side view of the sprocket support body of the bicycle hub assembly according to the modification. FIG. 11 is an enlarged cross-sectional view of the sprocket support body illustrated in FIG. 7 . FIG. 12 is a cross-sectional view of the sprocket support body illustrated in FIG. 7 . FIG. 13 is a perspective view of the bicycle hub assembly of the bicycle transmission system illustrated in FIG. 2 . FIG. 14 is a side view of the bicycle hub assembly of the bicycle transmission system illustrated in FIG. 2 . FIG. 15 is a rear view of the bicycle hub assembly of the bicycle transmission system illustrated in FIG. 2 . Figure 16 is a cross-sectional view of the bicycle wheel hub assembly taken along line XVI-XVI of Figure 5. FIG. 17 is a side view of the bicycle rear sprocket assembly of the bicycle transmission system illustrated in FIG. 2 . FIG. 18 is an exploded perspective view of the rear sprocket assembly of the bicycle illustrated in FIG. 17 . Figure 19 is a partially exploded perspective view of the bicycle rear sprocket assembly illustrated in Figure 17. FIG. 20 is another partially exploded perspective view of the rear sprocket assembly of the bicycle illustrated in FIG. 17 . Figure 21 is another partially exploded perspective view of the bicycle rear sprocket assembly illustrated in Figure 17. Figure 22 is another partially exploded perspective view of the bicycle rear sprocket assembly illustrated in Figure 17. Figure 23 is a perspective cross-sectional view of the bicycle rear sprocket assembly taken along line XXIII-XXIII of Figure 17. Figure 24 is a perspective view of the smallest sprocket of the bicycle rear sprocket assembly illustrated in Figure 17. Figure 25 is another perspective view of the smallest sprocket of the bicycle rear sprocket assembly illustrated in Figure 17. Figure 26 is a side view of the smallest sprocket of the bicycle rear sprocket assembly illustrated in Figure 17. Figure 27 is a side view of the smallest sprocket according to the modification. Figure 28 is an enlarged cross-sectional view of the smallest sprocket illustrated in Figure 24. Figure 29 is a cross-sectional view of the smallest sprocket illustrated in Figure 24. 30 is a cross-sectional view of the sprocket support body and the smallest sprocket of the bicycle transmission system illustrated in FIG. 2 . Figure 31 is a partially exploded perspective view of the bicycle rear sprocket assembly illustrated in Figure 17. Figure 32 is a perspective view of the sprocket support member of the bicycle rear sprocket assembly illustrated in Figure 17.
28:鏈輪支撐主體 28: Sprocket support body
28A:內部帶螺紋部分 28A: Internal threaded part
40:外部花鍵齒 40: External spline teeth
41:基座支撐件 41:Base support
42:較大直徑部分 42: Larger diameter part
44:凸緣 44:Flange
46:螺旋外部花鍵齒 46:Helical external spline teeth
A1:旋轉中心軸線 A1: Rotation center axis
D2:軸向方向 D2: Axial direction
Claims (37)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/608,924 US11332213B2 (en) | 2017-05-30 | 2017-05-30 | Bicycle rear sprocket assembly and bicycle drive train |
US15/608,915 | 2017-05-30 | ||
US15/608,924 | 2017-05-30 | ||
US15/608,915 US11059541B2 (en) | 2017-05-30 | 2017-05-30 | Bicycle hub assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202402562A true TW202402562A (en) | 2024-01-16 |
Family
ID=64279063
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109118644A TWI823006B (en) | 2017-05-30 | 2018-05-11 | Bicycle hub assembly |
TW111140611A TW202327933A (en) | 2017-05-30 | 2018-05-11 | Bicycle rear sprocket assembly and bicycle drive train |
TW109133516A TWI785388B (en) | 2017-05-30 | 2018-05-11 | Bicycle rear sprocket assembly and bicycle drive train |
TW107116027A TWI707800B (en) | 2017-05-30 | 2018-05-11 | Bicycle rear sprocket assembly and bicycle drive train |
TW112126226A TW202402562A (en) | 2017-05-30 | 2018-05-11 | Bicycle hub assembly |
TW107116082A TWI697417B (en) | 2017-05-30 | 2018-05-11 | Bicycle hub assembly |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109118644A TWI823006B (en) | 2017-05-30 | 2018-05-11 | Bicycle hub assembly |
TW111140611A TW202327933A (en) | 2017-05-30 | 2018-05-11 | Bicycle rear sprocket assembly and bicycle drive train |
TW109133516A TWI785388B (en) | 2017-05-30 | 2018-05-11 | Bicycle rear sprocket assembly and bicycle drive train |
TW107116027A TWI707800B (en) | 2017-05-30 | 2018-05-11 | Bicycle rear sprocket assembly and bicycle drive train |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107116082A TWI697417B (en) | 2017-05-30 | 2018-05-11 | Bicycle hub assembly |
Country Status (4)
Country | Link |
---|---|
JP (2) | JP6642933B2 (en) |
CN (5) | CN108974233B (en) |
DE (6) | DE202018106135U1 (en) |
TW (6) | TWI823006B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11578761B2 (en) * | 2019-03-22 | 2023-02-14 | Shimano Inc. | Bicycle sprocket arrangement |
US11642913B2 (en) * | 2019-03-22 | 2023-05-09 | Shimano Inc. | Sprocket support body and bicycle hub assembly |
TWI839545B (en) * | 2019-07-30 | 2024-04-21 | 義大利商坎帕克諾羅公司 | Cogset and sub-assembly for bicycle rear wheel |
IT201900020502A1 (en) * | 2019-11-06 | 2021-05-06 | Campagnolo Srl | Sprocket carrier sub-assembly and sprocket set for a bicycle rear wheel, ring nut for this sub-assembly and method for fixing a sprocket set to a sprocket body |
CN112178073B (en) * | 2020-09-24 | 2022-03-04 | 温州市简系文具有限公司 | Stable ratchet wheel device |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2382740A (en) * | 1943-07-10 | 1945-08-14 | Fred P Noffsinger | Sprocket wheel |
JPS5612083Y2 (en) * | 1977-09-29 | 1981-03-19 | ||
DE8803900U1 (en) * | 1987-03-27 | 1988-08-25 | Blankenburg, Lothar, 1000 Berlin | Sprocket set for derailleur gears for bicycles |
JPH0187993U (en) * | 1987-12-02 | 1989-06-09 | ||
ES2135662T3 (en) * | 1994-03-17 | 1999-11-01 | Matsui Universal Joint Manufac | MOTOR TREE. |
US5772285A (en) * | 1996-11-21 | 1998-06-30 | Warn Industries, Inc. | Hub and rotor combination |
US5954604A (en) * | 1996-11-21 | 1999-09-21 | Shimano, Inc. | Multiple sprocket assembly for a bicycle |
JP3142247B2 (en) * | 1997-05-08 | 2001-03-07 | 株式会社シマノ | Interior gear hub for bicycle |
US6264575B1 (en) * | 1999-04-08 | 2001-07-24 | Shimano, Inc. | Freewheel for a bicycle |
US6382381B1 (en) * | 2000-09-06 | 2002-05-07 | Shimano Inc. | Bicycle hub assembly |
US6523659B2 (en) * | 2000-12-11 | 2003-02-25 | Shimano Inc. | Bicycle hub with tight connection ratchet and detachable freewheel |
US6666786B2 (en) * | 2000-12-29 | 2003-12-23 | Shimano Inc. | Chamfered sprocket assembly |
US6923741B2 (en) * | 2002-08-30 | 2005-08-02 | Shimano Inc. | Top sprocket for a rear sprocket assembly and rear sprocket assembly for a bicycle |
US6866604B2 (en) * | 2003-01-17 | 2005-03-15 | Shimano, Inc. | Multiple level sprocket support for a bicycle |
CN2769169Y (en) * | 2003-01-20 | 2006-04-05 | 天津飞轮有限公司 | Multi-tooth variable speed flywheel for bicycle |
JP2005186763A (en) * | 2003-12-25 | 2005-07-14 | Shimano Inc | Hub for bicycle |
US20050209033A1 (en) * | 2004-03-19 | 2005-09-22 | Borgwarner Inc. | Spline phased multiple sprocket |
CN1282585C (en) * | 2004-07-22 | 2006-11-01 | 罗明端 | Foot controlled speed changing device for bicycle |
US7846047B2 (en) * | 2004-09-10 | 2010-12-07 | Shimano, Inc. | Bicycle sprocket having a thickened spline |
US7854673B2 (en) * | 2006-08-31 | 2010-12-21 | Shimano Inc. | Bicycle sprocket assembly having a reinforcement member coupled between sprockets |
JP5349756B2 (en) * | 2007-01-17 | 2013-11-20 | Ntn株式会社 | Constant velocity universal joint |
US8506202B2 (en) * | 2007-01-17 | 2013-08-13 | Ntn Corporation | Constant velocity universal joint |
JP2008189254A (en) * | 2007-02-07 | 2008-08-21 | Shimano Inc | Rear sprocket assembly for bicycle, and sprocket |
DE102009010258B4 (en) * | 2009-02-24 | 2015-07-30 | Carbofibretec Gmbh | Bicycle hub assembly with a hollow axle made of fiber composite material |
TWM362767U (en) * | 2009-03-16 | 2009-08-11 | Joy Ind Co Ltd | Structure of sleeve for wheel hub of bicycle |
US20100260544A1 (en) * | 2009-04-09 | 2010-10-14 | Pi-Yun Chiang | Combination of Bicycle Rear Wheel Hub and Sprocket Set |
US8696503B2 (en) * | 2011-03-01 | 2014-04-15 | Shimano Inc. | Bicycle sprocket assembly |
TWI657965B (en) * | 2011-07-13 | 2019-05-01 | 矢倫德國股份有限公司 | Multi-sprocket-equipped transmission base body device for supporting bicycle transmission |
CN102556273B (en) * | 2012-03-08 | 2013-06-12 | 中山新宝精密科技有限公司 | Rear chain wheel component for bicycle |
US8979387B2 (en) * | 2012-09-11 | 2015-03-17 | Shimano Inc. | Bicycle hub assembly |
NL2010969C2 (en) * | 2013-06-14 | 2014-12-17 | Robertus Cornelius Wilhelmus Hoek | CHAIN WHEEL CARRIER FOR AN ACCELERATION SYSTEM OF A BIKE. |
TWM466030U (en) * | 2013-07-19 | 2013-11-21 | Tokenproducts Inc | Ratchet base |
CN203413082U (en) * | 2013-08-05 | 2014-01-29 | 台州富特传动机械有限公司 | Double-spline shaft gear |
US9669656B2 (en) * | 2013-08-20 | 2017-06-06 | Shimano (Singapore) Pte. Ltd. | Bicycle freewheel |
US9199509B2 (en) * | 2014-01-21 | 2015-12-01 | Shimano Inc. | Bicycle hub |
US9415835B2 (en) * | 2014-01-24 | 2016-08-16 | Shimano Inc. | Rotatable annular bicycle component and bicycle rear sprocket |
US9731550B2 (en) * | 2014-05-02 | 2017-08-15 | Shimano Inc. | Bicycle hub assembly |
US9334910B2 (en) * | 2014-05-28 | 2016-05-10 | Shimano Inc. | Lock member for fixedly locking a disc brake rotor on a bicycle hub |
TWM495993U (en) * | 2014-07-25 | 2015-02-21 | Vp Components Co Ltd | Sprocket assembly and sprocket device using same |
CN105314054A (en) * | 2014-08-01 | 2016-02-10 | 鋐光实业股份有限公司 | Chain wheel assembly and chain wheel device utilizing same |
US9334014B2 (en) * | 2014-09-01 | 2016-05-10 | Shimano Inc. | Bicycle sprocket and bicycle sprocket assembly |
US9446815B2 (en) * | 2014-09-19 | 2016-09-20 | Vp Components Co., Ltd | Chain wheel assembly and chain wheel device using it |
EP3037336B1 (en) * | 2014-12-23 | 2017-04-12 | Campagnolo S.R.L. | Sprocket assembly for a bicycle |
US9649880B2 (en) * | 2015-01-29 | 2017-05-16 | Shimano Inc. | Bicycle hub assembly |
US9168976B1 (en) * | 2015-03-17 | 2015-10-27 | Praxis Works LLC | Cassette and bicycle wheel assembly |
US9511819B1 (en) * | 2015-05-25 | 2016-12-06 | Shimano Inc. | Bicycle rear sprocket assembly |
US9951762B2 (en) * | 2015-07-16 | 2018-04-24 | Bendix Commercial Vehicle Systems Llc | Compressor with crankshaft and insert |
US10562588B2 (en) * | 2015-09-01 | 2020-02-18 | The Hive Global, Inc | Bicycle cassette with locking connection |
US9707801B2 (en) * | 2015-10-01 | 2017-07-18 | Shimano Inc. | Bicycle hub assembly |
CN205499241U (en) * | 2015-12-17 | 2016-08-24 | 天心工业股份有限公司 | Removable gear type dish group |
CN205780387U (en) * | 2016-06-02 | 2016-12-07 | 武汉市铁研汽车零件有限公司 | A kind of automobile dipentodon sinicus key axle |
TWI785386B (en) * | 2017-05-30 | 2022-12-01 | 日商島野股份有限公司 | Bicycle rear sprocket assembly |
-
2018
- 2018-05-11 DE DE202018106135.6U patent/DE202018106135U1/en active Active
- 2018-05-11 DE DE102018008591.1A patent/DE102018008591A1/en active Pending
- 2018-05-11 TW TW109118644A patent/TWI823006B/en active
- 2018-05-11 TW TW111140611A patent/TW202327933A/en unknown
- 2018-05-11 DE DE102018008578.4A patent/DE102018008578A1/en active Pending
- 2018-05-11 CN CN201810445759.9A patent/CN108974233B/en active Active
- 2018-05-11 CN CN202110020991.XA patent/CN112722146B/en active Active
- 2018-05-11 CN CN202210132916.7A patent/CN114572337B/en active Active
- 2018-05-11 DE DE202018106134.8U patent/DE202018106134U1/en active Active
- 2018-05-11 TW TW109133516A patent/TWI785388B/en active
- 2018-05-11 DE DE102018111273.4A patent/DE102018111273A1/en active Pending
- 2018-05-11 TW TW107116027A patent/TWI707800B/en active
- 2018-05-11 DE DE102018111272.6A patent/DE102018111272A1/en active Pending
- 2018-05-11 TW TW112126226A patent/TW202402562A/en unknown
- 2018-05-11 TW TW107116082A patent/TWI697417B/en active
- 2018-05-11 CN CN201810445779.6A patent/CN108974234B/en active Active
- 2018-05-11 CN CN202110014467.1A patent/CN112722145B/en active Active
- 2018-05-30 JP JP2018103416A patent/JP6642933B2/en active Active
- 2018-05-30 JP JP2018103418A patent/JP6845184B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112722146B (en) | 2022-05-10 |
TWI823006B (en) | 2023-11-21 |
CN114572337B (en) | 2023-10-13 |
CN114572337A (en) | 2022-06-03 |
CN108974234A (en) | 2018-12-11 |
DE102018008578A1 (en) | 2019-01-17 |
CN108974234B (en) | 2021-01-08 |
CN112722145A (en) | 2021-04-30 |
CN112722145B (en) | 2022-10-25 |
CN112722146A (en) | 2021-04-30 |
TWI785388B (en) | 2022-12-01 |
CN108974233B (en) | 2021-01-05 |
DE102018111272A1 (en) | 2018-12-06 |
TW202116575A (en) | 2021-05-01 |
DE102018008591A1 (en) | 2019-01-17 |
TW201900444A (en) | 2019-01-01 |
DE202018106135U1 (en) | 2018-11-08 |
TW202327933A (en) | 2023-07-16 |
JP6845184B2 (en) | 2021-03-17 |
DE202018106134U1 (en) | 2018-11-12 |
JP6642933B2 (en) | 2020-02-12 |
TW202116617A (en) | 2021-05-01 |
TWI707800B (en) | 2020-10-21 |
JP2018203239A (en) | 2018-12-27 |
TWI697417B (en) | 2020-07-01 |
DE102018111273A1 (en) | 2018-12-06 |
JP2018203237A (en) | 2018-12-27 |
TW201900492A (en) | 2019-01-01 |
CN108974233A (en) | 2018-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11097807B2 (en) | Bicycle hub assembly | |
TWI765107B (en) | Bicycle rear sprocket assembly | |
TWI823006B (en) | Bicycle hub assembly | |
TWI785386B (en) | Bicycle rear sprocket assembly | |
TWI752255B (en) | Bicycle rear sprocket adapter | |
US11642913B2 (en) | Sprocket support body and bicycle hub assembly | |
TWI791156B (en) | Bicycle hub assembly | |
TWI853325B (en) | Bicycle rear sprocket assembly |